1
|
Carpio AR, Talubo ND, Tsai PW, Chen BY, Tayo LL. Berries as Nature's Therapeutics: Exploring the Potential of Vaccinium Metabolites in Gastric Cancer Treatment Through Computational Insights. Life (Basel) 2025; 15:406. [PMID: 40141751 PMCID: PMC11944152 DOI: 10.3390/life15030406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/28/2025] Open
Abstract
Berries from the Vaccinium genus, known for their rich array of bioactive metabolites, are recognized for their antioxidant, anti-inflammatory, and anticancer properties. These compounds, including anthocyanins, flavonoids, and phenolic acids, have attracted significant attention for their potential health benefits, particularly in cancer prevention and treatment. Gastric cancer (GC), a leading cause of cancer-related deaths worldwide, remains challenging to treat, especially in its advanced stages. This study investigates the therapeutic potential of Vaccinium species in GC treatment using computational methods. RNA sequencing revealed upregulated genes associated with GC, while network pharmacology and molecular docking approaches identified strong interactions between cyanidin 3-O-glucoside (C3G), a key bioactive metabolite. Furthermore, molecular dynamics simulations of the HSP90AA1-C3G complex demonstrated stable binding and structural integrity, suggesting that C3G may inhibit HSP90AA1, a protein involved in cancer progression. These findings highlight the therapeutic potential of Vaccinium metabolites, offering a novel approach to GC treatment by targeting key molecular pathways. This research provides valuable insights into the role of berries as natural therapeutics, supporting their integration into future gastric cancer treatment strategies.
Collapse
Affiliation(s)
- Angelica Rachel Carpio
- School of Chemical, Biological, and Materials Engineering and Sciences, School of Graduate Studies, Mapúa University, Manila 1002, Philippines; (A.R.C.); (N.D.T.)
| | - Nicholas Dale Talubo
- School of Chemical, Biological, and Materials Engineering and Sciences, School of Graduate Studies, Mapúa University, Manila 1002, Philippines; (A.R.C.); (N.D.T.)
| | - Po-Wei Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan;
| | - Bor-Yann Chen
- Department of Chemical and Materials Engineering, National I-Lan University, I-Lan 260, Taiwan
| | - Lemmuel L. Tayo
- Department of Biology, School of Health Sciences, Mapúa University, Makati 1200, Philippines
| |
Collapse
|
2
|
Castelli M, Magni A, Bonollo G, Pavoni S, Frigerio F, Oliveira ASF, Cinquini F, Serapian SA, Colombo G. Molecular mechanisms of chaperone-directed protein folding: Insights from atomistic simulations. Protein Sci 2023; 33:e4880. [PMID: 38145386 PMCID: PMC10895457 DOI: 10.1002/pro.4880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Molecular chaperones, a family of proteins of which Hsp90 and Hsp70 are integral members, form an essential machinery to maintain healthy proteomes by controlling the folding and activation of a plethora of substrate client proteins. This is achieved through cycles in which Hsp90 and Hsp70, regulated by task-specific co-chaperones, process ATP and become part of a complex network that undergoes extensive compositional and conformational variations. Despite impressive advances in structural knowledge, the mechanisms that regulate the dynamics of functional assemblies, their response to nucleotides, and their relevance for client remodeling are still elusive. Here, we focus on the glucocorticoid receptor (GR):Hsp90:Hsp70:co-chaperone Hop client-loading and the GR:Hsp90:co-chaperone p23 client-maturation complexes, key assemblies in the folding cycle of glucocorticoid receptor (GR), a client strictly dependent upon Hsp90/Hsp70 for activity. Using a combination of molecular dynamics simulation approaches, we unveil with unprecedented detail the mechanisms that underpin function in these chaperone machineries. Specifically, we dissect the processes by which the nucleotide-encoded message is relayed to the client and how the distinct partners of the assemblies cooperate to (pre)organize partially folded GR during Loading and Maturation. We show how different ligand states determine distinct dynamic profiles for the functional interfaces defining the interactions in the complexes and modulate their overall flexibility to facilitate progress along the chaperone cycle. Finally, we also show that the GR regions engaged by the chaperone machinery display peculiar energetic signatures in the folded state, which enhance the probability of partial unfolding fluctuations. From these results, we propose a model where a dynamic cross-talk emerges between the chaperone dynamics states and remodeling of client-interacting regions. This factor, coupled to the highly dynamic nature of the assemblies and the conformational heterogeneity of their interactions, provides the basis for regulating the functions of distinct assemblies during the chaperoning cycle.
Collapse
Affiliation(s)
| | - Andrea Magni
- Dipartimento di Chimica, Università di Pavia, Pavia, Italy
| | | | - Silvia Pavoni
- Department of Physical Chemistry, R&D Eni SpA, San Donato Milanese, Italy
| | - Francesco Frigerio
- Department of Physical Chemistry, R&D Eni SpA, San Donato Milanese, Italy
| | - A Sofia F Oliveira
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol, UK
| | - Fabrizio Cinquini
- Upstream & Technical Services - TECS/STES - Eni Spa, San Donato Milanese, Italy
| | | | | |
Collapse
|
3
|
Sager RA, Backe SJ, Neckers L, Woodford MR, Mollapour M. Detecting Posttranslational Modifications of Hsp90 Isoforms. Methods Mol Biol 2023; 2693:125-139. [PMID: 37540432 PMCID: PMC10518168 DOI: 10.1007/978-1-0716-3342-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The molecular chaperone heat shock protein 90 (Hsp90) is essential in eukaryotes. Hsp90 chaperones proteins that are important determinants of multistep carcinogenesis. There are multiple Hsp90 isoforms including the cytosolic Hsp90α and Hsp90β as well as GRP94 located in the endoplasmic reticulum and TRAP1 in the mitochondria. The chaperone function of Hsp90 is linked to its ability to bind and hydrolyze ATP. Co-chaperones and posttranslational modifications (such as phosphorylation, SUMOylation, and ubiquitination) are important for Hsp90 stability and regulation of its ATPase activity. Both mammalian and yeast cells can be used to express and purify Hsp90 and TRAP1 and also detect post-translational modifications by immunoblotting.
Collapse
Affiliation(s)
- Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
4
|
Gohda K. Conformational Analysis of the Loop-to-Helix Transition of the α-Helix3 Plastic Region in the N-Terminal Domain of Human Hsp90α by a Computational Biochemistry Approach. J Chem Inf Model 2022; 62:5699-5714. [PMID: 36278922 DOI: 10.1021/acs.jcim.2c00984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hsp90 is a chaperone protein aiding in correct protein folding and attractive for drug discovery. The structure of human Hsp90α N-terminal domain (NTD) is intriguing since the α-helix3 region of the ATP-binding site in the NTD plastically changes its conformation, i.e., loop-out, loop-in, and helical conformations, according to the bound inhibitor type. The plastic region structure is known to influence the mode of inhibition-inhibitors bound to a helix have a longer residence time in the complex, which is a factor of in vivo-active drugs, compared with loop binders. In this study, we analyzed the loop-to-helix transition of the plastic region through binding of a helix binder by a computational biochemistry approach. To generate the helical transition from the loop, the resorcinol inhibitor C1 complexed with a loop-in structure was alchemically transformed to the C10 inhibitor, which is known as a helix binder. The loop in the C1 complex possesses Leu107 tightly binding to the hydrophobic subpocket, considered as a key residue for the plasticity. From 10 × 1 μs simulations after the alchemical transformation, the helical transition was observed with a 29% success rate. Conformational analysis of the simulations identified residues possibly associated with the helical transition. The implementation of additional simulations (dihedral-constrained and in silico mutant simulations) led to a statistically significant increase in the transition success rate to 78%, as observed in Asn105 psi-constrained simulation. Therefore, we concluded that the Asn105 psi dihedral angle is most likely involved in the helical transition by a change of the dihedral angle to gauche-negative.
Collapse
Affiliation(s)
- Keigo Gohda
- Computer-aided Molecular Modeling Research Center, Kansai (CAMM-Kansai), 3-32-302, Tsuto-Otsuka, Nishinomiya 663-8241, Japan
| |
Collapse
|
5
|
Meka PN, Amatya E, Kaur S, Banerjee M, Zuo A, Dobrowsky RT, Blagg BSJ. Synthesis and evaluation of 3'- and 4'-substituted cyclohexyl noviomimetics that modulate mitochondrial respiration. Bioorg Med Chem 2022; 70:116940. [PMID: 35905686 PMCID: PMC11664489 DOI: 10.1016/j.bmc.2022.116940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022]
Abstract
KU-32 (2) and KU-596 (3), are first and second generation cytoprotective novologues that are derivatives of novobiocin (1), a heat shock protein 90 (Hsp90) C-terminal inhibitor. Although 2 and 3 improve mitochondrial bioenergetics and have demonstrated considerable cytoprotective activity, they contain a synthetically demanding noviose sugar. This issue was initially addressed by creating noviomimetics, such as KU-1202 (4), which replaced the noviose sugar with ether-linked cyclohexyl derivatives that retained some cytoprotective potential due to their ability to increase mitochondrial bioenergetics. Based on structure-activity relationship (SAR) studies of KU-1202 (4), the current study investigated 3'- and 4'-substituted cyclohexyl scaffolds as noviomimetics and determined their efficacy at increasing mitochondrial bioenergetic as a marker for cytoprotective potential.
Collapse
Affiliation(s)
- Penchala Narasimharao Meka
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - Eva Amatya
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - Sukhmanjit Kaur
- Department of Pharmacology and Toxicology Department, The University of Kansas, Lawrence, KS 66045, United States
| | - Monimoy Banerjee
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - Ang Zuo
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States
| | - Rick T Dobrowsky
- Department of Pharmacology and Toxicology Department, The University of Kansas, Lawrence, KS 66045, United States.
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
6
|
Vascular mimicry: A potential therapeutic target in breast cancer. Pathol Res Pract 2022; 234:153922. [DOI: 10.1016/j.prp.2022.153922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
7
|
Yoon NG, Lee H, Kim SY, Hu S, Kim D, Yang S, Hong KB, Lee JH, Kang S, Kim BG, Myung K, Lee C, Kang BH. Mitoquinone Inactivates Mitochondrial Chaperone TRAP1 by Blocking the Client Binding Site. J Am Chem Soc 2021; 143:19684-19696. [PMID: 34758612 DOI: 10.1021/jacs.1c07099] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heat shock protein 90 (Hsp90) family proteins are molecular chaperones that modulate the functions of various substrate proteins (clients) implicated in pro-tumorigenic pathways. In this study, the mitochondria-targeted antioxidant mitoquinone (MitoQ) was identified as a potent inhibitor of mitochondrial Hsp90, known as a tumor necrosis factor receptor-associated protein 1 (TRAP1). Structural analyses revealed an asymmetric bipartite interaction between MitoQ and the previously unrecognized drug binding sites located in the middle domain of TRAP1, believed to be a client binding region. MitoQ effectively competed with TRAP1 clients, and MitoQ treatment facilitated the identification of 103 TRAP1-interacting mitochondrial proteins in cancer cells. MitoQ and its redox-crippled SB-U014/SB-U015 exhibited more potent anticancer activity in vitro and in vivo than previously reported mitochondria-targeted TRAP1 inhibitors. The findings indicate that targeting the client binding site of Hsp90 family proteins offers a novel strategy for the development of potent anticancer drugs.
Collapse
Affiliation(s)
- Nam Gu Yoon
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Hakbong Lee
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - So-Yeon Kim
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Sung Hu
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Darong Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Sujae Yang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Ki Bum Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Ji Hoon Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, South Korea
| | - Soosung Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Byung-Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Changwook Lee
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| | - Byoung Heon Kang
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, South Korea
| |
Collapse
|
8
|
Abstract
Background Ocular adverse events are common dose-limiting toxicities in cancer patients treated with HSP90 inhibitors, such as AUY922; however, the pathology and molecular mechanisms that mediate AUY922-induced retinal toxicity remain undescribed. Methods The impact of AUY922 on mouse retinas and cell lines was comprehensively investigated using isobaric tags for relative and absolute quantitation (iTRAQ)‑based proteomic profiling and pathway enrichment analysis, immunohistochemistry and immunofluorescence staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, MTT assay, colony formation assay, and western blot analysis. The effect of AUY922 on the Transient Receptor Potential cation channel subfamily M member 1 (TRPM1)-HSP90 chaperone complex was characterized by coimmunoprecipitation. TRPM1-regulated gene expression was analyzed by RNAseq analysis and gene set enrichment analysis (GSEA). The role of TRPM1 was assessed using both loss-of-function and gain-of-function approaches. Results Here, we show that the treatment with AUY922 induced retinal damage and cell apoptosis, dysregulated the photoreceptor and retinal pigment epithelium (RPE) layers, and reduced TRPM1 expression. Proteomic profiling and functional annotation of differentially expressed proteins reveals that those related to stress responses, protein folding processes, regulation of apoptosis, cell cycle and growth, reactive oxygen species (ROS) response, cell junction assembly and adhesion regulation, and proton transmembrane transport were significantly enriched in AUY922-treated cells. We found that AUY922 triggered caspase-3-dependent cell apoptosis, increased ROS production and inhibited cell growth. We determined that TRPM1 is a bona fide HSP90 client and characterized that AUY922 may reduce TRPM1 expression by disrupting the CDC37-HSP90 chaperone complex. Additionally, GSEA revealed that TRPM1-regulated genes were associated with retinal morphogenesis in camera-type eyes and the JAK-STAT cascade. Finally, gain-of-function and loss-of-function analyses validated the finding that TRPM1 mediated the cell apoptosis, ROS production and growth inhibition induced by AUY922. Conclusions Our study demonstrates the pathology of AUY922-induced retinal toxicity in vivo. TRPM1 is an HSP90 client, regulates photoreceptor morphology and function, and mediates AUY922-induced cytotoxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00751-5.
Collapse
|
9
|
Morales-Guadarrama G, García-Becerra R, Méndez-Pérez EA, García-Quiroz J, Avila E, Díaz L. Vasculogenic Mimicry in Breast Cancer: Clinical Relevance and Drivers. Cells 2021; 10:cells10071758. [PMID: 34359928 PMCID: PMC8304745 DOI: 10.3390/cells10071758] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/24/2022] Open
Abstract
In solid tumors, vasculogenic mimicry (VM) is the formation of vascular structures by cancer cells, allowing to generate a channel-network able to transport blood and tumor cells. While angiogenesis is undertaken by endothelial cells, VM is assumed by cancer cells. Besides the participation of VM in tumor neovascularization, the clinical relevance of this process resides in its ability to favor metastasis and to drive resistance to antiangiogenic therapy. VM occurs in many tumor types, including breast cancer, where it has been associated with a more malignant phenotype, such as triple-negative and HER2-positive tumors. The latter may be explained by known drivers of VM, like hypoxia, TGFB, TWIST1, EPHA2, VEGF, matrix metalloproteinases, and other tumor microenvironment-derived factors, which altogether induce the transformation of tumor cells to a mesenchymal phenotype with a high expression rate of stemness markers. This review analyzes the current literature in the field, including the participation of some microRNAs and long noncoding RNAs in VM-regulation and tumorigenesis of breast cancer. Considering the clinical relevance of VM and its association with the tumor phenotype and clinicopathological parameters, further studies are granted to target VM in the clinic.
Collapse
Affiliation(s)
- Gabriela Morales-Guadarrama
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (G.M.-G.); (E.A.M.-P.); (J.G.-Q.); (E.A.)
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Edgar Armando Méndez-Pérez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (G.M.-G.); (E.A.M.-P.); (J.G.-Q.); (E.A.)
| | - Janice García-Quiroz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (G.M.-G.); (E.A.M.-P.); (J.G.-Q.); (E.A.)
| | - Euclides Avila
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (G.M.-G.); (E.A.M.-P.); (J.G.-Q.); (E.A.)
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico; (G.M.-G.); (E.A.M.-P.); (J.G.-Q.); (E.A.)
- Correspondence: ; Tel.: +52-(55)-5487-0900
| |
Collapse
|
10
|
Yoshimura C, Nagatoishi S, Kuroda D, Kodama Y, Uno T, Kitade M, Chong-Takata K, Oshiumi H, Muraoka H, Yamashita S, Kawai Y, Ohkubo S, Tsumoto K. Thermodynamic Dissection of Potency and Selectivity of Cytosolic Hsp90 Inhibitors. J Med Chem 2021; 64:2669-2677. [PMID: 33621080 DOI: 10.1021/acs.jmedchem.0c01715] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cytosolic Hsp90-selective inhibitor TAS-116 has an acceptable safety profile and promising antitumor activity in clinical trials. We examined the binding characteristics of TAS-116 and its analogs to determine the impact of the ligand binding mode on selectivity for cytosolic Hsp90. Analyses of the co-crystal structure of Hsp90 and inhibitor TAS-116 suggest that TAS-116 interacts with the ATP-binding pocket, the ATP lid region, and the hydrophobic pocket. A competitive isothermal titration calorimetry analysis confirmed that a small fragment of TAS-116 (THS-510) docks into the lid region and hydrophobic pockets without binding to the ATP-binding pocket. THS-510 exhibited enthalpy-driven binding to Hsp90α and selectively inhibited cytosolic Hsp90 activity. The heat capacity change of THS-510 binding was positive, likely due to the induced conformational rearrangement of Hsp90. Thus, we concluded that interactions with the hydrophobic pocket of Hsp90 determine potency and selectivity of TAS-116 and derivatives for the cytosolic Hsp90 isoform.
Collapse
Affiliation(s)
- Chihoko Yoshimura
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Ibaraki 300-2611, Japan
| | - Satoru Nagatoishi
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yasuo Kodama
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Ibaraki 300-2611, Japan
| | - Takao Uno
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Ibaraki 300-2611, Japan
| | - Makoto Kitade
- Chemical Technology Laboratory, CMC Division, Taiho Pharmaceutical Co. Ltd., Kamikawamachi, Kodama-gun, Saitama 367-0241, Japan
| | - Khoontee Chong-Takata
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Ibaraki 300-2611, Japan
| | - Hiromi Oshiumi
- Formulation Research, CMC Division, Taiho Pharmaceutical Co. Ltd., Kawauchi-cho, Tokushima 771-0194, Japan
| | - Hiromi Muraoka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Ibaraki 300-2611, Japan
| | - Satoshi Yamashita
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Ibaraki 300-2611, Japan
| | - Yuichi Kawai
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Ibaraki 300-2611, Japan
| | - Shuichi Ohkubo
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd., Tsukuba, Ibaraki 300-2611, Japan
| | - Kouhei Tsumoto
- The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
11
|
Serapian SA, Triveri A, Marchetti F, Castelli M, Colombo G. Exploiting Folding and Degradation Machineries To Target Undruggable Proteins: What Can a Computational Approach Tell Us? ChemMedChem 2021; 16:1593-1599. [PMID: 33443306 DOI: 10.1002/cmdc.202000960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 01/03/2023]
Abstract
Advances in genomics and proteomics have unveiled an ever-growing number of key proteins and provided mechanistic insights into the genesis of pathologies. This wealth of data showed that changes in expression levels of specific proteins, mutations, and post-translational modifications can result in (often subtle) perturbations of functional protein-protein interaction networks, which ultimately determine disease phenotypes. Although many such validated pathogenic proteins have emerged as ideal drug targets, there are also several that escape traditional pharmacological regulation; these proteins have thus been labeled "undruggable". The challenges posed by undruggable targets call for new sorts of molecular intervention. One fascinating solution is to perturb a pathogenic protein's expression levels, rather than blocking its activities. In this Concept paper, we shall discuss chemical interventions aimed at recruiting undruggable proteins to the ubiquitin proteasome system, or aimed at disrupting protein-protein interactions in the chaperone-mediated cellular folding machinery: both kinds of intervention lead to a decrease in the amount of active pathogenic protein expressed. Specifically, we shall discuss the role of computational strategies in understanding the molecular determinants characterizing the function of synthetic molecules typically designed for either type of intervention. Finally, we shall provide our perspectives and views on the current limitations and possibilities to expand the scope of rational approaches to the design of chemical regulators of protein levels.
Collapse
Affiliation(s)
- Stefano A Serapian
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Alice Triveri
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Filippo Marchetti
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Matteo Castelli
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
12
|
Mishra SJ, Liu W, Beebe K, Banerjee M, Kent CN, Munthali V, Koren J, Taylor JA, Neckers LM, Holzbeierlein J, Blagg BSJ. The Development of Hsp90β-Selective Inhibitors to Overcome Detriments Associated with pan-Hsp90 Inhibition. J Med Chem 2021; 64:1545-1557. [PMID: 33428418 DOI: 10.1021/acs.jmedchem.0c01700] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The 90 kD heat shock proteins (Hsp90) are molecular chaperones that are responsible for the folding of select proteins, many of which are directly associated with cancer progression. Consequently, inhibition of the Hsp90 protein folding machinery results in a combinatorial attack on numerous oncogenic pathways. Seventeen small-molecule inhibitors of Hsp90 have entered clinical trials for the treatment of cancer, all of which bind the Hsp90 N-terminus and exhibit pan-inhibitory activity against all four Hsp90 isoforms, which may lead to adverse effects. The development of Hsp90 isoform-selective inhibitors represents an alternative approach toward the treatment of cancer and may limit some of these detriments. Described herein, is a structure-based approach to develop isoform-selective inhibitors of Hsp90β, which induces the degradation of select Hsp90 clients without concomitant induction of Hsp90 levels. Together, these initial studies support the development of Hsp90β-selective inhibitors as a method for overcoming the detriments associated with pan-inhibition.
Collapse
Affiliation(s)
- Sanket J Mishra
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Weiya Liu
- Department of Urologic Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - Kristin Beebe
- Center for Cancer Research, National Cancer Institute, Building 10 - Hatfield CRC, Rockville, Maryland 20892, United States
| | - Monimoy Banerjee
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Caitlin N Kent
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - Vitumbiko Munthali
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - John Koren
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| | - John A Taylor
- Department of Urologic Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - Leonard M Neckers
- Center for Cancer Research, National Cancer Institute, Building 10 - Hatfield CRC, Rockville, Maryland 20892, United States
| | - Jeffrey Holzbeierlein
- Department of Urologic Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, Kansas 66160, United States
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
13
|
Paladino A, Woodford MR, Backe SJ, Sager RA, Kancherla P, Daneshvar MA, Chen VZ, Bourboulia D, Ahanin EF, Prodromou C, Bergamaschi G, Strada A, Cretich M, Gori A, Veronesi M, Bandiera T, Vanna R, Bratslavsky G, Serapian SA, Mollapour M, Colombo G. Chemical Perturbation of Oncogenic Protein Folding: from the Prediction of Locally Unstable Structures to the Design of Disruptors of Hsp90-Client Interactions. Chemistry 2020; 26:9459-9465. [PMID: 32167602 PMCID: PMC7415569 DOI: 10.1002/chem.202000615] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 12/20/2022]
Abstract
Protein folding quality control in cells requires the activity of a class of proteins known as molecular chaperones. Heat shock protein-90 (Hsp90), a multidomain ATP driven molecular machine, is a prime representative of this family of proteins. Interactions between Hsp90, its co-chaperones, and client proteins have been shown to be important in facilitating the correct folding and activation of clients. Hsp90 levels and functions are elevated in tumor cells. Here, we computationally predict the regions on the native structures of clients c-Abl, c-Src, Cdk4, B-Raf and Glucocorticoid Receptor, that have the highest probability of undergoing local unfolding, despite being ordered in their native structures. Such regions represent potential ideal interaction points with the Hsp90-system. We synthesize mimics spanning these regions and confirm their interaction with partners of the Hsp90 complex (Hsp90, Cdc37 and Aha1) by Nuclear Magnetic Resonance (NMR). Designed mimics selectively disrupt the association of their respective clients with the Hsp90 machinery, leaving unrelated clients unperturbed and causing apoptosis in cancer cells. Overall, selective targeting of Hsp90 protein-protein interactions is achieved without causing indiscriminate degradation of all clients, setting the stage for the development of therapeutics based on specific chaperone:client perturbation.
Collapse
Affiliation(s)
| | - Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- College of Medicine, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Priyanka Kancherla
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Michael A Daneshvar
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Victor Z Chen
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Elham F Ahanin
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | | | | | | | | | | | - Marina Veronesi
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Tiziano Bandiera
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Renzo Vanna
- Institute for Photonics and Nanotechnologies, IFN-CNR, c/o Dept. of Physics, Politecnico di Milano, Piazza L. Da Vinci 32, 20133, Milano, Italy
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Stefano A Serapian
- University of Pavia, Department of Chemistry, Viale Taramelli 10, 27100, Pavia, Italy
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Giorgio Colombo
- SCITEC-CNR, via Mario Bianco 9, 20131, Milano, Italy
- University of Pavia, Department of Chemistry, Viale Taramelli 10, 27100, Pavia, Italy
| |
Collapse
|
14
|
LaPointe P, Mercier R, Wolmarans A. Aha-type co-chaperones: the alpha or the omega of the Hsp90 ATPase cycle? Biol Chem 2020; 401:423-434. [DOI: 10.1515/hsz-2019-0341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/27/2019] [Indexed: 11/15/2022]
Abstract
AbstractHeat shock protein 90 (Hsp90) is a dimeric molecular chaperone that plays an essential role in cellular homeostasis. It functions in the context of a structurally dynamic ATP-dependent cycle to promote conformational changes in its clientele to aid stability, maturation, and activation. The client activation cycle is tightly regulated by a cohort of co-chaperone proteins that display specific binding preferences for certain conformations of Hsp90, guiding Hsp90 through its functional ATPase cycle. Aha-type co-chaperones are well-known to robustly stimulate the ATPase activity of Hsp90 but other roles in regulating the functional cycle are being revealed. In this review, we summarize the work done on the Aha-type co-chaperones since the 1990s and highlight recent discoveries with respect to the complexity of Hsp90 cycle regulation.
Collapse
Affiliation(s)
- Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - Annemarie Wolmarans
- Department of Biology, The King’s University, Edmonton T6B 2H3, Alberta, Canada
| |
Collapse
|
15
|
Emerging roles for UDP-glucuronosyltransferases in drug resistance and cancer progression. Br J Cancer 2020; 122:1277-1287. [PMID: 32047295 PMCID: PMC7188667 DOI: 10.1038/s41416-019-0722-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/06/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
The best-known role of UDP-glucuronosyltransferase enzymes (UGTs) in cancer is the metabolic inactivation of drug therapies. By conjugating glucuronic acid to lipophilic drugs, UGTs impair the biological activity and enhance the water solubility of these agents, driving their elimination. Multiple clinical observations support an expanding role for UGTs as modulators of the drug response and in mediating drug resistance in numerous cancer types. However, accumulating evidence also suggests an influence of the UGT pathway on cancer progression. Dysregulation of the expression and activity of UGTs has been associated with the progression of several cancers, arguing for UGTs as possible mediators of oncogenic pathways and/or disease accelerators in a drug-naive context. The consequences of altered UGT activity on tumour biology are incompletely understood. They might be associated with perturbed levels of bioactive endogenous metabolites such as steroids and bioactive lipids that are inactivated by UGTs or through non-enzymatic mechanisms, thereby eliciting oncogenic signalling cascades. This review highlights the evidence supporting dual roles for the UGT pathway, affecting cancer progression and drug resistance. Pharmacogenomic testing of UGT profiles in patients and the development of therapeutic options that impair UGT actions could provide useful prognostic and predictive biomarkers and enhance the efficacy of anti-cancer drugs.
Collapse
|
16
|
D'Annessa I, Raniolo S, Limongelli V, Di Marino D, Colombo G. Ligand Binding, Unbinding, and Allosteric Effects: Deciphering Small-Molecule Modulation of HSP90. J Chem Theory Comput 2019; 15:6368-6381. [PMID: 31538783 DOI: 10.1021/acs.jctc.9b00319] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The molecular chaperone HSP90 oversees the functional activation of a large number of client proteins. Because of its role in multiple pathways linked to cancer and neurodegeneration, drug discovery targeting HSP90 has been actively pursued. Yet, a number of inhibitors failed to meet expectations due to induced toxicity problems. In this context, allosteric perturbation has emerged as an alternative strategy for the pharmacological modulation of HSP90 functions. Specifically, novel allosteric stimulators showed the interesting capability of accelerating HSP90 closure dynamics and ATPase activities while inducing tumor cell death. Here, we gain atomistic insight into the mechanisms of allosteric ligand recognition and their consequences on the functional dynamics of HSP90, starting from the fully unbound state. We integrate advanced computational sampling methods based on FunnelMetadynamics, with the analysis of internal dynamics of the structural ensembles visited during the simulations. We observe several binding/unbinding events, and from these, we derive an accurate estimation of the absolute binding free energy. Importantly, we show that different binding poses induce different dynamics states. Our work for the first time explicitly correlates HSP90 responses to binding/unbinding of an allosteric ligand to the modulation of functionally oriented protein motions.
Collapse
Affiliation(s)
| | - Stefano Raniolo
- Università della Svizzera Italiana (USI) , Faculty of Biomedical Sciences, Institute of Computational Science - Center for Computational Medicine in Cardiology , via G. Buffi 13 , CH-Lugano , Switzerland
| | - Vittorio Limongelli
- Università della Svizzera Italiana (USI) , Faculty of Biomedical Sciences, Institute of Computational Science - Center for Computational Medicine in Cardiology , via G. Buffi 13 , CH-Lugano , Switzerland.,Department of Pharmacy , University of Naples ″Federico II″ , via D. Montesano 49 , I-80131 Naples , Italy
| | - Daniele Di Marino
- Università della Svizzera Italiana (USI) , Faculty of Biomedical Sciences, Institute of Computational Science - Center for Computational Medicine in Cardiology , via G. Buffi 13 , CH-Lugano , Switzerland.,Department of Life and Environmental Sciences - New York-Marche Structural Biology Center (NY-MaSBiC) , Polytechnic University of Marche , Via Brecce Bianche , 60131 Ancona , Italy
| | - Giorgio Colombo
- ICRM-CNR , Via Mario Bianco 9 , 20131 Milano , Italy.,Department of Chemistry , University of Pavia , V.le Taramelli 12 , 27100 Pavia , Italy
| |
Collapse
|
17
|
Hsieh CC, Shen CH. The Potential of Targeting P53 and HSP90 Overcoming Acquired MAPKi-Resistant Melanoma. Curr Treat Options Oncol 2019; 20:22. [PMID: 30778775 DOI: 10.1007/s11864-019-0622-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OPINION STATEMENT Melanoma is the deadliest form of skin cancer worldwide. The rising melanoma incidence and mortality, along with its high propensity for metastasis highlights the urgency to identify more effective therapeutic targets. Approximately, one half of advanced melanoma bears a mutation in the BRAF gene that makes BRAF as an important therapeutic target. Significant clinical benefit is associated with BRAF and MEK inhibitors (MAPKi) on targeting patients with BRAF V600 mutations. However, the frequent and rapid development of acquired resistance still is the major challenge facing the melanoma. Several mechanisms by which melanoma passes the inhibitory effects of MAPKi have been characterized and clinically translated, but additional alternations of genetic and epigenetic regulators outside of MAPK and/or AKT networks occurs in a quarter of patients with acquired MAPKi resistance. These studies implicate that targeting signaling networks external MAPK or AKT pathways is critical. In this review, we will focus on two approaches that are under evaluating for targeting melanoma: (1) against genome instability by p53 network restoration and (2) disrupt cancer proteome by chaperone inhibition.
Collapse
Affiliation(s)
- Chi-Che Hsieh
- National Institute of Cancer Research, National Health Research Institutes, No.367, Sheng-Li Rd., North Dist., 70456, Tainan, Taiwan
| | - Che-Hung Shen
- National Institute of Cancer Research, National Health Research Institutes, No.367, Sheng-Li Rd., North Dist., 70456, Tainan, Taiwan.
| |
Collapse
|
18
|
Vermeulen K, Naus E, Ahamed M, Attili B, Siemons M, Luyten K, Celen S, Schymkowitz J, Rousseau F, Bormans G. Evaluation of [ 11C]NMS-E973 as a PET tracer for in vivo visualisation of HSP90. Am J Cancer Res 2019; 9:554-572. [PMID: 30809293 PMCID: PMC6376183 DOI: 10.7150/thno.27213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
Heat shock protein 90 is an ATP-dependent molecular chaperone important for folding, maturation and clearance of aberrantly expressed proteins and is abundantly expressed (1-2% of all proteins) in the cytosol of all normal cells. In some tumour cells, however, strong expression of HSP90 is also observed on the cell membrane and in the extracellular matrix and the affinity of tumoural HSP90 for ATP domain inhibitors was reported to increase over 100-fold compared to that of HSP90 in normal cells. Here, we explore [11C]NMS-E973 as a PET tracer for in vivo visualisation of HSP90 and as a potential tool for in vivo quantification of occupancy of HSP90 inhibitors. Methods: HSP90 expression was biochemically characterized in a panel of established cell lines including the melanoma line B16.F10. B16.F10 melanoma xenograft tumour tissue was compared to non-malignant mouse tissue. NMS-E973 was tested in vitro for HSP90 inhibitory activity in several tumour cell lines. HSP90-specific binding of [11C]NMS-E973 was evaluated in B16.F10 melanoma cells and B16.F10 melanoma, prostate cancer LNCaP and PC3, SKOV-3 xenograft tumour slices and in vivo in a B16.F10 melanoma mouse model. Results: Strong intracellular upregulation and abundant membrane localisation of HSP90 was observed in the different tumour cell lines, in the B16.F10 tumour cell line and in B16.F10 xenograft tumours compared to non-malignant tissue. NMS-E973 showed HSP90-specific inhibition and reduced proliferation of cells. [11C]NMS-E973 showed strong binding to B16.F10 melanoma cells, which was inhibited by 200 µM of PU-H71, a non-structurally related HSP90 inhibitor. HSP90-specific binding was observed by in vitro autoradiography of murine B16.F10 melanoma, LNCaP and PC3 prostate cancer and SKOV-3 ovary carcinoma tissue slices. Further, B16.F10 melanoma-inoculated mice were subjected to a µPET study, where the tracer showed fast and persistent tumour uptake. Pretreatment of B16.F10 melanoma mice with PU-H71 or Ganetespib (50 mg/kg) completely blocked tumour accumulation of [11C]NMS-E973 and confirmed in vivo HSP90 binding specificity. HSP90-specific binding of [11C]NMS-E973 was observed in blood, lungs and spleen of tumour-bearing animals but not in control animals. Conclusion: [11C]NMS-E973 is a PET tracer for in vivo visualisation of tumour HSP90 expression and can potentially be used for quantification of HSP90 occupancy. Further translational evaluation of [11C]NMS-E973 is warranted.
Collapse
|
19
|
Ferraro M, D’Annessa I, Moroni E, Morra G, Paladino A, Rinaldi S, Compostella F, Colombo G. Allosteric Modulators of HSP90 and HSP70: Dynamics Meets Function through Structure-Based Drug Design. J Med Chem 2018; 62:60-87. [DOI: 10.1021/acs.jmedchem.8b00825] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mariarosaria Ferraro
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Ilda D’Annessa
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | | | - Giulia Morra
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Antonella Paladino
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Silvia Rinaldi
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
| | - Federica Compostella
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Via Saldini, 50, 20133 Milano, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Via Mario Bianco 9, 20131 Milano, Italy
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
20
|
Rouhi A, Miller C, Grasedieck S, Reinhart S, Stolze B, Döhner H, Kuchenbauer F, Bullinger L, Fröhling S, Scholl C. Prospective identification of resistance mechanisms to HSP90 inhibition in KRAS mutant cancer cells. Oncotarget 2018; 8:7678-7690. [PMID: 28032595 PMCID: PMC5352352 DOI: 10.18632/oncotarget.13841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
Inhibition of the HSP90 chaperone results in depletion of many signaling proteins that drive tumorigenesis, such as downstream effectors of KRAS, the most commonly mutated human oncogene. As a consequence, several small-molecule HSP90 inhibitors are being evaluated in clinical trials as anticancer agents. To prospectively identify mechanisms through which HSP90-dependent cancer cells evade pharmacologic HSP90 blockade, we generated multiple mutant KRAS-driven cancer cell lines with acquired resistance to the purine-scaffold HSP90 inhibitor PU-H71. All cell lines retained dependence on HSP90 function, as evidenced by sensitivity to short hairpin RNA-mediated suppression of HSP90AA1 or HSP90AB1 (also called HSP90α and HSP90β, respectively), and exhibited two types of genomic alterations that interfere with the effects of PU-H71 on cell viability and proliferation: (i) a Y142N missense mutation in the ATP-binding domain of HSP90α that co-occurred with amplification of the HSP90AA1 locus, (ii) genomic amplification and overexpression of the ABCB1 gene encoding the MDR1 drug efflux pump. In support of a functional role for these alterations, exogenous expression of HSP90α Y142N conferred PU-H71 resistance to HSP90-dependent cells, and pharmacologic MDR1 inhibition with tariquidar or lowering ABCB1 expression restored sensitivity to PU-H71 in ABCB1-amplified cells. Finally, comparison with structurally distinct HSP90 inhibitors currently in clinical development revealed that PU-H71 resistance could be overcome, in part, by ganetespib (also known as STA9090) but not tanespimycin (also known as 17-AAG). Together, these data identify potential mechanisms of acquired resistance to small molecules targeting HSP90 that may warrant proactive screening for additional HSP90 inhibitors or rational combination therapies.
Collapse
Affiliation(s)
- Arefeh Rouhi
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Christina Miller
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Sarah Grasedieck
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Stefanie Reinhart
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Britta Stolze
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | | | - Lars Bullinger
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Stefan Fröhling
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Section for Personalized Oncology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Claudia Scholl
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| |
Collapse
|
21
|
Rahimi MN, Buckton LK, Zaiter SS, Kho J, Chan V, Guo A, Konesan J, Kwon S, Lam LKO, Lawler MF, Leong M, Moldovan GD, Neale DA, Thornton G, McAlpine SR. Synthesis and Structure-Activity Relationships of Inhibitors That Target the C-Terminal MEEVD on Heat Shock Protein 90. ACS Med Chem Lett 2018; 9:73-77. [PMID: 30555625 PMCID: PMC6291811 DOI: 10.1021/acsmedchemlett.7b00310] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/13/2017] [Indexed: 01/04/2023] Open
Abstract
![]()
Herein, we describe
the synthesis and structure–activity
relationships of cyclic peptides designed to target heat shock protein
90 (Hsp90). Generating 19 compounds and evaluating their binding affinity
reveals that increasing electrostatic interactions allows the compounds
to bind more effectively with Hsp90 compared to the lead structure.
Exchanging specific residues for lysine improves binding affinity
for Hsp90, indicating some residues are not critical for interacting
with the target, whereas others are essential. Replacing l- for d-amino acids produced compounds with decreased binding
affinity compared to the parent structure, confirming the importance
of conformation and identifying key residues most important for binding.
Thus, a specific conformation and electrostatic interactions are required
in order for these inhibitors to bind to Hsp90.
Collapse
Affiliation(s)
- Marwa N. Rahimi
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Laura K. Buckton
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Samantha S. Zaiter
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jessica Kho
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vickie Chan
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Aldwin Guo
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jenane Konesan
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - SuHyeon Kwon
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lok K. O. Lam
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael F. Lawler
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael Leong
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gabriel D. Moldovan
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - David A. Neale
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gillian Thornton
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Shelli R. McAlpine
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
22
|
Khandelwal A, Kent CN, Balch M, Peng S, Mishra SJ, Deng J, Day VW, Liu W, Subramanian C, Cohen M, Holzbeierlein JM, Matts R, Blagg BSJ. Structure-guided design of an Hsp90β N-terminal isoform-selective inhibitor. Nat Commun 2018; 9:425. [PMID: 29382832 PMCID: PMC5789826 DOI: 10.1038/s41467-017-02013-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 11/01/2017] [Indexed: 11/11/2022] Open
Abstract
The 90 kDa heat shock protein (Hsp90) is a molecular chaperone responsible for folding proteins that are directly associated with cancer progression. Consequently, inhibition of the Hsp90 protein folding machinery results in a combinatorial attack on numerous oncogenic pathways. Seventeen small-molecule inhibitors of Hsp90 have entered clinical trials, all of which bind the Hsp90 N-terminus and exhibit pan-inhibitory activity against all four Hsp90 isoforms. pan-Inhibition of Hsp90 appears to be detrimental as toxicities have been reported alongside induction of the pro-survival heat shock response. The development of Hsp90 isoform-selective inhibitors represents an alternative approach towards the treatment of cancer that may limit some of the detriments. Described herein is a structure-based approach to design isoform-selective inhibitors of Hsp90β, which induces the degradation of select Hsp90 clients without concomitant induction of Hsp90 levels. Together, these initial studies support the development of Hsp90β-selective inhibitors as a method to overcome the detriments associated with pan-inhibition.
Collapse
Affiliation(s)
- Anuj Khandelwal
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 4048, Lawrence, KS, 66045, USA
| | - Caitlin N Kent
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA
| | - Maurie Balch
- Department of Biochemistry and Molecular Biology, 246C Noble Research Center, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Shuxia Peng
- Department of Biochemistry and Molecular Biology, 246C Noble Research Center, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Sanket J Mishra
- Department of Medicinal Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 4048, Lawrence, KS, 66045, USA
| | - Junpeng Deng
- Department of Biochemistry and Molecular Biology, 246C Noble Research Center, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Victor W Day
- Department of Chemistry, The University of Kansas, 1251 Wescoe Hall Drive, Malott Hall 2010, Lawrence, KS, 66045, USA
| | - Weiya Liu
- Department of Urologic Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Chitra Subramanian
- Department of Pharmacology, University of Michigan School of Medicine, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Mark Cohen
- Department of Pharmacology, University of Michigan School of Medicine, 1150 W. Medical Center Dr., Ann Arbor, MI, 48109, USA
| | - Jeffery M Holzbeierlein
- Department of Urologic Oncology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Robert Matts
- Department of Biochemistry and Molecular Biology, 246C Noble Research Center, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, The University of Notre Dame, 305 McCourtney Hall, Notre Dame, IN, 46556, USA.
| |
Collapse
|
23
|
Forsberg LK, Anyika M, You Z, Emery S, McMullen M, Dobrowsky RT, Blagg BSJ. Development of noviomimetics that modulate molecular chaperones and manifest neuroprotective effects. Eur J Med Chem 2018; 143:1428-1435. [PMID: 29137866 PMCID: PMC5736410 DOI: 10.1016/j.ejmech.2017.10.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/09/2017] [Accepted: 10/14/2017] [Indexed: 11/30/2022]
Abstract
Heat shock protein 90 (Hsp90) is a chaperone under investigation for the treatment of cancer and neurodegenerative diseases. Neuroprotective Hsp90 C-terminal inhibitors derived from novobiocin (novologues) include KU-32 and KU-596. These novologues modulate molecular chaperones and result in an induction of Heat Shock Protein 70 (Hsp70). "Noviomimetics" replace the synthetically complex noviose sugar with a simple cyclohexyl moiety to maintain biological efficacy as compared to novologues KU-596 and KU-32. In this study, we further explore the development of noviomimetics and evaluate their efficacy using a luciferase refolding assay, immunoblot analysis, a c-jun assay, and an assay measuring mitochondrial bioenergetics. These new noviomimetics were designed and synthesized and found to induce Hsp70 and improve biological activity. Noviomimetics 39e and 40a were found to induce Hsp70 and exhibit promising effects in cellular assays.
Collapse
Affiliation(s)
- Leah K Forsberg
- Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott 4070, The University of Kansas, Lawrence, KS 66045-7563, United States
| | - Mercy Anyika
- Department of Medicinal Chemistry, 1251 Wescoe Hall Drive, Malott 4070, The University of Kansas, Lawrence, KS 66045-7563, United States
| | - Zhenyuan You
- Department of Pharmacology and Toxicology Department, The University of Kansas, Lawrence, KS 66045, United States
| | - Sean Emery
- Department of Pharmacology and Toxicology Department, The University of Kansas, Lawrence, KS 66045, United States
| | - Mason McMullen
- Department of Pharmacology and Toxicology Department, The University of Kansas, Lawrence, KS 66045, United States
| | - Rick T Dobrowsky
- Department of Pharmacology and Toxicology Department, The University of Kansas, Lawrence, KS 66045, United States
| | - Brian S J Blagg
- Department of Chemistry and Biochemistry, 305 McCourtney Hall, The University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
24
|
Abstract
The molecular chaperone Heat Shock Protein 90 (Hsp90) is essential in eukaryotes. Hsp90 chaperones proteins that are important determinants of multistep carcinogenesis. The chaperone function of Hsp90 is linked to its ability to bind and hydrolyze ATP. Co-chaperones as well as posttranslational modifications (phosphorylation, SUMOylation, and ubiquitination) are important for its stability and regulation of the ATPase activity. Both mammalian and yeast cells can be used to express and purify Hsp90 and also detect its posttranslational modifications by immunoblotting.
Collapse
|
25
|
Bzowska M, Nogieć A, Bania K, Zygmunt M, Zarębski M, Dobrucki J, Guzik K. Involvement of cell surface 90 kDa heat shock protein (HSP90) in pattern recognition by human monocyte-derived macrophages. J Leukoc Biol 2017; 102:763-774. [PMID: 28550115 DOI: 10.1189/jlb.2ma0117-019r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/20/2017] [Accepted: 04/29/2017] [Indexed: 12/25/2022] Open
Abstract
Heat shock proteins (HSPs) are typical intracellular chaperones which also appear on the cell surface and in extracellular milieu. HSP90, which chaperones many proteins involved in signal transduction, is also a regular component of LPS-signaling complexes on Mϕ. As LPS is a prototypical PAMP, we speculated that HSP90 is engaged in pattern recognition by professional phagocytes. In this report, we provide the first evidence, to our knowledge, of the geldanamycin (Ge)-inhibitable HSP90 on the surface of live monocyte-derived Mϕs (hMDMs). Using cytometry and specific Abs, we showed both HSP90 isoforms (α and β) on the surface of human monocytes and hMDMs. The cell-surface HSP90 pool was also labeled with cell-impermeable Ge derivatives. Confocal analysis of hMDMs revealed that HSP90-inhibitor complexes were rapidly clustered on the cell surface and recycled through the endosomal compartment. This finding suggests that the N-terminal (ATPase) domain of HSP90 is exposed and accessible from the extracellular space. To study the role of cell-surface HSP90 in pattern recognition, we used pathogen (PAMPs)- or apoptotic cell-associated molecular patterns (ACAMPs). We showed that blocking the cell-surface HSP90 pool leads to a dramatic decrease in TNF production by monocytes and hMDMs exposed to soluble (TLRs-specific ligands) and particulate [bacteria Staphylococcus aureus (SA) and Porphyromonas gingivalis (PG)] PAMPs. Surprisingly, in hMDMs the functional cell-surface HSP90 was not necessary for the engulfment of either apoptotic neutrophils or bacteria. The presented data suggest that the cell-surface HSP90 is a "signaling complex chaperone," with activity that is essential for cytokine response but not for target engulfment by Mϕ.
Collapse
Affiliation(s)
- Małgorzata Bzowska
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland; and
| | - Anna Nogieć
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland; and
| | - Krystian Bania
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland; and
| | - Magdalena Zygmunt
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland; and
| | - Mirosław Zarębski
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Jerzy Dobrucki
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Krzysztof Guzik
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland; and
| |
Collapse
|
26
|
D'Annessa I, Sattin S, Tao J, Pennati M, Sànchez-Martìn C, Moroni E, Rasola A, Zaffaroni N, Agard DA, Bernardi A, Colombo G. Design of Allosteric Stimulators of the Hsp90 ATPase as New Anticancer Leads. Chemistry 2017; 23:5188-5192. [PMID: 28207175 PMCID: PMC5927549 DOI: 10.1002/chem.201700169] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Indexed: 01/23/2023]
Abstract
Allosteric compounds that stimulate Hsp90 adenosine triphosphatase (ATPase) activity were rationally designed, showing anticancer potencies in the low micromolar to nanomolar range. In parallel, the mode of action of these compounds was clarified and a quantitative model that links the dynamic ligand-protein cross-talk to observed cellular and in vitro activities was developed. The results support the potential of using dynamics-based approaches to develop original mechanism-based cancer therapeutics.
Collapse
Affiliation(s)
- Ilda D'Annessa
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco, 9, 20131, Milan, Italy
| | - Sara Sattin
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi, 19, 20133, Milan, Italy
| | - Jiahui Tao
- Howard Hughes Medical Institute and Dept. of Biochemistry & Biophysics, University of California, 600 16thStreet, San Francisco, CA, 94158, USA
| | - Marzia Pennati
- Dept. Experimental Oncology & Molecular Medicine, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo, 42, 20133, Milano, Italy
| | - Carlos Sànchez-Martìn
- Dipartimento di Scienze Biomediche-DSB, Università di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | | | - Andrea Rasola
- Dipartimento di Scienze Biomediche-DSB, Università di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | - Nadia Zaffaroni
- Dept. Experimental Oncology & Molecular Medicine, Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo, 42, 20133, Milano, Italy
| | - David A Agard
- Howard Hughes Medical Institute and Dept. of Biochemistry & Biophysics, University of California, 600 16thStreet, San Francisco, CA, 94158, USA
| | - Anna Bernardi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi, 19, 20133, Milan, Italy
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, CNR, via Mario Bianco, 9, 20131, Milan, Italy
| |
Collapse
|
27
|
Proteomic analysis of proteome and histone post-translational modifications in heat shock protein 90 inhibition-mediated bladder cancer therapeutics. Sci Rep 2017; 7:201. [PMID: 28298630 PMCID: PMC5427839 DOI: 10.1038/s41598-017-00143-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/08/2017] [Indexed: 11/18/2022] Open
Abstract
Heat shock protein 90 (HSP90) inhibition is an attractive strategy for cancer treatment. Several HSP90 inhibitors have shown promising effects in clinical oncology trials. However, little is known about HSP90 inhibition-mediated bladder cancer therapy. Here, we report a quantitative proteomic study that evaluates alterations in protein expression and histone post-translational modifications (PTMs) in bladder carcinoma in response to HSP90 inhibition. We show that 5 HSP90 inhibitors (AUY922, ganetespib, SNX2112, AT13387, and CUDC305) potently inhibited the proliferation of bladder cancer 5637 cells in a dose- and time-dependent manner. Our proteomic study quantified 518 twofold up-regulated and 811 twofold down-regulated proteins common to both AUY922 and ganetespib treatment. Bioinformatic analyses revealed that those differentially expressed proteins were involved in multiple cellular processes and enzyme-regulated signaling pathways, including chromatin modifications and cell death-associated pathways. Furthermore, quantitative proteome studies identified 14 types of PTMs with 93 marks on the core histones, including 34 novel histone marks of butyrylation, citrullination, 2-hydroxyisobutyrylation, methylation, O-GlcNAcylation, propionylation, and succinylation in AUY922- and ganetespib-treated 5637 cells. Together, this study outlines the association between proteomic changes and histone PTMs in response to HSP90 inhibitor treatment in bladder carcinoma cells, and thus intensifies the understanding of HSP90 inhibition-mediated bladder cancer therapeutics.
Collapse
|
28
|
Toleikis Z, Sirotkin VA, Skvarnavičius G, Smirnovienė J, Roumestand C, Matulis D, Petrauskas V. Volume of Hsp90 Protein–Ligand Binding Determined by Fluorescent Pressure Shift Assay, Densitometry, and NMR. J Phys Chem B 2016; 120:9903-12. [DOI: 10.1021/acs.jpcb.6b06863] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Zigmantas Toleikis
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Vladimir A. Sirotkin
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya Street 18, Kazan 420008, Russia
| | - Gediminas Skvarnavičius
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Joana Smirnovienė
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Christian Roumestand
- Centre
de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Universités de Montpellier, 34000 Montpellier, France
| | - Daumantas Matulis
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department
of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
29
|
Chung C, Yoo G, Kim T, Lee D, Lee CS, Cha HR, Park YH, Moon JY, Jung SS, Kim JO, Lee JC, Kim SY, Park HS, Park M, Park DI, Lim DS, Jang KW, Lee JE. The E3 ubiquitin ligase CHIP selectively regulates mutant epidermal growth factor receptor by ubiquitination and degradation. Biochem Biophys Res Commun 2016; 479:152-158. [PMID: 27475501 DOI: 10.1016/j.bbrc.2016.07.111] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 12/11/2022]
Abstract
Somatic mutation in the tyrosine kinase domain of epidermal growth factor receptor (EGFR) is a decisive factor for the therapeutic response to EGFR tyrosine kinase inhibitors (EGFR-TKIs) in lung adenocarcinoma. The stability of mutant EGFR is maintained by various regulators, including heat shock protein 90 (Hsp90). The C terminus of Hsc70-interacting protein (CHIP) is a Hsp70/Hsp90 co-chaperone and exhibits E3 ubiquitin ligase activity. The high-affinity Hsp90-CHIP complex recognizes and selectively regulates their client proteins. CHIP also works with its own E3 ligase activity independently of Hsp70/Hsp90. Here, we investigated the role of CHIP in regulating EGFR in lung adenocarcinoma and also evaluated the specificity of CHIP's effects on mutant EGFR. In HEK 293T cells transfected with either WT EGFR or EGFR mutants, the overexpression of CHIP selectively decreased the expression of certain EGFR mutants (G719S, L747_E749del A750P and L858R) but not WT EGFR. In a pull-down assay, CHIP selectively interacted with EGFR mutants and simultaneously induced their ubiquitination and proteasomal degradation. The expressions of mutant EGFR in PC9 and H1975 were diminished by CHIP, while the expression of WT EGFR in A549 was nearly not affected. In addition, CHIP overexpression inhibited cell proliferation and xenograft's tumor growth of EGFR mutant cell lines, but not WT EGFR cell lines. EGFR mutant specific ubiquitination by CHIP may provide a crucial regulating mechanism for EGFR in lung adenocarcinoma. Our results suggest that CHIP can be novel therapeutic target for overcoming the EGFR TKI resistance.
Collapse
Affiliation(s)
- Chaeuk Chung
- Cancer Institute of Chungnam National University, Daejeon 35015, South Korea; Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Geon Yoo
- School of Biological Sciences, Seoul National University, Seoul 151-742, South Korea
| | - Tackhoon Kim
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology(KAIST), Daejeon 34141, South Korea
| | - Dahye Lee
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Choong-Sik Lee
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Hye Rim Cha
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Yeon Hee Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Jae Young Moon
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Sung Soo Jung
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Ju Ock Kim
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Jae Cheol Lee
- Department of Oncology, College of Medicine, University of Ulsan Asan Medical Center, Seoul, South Korea
| | - Sun Young Kim
- Cancer Institute of Chungnam National University, Daejeon 35015, South Korea; Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Hee Sun Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Myoungrin Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Dong Il Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Dae-Sik Lim
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology(KAIST), Daejeon 34141, South Korea
| | - Kang Won Jang
- Cancer Institute of Chungnam National University, Daejeon 35015, South Korea; Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Jeong Eun Lee
- Cancer Institute of Chungnam National University, Daejeon 35015, South Korea; Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea.
| |
Collapse
|
30
|
Martinez-Rossi NM, Jacob TR, Sanches PR, Peres NTA, Lang EAS, Martins MP, Rossi A. Heat Shock Proteins in Dermatophytes: Current Advances and Perspectives. Curr Genomics 2016; 17:99-111. [PMID: 27226766 PMCID: PMC4864838 DOI: 10.2174/1389202917666151116212437] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/02/2015] [Accepted: 07/13/2015] [Indexed: 11/29/2022] Open
Abstract
Heat shock proteins (HSPs) are proteins whose transcription responds rapidly to temperature shifts. They constitute a family of molecular chaperones, involved in the proper folding and stabilisation of proteins under physiological and adverse conditions. HSPs also assist in the protection and recovery of cells exposed to a variety of stressful conditions, including heat. The role of HSPs extends beyond chaperoning proteins, as they also participate in diverse cellular functions, such as the assembly of macromolecular complexes, protein transport and sorting, dissociation of denatured protein aggregates, cell cycle control, and programmed cell death. They are also important antigens from a variety of pathogens, are able to stimulate innate immune cells, and are implicated in acquired immunity. In fungi, HSPs have been implicated in virulence, dimorphic transition, and drug resistance. Some HSPs are potential targets for therapeutic strategies. In this review, we discuss the current understanding of HSPs in dermatophytes, which are a group of keratinophilic fungi responsible for superficial mycoses in humans and animals. Computational analyses were performed to characterise the group of proteins in these dermatophytes, as well as to assess their conservation and to identify DNA-binding domains (5′-nGAAn-3′) in the promoter regions of the hsp genes. In addition, the quantification of the transcript levels of few genes in a pacC background helped in the development of an extended model for the regulation of the expression of the hsp genes, which supports the participation of the pH-responsive transcriptional regulator PacC in this process.
Collapse
Affiliation(s)
- Nilce M Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Tiago R Jacob
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Pablo R Sanches
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Nalu T A Peres
- Present address: Department of Morphology, Federal University of Sergipe, SE, Brazil
| | - Elza A S Lang
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maíra P Martins
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
31
|
Pulvino M, Chen L, Oleksyn D, Li J, Compitello G, Rossi R, Spence S, Balakrishnan V, Jordan C, Poligone B, Casulo C, Burack R, Shapiro JL, Bernstein S, Friedberg JW, Deshaies RJ, Land H, Zhao J. Inhibition of COP9-signalosome (CSN) deneddylating activity and tumor growth of diffuse large B-cell lymphomas by doxycycline. Oncotarget 2016; 6:14796-813. [PMID: 26142707 PMCID: PMC4558116 DOI: 10.18632/oncotarget.4193] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/22/2015] [Indexed: 11/25/2022] Open
Abstract
In searching for small-molecule compounds that inhibit proliferation and survival of diffuse large B-cell lymphoma (DLBCL) cells and may, therefore, be exploited as potential therapeutic agents for this disease, we identified the commonly used and well-tolerated antibiotic doxycycline as a strong candidate. Here, we demonstrate that doxycycline inhibits the growth of DLBCL cells both in vitro and in mouse xenograft models. In addition, we show that doxycycline accumulates in DLBCL cells to high concentrations and affects multiple signaling pathways that are crucial for lymphomagenesis. Our data reveal the deneddylating activity of COP-9 signalosome (CSN) as a novel target of doxycycline and suggest that doxycycline may exert its effects in DLBCL cells in part through a CSN5-HSP90 pathway. Consistently, knockdown of CSN5 exhibited similar effects as doxycycline treatment on DLBCL cell survival and HSP90 chaperone function. In addition to DLBCL cells, doxycycline inhibited growth of several other types of non-Hodgkin lymphoma cells in vitro. Together, our results suggest that doxycycline may represent a promising therapeutic agent for DLBCL and other non-Hodgkin lymphomas subtypes.
Collapse
Affiliation(s)
- Mary Pulvino
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Luojing Chen
- Division of Allergy/Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
| | - David Oleksyn
- Division of Allergy/Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jing Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - George Compitello
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Randy Rossi
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Stephen Spence
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| | - Vijaya Balakrishnan
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
| | - Craig Jordan
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.,Division of Hematology, University of Colorado Denver, Aurora, CO, USA
| | - Brian Poligone
- Department of Dermatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Carla Casulo
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard Burack
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joel L Shapiro
- Department of Pathology, Rochester General Hospital, Rochester, NY, USA
| | - Steven Bernstein
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Jonathan W Friedberg
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Raymond J Deshaies
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Hartmut Land
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Jiyong Zhao
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.,Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
32
|
Mishra P, Flynn JM, Starr TN, Bolon DNA. Systematic Mutant Analyses Elucidate General and Client-Specific Aspects of Hsp90 Function. Cell Rep 2016; 15:588-598. [PMID: 27068472 DOI: 10.1016/j.celrep.2016.03.046] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/08/2015] [Accepted: 03/11/2016] [Indexed: 12/14/2022] Open
Abstract
To probe the mechanism of the Hsp90 chaperone that is required for the maturation of many signaling proteins in eukaryotes, we analyzed the effects of all individual amino acid changes in the ATPase domain on yeast growth rate. The sensitivity of a position to mutation was strongly influenced by proximity to the phosphates of ATP, indicating that ATPase-driven conformational changes impose stringent physical constraints on Hsp90. To investigate how these constraints may vary for different clients, we performed biochemical analyses on a panel of Hsp90 mutants spanning the full range of observed fitness effects. We observed distinct effects of nine Hsp90 mutations on activation of v-src and glucocorticoid receptor (GR), indicating that different chaperone mechanisms can be utilized for these clients. These results provide a detailed guide for understanding Hsp90 mechanism and highlight the potential for inhibitors of Hsp90 that target a subset of clients.
Collapse
Affiliation(s)
- Parul Mishra
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Julia M Flynn
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tyler N Starr
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
33
|
Heat-Shock Protein 90–Targeted Nano Anticancer Therapy. J Pharm Sci 2016; 105:1454-66. [DOI: 10.1016/j.xphs.2015.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/16/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022]
|
34
|
Lee HS, Lee NCO, Kouprina N, Kim JH, Kagansky A, Bates S, Trepel JB, Pommier Y, Sackett D, Larionov V. Effects of Anticancer Drugs on Chromosome Instability and New Clinical Implications for Tumor-Suppressing Therapies. Cancer Res 2016; 76:902-11. [PMID: 26837770 PMCID: PMC4827779 DOI: 10.1158/0008-5472.can-15-1617] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 11/09/2015] [Indexed: 12/21/2022]
Abstract
Whole chromosomal instability (CIN), manifested as unequal chromosome distribution during cell division, is a distinguishing feature of most cancer types. CIN is generally considered to drive tumorigenesis, but a threshold level exists whereby further increases in CIN frequency in fact hinder tumor growth. While this attribute is appealing for therapeutic exploitation, drugs that increase CIN beyond this therapeutic threshold are currently limited. In our previous work, we developed a quantitative assay for measuring CIN based on the use of a nonessential human artificial chromosome (HAC) carrying a constitutively expressed EGFP transgene. Here, we used this assay to rank 62 different anticancer drugs with respect to their effects on chromosome transmission fidelity. Drugs with various mechanisms of action, such as antimicrotubule activity, histone deacetylase inhibition, mitotic checkpoint inhibition, and targeting of DNA replication and damage responses, were included in the analysis. Ranking of the drugs based on their ability to induce HAC loss revealed that paclitaxel, gemcitabine, dactylolide, LMP400, talazoparib, olaparib, peloruside A, GW843682, VX-680, and cisplatin were the top 10 drugs demonstrating HAC loss at a high frequency. Therefore, identification of currently used compounds that greatly increase chromosome mis-segregation rates should expedite the development of new therapeutic strategies to target and leverage the CIN phenotype in cancer cells.
Collapse
Affiliation(s)
- Hee-Sheung Lee
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Nicholas C O Lee
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jung-Hyun Kim
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Alex Kagansky
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | - Susan Bates
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jane B Trepel
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Dan Sackett
- Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland.
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
35
|
Woodford MR, Truman AW, Dunn DM, Jensen SM, Cotran R, Bullard R, Abouelleil M, Beebe K, Wolfgeher D, Wierzbicki S, Post DE, Caza T, Tsutsumi S, Panaretou B, Kron SJ, Trepel JB, Landas S, Prodromou C, Shapiro O, Stetler-Stevenson WG, Bourboulia D, Neckers L, Bratslavsky G, Mollapour M. Mps1 Mediated Phosphorylation of Hsp90 Confers Renal Cell Carcinoma Sensitivity and Selectivity to Hsp90 Inhibitors. Cell Rep 2016; 14:872-884. [PMID: 26804907 PMCID: PMC4887101 DOI: 10.1016/j.celrep.2015.12.084] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/24/2015] [Accepted: 12/17/2015] [Indexed: 11/25/2022] Open
Abstract
The molecular chaperone Hsp90 protects deregulated signaling proteins that are vital for tumor growth and survival. Tumors generally display sensitivity and selectivity toward Hsp90 inhibitors; however, the molecular mechanism underlying this phenotype remains undefined. We report that the mitotic checkpoint kinase Mps1 phosphorylates a conserved threonine residue in the amino-domain of Hsp90. This, in turn, regulates chaperone function by reducing Hsp90 ATPase activity while fostering Hsp90 association with kinase clients, including Mps1. Phosphorylation of Hsp90 is also essential for the mitotic checkpoint because it confers Mps1 stability and activity. We identified Cdc14 as the phosphatase that dephosphorylates Hsp90 and disrupts its interaction with Mps1. This causes Mps1 degradation, thus providing a mechanism for its inactivation. Finally, Hsp90 phosphorylation sensitizes cells to its inhibitors, and elevated Mps1 levels confer renal cell carcinoma selectivity to Hsp90 drugs. Mps1 expression level can potentially serve as a predictive indicator of tumor response to Hsp90 inhibitors.
Collapse
Affiliation(s)
- Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Diana M Dunn
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Sandra M Jensen
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Richard Cotran
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Renee Bullard
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Mourad Abouelleil
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Donald Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Sara Wierzbicki
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Dawn E Post
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Tiffany Caza
- Department of Pathology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Shinji Tsutsumi
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Barry Panaretou
- Institute of Pharmaceutical Science, Kings College London, London SE1 9NH, UK
| | - Stephen J Kron
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Jane B Trepel
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Steve Landas
- Department of Pathology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | | | - Oleg Shapiro
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - William G Stetler-Stevenson
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA; Cancer Research Institute, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
36
|
Mutational Analysis of Glycogen Synthase Kinase 3β Protein Kinase Together with Kinome-Wide Binding and Stability Studies Suggests Context-Dependent Recognition of Kinases by the Chaperone Heat Shock Protein 90. Mol Cell Biol 2016; 36:1007-18. [PMID: 26755559 DOI: 10.1128/mcb.01045-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/05/2016] [Indexed: 11/20/2022] Open
Abstract
The heat shock protein 90 (HSP90) and cell division cycle 37 (CDC37) chaperones are key regulators of protein kinase folding and maturation. Recent evidence suggests that thermodynamic properties of kinases, rather than primary sequences, are recognized by the chaperones. In concordance, we observed a striking difference in HSP90 binding between wild-type (WT) and kinase-dead (KD) glycogen synthase kinase 3β (GSK3β) forms. Using model cell lines stably expressing these two GSK3β forms, we observed no interaction between WT GSK3β and HSP90, in stark contrast to KD GSK3β forming a stable complex with HSP90 at a 1:1 ratio. In a survey of 91 ectopically expressed kinases in DLD-1 cells, we compared two parameters to measure HSP90 dependency: static binding and kinase stability following HSP90 inhibition. We observed no correlation between HSP90 binding and reduced stability of a kinase after pharmacological inhibition of HSP90. We expanded our stability study to >50 endogenous kinases across four cell lines and demonstrated that HSP90 dependency is context dependent. These observations suggest that HSP90 binds to its kinase client in a particular conformation that we hypothesize to be associated with the nucleotide-processing cycle. Lastly, we performed proteomics profiling of kinases and phosphopeptides in DLD-1 cells to globally define the impact of HSP90 inhibition on the kinome.
Collapse
|
37
|
Xu MY, Xue NN, Liu D, Zhou YM, Li W, Li YQ, Chen XG, Yu XM. 4,5,6,7-Tetrahydro-[1,2,3]triazolo[1,5-a]pyrazine as a new scaffold for heat shock protein 90 inhibitors. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2015.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Targeting the heat shock response in combination with radiotherapy: Sensitizing cancer cells to irradiation-induced cell death and heating up their immunogenicity. Cancer Lett 2015; 368:209-29. [DOI: 10.1016/j.canlet.2015.02.047] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/22/2015] [Accepted: 02/26/2015] [Indexed: 12/16/2022]
|
39
|
Schwartz H, Scroggins B, Zuehlke A, Kijima T, Beebe K, Mishra A, Neckers L, Prince T. Combined HSP90 and kinase inhibitor therapy: Insights from The Cancer Genome Atlas. Cell Stress Chaperones 2015; 20:729-41. [PMID: 26070366 PMCID: PMC4529871 DOI: 10.1007/s12192-015-0604-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/06/2015] [Accepted: 05/08/2015] [Indexed: 12/13/2022] Open
Abstract
The merging of knowledge from genomics, cellular signal transduction and molecular evolution is producing new paradigms of cancer analysis. Protein kinases have long been understood to initiate and promote malignant cell growth and targeting kinases to fight cancer has been a major strategy within the pharmaceutical industry for over two decades. Despite the initial success of kinase inhibitors (KIs), the ability of cancer to evolve resistance and reprogram oncogenic signaling networks has reduced the efficacy of kinase targeting. The molecular chaperone HSP90 physically supports global kinase function while also acting as an evolutionary capacitor. The Cancer Genome Atlas (TCGA) has compiled a trove of data indicating that a large percentage of tumors overexpress or possess mutant kinases that depend on the HSP90 molecular chaperone complex. Moreover, the overexpression or mutation of parallel activators of kinase activity (PAKA) increases the number of components that promote malignancy and indirectly associate with HSP90. Therefore, targeting HSP90 is predicted to complement kinase inhibitors by inhibiting oncogenic reprogramming and cancer evolution. Based on this hypothesis, consideration should be given by both the research and clinical communities towards combining kinase inhibitors and HSP90 inhibitors (H90Ins) in combating cancer. The purpose of this perspective is to reflect on the current understanding of HSP90 and kinase biology as well as promote the exploration of potential synergistic molecular therapy combinations through the utilization of The Cancer Genome Atlas.
Collapse
Affiliation(s)
- Harvey Schwartz
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Brad Scroggins
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Abbey Zuehlke
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Toshiki Kijima
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Kristin Beebe
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Alok Mishra
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Len Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Thomas Prince
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| |
Collapse
|
40
|
Regulation and function of the human HSP90AA1 gene. Gene 2015; 570:8-16. [PMID: 26071189 DOI: 10.1016/j.gene.2015.06.018] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/21/2015] [Accepted: 06/06/2015] [Indexed: 12/11/2022]
Abstract
Heat shock protein 90α (Hsp90α), encoded by the HSP90AA1 gene, is the stress inducible isoform of the molecular chaperone Hsp90. Hsp90α is regulated differently and has different functions when compared to the constitutively expressed Hsp90β isoform, despite high amino acid sequence identity between the two proteins. These differences are likely due to variations in nucleotide sequence within non-coding regions, which allows for specific regulation through interaction with particular transcription factors, and to subtle changes in amino acid sequence that allow for unique post-translational modifications. This article will specifically focus on the expression, function and regulation of Hsp90α.
Collapse
|
41
|
Proia DA, Kaufmann GF. Targeting Heat-Shock Protein 90 (HSP90) as a Complementary Strategy to Immune Checkpoint Blockade for Cancer Therapy. Cancer Immunol Res 2015; 3:583-9. [PMID: 25948551 DOI: 10.1158/2326-6066.cir-15-0057] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 03/16/2015] [Indexed: 11/16/2022]
Abstract
The demonstration that immune checkpoint blockade can meaningfully improve outcomes for cancer patients has revolutionized the field of immuno-oncology. New biologic agents targeting specific checkpoints have shown remarkable durability in terms of patient response and, importantly, exhibit clinical activity across a range of human malignancies, including many that have traditionally proven refractory to other immunotherapies. In this rapidly evolving area, a key consideration relates to the identification of novel combinatorial strategies that exploit existing or investigational cancer therapies in order to optimize patient outcomes and the proportion of individuals able to derive benefit from this approach. In this regard, heat-shock protein 90 (HSP90) represents an important emerging target for cancer therapy because its inactivation results in the simultaneous blockade of multiple signaling pathways and can sensitize tumor cells to other anticancer agents. Within the context of immunology, HSP90 plays a dual regulatory role, with its functional inhibition resulting in both immunosuppressive and immunostimulatory effects. In this Cancer Immunology at the Crossroads overview, the anticancer activity profile of targeted HSP90 inhibitors is discussed along with their paradoxical roles in immunology. Overall, we explore the rationale for combining the modalities of HSP90 inhibition and immune checkpoint blockade in order to augment the antitumor immune response in cancer.
Collapse
Affiliation(s)
- David A Proia
- Synta Pharmaceuticals Corporation, Lexington, Massachusetts.
| | | |
Collapse
|
42
|
Flynn JM, Mishra P, Bolon DNA. Mechanistic Asymmetry in Hsp90 Dimers. J Mol Biol 2015; 427:2904-11. [PMID: 25843003 DOI: 10.1016/j.jmb.2015.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 12/12/2022]
Abstract
Hsp90 is a molecular chaperone that facilitates the maturation of signaling proteins including many kinases and steroid hormone receptors. Through these client proteins, Hsp90 is a key mediator of many physiological processes and has emerged as a promising drug target in cancer. Additionally, Hsp90 can mask or potentiate the impact of mutations in clients with remarkable influence on evolutionary adaptations. The influential roles of Hsp90 in biology and disease have stimulated extensive research into the molecular mechanism of this chaperone. These studies have shown that Hsp90 is a homodimeric protein that requires ATP hydrolysis and a host of accessory proteins termed co-chaperones to facilitate the maturation of clients to their active states. Flexible hinge regions between its three structured domains enable Hsp90 to sample dramatically distinct conformations that are influenced by nucleotide, client, and co-chaperone binding. While it is clear that Hsp90 can exist in symmetrical conformations, recent studies have indicated that this homodimeric chaperone can also assume a variety of asymmetric conformations and complexes that are important for client maturation. The visualization of Hsp90-client complexes at high resolution together with tools to independently manipulate each subunit in the Hsp90 dimer are providing new insights into the asymmetric function of each subunit during client maturation.
Collapse
Affiliation(s)
- Julia M Flynn
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Parul Mishra
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel N A Bolon
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
43
|
Hsp90 interaction with clients. Trends Biochem Sci 2015; 40:117-25. [PMID: 25579468 DOI: 10.1016/j.tibs.2014.12.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/02/2014] [Accepted: 12/04/2014] [Indexed: 01/02/2023]
Abstract
The conserved Hsp90 chaperone is an ATP-controlled machine that assists the folding and controls the stability of select proteins. Emerging data explain how Hsp90 achieves client specificity and its role in the cellular chaperone cascade. Interestingly, Hsp90 has an extended substrate binding interface that crosses domain boundaries, exhibiting specificity for proteins with hydrophobic residues spread over a large area regardless of whether they are disordered, partly folded, or even folded. This specificity principle ensures that clients preferentially bind to Hsp70 early on in the folding path, but downstream folding intermediates bind Hsp90. Discussed here, the emerging model is that the Hsp90 ATPase does not modulate client affinity but instead controls substrate influx from Hsp70.
Collapse
|
44
|
Tatokoro M, Koga F, Yoshida S, Kihara K. Heat shock protein 90 targeting therapy: state of the art and future perspective. EXCLI JOURNAL 2015; 14:48-58. [PMID: 26600741 DOI: 10.17179/excli2015-586] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/27/2014] [Indexed: 12/16/2022]
Abstract
Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that plays a role in stabilizing and activating more than 200 client proteins. It is required for the stability and function of numerous oncogenic signaling proteins that determine the hallmarks of cancer. Since the initial discovery of the first Hsp90 inhibitor in the 1970s, multiple phase II and III clinical trials of several Hsp90 inhibitors have been undertaken. This review provides an overview of the current status on clinical trials of Hsp90 inhibitors and future perspectives on novel anticancer strategies using Hsp90 inhibitors.
Collapse
Affiliation(s)
- Manabu Tatokoro
- Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Fumitaka Koga
- Department of Urology, Tokyo Metropolitan Cancer and Infectious diseases Center Komagome Hospital, Tokyo, Japan
| | - Soichiro Yoshida
- Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - Kazunori Kihara
- Department of Urology, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| |
Collapse
|
45
|
Amici R, Bigogno C, Boggio R, Colombo A, Courtney SM, Dal Zuffo R, Dondio G, Fusar F, Gagliardi S, Minucci S, Molteni M, Montalbetti CAGN, Mortoni A, Varasi M, Vultaggio S, Mercurio C. Chiral Resolution and Pharmacological Characterization of the Enantiomers of the Hsp90 Inhibitor 2-Amino-7-[4-fluoro-2-(3-pyridyl)phenyl]-4-methyl-7,8-dihydro-6H-quinazolin-5-one Oxime. ChemMedChem 2014; 9:1574-85. [DOI: 10.1002/cmdc.201400037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Indexed: 12/13/2022]
|
46
|
Dutta Gupta S, Snigdha D, Mazaira GI, Galigniana MD, Subrahmanyam CVS, Gowrishankar NL, Raghavendra NM. Molecular docking study, synthesis and biological evaluation of Schiff bases as Hsp90 inhibitors. Biomed Pharmacother 2014; 68:369-76. [PMID: 24486109 DOI: 10.1016/j.biopha.2014.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 01/01/2014] [Indexed: 11/25/2022] Open
Abstract
Heat shock protein 90 (Hsp90) is an emerging attractive target for the discovery of novel cancer therapeutic agents. Docking methods are powerful in silico tools for lead generation and optimization. In our mission to rationally develop novel effective small molecules against Hsp90, we predicted the potency of our designed compounds by Sybyl surflex Geom X docking method. The results of the above studies revealed that Schiff bases derived from 2,4-dihydroxy benzaldehyde/5-chloro-2,4-dihydroxy benzaldehyde demonstrated effective binding with the protein. Subsequently, a few of them were synthesized (1-10) and characterized by IR, (1)HNMR and mass spectral analysis. The synthesized molecules were evaluated for their potential to suppress Hsp90 ATPase activity by Malachite green assay. The anticancer studies were performed by 3-(4,5-dimethythiazol- 2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay method. The software generated results was in satisfactory agreement with the evaluated biological activity.
Collapse
Affiliation(s)
- Sayan Dutta Gupta
- Department of Pharmaceutical Chemistry, Gokaraju Rangaraju College of Pharmacy, Osmania University, Bachupally, Hyderabad, India; R&D centre, Department of Pharmaceutical Sciences, Jawaharlal Nehru Technological University, Hyderabad, India.
| | - D Snigdha
- Department of Pharmaceutical Chemistry, Gokaraju Rangaraju College of Pharmacy, Osmania University, Bachupally, Hyderabad, India
| | - Gisela I Mazaira
- Department of Biological Chemistry, Faculty of Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Mario D Galigniana
- Department of Biological Chemistry, Faculty of Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina; Institute of Experimental Biology and Medicine-CONICET, Buenos Aires, Argentina
| | - C V S Subrahmanyam
- Department of Pharmaceutical Chemistry, Gokaraju Rangaraju College of Pharmacy, Osmania University, Bachupally, Hyderabad, India
| | - N L Gowrishankar
- Swami Vivekananda Institute of Pharmaceutical Sciences, Nalgonda, Andhrapradesh, India
| | - N M Raghavendra
- Department of Pharmaceutical Chemistry, Gokaraju Rangaraju College of Pharmacy, Osmania University, Bachupally, Hyderabad, India
| |
Collapse
|