1
|
Wang X, ShiYang X, Ma W, Wu X, Lu Y. Extracellular signal-regulated protein kinase 5 modulates the spindle assembly to coordinate the oocyte meiotic maturation. Theriogenology 2024; 226:335-342. [PMID: 38959844 DOI: 10.1016/j.theriogenology.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Extracellular signal-regulated protein kinase 5 (Erk5), a member of the mitogen-activated protein kinase (MAPK) family, is ubiquitously expressed in all eukaryotic cells and is implicated in the various mitotic processes such as cell survival, proliferation, migration, and differentiation. However, the potential functional roles of Erk5 in oocyte meiosis have not been fully determined. In this study, we document that ERK5 participates in the meiotic maturation of mouse oocytes by regulating the spindle assembly to ensure the meiotic progression. We unexpectedly found that phosphorylated ERK5 was localized in the spindle pole region at metaphase I and II stages by immunostaining analysis. Inhibition of ERK5 activity using its specific inhibitor XMD8-92 dramatically reduced the incidence of first polar body extrusion. In addition, inhibition of ERK5 evoked the spindle assembly checkpoint to arrest oocytes at metaphase I stage by impairing the spindle assembly, chromosome alignment and kinetochore-microtubule attachment. Mechanically, over-strengthened microtubule stability was shown to disrupt the microtubule dynamics and thus compromise the spindle assembly in ERK5-inhibited oocytes. Conversely, overexpression of ERK5 caused decreased level of acetylated α-tubulin and spindle defects. Collectively, we conclude that ERK5 plays an important role in the oocyte meiotic maturation by regulating microtubule dynamics and spindle assembly.
Collapse
Affiliation(s)
- Xia Wang
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China
| | - Xiayan ShiYang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Ma
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China; Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Xue Wu
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, China; Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China
| | - Yajuan Lu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, 226019, China.
| |
Collapse
|
2
|
Ray SK, Jayashankar E, Kotnis A, Mukherjee S. Oxidative versus Reductive Stress in Breast Cancer Development and Cellular Mechanism of Alleviation: A Current Perspective with Anti-breast Cancer Drug Resistance. Curr Mol Med 2024; 24:205-216. [PMID: 36892117 DOI: 10.2174/1566524023666230309112751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/10/2023]
Abstract
Redox homeostasis is essential for keeping our bodies healthy, but it also helps breast cancer cells grow, stay alive, and resist treatment. Changes in the redox balance and problems with redox signaling can make breast cancer cells grow and spread and make them resistant to chemotherapy and radiation therapy. Reactive oxygen species/reactive nitrogen species (ROS/RNS) generation and the oxidant defense system are out of equilibrium, which causes oxidative stress. Many studies have shown that oxidative stress can affect the start and spread of cancer by interfering with redox (reduction-oxidation) signaling and damaging molecules. The oxidation of invariant cysteine residues in FNIP1 is reversed by reductive stress, which is brought on by protracted antioxidant signaling or mitochondrial inactivity. This permits CUL2FEM1B to recognize its intended target. After the proteasome breaks down FNIP1, mitochondrial function is restored to keep redox balance and cell integrity. Reductive stress is caused by unchecked amplification of antioxidant signaling, and changes in metabolic pathways are a big part of breast tumors' growth. Also, redox reactions make pathways like PI3K, PKC, and protein kinases of the MAPK cascade work better. Kinases and phosphatases control the phosphorylation status of transcription factors like APE1/Ref-1, HIF-1, AP-1, Nrf2, NF-B, p53, FOXO, STAT, and - catenin. Also, how well anti-breast cancer drugs, especially those that cause cytotoxicity by making ROS, treat patients depends on how well the elements that support a cell's redox environment work together. Even though chemotherapy aims to kill cancer cells, which it does by making ROS, this can lead to drug resistance in the long run. The development of novel therapeutic approaches for treating breast cancer will be facilitated by a better understanding of the reductive stress and metabolic pathways in tumor microenvironments.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, Bhopal, Madhya Pradesh, 462020, India
| | - Erukkambattu Jayashankar
- Department of Pathology & Lab Medicine, All India Institute of Medical Sciences-Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| | - Ashwin Kotnis
- Department of Biochemistry, All India Institute of Medical Sciences-Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences-Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| |
Collapse
|
3
|
Le NT. The significance of ERK5 catalytic-independent functions in disease pathways. Front Cell Dev Biol 2023; 11:1235217. [PMID: 37601096 PMCID: PMC10436230 DOI: 10.3389/fcell.2023.1235217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5), also known as BMK1 or MAPK7, represents a recent addition to the classical mitogen-activated protein kinase (MAPK) family. This family includes well-known members such as ERK1/2, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), as well as atypical MAPKs such as ERK3, ERK4, ERK7 (ERK8), and Nemo-like kinase (NLK). Comprehensive reviews available elsewhere provide detailed insights into ERK5, which interested readers can refer to for in-depth knowledge (Nithianandarajah-Jones et al., 2012; Monti et al., Cancers (Basel), 2022, 14). The primary aim of this review is to emphasize the essential characteristics of ERK5 and shed light on the intricate nature of its activation, with particular attention to the catalytic-independent functions in disease pathways.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
4
|
Clinical Significance and Regulation of ERK5 Expression and Function in Cancer. Cancers (Basel) 2022; 14:cancers14020348. [PMID: 35053510 PMCID: PMC8773716 DOI: 10.3390/cancers14020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) is a unique kinase among MAPKs family members, given its large structure characterized by the presence of a unique C-terminal domain. Despite increasing data demonstrating the relevance of the ERK5 pathway in the growth, survival, and differentiation of normal cells, ERK5 has recently attracted the attention of several research groups given its relevance in inflammatory disorders and cancer. Accumulating evidence reported its role in tumor initiation and progression. In this review, we explore the gene expression profile of ERK5 among cancers correlated with its clinical impact, as well as the prognostic value of ERK5 and pERK5 expression levels in tumors. We also summarize the importance of ERK5 in the maintenance of a cancer stem-like phenotype and explore the major known contributions of ERK5 in the tumor-associated microenvironment. Moreover, although several questions are still open concerning ERK5 molecular regulation, different ERK5 isoforms derived from the alternative splicing process are also described, highlighting the potential clinical relevance of targeting ERK5 pathways.
Collapse
|
5
|
Sánchez-Fdez A, Re-Louhau MF, Rodríguez-Núñez P, Ludeña D, Matilla-Almazán S, Pandiella A, Esparís-Ogando A. Clinical, genetic and pharmacological data support targeting the MEK5/ERK5 module in lung cancer. NPJ Precis Oncol 2021; 5:78. [PMID: 34404896 PMCID: PMC8371118 DOI: 10.1038/s41698-021-00218-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 07/20/2021] [Indexed: 11/09/2022] Open
Abstract
Despite advances in its treatment, lung cancer still represents the most common and lethal tumor. Because of that, efforts to decipher the pathophysiological actors that may promote lung tumor generation/progression are being made, with the final aim of establishing new therapeutic options. Using a transgenic mouse model, we formerly demonstrated that the sole activation of the MEK5/ERK5 MAPK route had a pathophysiological role in the onset of lung adenocarcinomas. Given the prevalence of that disease and its frequent dismal prognosis, our findings opened the possibility of targeting the MEK5/ERK5 route with therapeutic purposes. Here we have explored such possibility. We found that increased levels of MEK5/ERK5 correlated with poor patient prognosis in lung cancer. Moreover, using genetic as well as pharmacological tools, we show that targeting the MEK5/ERK5 route is therapeutically effective in lung cancer. Not only genetic disruption of ERK5 by CRISPR/Cas9 caused a relevant inhibition of tumor growth in vitro and in vivo; such ERK5 deficit augmented the antitumoral effect of agents normally used in the lung cancer clinic. The clinical correlation studies together with the pharmacological and genetic results establish the basis for considering the targeting of the MEK5/ERK5 route in the therapy for lung cancer.
Collapse
Affiliation(s)
- Adrián Sánchez-Fdez
- Institute of Molecular and Cellular Biology of Cancer (IBMCC)-CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Network Research (CIBERONC), Salamanca, Spain
| | - María Florencia Re-Louhau
- Institute of Molecular and Cellular Biology of Cancer (IBMCC)-CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Pablo Rodríguez-Núñez
- Institute of Molecular and Cellular Biology of Cancer (IBMCC)-CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Dolores Ludeña
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Pathology Service, University Hospital, Salamanca, Spain
| | - Sofía Matilla-Almazán
- Institute of Molecular and Cellular Biology of Cancer (IBMCC)-CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Network Research (CIBERONC), Salamanca, Spain
| | - Atanasio Pandiella
- Institute of Molecular and Cellular Biology of Cancer (IBMCC)-CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Cancer Network Research (CIBERONC), Salamanca, Spain
| | - Azucena Esparís-Ogando
- Institute of Molecular and Cellular Biology of Cancer (IBMCC)-CSIC, Salamanca, Spain. .,Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain. .,Cancer Network Research (CIBERONC), Salamanca, Spain.
| |
Collapse
|
6
|
Impact of ERK5 on the Hallmarks of Cancer. Int J Mol Sci 2019; 20:ijms20061426. [PMID: 30901834 PMCID: PMC6471124 DOI: 10.3390/ijms20061426] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/15/2022] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5) belongs to the mitogen-activated protein kinase (MAPK) family that consists of highly conserved enzymes expressed in all eukaryotic cells and elicits several biological responses, including cell survival, proliferation, migration, and differentiation. In recent years, accumulating lines of evidence point to a relevant role of ERK5 in the onset and progression of several types of cancer. In particular, it has been reported that ERK5 is a key signaling molecule involved in almost all the biological features of cancer cells so that its targeting is emerging as a promising strategy to suppress tumor growth and spreading. Based on that, in this review, we pinpoint the hallmark-specific role of ERK5 in cancer in order to identify biological features that will potentially benefit from ERK5 targeting.
Collapse
|
7
|
Sánchez-Fdez A, Ortiz-Ruiz MJ, Re-Louhau MF, Ramos I, Blanco-Múñez Ó, Ludeña D, Abad M, Sánchez-Martín M, Pandiella A, Esparís-Ogando A. MEK5 promotes lung adenocarcinoma. Eur Respir J 2019; 53:13993003.01327-2018. [PMID: 30442718 PMCID: PMC6393765 DOI: 10.1183/13993003.01327-2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/05/2018] [Indexed: 11/05/2022]
Abstract
Lung cancer represents the leading cause of cancer death worldwide [1]. Because of that, intense efforts are being devoted to the development of novel therapeutic strategies to fight the disease [2]. In this respect, identification of new oncogenic drivers offers therapeutic opportunities in tumours in which those molecules or other cooperating elements play a pathophysiological role. Here, we show that the MEK5 mitogen-activated protein kinase kinase has a pivotal role in lung cancer. MEK5 acts as an oncogenic driver in mice lung cancer and is pivotal for human lung adenocarcinomahttp://ow.ly/M9e830mZb8N
Collapse
Affiliation(s)
- Adrián Sánchez-Fdez
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, Salamanca, Spain.,IBSAL, Salamanca, Spain.,CIBERONC, Salamanca, Spain
| | - María Jesús Ortiz-Ruiz
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, Salamanca, Spain.,IBSAL, Salamanca, Spain
| | - María Florencia Re-Louhau
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, Salamanca, Spain.,IBSAL, Salamanca, Spain
| | - Isabel Ramos
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, Salamanca, Spain
| | - Óscar Blanco-Múñez
- IBSAL, Salamanca, Spain.,Pathology Service, University Hospital, Salamanca, Spain
| | - Dolores Ludeña
- IBSAL, Salamanca, Spain.,Pathology Service, University Hospital, Salamanca, Spain
| | - Mar Abad
- IBSAL, Salamanca, Spain.,Pathology Service, University Hospital, Salamanca, Spain
| | - Manuel Sánchez-Martín
- CIBERONC, Salamanca, Spain.,Transgenic Facility of the Nucleus Platform, University of Salamanca, Salamanca, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, Salamanca, Spain.,IBSAL, Salamanca, Spain.,CIBERONC, Salamanca, Spain
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer-CSIC, Salamanca, Spain.,IBSAL, Salamanca, Spain.,CIBERONC, Salamanca, Spain
| |
Collapse
|
8
|
Tusa I, Gagliardi S, Tubita A, Pandolfi S, Urso C, Borgognoni L, Wang J, Deng X, Gray NS, Stecca B, Rovida E. ERK5 is activated by oncogenic BRAF and promotes melanoma growth. Oncogene 2018; 37:2601-2614. [PMID: 29483645 PMCID: PMC5945581 DOI: 10.1038/s41388-018-0164-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/21/2017] [Accepted: 01/17/2018] [Indexed: 02/07/2023]
Abstract
Malignant melanoma is among the most aggressive cancers and its incidence is increasing worldwide. Targeted therapies and immunotherapy have improved the survival of patients with metastatic melanoma in the last few years; however, available treatments are still unsatisfactory. While the role of the BRAF-MEK1/2-ERK1/2 pathway in melanoma is well established, the involvement of mitogen-activated protein kinases MEK5-ERK5 remains poorly explored. Here we investigated the function of ERK5 signaling in melanoma. We show that ERK5 is consistently expressed in human melanoma tissues and is active in melanoma cells. Genetic silencing and pharmacological inhibition of ERK5 pathway drastically reduce the growth of melanoma cells and xenografts harboring wild-type (wt) or mutated BRAF (V600E). We also found that oncogenic BRAF positively regulates expression, phosphorylation, and nuclear localization of ERK5. Importantly, ERK5 kinase and transcriptional transactivator activities are enhanced by BRAF. Nevertheless, combined pharmacological inhibition of BRAFV600E and MEK5 is required to decrease nuclear ERK5, that is critical for the regulation of cell proliferation. Accordingly, combination of MEK5 or ERK5 inhibitors with BRAFV600E inhibitor vemurafenib is more effective than single treatments in reducing colony formation and growth of BRAFV600E melanoma cells and xenografts. Overall, these data support a key role of the ERK5 pathway for melanoma growth in vitro and in vivo and suggest that targeting ERK5, alone or in combination with BRAF-MEK1/2 inhibitors, might represent a novel approach for melanoma treatment.
Collapse
Affiliation(s)
- Ignazia Tusa
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | | | - Alessandro Tubita
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy
| | - Silvia Pandolfi
- Core Research Laboratory - Istituto Toscano Tumori, Florence, Italy
- VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Carmelo Urso
- Anatomic Pathology Unit, Dermatopathology Section, S.M. Annunziata Hospital, Florence, Italy
| | - Lorenzo Borgognoni
- Plastic Surgery Unit, Regional Melanoma Referral Center, S.M. Annunziata Hospital, Florence, Italy
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Xianming Deng
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Barbara Stecca
- Core Research Laboratory - Istituto Toscano Tumori, Florence, Italy.
| | - Elisabetta Rovida
- Department of Clinical and Experimental Biomedical Sciences, University of Florence, Florence, Italy.
| |
Collapse
|
9
|
Pereira DM, Simões AES, Gomes SE, Castro RE, Carvalho T, Rodrigues CMP, Borralho PM. MEK5/ERK5 signaling inhibition increases colon cancer cell sensitivity to 5-fluorouracil through a p53-dependent mechanism. Oncotarget 2018; 7:34322-40. [PMID: 27144434 PMCID: PMC5085159 DOI: 10.18632/oncotarget.9107] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/31/2016] [Indexed: 12/22/2022] Open
Abstract
The MEK5/ERK5 signaling pathway is emerging as an important contributor to colon cancer onset, progression and metastasis; however, its relevance to chemotherapy resistance remains unknown. Here, we evaluated the impact of the MEK5/ERK5 cascade in colon cancer cell sensitivity to 5-fluorouracil (5-FU). Increased ERK5 expression was correlated with poor overall survival in colon cancer patients. In colon cancer cells, 5-FU exposure impaired endogenous KRAS/MEK5/ERK5 expression and/or activation. In turn, MEK5 constitutive activation reduced 5-FU-induced cytotoxicity. Using genetic and pharmacological approaches, we showed that ERK5 inhibition increased caspase-3/7 activity and apoptosis following 5-FU exposure. Mechanistically, this was further associated with increased p53 transcriptional activation of p21 and PUMA. In addition, ERK5 inhibition increased the response of HCT116 p53+/+ cells to 5-FU, but failed to sensitize HCT116 p53−/− cells to the cytotoxic effects of this chemotherapeutic agent, suggesting a p53-dependent axis mediating 5-FU sensitization. Finally, ERK5 inhibition using XMD8-92 was shown to increase the antitumor effects of 5-FU in a murine subcutaneous xenograft model, enhancing apoptosis while markedly reducing tumor growth. Collectively, our results suggest that ERK5-targeted in hibition provides a promising therapeutic approach to overcome resistance to 5-FU-based chemotherapy and improve colon cancer treatment.
Collapse
Affiliation(s)
- Diane M Pereira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - André E S Simões
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sofia E Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Tânia Carvalho
- Histology and Comparative Pathology Laboratory, Instituto de Medicina Molecular, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
10
|
Wang H, Dai YY, Zhang WQ, Hsu PC, Yang YL, Wang YC, Chan G, Au A, Xu ZD, Jiang SJ, Wang W, Jablons DM, You L. DCLK1 is correlated with MET and ERK5 expression, and associated with prognosis in malignant pleural mesothelioma. Int J Oncol 2017; 51:91-103. [PMID: 28560410 PMCID: PMC5467791 DOI: 10.3892/ijo.2017.4021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/20/2017] [Indexed: 01/07/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is an aggressive cancer for which more effective treatments are needed. In this study, strong to moderate staining of MET and ERK5 was detected in 67.1 and 48% of the analyzed 73 human mesothelioma tumors, and significant correlation of MET and ERK5 expression was identified (P<0.05). We evaluated the doublecortin-like kinase 1 (DCLK1) expression in human mesothelioma tumors. Our results showed that 50.7% of the immunohistochemistry analyzed human mesothelioma tumors have strong to moderate staining of DCLK1, and its expression is significantly correlated with MET or ERK5 expression (P<0.05). Also, the upregulation of DCLK1 is correlated with poor prognosis in MPM patients (P=0.0235). To investigate whether DCLK1 is downstream of MET/ERK5 signaling in human mesothelioma, the effect of DCLK1 expression was analyzed after treatments with either the MET inhibitor XL184 or the ERK5 inhibitor XMD8-92 in human mesothelioma cell lines. Our results showed that the MET inhibitor XL184 reduced the expression of phospho‑ERK5 and DCLK1 expression in human mesothelioma cell lines. In addition, the ERK5 inhibitor XMD8-92 reduced the expression of phospho-ERK5 and DCLK1 expression in human mesothelioma cell lines. Furthermore, XML184 and XMD8-92 treatment impaired invasion and tumor sphere formation ability of H290 mesothelioma cells. These results suggest that DCLK1 is regulated by MET/ERK5 signaling in human mesothelioma, and the MET/ERK5/DCLK1 signaling cascade could be further developed into a promising therapeutic target against mesothelioma.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pulmonary Medicine, Affiliated Shandong Provincial Hospital, Shandong university, Shandong, P.R. China
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Shandong
| | - Yu-Yuan Dai
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Wen-Qian Zhang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital university of Medical Science, Beijing, P.R. China
| | - Ping-Chih Hsu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan, R.O.C
| | - Yi-Lin Yang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Yu-Cheng Wang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Geraldine Chan
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Alfred Au
- Division of Diagnostic Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Zhi-Dong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Shu-Juan Jiang
- Department of Pulmonary Medicine, Affiliated Shandong Provincial Hospital, Shandong university, Shandong, P.R. China
| | - Wei Wang
- Department of Respiratory Medicine, The Second Hospital of Shandong University, Shandong
| | - David M. Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
11
|
Hoang VT, Yan TJ, Cavanaugh JE, Flaherty PT, Beckman BS, Burow ME. Oncogenic signaling of MEK5-ERK5. Cancer Lett 2017; 392:51-59. [PMID: 28153789 PMCID: PMC5901897 DOI: 10.1016/j.canlet.2017.01.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/17/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) regulate diverse cellular processes including proliferation, cell survival, differentiation, and apoptosis. While conventional MAPK constituents have well-defined roles in oncogenesis, the MEK5 pathway has only recently emerged in cancer research. In this review, we consider the MEK5 signaling cascade, focusing specifically on its involvement in drug resistance and regulation of aggressive cancer phenotypes. Moreover, we explore the role of MEK5/ERK5 in tumorigenesis and metastatic progression, discussing the discrepancies in preclinical studies and assessing its viability as a therapeutic target for anti-cancer agents.
Collapse
Affiliation(s)
- Van T Hoang
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - Thomas J Yan
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA
| | - Jane E Cavanaugh
- Department of Pharmacological Sciences, Division of Medicinal Chemistry, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | - Patrick T Flaherty
- Department of Pharmacological Sciences, Division of Medicinal Chemistry, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA, USA
| | | | - Matthew E Burow
- Department of Medicine-Section of Hematology and Medical Oncology, Tulane University, New Orleans, LA, USA; Department of Pharmacology, Tulane University, New Orleans, LA, USA; Tulane Cancer Center, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
12
|
Gào X, Schöttker B. Reduction-oxidation pathways involved in cancer development: a systematic review of literature reviews. Oncotarget 2017; 8:51888-51906. [PMID: 28881698 PMCID: PMC5584299 DOI: 10.18632/oncotarget.17128] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/03/2017] [Indexed: 12/24/2022] Open
Abstract
Oxidative stress results from an imbalance of the reactive oxygen species/reactive nitrogen species (ROS/RNS) production and the oxidants defense system. Extensive research during the last decades has revealed that oxidative stress can mediate cancer initiation and development by leading not only to molecular damage but also to a disruption of reduction-oxidation (redox) signaling. In order to provide a global overview of the redox signaling pathways, which play a role in cancer formation, we conducted a systematic literature search in PubMed and ISI Web of Science and identified 185 relevant reviews published in the last 10 years. The 20 most frequently described pathways were selected to be presented in this systematic review and could be categorized into 3 groups: Intracellular ROS/RNS generating organelles and enzymes, signal transduction cascades kinases/phosphatases and transcription factors. Intracellular ROS/RNS generation organelles are mitochondria, endoplasmic reticulum and peroxisomes. Enzymes, including NOX, COX, LOX and NOS, are the most prominent enzymes generating ROS/RNS. ROS/RNS act as redox messengers of transmembrane receptors and trigger the activation or inhibition of signal transduction kinases/phosphatases, such as the family members of protein tyrosine kinases and protein tyrosine phosphatases. Furthermore, these reactions activate downstream signaling pathways including protein kinase of the MAPK cascade, PI3K and PKC. The kinases and phosphatases regulate the phosphorylation status of transcription factors including APE1/Ref-1, HIF-1α, AP-1, Nrf2, NF-κB, p53, FOXO, STAT, and β-catenin. Finally, we briefly discuss cancer prevention and treatment opportunities, which address redox pathways and further research needs.
Collapse
Affiliation(s)
- Xīn Gào
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.,Network Aging Research, University of Heidelberg, Heidelberg, Germany.,Institute of Health Care and Social Sciences, FOM University, Essen, Germany
| |
Collapse
|
13
|
Targeting BMK1 Impairs the Drug Resistance to Combined Inhibition of BRAF and MEK1/2 in Melanoma. Sci Rep 2017; 7:46244. [PMID: 28387310 PMCID: PMC5384194 DOI: 10.1038/srep46244] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/14/2017] [Indexed: 01/20/2023] Open
Abstract
Combined inhibition of BRAF and MEK1/2 (CIBM) improves therapeutic efficacy of BRAF-mutant melanoma. However, drug resistance to CIBM is inevitable and the drug resistance mechanisms still remain to be elucidated. Here, we show that BMK1 pathway contributes to the drug resistance to CIBM. Considering that ERK1/2 pathway regulates cellular processes by phosphorylating, we first performed a SILAC phosphoproteomic profiling of CIBM. Phosphorylation of 239 proteins was identified to be downregulated, while phosphorylation of 47 proteins was upregulated. Following siRNA screening of 47 upregulated proteins indicated that the knockdown of BMK1 showed the most significant ability to inhibit the proliferation of CIBM resistant cells. It was found that phosphorylation of BMK1 was enhanced in resistant cells, which suggested an association of BMK1 with drug resistance. Further study indicated that phospho-activation of BMK1 by MEK5D enhanced the resistance to CIBM. Conversely, inhibition of BMK1 by shRNAi or BMK1 inhibitor (XMD8-92) impaired not only the acquirement of resistance to CIBM, but also the proliferation of CIBM resistant cells. Further kinome-scale siRNA screening demonstrated that SRC\MEK5 cascade promotes the phospho-activation of BMK1 in response to CIBM. Our study not only provides a global phosphoproteomic view of CIBM in melanoma, but also demonstrates that inhibition of BMK1 has therapeutic potential for the treatment of melanoma.
Collapse
|
14
|
Song C, Xu Q, Jiang K, Zhou G, Yu X, Wang L, Zhu Y, Fang L, Yu Z, Lee JD, Yu SC, Yang Q. Inhibition of BMK1 pathway suppresses cancer stem cells through BNIP3 and BNIP3L. Oncotarget 2016; 6:33279-89. [PMID: 26432836 PMCID: PMC4741765 DOI: 10.18632/oncotarget.5337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/17/2015] [Indexed: 12/22/2022] Open
Abstract
Cancer stem cells (CSCs) possess many characteristics associated with stem cells and are believed to drive tumor initiation. Although targeting of CSCs offers great promise for the new generation of therapeutics, lack of the effective drugable target and appropriate pharmacological reagents significantly impedes the development of chemotherapies. Here, we show that the phosphorylation of BMK1 was significantly correlated with not only embryonic and induced pluripotent stem (iPS) cells, but also the CSCs. It was showed that activation of BMK1 by the expression of MEK5D enhanced the self-renew (sphere formation), proliferation (clone formation) and tumorigenic capacity of CSCs. While BMK1 inhibitor, XMD8-92, suppressed these capacities. RNA-seq and microarray analysis revealed that inhibition of BMK1 significantly enhanced the expression of BNIP3 and BNIP3L, which play important roles in cell death. Further study indicated that shRNA-mediated knock down of BNIP3 and BNIP3L impairs the BMK1 inhibitor, XMD8-92-induced suppression of sphere formation and clone formation of CSC. Collectively, these results not only indicate that BMK1 plays an important role in maintaining "stemness" of CSCs, but also implicate that BMK1 might be a potential drug target for CSCs.
Collapse
Affiliation(s)
- Chengli Song
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| | - Qiang Xu
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| | - Kui Jiang
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| | - Guangyu Zhou
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| | - Xuebin Yu
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| | - Lina Wang
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| | - Yuting Zhu
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| | - Liping Fang
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| | - Zhe Yu
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| | - Jiing-Dwan Lee
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Shi-Cang Yu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Qingkai Yang
- Department of Oncology, The Second Affiliated Hospital of DaLian Medical University, Institute of Cancer Stem Cell, DaLian Medical University, Dalian, Liaoning 116044, China
| |
Collapse
|
15
|
Lochhead PA, Clark J, Wang LZ, Gilmour L, Squires M, Gilley R, Foxton C, Newell DR, Wedge SR, Cook SJ. Tumor cells with KRAS or BRAF mutations or ERK5/MAPK7 amplification are not addicted to ERK5 activity for cell proliferation. Cell Cycle 2016; 15:506-18. [PMID: 26959608 PMCID: PMC5056618 DOI: 10.1080/15384101.2015.1120915] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 10/08/2015] [Accepted: 11/12/2015] [Indexed: 10/24/2022] Open
Abstract
ERK5, encoded by MAPK7, has been proposed to play a role in cell proliferation, thus attracting interest as a cancer therapeutic target. While oncogenic RAS or BRAF cause sustained activation of the MEK1/2-ERK1/2 pathway, ERK5 is directly activated by MEK5. It has been proposed that RAS and RAF proteins can also promote ERK5 activation. Here we investigated the interplay between RAS-RAF-MEK-ERK and ERK5 signaling and studied the role of ERK5 in tumor cell proliferation in 2 disease-relevant cell models. We demonstrate that although an inducible form of CRAF (CRAF:ER*) can activate ERK5 in fibroblasts, the response is delayed and reflects feed-forward signaling. Additionally, oncogenic KRAS and BRAF do not activate ERK5 in epithelial cells. Although KRAS and BRAF do not couple directly to MEK5-ERK5, ERK5 signaling might still be permissive for proliferation. However, neither the selective MEK5 inhibitor BIX02189 or ERK5 siRNA inhibited proliferation of colorectal cancer cells harbouring KRAS(G12C/G13D) or BRAF(V600E). Furthermore, there was no additive or synergistic effect observed when BIX02189 was combined with the MEK1/2 inhibitor Selumetinib (AZD6244), suggesting that ERK5 was neither required for proliferation nor a driver of innate resistance to MEK1/2 inhibitors. Finally, even cancer cells with MAPK7 amplification were resistant to BIX02189 and ERK5 siRNA, showing that ERK5 amplification does not confer addiction to ERK5 for cell proliferation. Thus ERK5 signaling is unlikely to play a role in tumor cell proliferation downstream of KRAS or BRAF or in tumor cells with ERK5 amplification. These results have important implications for the role of ERK5 as an anti-cancer drug target.
Collapse
Affiliation(s)
| | - Jonathan Clark
- Biological Chemistry Facility; The Babraham Institute; Cambridge, UK
| | - Lan-Zhen Wang
- The Northern Institute for Cancer Research; University of Newcastle upon Tyne, Newcastle, UK
| | - Lesley Gilmour
- Cancer Research Technology; The Beatson Institute for Cancer Research; Garscube Estate; Glasgow, UK
- Current address: Translational Radiation Biology; The Beatson Institute for Cancer Research; Garscube Estate; Glasgow, UK
| | - Matthew Squires
- Signalling Laboratory; The Babraham Institute; Cambridge, UK
- Current address: Novartis; Basel, Switzerland
| | - Rebecca Gilley
- Signalling Laboratory; The Babraham Institute; Cambridge, UK
| | - Caroline Foxton
- Cancer Research Technology; CRT Discovery Laboratories; London Bioscience Innovation Centre; London, UK
- Current address: Centre for Drug Development; Cancer Research UK; London, UK
| | - David R. Newell
- The Northern Institute for Cancer Research; University of Newcastle upon Tyne, Newcastle, UK
| | - Stephen R. Wedge
- The Northern Institute for Cancer Research; University of Newcastle upon Tyne, Newcastle, UK
| | - Simon J. Cook
- Signalling Laboratory; The Babraham Institute; Cambridge, UK
| |
Collapse
|
16
|
Ortiz-Ruiz MJ, Álvarez-Fernández S, Parrott T, Zaknoen S, Burrows FJ, Ocaña A, Pandiella A, Esparís-Ogando A. Therapeutic potential of ERK5 targeting in triple negative breast cancer. Oncotarget 2015; 5:11308-18. [PMID: 25350956 PMCID: PMC4294347 DOI: 10.18632/oncotarget.2324] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/06/2014] [Indexed: 12/14/2022] Open
Abstract
Triple negative breast cancers (TNBCs) account for 15% of all breast cancers, and represent one of the most aggressive forms of the disease, exhibiting short relapse-free survival. In contrast to other breast cancer subtypes, the absence of knowledge about the etiopathogenic alterations that cause TNBCs force the use of chemotherapeutics to treat these tumors. Because of this, efforts have been devoted with the aim of incorporating novel therapies into the clinical setting. Kinases play important roles in the pathophysiology of several tumors, including TNBC. Since expression of the MAP kinase ERK5 has been linked to patient outcome in breast cancer, we analyzed the potential value of its targeting in TNBC. ERK5 was frequently overexpressed and active in samples from patients with TNBC, as well as in explants from mice carrying genetically-defined TNBC tumors. Moreover, expression of ERK5 was linked to a worse prognosis in TNBC patients. Knockdown experiments demonstrated that ERK5 supported proliferation of TNBC cells. Pharmacological inhibition of ERK5 with TG02, a clinical stage inhibitor which targets ERK5 and other kinases, inhibited cell proliferation by blocking passage of cells through G1 and G2, and also triggered apoptosis in certain TNBC cell lines. TG02 had significant antitumor activity in a TNBC xenograft model in vivo, and also augmented the activity of chemotherapeutic agents commonly used to treat TNBC. Together, these data indicate that ERK5 targeting may represent a valid strategy against TNBC, and support the development of trials aimed at evaluating the clinical effectiveness of drugs that block this kinase.
Collapse
Affiliation(s)
- María Jesús Ortiz-Ruiz
- Instituto de Biología Molecular y Celular del Cáncer. CSIC-IBSAL-Universidad de Salamanca. Spain
| | - Stela Álvarez-Fernández
- Instituto de Biología Molecular y Celular del Cáncer. CSIC-IBSAL-Universidad de Salamanca. Spain
| | | | | | | | - Alberto Ocaña
- Hospital Universitario de Albacete, and AECC Unit, Spain
| | - Atanasio Pandiella
- Instituto de Biología Molecular y Celular del Cáncer. CSIC-IBSAL-Universidad de Salamanca. Spain
| | - Azucena Esparís-Ogando
- Instituto de Biología Molecular y Celular del Cáncer. CSIC-IBSAL-Universidad de Salamanca. Spain
| |
Collapse
|
17
|
Wilhelmsen K, Xu F, Farrar K, Tran A, Khakpour S, Sundar S, Prakash A, Wang J, Gray NS, Hellman J. Extracellular signal-regulated kinase 5 promotes acute cellular and systemic inflammation. Sci Signal 2015; 8:ra86. [PMID: 26307013 DOI: 10.1126/scisignal.aaa3206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inflammatory critical illness is a syndrome that is characterized by acute inflammation and organ injury, and it is triggered by infections and noninfectious tissue injury, both of which activate innate immune receptors and pathways. Although reports suggest an anti-inflammatory role for the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 5 (ERK5), we previously found that ERK5 mediates proinflammatory responses in primary human cells in response to stimulation of Toll-like receptor 2 (TLR2). We inhibited the kinase activities and reduced the abundances of ERK5 and MEK5, a MAPK kinase directly upstream of ERK5, in primary human vascular endothelial cells and monocytes, and found that ERK5 promoted inflammation induced by a broad range of microbial TLR agonists and by the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Furthermore, we found that inhibitors of MEK5 or ERK5 reduced the plasma concentrations of proinflammatory cytokines in mice challenged with TLR ligands or heat-killed Staphylococcus aureus, as well as in mice that underwent sterile lung ischemia-reperfusion injury. Finally, we found that inhibition of ERK5 protected endotoxemic mice from death. Together, our studies support a proinflammatory role for ERK5 in primary human endothelial cells and monocytes, and suggest that ERK5 is a potential therapeutic target in diverse disorders that cause inflammatory critical illness.
Collapse
Affiliation(s)
- Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Fengyun Xu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Katherine Farrar
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alphonso Tran
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Samira Khakpour
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shirin Sundar
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arun Prakash
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA. Division of Critical Care Medicine and Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
18
|
Miranda M, Rozali E, Khanna KK, Al-Ejeh F. MEK5-ERK5 pathway associates with poor survival of breast cancer patients after systemic treatments. Oncoscience 2015; 2:99-101. [PMID: 25859552 PMCID: PMC4381702 DOI: 10.18632/oncoscience.135] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 02/18/2015] [Indexed: 11/25/2022] Open
Abstract
The MEK5-ERK5 pathway is a mammalian mitogen-activated protein (MAP) kinase cascade that is not well studied compared to other MAP kinase cascades. Two independent studies by Al-Ejeh et al. and Ortiz-Ruiz et al. published in Oncotarget last year concluded that ERK5 is an attractive target in triple negative breast cancer. In this perspective, we briefly describe the findings of these studies and propose the use of pharmacological inhibition of ERK5 in combination with chemotherapy against triple negative breast cancer because MEK5-ERK5 overexpression associates with poor survival of patients treated with chemotherapy.
Collapse
Affiliation(s)
- Mariska Miranda
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia
| | - Esdy Rozali
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia
| | - Fares Al-Ejeh
- QIMR Berghofer Medical Research Institute, Herston QLD, Australia
| |
Collapse
|
19
|
Abstract
Eukaryotic and prokaryotic organisms possess huge numbers of uncharacterized enzymes. Selective inhibitors offer powerful probes for assigning functions to enzymes in native biological systems. Here, we discuss how the chemical proteomic platform activity-based protein profiling (ABPP) can be implemented to discover selective and in vivo-active inhibitors for enzymes. We further describe how these inhibitors have been used to delineate the biochemical and cellular functions of enzymes, leading to the discovery of metabolic and signaling pathways that make important contributions to human physiology and disease. These studies demonstrate the value of selective chemical probes as drivers of biological inquiry.
Collapse
Affiliation(s)
- Micah J Niphakis
- The Skaggs Institute for Chemical Biology and the Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037;
| | | |
Collapse
|
20
|
Kinome profiling reveals breast cancer heterogeneity and identifies targeted therapeutic opportunities for triple negative breast cancer. Oncotarget 2015; 5:3145-58. [PMID: 24762669 PMCID: PMC4102798 DOI: 10.18632/oncotarget.1865] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Our understanding of breast cancer heterogeneity at the protein level is limited despite proteins being the ultimate effectors of cellular functions. We investigated the heterogeneity of breast cancer (41 primary tumors and 15 breast cancer cell lines) at the protein and phosphoprotein levels to identify activated oncogenic pathways and developing targeted therapeutic strategies. Heterogeneity was observed not only across histological subtypes, but also within subtypes. Tumors of the Triple negative breast cancer (TNBC) subtype distributed across four different clusters where one cluster (cluster ii) showed high deregulation of many proteins and phosphoproteins. The majority of TNBC cell lines, particularly mesenchymal lines, resembled the cluster ii TNBC tumors. Indeed, TNBC cell lines were more sensitive than non-TNBC cell lines when treated with targeted inhibitors selected based on upregulated pathways in cluster ii. In line with the enrichment of the upregulated pathways with onco-clients of Hsp90, we found synergy in combining Hsp90 inhibitors with several kinase inhibitors, particularly Erk5 inhibitors. The combination of Erk5 and Hsp90 inhibitors was effective in vitro and in vivo against TNBC leading to upregulation of pro-apoptotic effectors. Our studies contribute to proteomic profiling and improve our understanding of TNBC heterogeneity to provide therapeutic opportunities for this disease.
Collapse
|
21
|
Sayan M, Shukla A, MacPherson MB, Macura SL, Hillegass JM, Perkins TN, Thompson JK, Beuschel SL, Miller JM, Mossman BT. Extracellular signal-regulated kinase 5 and cyclic AMP response element binding protein are novel pathways inhibited by vandetanib (ZD6474) and doxorubicin in mesotheliomas. Am J Respir Cell Mol Biol 2015; 51:595-603. [PMID: 24940987 DOI: 10.1165/rcmb.2013-0373tr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malignant mesothelioma (MM), lung cancers, and asbestosis are hyperproliferative diseases associated with exposures to asbestos. All have a poor prognosis; thus, the need to develop novel and effective therapies is urgent. Vandetanib (Van) (ZD6474, ZACTIMA) is a tyrosine kinase inhibitor that has shown equivocal results in clinical trials for advanced non-small cell lung cancer. However, tyrosine kinase inhibitors alone have shown no significant clinical activity in phase II trials of patients with unresectable MM. Using epithelioid (HMESO) and sarcomatoid (H2373) human MM lines, the efficacy of tumor cell killing and signaling pathways modulated by Van with and without doxorubicin (Dox) was examined. Van alone reduced total cell numbers in HMESO MM and synergistically increased the toxicity of Dox in HMESO and H2373 cells. Most importantly, we identified two novel cell survival/resistance pathways, ERK5 and cyclic AMP response element binding protein (CREB), that were inhibited by Van and Dox. After silencing of either ERK5 or CREB, significant decreases in cell numbers in the Dox-resistant sarcomatoid H2373 line were observed. Results suggest that a plethora of cell signaling pathways associated with cell survival are induced by Dox but inhibited by the addition of Van in MM. Data from our study support the combined efficacy of Van and Dox as a novel approach in the treatment of MM that is further enhanced by blocking ERK5 or CREB signaling cascades.
Collapse
Affiliation(s)
- Mutlay Sayan
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Brown A, Shi Q, Moore TW, Yoon Y, Prussia A, Maddox C, Liotta DC, Shim H, Snyder JP. Monocarbonyl curcumin analogues: heterocyclic pleiotropic kinase inhibitors that mediate anticancer properties. J Med Chem 2013; 56:3456-66. [PMID: 23550937 DOI: 10.1021/jm4002692] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Curcumin is a biologically active component of curry powder. A structurally related class of mimetics possesses similar anti-inflammatory and anticancer properties. Mechanism has been examined by exploring kinase inhibition trends. In a screen of 50 kinases relevant to many forms of cancer, one member of the series (4, EF31) showed ≥85% inhibition for 10 of the enzymes at 5 μM, while 22 of the proteins were blocked at ≥40%. IC50 values for an expanded set of curcumin analogues established a rank order of potencies, and analyses of IKKβ and AKT2 enzyme kinetics for 4 revealed a mixed inhibition model, ATP competition dominating. Our curcumin mimetics are generally selective for Ser/Thr kinases. Both selectivity and potency trends are compatible with protein sequence comparisons, while modeled kinase binding site geometries deliver a reasonable correlation with mixed inhibition. Overall, these analogues are shown to be pleiotropic inhibitors that operate at multiple points along cell signaling pathways.
Collapse
Affiliation(s)
- Andrew Brown
- Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Nithianandarajah-Jones GN, Wilm B, Goldring CEP, Müller J, Cross MJ. ERK5: structure, regulation and function. Cell Signal 2012; 24:2187-96. [PMID: 22800864 DOI: 10.1016/j.cellsig.2012.07.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 07/09/2012] [Indexed: 01/06/2023]
Abstract
Extracellular signal-regulated kinase 5 (ERK5), also termed big mitogen-activated protein kinase-1 (BMK1), is the most recently identified member of the mitogen-activated protein kinase (MAPK) family and consists of an amino-terminal kinase domain, with a relatively large carboxy-terminal of unique structure and function that makes it distinct from other MAPK members. It is ubiquitously expressed in numerous tissues and is activated by a variety of extracellular stimuli, such as cellular stresses and growth factors, to regulate processes such as cell proliferation and differentiation. Targeted deletion of Erk5 in mice has revealed that the ERK5 signalling cascade plays a critical role in cardiovascular development and vascular integrity. Recent data points to a potential role in pathological conditions such as cancer and tumour angiogenesis. This review focuses on the physiological and pathological role of ERK5, the regulation of this kinase and the recent development of small molecule inhibitors of the ERK5 signalling cascade.
Collapse
Affiliation(s)
- Gopika N Nithianandarajah-Jones
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | | | | | | |
Collapse
|
24
|
Hu B, Ren D, Su D, Lin H, Xian Z, Wan X, Zhang J, Fu X, Jiang L, Diao D, Fan X, Wang L, Wang J. Expression of the phosphorylated MEK5 protein is associated with TNM staging of colorectal cancer. BMC Cancer 2012; 12:127. [PMID: 22458985 PMCID: PMC3337320 DOI: 10.1186/1471-2407-12-127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/30/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Activation of MEK5 in many cancers is associated with carcinogenesis through aberrant cell proliferation. In this study, we determined the level of phosphorylated MEK5 (pMEK5) expression in human colorectal cancer (CRC) tissues and correlated it with clinicopathologic data. METHODS pMEK5 expression was examined by immunohistochemistry in a tissue microarray (TMA) containing 335 clinicopathologic characterized CRC cases and 80 cases of nontumor colorectal tissues. pMEK5 expression of 19 cases of primary CRC lesions and paired with normal mucosa was examined by Western blotting. The relationship between pMEK5 expression in CRC and clinicopathologic parameters, and the association of pMEK5 expression with CRC survival were analyzed respectively. RESULTS pMEK5 expression was significantly higher in CRC tissues (185 out of 335, 55.2%) than in normal tissues (6 out of 80, 7.5%; P < 0.001). Western blotting demonstrated that pMEK5 expression was upregulated in 12 of 19 CRC tissues (62.1%) compared to the corresponding adjacent nontumor colorectal tissues. Overexpression of pMEK5 in CRC tissues was significantly correlated to the depth of invasion (P = 0.001), lymph node metastasis (P < 0.001), distant metastasis (P < 0.001) and high preoperative CEA level (P < 0.001). Consistently, the pMEK5 level in CRC tissues was increased following stage progression of the disease (P < 0.001). Analysis of the survival curves showed a significantly worse 5-year disease-free (P = 0.002) and 5-year overall survival rate (P < 0.001) for patients whose tumors overexpressed pMEK5. However, in multivariate analysis, pMEK5 was not an independent prognostic factor for CRC (DFS: P = 0.139; OS: P = 0.071). CONCLUSIONS pMEK5 expression is correlated with the staging of CRC and its expression might be helpful to the TNM staging system of CRC.
Collapse
Affiliation(s)
- Bang Hu
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|