1
|
Xiao L, Wang Y, Shi X, Pang H, Li Y. Computed tomography-based radiomics modeling to predict patient overall survival in cervical cancer with intensity-modulated radiotherapy combined with concurrent chemotherapy. J Int Med Res 2025; 53:3000605251325996. [PMID: 40119689 PMCID: PMC11938878 DOI: 10.1177/03000605251325996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/19/2025] [Indexed: 03/24/2025] Open
Abstract
ObjectiveThe objective of this study was to develop a predictive model combining radiomic characteristics and clinical features to forecast overall survival in cervical cancer patients treated with intensity-modulated radiotherapy and concurrent chemotherapy.MethodsIn this retrospective observational study, 159 patients were divided into a training group (n = 95) and a validation group (n = 64). Radiomic characteristics were extracted from contrast-enhanced computed tomography scans. The least absolute shrinkage and selection operator regression analysis was used to filter the extracted radiomic characteristics and reduce the dimensionality of the data. A radiomic score was calculated from the selected features, and multivariate Cox regression models were established to analyze overall survival. A nomogram combining radiomic score and clinical features was developed, and its reliability was assessed using the area under the receiver operating characteristic curve.ResultsFour radiomic characteristics and two clinical features were extracted for overall survival analysis. A nomogram combining these factors was developed and validated, showing good performance with a high C-index. Patients were categorized as low-risk or high-risk for overall survival based on a cut-off value.ConclusionsOur model combining computed tomography-extracted radiomic characteristics and clinical features shows good potential for evaluating overall survival in cervical cancer patients treated with intensity-modulated radiotherapy and concurrent chemotherapy.
Collapse
Affiliation(s)
- Lihong Xiao
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Youhua Wang
- Department of Oncology, Gulin County People’s Hospital, Luzhou, Sichuan, China
| | - Xiangxiang Shi
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Haowen Pang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yunfei Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Liu C, Li X, Huang Q, Zhang M, Lei T, Wang F, Zou W, Huang R, Hu X, Wang C, Zhang X, Sun B, Xing L, Yue J, Yu J. Single-cell RNA-sequencing reveals radiochemotherapy-induced innate immune activation and MHC-II upregulation in cervical cancer. Signal Transduct Target Ther 2023; 8:44. [PMID: 36710358 PMCID: PMC9884664 DOI: 10.1038/s41392-022-01264-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/14/2022] [Accepted: 11/22/2022] [Indexed: 01/31/2023] Open
Abstract
Radiochemotherapy (RCT) is a powerful treatment for cervical cancer, which affects not only malignant cells but also the immune and stromal compartments of the tumor. Understanding the remodeling of the local ecosystem induced by RCT would provide valuable insights into improving treatment strategies for cervical cancer. In this study, we applied single-cell RNA-sequencing to paired pre- and post-RCT tumor biopsies from patients with cervical cancer and adjacent normal cervical tissues. We found that the residual population of epithelial cells post-RCT showed upregulated expression of MHC class II genes. Moreover, RCT led to the accumulation of monocytic myeloid-derived suppressor cells with increased pro-inflammatory features and CD16+ NK cells with a higher cytotoxic gene expression signature. However, subclusters of T cells showed no significant increase in the expression of cytotoxic features post-RCT. These results reveal the complex responses of the tumor ecosystem to RCT, providing evidence of activation of innate immunity and MHC-II upregulation in cervical cancer.
Collapse
Affiliation(s)
- Chao Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, 250117, China
| | - Xiaohui Li
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Qingyu Huang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Min Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Tianyu Lei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Fuhao Wang
- School of Clinical Medicine, Weifang Medical University, Weifang, 261053, China
| | - Wenxue Zou
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Rui Huang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiaoyu Hu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Cong Wang
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiaoling Zhang
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Bing Sun
- Department of Radiation Oncology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, China
| | - Ligang Xing
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, 250117, China.
| | - Jinbo Yue
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, 250117, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
3
|
Bronk JK, Kapadia C, Wu X, Chapman BV, Wang R, Karpinets TV, Song X, Futreal AM, Zhang J, Klopp AH, Colbert LE. Feasibility of a novel non-invasive swab technique for serial whole-exome sequencing of cervical tumors during chemoradiation therapy. PLoS One 2022; 17:e0274457. [PMID: 36201462 PMCID: PMC9536567 DOI: 10.1371/journal.pone.0274457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022] Open
Abstract
Background Clinically relevant genetic predictors of radiation response for cervical cancer are understudied due to the morbidity of repeat invasive biopsies required to obtain genetic material. Thus, we aimed to demonstrate the feasibility of a novel noninvasive cervical swab technique to (1) collect tumor DNA with adequate throughput to (2) perform whole-exome sequencing (WES) at serial time points over the course of chemoradiation therapy (CRT). Methods Cervical cancer tumor samples from patients undergoing chemoradiation were collected at baseline, at week 1, week 3, and at the completion of CRT (week 5) using a noninvasive swab-based biopsy technique. Swab samples were analyzed with whole-exome sequencing (WES) with mutation calling using a custom pipeline optimized for shallow whole-exome sequencing with low tumor purity (TP). Tumor mutation changes over the course of treatment were profiled. Results 216 samples were collected and successfully sequenced for 70 patients (94% of total number of tumor samples collected). A total of 33 patients had a complete set of samples at all four time points. The mean mapping rate was 98% for all samples, and the mean target coverage was 180. Estimated TP was greater than 5% for all samples. Overall mutation frequency decreased during CRT but mapping rate and mean target coverage remained at >98% and >180 reads at week 5. Conclusion This study demonstrates the feasibility and application of a noninvasive swab-based technique for WES analysis which may be applied to investigate dynamic tumor mutational changes during treatment to identify novel genes which confer radiation resistance.
Collapse
Affiliation(s)
- Julianna K. Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Chiraag Kapadia
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiaogang Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Bhavana V. Chapman
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Rui Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Tatiana V. Karpinets
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Xingzhi Song
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Andrew M. Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ann H. Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (LEC); (AHK)
| | - Lauren E. Colbert
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (LEC); (AHK)
| |
Collapse
|
4
|
Zhang Z, Xiang K, Tan L, Du X, He H, Li D, Li L, Wen Q. Identification of critical genes associated with radiotherapy resistance in cervical cancer by bioinformatics. Front Oncol 2022; 12:967386. [PMID: 35965520 PMCID: PMC9373049 DOI: 10.3389/fonc.2022.967386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Background Cervical cancer (CC) is one of the common malignant tumors in women, Currently, 30% of patients with intermediate to advanced squamous cervical cancer are still uncontrolled or recurrent after standard radical simultaneous radiotherapy; therefore, the search for critical genes affecting the sensitivity of radiotherapy may lead to new strategies for treatment. Methods Firstly, differentially expressed genes (DEGs) between radiotherapy-sensitivity and radiotherapy-resistance were identified by GEO2R from the gene expression omnibus (GEO) website, and prognosis-related genes for cervical cancer were obtained from the HPA database. Subsequently, the DAVID database analyzed gene ontology (GO). Meanwhile, the protein-protein interaction network was constructed by STRING; By online analysis of DEGs, prognostic genes, and CCDB data that are associated with cervical cancer formation through the OncoLnc database, we aim to search for the key DEGs associated with CC, Finally, the key gene(s) was further validated by immunohistochemistry. Result 298 differentially expressed genes, 712 genes associated with prognosis, and 509 genes related to cervical cancer formation were found. The results of gene function analysis showed that DEGs were mainly significant in functional pathways such as variable shear and energy metabolism. By further verification, two genes, ASPH and NKAPP1 were identified through validation as genes that affect both sensitivities to radiotherapy and survival finally. Then, immunohistochemical results showed that the ASPH gene was highly expressed in the radiotherapy-resistant group and had lower Overall survival (OS) and Progression-free survival (PFS). Conclusion This study aims to better understand the characteristics of cervical cancer radiation therapy resistance-related genes through bioinformatics and provide further research ideas for finding new mechanisms and potential therapeutic targets related to cervical cancer radiation therapy.
Collapse
Affiliation(s)
- Zhenhua Zhang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Kechao Xiang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Longjing Tan
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiuju Du
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huailin He
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Dan Li
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Li Li
- Guangxi Medical University Cancer Hospital, Nanning, China
- *Correspondence: Qinglian Wen, ; Li Li,
| | - Qinglian Wen
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Qinglian Wen, ; Li Li,
| |
Collapse
|
5
|
Markovina S. The course forward: next generation sequencing as part of the next generation management of patients with locally advanced cervical cancer. J Gynecol Oncol 2022; 33:e20. [PMID: 34970873 PMCID: PMC8728666 DOI: 10.3802/jgo.2022.33.e20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Stephanie Markovina
- Department of Radiation Oncology, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
6
|
Diefenbach D, Greten HJ, Efferth T. Genomic landscape analyses in cervical carcinoma and consequences for treatment. Curr Opin Pharmacol 2020; 54:142-157. [PMID: 33166910 DOI: 10.1016/j.coph.2020.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/26/2020] [Accepted: 09/27/2020] [Indexed: 11/28/2022]
Abstract
Where we are on the road to 'tailor-made' precision medicine for drug-resistant cervical carcinoma? We explored studies about analyses of viral and human genomes, epigenomes and transcriptomes, DNA mutation analyses, their importance in detecting HPV sequences, mechanisms of drug resistance to established and targeted therapies with small molecule or therapeutic antibodies, to radiosensitivity and to chemoradiotherapy. The value of repurposing of old drugs initially approved for other disease indications and now considered for cervix cancer therapy is also discussed. The microbiome influences drug response and survival too. HPV genomic integration sites were less significant. Nomograms (Lee et al., 2013) even outperformed FIGO staging regarding prediction of five-year overall survival times. We conclude that there are still many loose threads to be followed up, before coherent conclusions for individualized therapy of drug-resistant cervical carcinoma can be drawn.
Collapse
Affiliation(s)
- Dominik Diefenbach
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | | | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
7
|
Cosper PF, McNair C, González I, Wong N, Knudsen KE, Chen JJ, Markovina S, Schwarz JK, Grigsby PW, Wang X. Decreased local immune response and retained HPV gene expression during chemoradiotherapy are associated with treatment resistance and death from cervical cancer. Int J Cancer 2019; 146:2047-2058. [PMID: 31732968 DOI: 10.1002/ijc.32793] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
More than one-third of patients with locally advanced cervical cancer do not respond to chemoradiation therapy (CRT). We aimed to characterize the transcriptional landscape of paired human cervical tumors before and during CRT in order to gain insight into the evolution of treatment response and to elucidate mechanisms of treatment resistance. We prospectively collected cervical tumor biopsies from 115 patients both before and 3 weeks into CRT. RNA-sequencing, Gene Set Enrichment Analysis and HPV gene expression were performed on 20 paired samples that had adequate neoplastic tissue mid-treatment. Tumors from patients with no evidence of disease (NED) at last follow-up had enrichment in pathways related to the immune response both pretreatment and mid-treatment, while tumors from patients dead of disease (DOD) demonstrated enrichment in biosynthetic and mitotic pathways but not in immune-related pathways. Patients DOD had decreased expression of T-cell and cytolytic genes and increased expression of PD-L2 mid-treatment compared to patients NED. Histological and immunohistochemical analysis revealed a decrease in tumor-associated lymphocytes (TAL) during CRT in all patients but tumors from patients DOD had a significantly more pronounced decrease in TALs and CD8+ cells mid-treatment, which was validated in a larger mid-treatment cohort. Finally, patients DOD retained more HPV E6/E7 gene expression during CRT and this was associated with increased expression of genes driving mitosis, which was corroborated in vitro. Our results suggest that decreased local immune response and retained HPV gene expression may be acting together to promote treatment resistance during CRT in patients with cervical cancer.
Collapse
Affiliation(s)
- Pippa F Cosper
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO.,Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Christopher McNair
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Iván González
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Nathan Wong
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO.,Department of Biomedical Engineering, School of Engineering & Applied Science, Washington University, St. Louis, MO
| | - Karen E Knudsen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA
| | - Jason J Chen
- Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Stephanie Markovina
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO.,Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO.,Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Perry W Grigsby
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO.,Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| | - Xiaowei Wang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO.,Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
8
|
Banerjee S, Karunagaran D. An integrated approach for mining precise RNA-based cervical cancer staging biomarkers. Gene 2019; 712:143961. [PMID: 31279709 DOI: 10.1016/j.gene.2019.143961] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/06/2023]
Abstract
Since international federation of gynecology and obstetrics (FIGO) staging is mainly based on clinical assessment, an integrated approach for mining RNA based biomarkers for understanding the molecular deregulation of signaling pathways and RNAs in cervical cancer was proposed in this study. Publicly available data were mined for identifying significant RNAs after patient staging. Significant miRNA families were identified from mRNA-miRNA and lncRNA-miRNA interaction network analyses followed by stage specific mRNA-miRNA-lncRNA association network generation. Integrated bioinformatic analyses of selected mRNAs and lncRNAs were performed. Results suggest that HBA1, HBA2, HBB, SLC2A1, CXCL10 (stage I), PKIA (stage III) and S100A7 (stage IV) were important. miRNA family enrichment of interacting miRNA partners of selected RNAs indicated the enrichment of let-7 family. Assembly of collagen fibrils and other multimeric structures_Homosapiens_R-HSA-2022090 in pathway analysis and progesterone_CTD_00006624 in DSigDB analysis were the most significant and SLC2A1, hsa-miR-188-3p, hsa-miR-378a-3p and hsa-miR-150-5p were selected as survival markers.
Collapse
Affiliation(s)
- Satarupa Banerjee
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai 600036, India
| | - Devarajan Karunagaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai 600036, India.
| |
Collapse
|
9
|
Radiation therapy oncology group gynecologic oncology working group: comprehensive results. Int J Gynecol Cancer 2015; 24:956-62. [PMID: 24819663 DOI: 10.1097/igc.0000000000000135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The purpose of this report was to comprehensively describe the activities of the Gynecologic Oncology Working Group within the Radiation Therapy Oncology Group (RTOG). Clinical trials will be reviewed as well as translational science and ancillary activities. During the past 40 years, a myriad of clinical trials have been performed within the RTOG with the aim of improving overall survival (OS) and decreasing morbidity in women with cervical or endometrial cancer. Major study questions have included hyperbaric oxygen, neutron radiotherapy, altered fractionation, hypoxic cell sensitization, chemosensitization, and volume-directed radiotherapy.RTOG 7920 demonstrated improvement in OS in patients with stages IB through IIB cervical carcinoma receiving prophylactic para-aortic irradiation compared to pelvic radiation alone. RTOG 9001 demonstrated that cisplatin and 5-FU chemoradiotherapy to the pelvis for advanced cervix cancer markedly improved OS compared to extended field radiotherapy alone. More recent trials have used radioprotectors, molecular-targeted therapy, and intensity-modulated radiation therapy. Ancillary studies have developed clinical target volume atlases for research protocols and routine clinical use. Worldwide practice patterns have been investigated in cervix, endometrial, and vulvar cancer through the Gynecologic Cancer Intergroup. Translational studies have focused on immunohistochemical markers, changes in gene expression, and miRNA patterns impacting prognosis.The RTOG gynecologic working group has performed clinical trials that have defined the standard of care, improved survival, and added to our understanding of the biology of cervical and endometrial cancers.
Collapse
|
10
|
Mäbert K, Cojoc M, Peitzsch C, Kurth I, Souchelnytskyi S, Dubrovska A. Cancer biomarker discovery: current status and future perspectives. Int J Radiat Biol 2014; 90:659-77. [PMID: 24524284 DOI: 10.3109/09553002.2014.892229] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Cancer is a multigene disease which arises as a result of mutational and epigenetic changes coupled with activation of complex signaling networks. The use of biomarkers for early cancer detection, staging and individualization of therapy might improve patient care. A few fundamental issues such as tumor heterogeneity, a highly dynamic nature of the intrinsic and extrinsic determinants of radio- and chemoresistance, along with the plasticity and diversity of cancer stem cells (CSC) make biomarker development a challenging task. In this review we outline the preclinical strategies of cancer biomarker discovery including genomic, proteomic, metabolomic and microRNomic profiling, comparative genome hybridization (CGH), single nucleotide polymorphism (SNP) analysis, high throughput screening (HTS) and next generation sequencing (NGS). Other promising approaches such as assessment of circulating tumor cells (CTC), analysis of CSC-specific markers and cell-free circulating tumor DNA (ctDNA) are also discussed. CONCLUSIONS The emergence of powerful proteomic and genomic technologies in conjunction with advanced bioinformatic tools allows the simultaneous analysis of thousands of biological molecules. These techniques yield the discovery of new tumor signatures, which are sensitive and specific enough for early cancer detection, for monitoring disease progression and for proper treatment selection, paving the way to individualized cancer treatment.
Collapse
Affiliation(s)
- Katrin Mäbert
- OncoRay-National Center for Radiation Research in Oncology, Medical Faculty Dresden Carl Gustav Carus , TU Dresden , Germany
| | | | | | | | | | | |
Collapse
|
11
|
Ribonucleotide reductase expression in cervical cancer: a radiation therapy oncology group translational science analysis. Int J Gynecol Cancer 2014; 23:615-21. [PMID: 23552804 DOI: 10.1097/igc.0b013e31828b4eb5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To evaluate pretherapy ribonucleotide reductase (RNR) expression and its effect on radiochemotherapeutic outcome in women with cervical cancer. METHODS/MATERIALS Pretherapy RNR M1, M2, and M2b immunohistochemistry was done on cervical cancer specimens retrieved from women treated on Radiation Therapy Oncology Group (RTOG) 0116 and 0128 clinical trials. Enrollees of RTOG 0116 (node-positive stages IA-IVA) received weekly cisplatin (40 mg/m(2)) with amifostine (500 mg) and extended-field radiation then brachytherapy (85 Gy). Enrollees of RTOG 0128 (node-positive or bulky ≥5 cm, stages IB-IIA or stages IIB-IVA) received cisplatin (75 mg/m(2)) on days 1, 23, and 43 and 5-FU (1 g/m(2) for 4 days) during pelvic radiation then brachytherapy (85 Gy), plus celecoxib (400 mg twice daily, day 1 through 1 year). Disease-free survival (DFS) was estimated univariately by the Kaplan-Meier method. Cox proportional hazards models evaluated the impact of RNR immunoreactivity on DFS. RESULTS Fifty-one tissue samples were analyzed: 13 from RTOG 0116 and 38 from RTOG 0128. M1, M2, and M2b overexpression (3+) frequencies were 2%, 80%, and 47%, respectively. Low-level (0-1+, n = 44/51) expression of the regulatory subunit M1 did not associate with DFS (P = 0.38). High (3+) M2 expression occurred in most (n = 41/51) but without impact alone on DFS (hazard ratio, 0.54; 95% confidence interval, 0.2-1.4; P = 0.20). After adjusting for M2b status, pelvic node-positive women had increased hazard for relapse or death (hazard ratio, 5.5; 95% confidence interval, 2.2-13.8; P = 0.0003). CONCLUSIONS These results suggest that RNR subunit expression may discriminate cervical cancer phenotype and radiochemotherapy outcome. Future RNR biomarker studies are warranted.
Collapse
|
12
|
Kunos CA, Radivoyevitch T, Waggoner S, Debernardo R, Zanotti K, Resnick K, Fusco N, Adams R, Redline R, Faulhaber P, Dowlati A. Radiochemotherapy plus 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC #663249) in advanced-stage cervical and vaginal cancers. Gynecol Oncol 2013; 130:75-80. [PMID: 23603372 PMCID: PMC4260802 DOI: 10.1016/j.ygyno.2013.04.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 04/09/2013] [Accepted: 04/12/2013] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Cervical and vaginal cancers have virally-mediated or mutated defects in DNA damage repair responses, making these cancers sensible targets for ribonucleotide reductase inhibition during radiochemotherapy. METHODS We conducted a phase II study evaluating 3× weekly 2-hour intravenous 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, 25 mg/m(2)) co-administered with 1× weekly intravenous cisplatin (40 mg/m(2)) and daily pelvic radiation (45 Gy) in women with stage I(B2)-IV(B) cervical (n=22) or stage II-IV vaginal (n=3) cancers. Brachytherapy followed (40 Gy). Toxicity was monitored by common terminology criteria for adverse events (version 3.0). The primary end point of response was assessed by 3-month posttherapy 2-[(18)F] fluoro-2-deoxy-d-glucose positron emission tomography (PET/CT) and clinical examination. RESULTS 3-AP radiochemotherapy achieved clinical responses in 24 (96% [95% confidence interval: 80-99%]) of 25 patients (median follow-up 20 months, range 2-35 months). 23 (96% [95% confidence interval: 80-99%]) of 24 patients had 3-month posttherapy PET/CT scans that recorded metabolic activity in the cervix or vagina equal or less than that of the cardiac blood pool, suggesting complete metabolic responses. The most frequent 3-AP radiochemotherapy-related adverse events included fatigue, nausea, diarrhea, and reversible hematological and electrolyte abnormalities. CONCLUSIONS The addition of 3-AP to cisplatin radiochemotherapy was tolerable and produced high rates of clinical and metabolic responses in women with cervical and vaginal cancers. Future randomized phase II and III clinical trials of 3-AP radiochemotherapy are warranted.
Collapse
Affiliation(s)
- Charles A Kunos
- Department of Radiation Oncology, CASE Comprehensive Cancer Center, University Hospitals Case Medical Center and Case Western Reserve University School of Medicine, Cleveland, OH 44106, United States.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Personalized radiation therapy and biomarker-driven treatment strategies: a systematic review. Cancer Metastasis Rev 2013; 32:479-92. [DOI: 10.1007/s10555-013-9419-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Klopp AH, Eifel PJ. Biological predictors of cervical cancer response to radiation therapy. Semin Radiat Oncol 2012; 22:143-50. [PMID: 22385921 DOI: 10.1016/j.semradonc.2011.12.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The addition of cisplatin-based chemotherapy to standard radiation therapy reduces the risk of recurrence and disease-related death rates from locally advanced cervical cancers by as much as 50%. However, the absolute gains are relatively small for patients with early tumors, many of whom would have been cured with radiation alone, and recurrence rates are still high for patients who have very large or advanced-stage tumors. As a result, there is a pressing need for more accurate predictors of radiocurability. A variety of types of biomarkers have been shown to correlate with cervical cancer response to radiation therapy. These include traditional clinical and morphologic predictors, non-molecular biomarkers, including hypoxia and fluorodeoxyglucose-positron emission tomography (FDG-PET) avidity, as well as molecular biomarkers, which include single-gene markers or array-based multigene predictors. Multi-gene predictors of response remain immature in cervical cancer, but studies thus far have paved the way for future studies to validate these findings. Methods will need to be standardized and markers will need to be validated on homogeneous patient populations and treatment approaches before they can become useful tools for clinical decision making. In addition, new biomarkers will be of major value only if they add to the predictive value of traditional clinical and morphologic predictors. Ultimately, the most useful biomarkers will identify patients who will benefit from specific molecularly targeted agents in addition to radiation therapy or perhaps identify patient who are at low risk for recurrence, for whom the dose of radiation or chemotherapy can be reduced.
Collapse
Affiliation(s)
- Ann H Klopp
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | |
Collapse
|
15
|
Abstract
Integrating signals from the ECM (extracellular matrix) via the cell surface into the nucleus is an essential feature of multicellular life and often malfunctions in cancer. To date many signal transducers known as shuttle proteins have been identified that act as both: a cytoskeletal and a signalling protein. Here, we highlight the interesting member of the Zyxin family TRIP6 [thyroid receptor interactor protein 6; also designated ZRP-1 (zyxin-related protein 1)] and review current literature to define its role in cell physiology and cancer. TRIP6 is a versatile scaffolding protein at FAs (focal adhesions) involved in cytoskeletal organization, coordinated cell migration and tissue invasion. Via its LIM and TDC domains TRIP6 interacts with different components of the LPA (lysophosphatidic acid), NF-κB (nuclear factor κB), glucocorticoid and AMPK (AMP-activated protein kinase) signalling pathway and thereby modulates their activity. Within the nucleus TRIP6 acts as a transcriptional cofactor regulating the transcriptional responses of these pathways. Moreover, intranuclear TRIP6 associates with proteins ensuring telomere protection and hence may contribute to genome stability. Accordingly, TRIP6 is engaged in key cellular processes such as cell proliferation, differentiation and survival. These diverse functions of TRIP6 are found to be dysregulated in various cancers and may have pleiotropic roles in tumour initiation, tumour growth and metastasis, which turn TRIP6 into an attractive candidate for cancer diagnosis and targeted therapy.
Collapse
|
16
|
Huang L, Zheng M, Zhou QM, Zhang MY, Jia WH, Yun JP, Wang HY. Identification of a gene-expression signature for predicting lymph node metastasis in patients with early stage cervical carcinoma. Cancer 2011; 117:3363-73. [PMID: 21319141 DOI: 10.1002/cncr.25870] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/21/2010] [Accepted: 11/22/2010] [Indexed: 11/08/2022]
Abstract
BACKGROUND Pelvic lymph node metastasis (PLNM) is an important prognostic factor for patients with cervical carcinoma. The objective of this study was to identify a gene-expression signature that could predict PLNM in cervical carcinoma. METHODS Eighty-eight women with cervical carcinoma with PLNM (n = 23) and without PLNM (n = 65) were divided randomly into a training group and a test group. An oligonucleotide microarray that contained probes for 1440 human cancer-related genes was fabricated in-house and was used to detect the gene expression profile of cervical carcinoma. The gene expression levels detected in the microarray were verified by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). RESULTS A gene-expression signature for predicting PLNM was developed in patients from the training group, including 11 genes: ribosomal protein L35 (RPL35); thymosin β 10 (TMSB10); tyrosine 3-mono-oxytenase/tryptophan 5-mono-oxygenase activation protein, ζ polypeptide (YWHAZ); biotinidase (BTD); lactate dehydrogenase A (LDHA); glucuronidase β (GUSB); superoxide dismutase 2 (SOD2); nuclear receptor subfamily 3, group C, member 2 (NR3C2); fructosamine 3 kinase (FN3K); x-ray repair cross-complementing 4 (XRCC4); and wingless-type mouse mammary tumor virus integration site family member 2 (WNT2). In the test group, the signature's accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were 91%, 90.9%, 93.9%, 83.3%, and 96.9%, respectively, for predicting PLNM. The expression levels of 5 genes in the signature were confirmed by qRT-PCR. A multivariate analysis demonstrated that patients with 11-gene high-risk scores were had a 33-fold increased risk for PLNM compared with patients who had low-risk scores. The 5-year overall and disease-free survival rates for patients who had 11-gene high-risk scores were marginally significantly lower than the rates for patients who had 11-gene low-risk scores (P = .087 and P = .174, respectively). CONCLUSIONS In this study, 11-gene signature for predicting PLNM in cervical carcinoma was identified that may help clinicians in planning therapy for patients with cervical carcinoma.
Collapse
Affiliation(s)
- Long Huang
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-sen University, Guangzhou, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|