1
|
Kumar JSD, Molotkov A, Kim J, Carberry P, Idumonyi S, Castrillon J, Duff K, Shneider NA, Mintz A. Preclinical evaluation of a microtubule PET ligand [ 11C]MPC-6827 in tau and amyotrophic lateral sclerosis animal models. Pharmacol Rep 2022; 74:539-544. [PMID: 35286710 DOI: 10.1007/s43440-022-00359-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/03/2022] [Accepted: 02/18/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Microtubules are abundant in brain and their malfunctioning occurs in the early-to-advanced stages of neurodegenerative disorders. At present, there is no in vivo test available for a definitive diagnosis of most of the neurodegenerative disorders. Herein, we present the microPET imaging of microtubules using our recently reported Positron Emission Tomography (PET) tracer, [11C]MPC-6827, in transgenic mice models of tau pathology (rTg4510) and amyotrophic lateral sclerosis pathology (SOD1*G93A) and compared to corresponding age-matched controls. METHODS Automated synthesis of [11C]MPC-6827 was achieved in a GE-FX2MeI/FX2M radiochemistry module. In vivo PET imaging studies of [11C]MPC-6827 (3.7 ± 0.8 MBq) were performed in rTg4510 and SOD1*G93A mice groups and their corresponding littermates (n = 5 per group). Dynamic PET images were acquired using a microPET Inveon system (Siemens, Germany) at 55 min for rTg4510 and 30 min for SOD1*G93A and corresponding controls. PET images were reconstructed using the 3D-OSEM algorithm and analyzed using VivoQuant version 4 (Invicro, MA). Tracer uptake in ROIs that included whole brain was measured as %ID/g over time to generate standardized uptake values (SUV) and time-activity curves (TACs). RESULTS [11C]MPC-6827 exhibit a trend of lower tracer binding in mouse models of Alzheimer's disease (tau pathology, line rTg4510) and Amyotrophic Lateral Sclerosis (line SOD1*G93A) compared to wild-type littermates. CONCLUSIONS Our finding indicates a trend of loss of microtubule binding of [11C]MPC-6827 in the whole brain of AD and ALS transgenic mice models compared to control mice. The pilot studies described herein show that [11C]MPC-6827 could be used as a PET ligand for preclinical and human brain imaging of Alzheimer's disease, ALS, and other neurodegenerative diseases. Preclinical Evaluation of a Microtubule PET Ligand [11C]MPC-6827 in Tau and Amyotrophic Lateral Sclerosis Animal Models. J. S. Dileep Kumar, Andrei Molotkov, Jongho Kim, Patrick Carberry, Sidney Idumonyi, John Castrillon, Karen Duff, Neil A. Shneider, Akiva Mintz.
Collapse
Affiliation(s)
- J S Dileep Kumar
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, USA. .,Feinstein Institutes for Medical Research, North Shore University Hospital, Manhasset, New York, USA.
| | - Andrei Molotkov
- Department of Radiology, Columbia University Medical Center, New York, USA
| | - Jongho Kim
- Department of Radiology, Columbia University Medical Center, New York, USA
| | - Patrick Carberry
- Department of Radiology, Columbia University Medical Center, New York, USA
| | - Sidney Idumonyi
- Department of Radiology, Columbia University Medical Center, New York, USA
| | - John Castrillon
- Department of Radiology, Columbia University Medical Center, New York, USA
| | - Karen Duff
- Department of Pathology and Cell Biology and Taub Institute, Columbia University Medical Center, New York, USA.,UK Dementia Research Institute, University College London, London, UK
| | - Neil A Shneider
- Department of Neurology and Eleanor and Lou Gehrig ALS Center, Columbia University Medical Center, New York, USA
| | - Akiva Mintz
- Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, USA.,Department of Radiology, Columbia University Medical Center, New York, USA
| |
Collapse
|
2
|
Lindberg A, Mossine AV, Aliaga A, Hopewell R, Massarweh G, Rosa-Neto P, Shao X, Bernard-Gauthier V, Scott PJH, Vasdev N. Preliminary Evaluations of [ 11C]Verubulin: Implications for Microtubule Imaging With PET. Front Neurosci 2021; 15:725873. [PMID: 34566568 PMCID: PMC8456034 DOI: 10.3389/fnins.2021.725873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/16/2021] [Indexed: 01/08/2023] Open
Abstract
[11C]Verubulin (a.k.a.[11C]MCP-6827), [11C]HD-800 and [11C]colchicine have been developed for imaging microtubules (MTs) with positron emission tomography (PET). The objective of this work was to conduct an in vivo comparison of [11C]verubulin for MT imaging in mouse and rat brain, as well as an in vitro study with this radiotracer in rodent and human Alzheimer’s Disease tissue. Our preliminary PET imaging studies of [11C]verubulin in rodents revealed contradictory results between mouse and rat brain uptake under pretreatment conditions. In vitro autoradiography with [11C]verubulin showed an unexpected higher uptake in AD patient tissue compared with healthy controls. We also conducted the first comparative in vivo PET imaging study with [11C]verubulin, [11C]HD-800 and [11C]colchicine in a non-human primate. [11C]Verubulin and [11C]HD-800 require pharmacokinetic modeling and quantification studies to understand the role of how these radiotracers bind to MTs before translation to human use.
Collapse
Affiliation(s)
- Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Andrew V Mossine
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Arturo Aliaga
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Robert Hopewell
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gassan Massarweh
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Xia Shao
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Vadim Bernard-Gauthier
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Peter J H Scott
- Division of Nuclear Medicine, Department of Radiology, The University of Michigan Medical School, Ann Arbor, MI, United States
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
3
|
Patel TK, Adhikari N, Amin SA, Biswas S, Jha T, Ghosh B. Small molecule drug conjugates (SMDCs): an emerging strategy for anticancer drug design and discovery. NEW J CHEM 2021. [DOI: 10.1039/d0nj04134c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mechanisms of how SMDCs work. Small molecule drugs are conjugated with the targeted ligand using pH sensitive linkers which allow the drug molecule to get released at lower lysosomal pH. It helps to accumulate the chemotherapeutic agents to be localized in the tumor environment upon cleaving of the pH-labile bonds.
Collapse
Affiliation(s)
- Tarun Kumar Patel
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| | - Nilanjan Adhikari
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Sk. Abdul Amin
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Swati Biswas
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| | - Tarun Jha
- Natural Science Laboratory
- Division of Medicinal and Pharmaceutical Chemistry
- Department of Pharmaceutical Technology
- Jadavpur University
- Kolkata 700032
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy
- BITS-Pilani
- Hyderabad
- India
| |
Collapse
|
4
|
Straehla JP, Warren KE. Pharmacokinetic Principles and Their Application to Central Nervous System Tumors. Pharmaceutics 2020; 12:pharmaceutics12100948. [PMID: 33036139 PMCID: PMC7601100 DOI: 10.3390/pharmaceutics12100948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 01/13/2023] Open
Abstract
Despite increasing knowledge of the biologic drivers of central nervous system tumors, most targeted agents trialed to date have not shown activity against these tumors in clinical trials. To effectively treat central nervous system tumors, an active drug must achieve and maintain an effective exposure at the tumor site for a long enough period of time to exert its intended effect. However, this is difficult to assess and achieve due to the constraints of drug delivery to the central nervous system. To address this complex problem, an understanding of pharmacokinetic principles is necessary. Pharmacokinetics is classically described as the quantitative study of drug absorption, distribution, metabolism, and elimination. The innate chemical properties of a drug, its administration (dose, route and schedule), and host factors all influence these four key pharmacokinetic phases. The central nervous system adds a level of complexity to standard plasma pharmacokinetics as it is a coupled drug compartment. This review will discuss special considerations of pharmacokinetics in the context of therapeutic development for central nervous system tumors.
Collapse
Affiliation(s)
- Joelle P. Straehla
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA 02115, USA;
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02142, USA
| | - Katherine E. Warren
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA 02115, USA;
- Correspondence: ; Tel.: +1-617-632-2680
| |
Collapse
|
5
|
Restriction of drug transport by the tumor environment. Histochem Cell Biol 2018; 150:631-648. [DOI: 10.1007/s00418-018-1744-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 12/31/2022]
|
6
|
Kumar JSD, Solingapuram Sai KK, Prabhakaran J, Oufkir HR, Ramanathan G, Whitlow CT, Dileep H, Mintz A, Mann JJ. Radiosynthesis and in Vivo Evaluation of [ 11C]MPC-6827, the First Brain Penetrant Microtubule PET Ligand. J Med Chem 2018; 61:2118-2123. [PMID: 29457976 DOI: 10.1021/acs.jmedchem.8b00028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abnormalities of microtubules (MTs) are implicated in the pathogenesis of many CNS diseases. Despite the potential of an MT imaging agents, no PET ligand is currently available for in vivo imaging of MTs in the brain. We radiolabeled [11C]MPC-6827, a high affinity MTA, and demonstrated its specific binding in rat and mice brain using PET imaging. Our experiments show that [11C]MPC-6827 has specific binding to MT in brain, and it is the first MT-binding PET ligand.
Collapse
Affiliation(s)
- J S Dileep Kumar
- Molecular Imaging and Neuropathology Division , New York State Psychiatric Institute , 1051 Riverside Drive , New York , New York 10032 , United States
| | | | - Jaya Prabhakaran
- Molecular Imaging and Neuropathology Division , New York State Psychiatric Institute , 1051 Riverside Drive , New York , New York 10032 , United States.,Department of Psychiatry , Columbia University Medical Center , New York , New York 10032 , United States
| | - Hakeem R Oufkir
- Department of Radiology , Wake Forest Medical Center , Winston Salem , North Carolina 27157 , United States
| | - Gayathri Ramanathan
- Department of Radiology , Wake Forest Medical Center , Winston Salem , North Carolina 27157 , United States
| | - Christopher T Whitlow
- Department of Radiology , Wake Forest Medical Center , Winston Salem , North Carolina 27157 , United States
| | - Hima Dileep
- Molecular Imaging and Neuropathology Division , New York State Psychiatric Institute , 1051 Riverside Drive , New York , New York 10032 , United States.,Department of Psychiatry , Columbia University Medical Center , New York , New York 10032 , United States
| | - Akiva Mintz
- Department of Radiology , Wake Forest Medical Center , Winston Salem , North Carolina 27157 , United States
| | - J John Mann
- Molecular Imaging and Neuropathology Division , New York State Psychiatric Institute , 1051 Riverside Drive , New York , New York 10032 , United States.,Department of Psychiatry , Columbia University Medical Center , New York , New York 10032 , United States
| |
Collapse
|
7
|
Ngen EJ, Bar-Shir A, Jablonska A, Liu G, Song X, Ansari R, Bulte JWM, Janowski M, Pearl M, Walczak P, Gilad AA. Imaging the DNA Alkylator Melphalan by CEST MRI: An Advanced Approach to Theranostics. Mol Pharm 2016; 13:3043-53. [PMID: 27398883 DOI: 10.1021/acs.molpharmaceut.6b00130] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Brain tumors are among the most lethal types of tumors. Therapeutic response variability and failure in patients have been attributed to several factors, including inadequate drug delivery to tumors due to the blood-brain barrier (BBB). Consequently, drug delivery strategies are being developed for the local and targeted delivery of drugs to brain tumors. These drug delivery strategies could benefit from new approaches to monitor the delivery of drugs to tumors. Here, we evaluated the feasibility of imaging 4-[bis(2-chloroethyl)amino]-l-phenylalanine (melphalan), a clinically used DNA alkylating agent, using chemical exchange saturation transfer magnetic resonance imaging (CEST MRI), for theranostic applications. We evaluated the physicochemical parameters that affect melphalan's CEST contrast and demonstrated the feasibility of imaging the unmodified drug by saturating its exchangeable amine protons. Melphalan generated a CEST signal despite its reactivity in an aqueous milieu. The maximum CEST signal was observed at pH 6.2. This CEST contrast trend was then used to monitor therapeutic responses to melphalan in vitro. Upon cell death, the decrease in cellular pH from ∼7.4 to ∼6.4 caused an amplification of the melphalan CEST signal. This is contrary to what has been reported for other CEST contrast agents used for imaging cell death, where a decrease in the cellular pH following cell death results in a decrease in the CEST signal. Ultimately, this method could be used to noninvasively monitor melphalan delivery to brain tumors and also to validate therapeutic responses to melphalan clinically.
Collapse
Affiliation(s)
- Ethel J Ngen
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Amnon Bar-Shir
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Anna Jablonska
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| | - Guanshu Liu
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute , Baltimore, Maryland 21205, United States
| | - Xiaolei Song
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute , Baltimore, Maryland 21205, United States
| | | | - Jeff W M Bulte
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute , Baltimore, Maryland 21205, United States
| | - Miroslaw Janowski
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,NeuroRepair Department, Mossakowski Medical Research Centre, PAS , 02106 Warsaw, Poland.,Department of Neurosurgery, Mossakowski Medical Research Centre, PAS , 02106 Warsaw, Poland
| | - Monica Pearl
- Division of Interventional Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Sciences, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Department of Radiology, Children's National Medical Center , Washington, D.C. 20010, United States
| | - Piotr Walczak
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Department of Radiology, Faculty of Medical Sciences, University of Warmia and Mazury , Olsztyn, Poland
| | - Assaf A Gilad
- Division of Magnetic Resonance Research, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,Cellular Imaging Section and Vascular Biology Program, Institute for Cellular Engineering, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute , Baltimore, Maryland 21205, United States
| |
Collapse
|
8
|
Sharan S, Woo S. Systems pharmacology approaches for optimization of antiangiogenic therapies: challenges and opportunities. Front Pharmacol 2015; 6:33. [PMID: 25750626 PMCID: PMC4335258 DOI: 10.3389/fphar.2015.00033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/06/2015] [Indexed: 12/16/2022] Open
Abstract
Targeted therapies have become an important therapeutic paradigm for multiple malignancies. The rapid development of resistance to these therapies impedes the successful management of advanced cancer. Due to the redundancy in angiogenic signaling, alternative proangiogenic factors are activated upon treatment with anti-VEGF agents. Higher doses of the agents lead to greater stimulation of compensatory proangiogenic pathways that limit the therapeutic efficacy of VEGF-targeted drugs and produce escape mechanisms for tumor. Evidence suggests that dose intensity and schedules affect the dynamics of the development of this resistance. Thus, an optimal dosing regimen is crucial to maximizing the therapeutic benefit of antiangiogenic agents and limiting treatment resistance. A systems pharmacology approach using multiscale computational modeling can facilitate a mechanistic understanding of these dynamics of angiogenic biomarkers and their impacts on tumor reduction and resistance. Herein, we discuss a systems pharmacology approach integrating the biology of VEGF-targeted therapy resistance, including circulating biomarkers, and pharmacodynamics to enable the optimization of antiangiogenic therapy for therapeutic gains.
Collapse
Affiliation(s)
- Satish Sharan
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center , Oklahoma City, OK, USA
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Oklahoma Health Sciences Center , Oklahoma City, OK, USA
| |
Collapse
|
9
|
Abstract
In recent years, the clinical development of targeted therapies has been advanced by a greater understanding of tumor biology and genomics. Nonetheless, drug development remains a slow and costly process. An additional challenge is that targeted therapies may benefit only a subset of patients treated-typically those patients whose tumors are dependent on the target of interest. Thus, there is a growing need for the incorporation of both predictive and pharmacodynamic (PD) biomarkers in drug development. Predictive biomarkers are important to help guide patient selection, while PD biomarkers can provide information on the pharmacologic effects of a drug on its target. PD studies may provide insights into proof of mechanism (i.e., Does the agent hit its intended target?) and proof of concept (i.e., Does hitting the drug target result in the desired biologic effect?). PD studies may also provide information on the optimal biologic dosing or scheduling of a targeted agent. Herein, we review PD endpoints in the context of targeted drug development in non-small cell lung cancer, highlighting some of the key challenges encountered to date. In doing so, we discuss recent experiences with repeat tumor biopsies, surrogate tissue analysis, alternative clinical trial designs (e.g., window-of-opportunity trials), circulating biomarkers, and mechanism-based toxicity assessments. The application of such technologies and biomarkers in early clinical trials may facilitate rational drug development, while enhancing our understanding of why certain targeted therapies succeed or fail. See all articles in this CCR focus section, "Progress in pharmacodynamic endpoints."
Collapse
Affiliation(s)
- Justin F Gainor
- Authors' Affiliations: Department of Medicine, Massachusetts General Hospital Cancer Center; and Department of Medicine, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts
| | - Dan L Longo
- Authors' Affiliations: Department of Medicine, Massachusetts General Hospital Cancer Center; and Department of Medicine, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts
| | - Bruce A Chabner
- Authors' Affiliations: Department of Medicine, Massachusetts General Hospital Cancer Center; and Department of Medicine, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts
| |
Collapse
|
10
|
Yap TA, Lorente D, Omlin A, Olmos D, de Bono JS. Circulating tumor cells: a multifunctional biomarker. Clin Cancer Res 2015; 20:2553-68. [PMID: 24831278 DOI: 10.1158/1078-0432.ccr-13-2664] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
One of the most promising developments in translational cancer medicine has been the emergence of circulating tumor cells (CTC) as a minimally invasive multifunctional biomarker. CTCs in peripheral blood originate from solid tumors and are involved in the process of hematogenous metastatic spread to distant sites for the establishment of secondary foci of disease. The emergence of modern CTC technologies has enabled serial assessments to be undertaken at multiple time points along a patient's cancer journey for pharmacodynamic (PD), prognostic, predictive, and intermediate endpoint biomarker studies. Despite the promise of CTCs as multifunctional biomarkers, there are still numerous challenges that hinder their incorporation into standard clinical practice. This review discusses the key technical aspects of CTC technologies, including the importance of assay validation and clinical qualification, and compares existing and novel CTC enrichment platforms. This article discusses the utility of CTCs as a multifunctional biomarker and focuses on the potential of CTCs as PD endpoints either directly via the molecular characterization of specific markers or indirectly through CTC enumeration. We propose strategies for incorporating CTCs as PD biomarkers in translational clinical trials, such as the Pharmacological Audit Trail. We also discuss issues relating to intrapatient heterogeneity and the challenges associated with isolating CTCs undergoing epithelial-mesenchymal transition, as well as apoptotic and small CTCs. Finally, we envision the future promise of CTCs for the selection and monitoring of antitumor precision therapies, including applications in single CTC phenotypic and genomic profiling and CTC-derived xenografts, and discuss the promises and limitations of such approaches. See ALL articles in this CCR focus section, "Progress in pharmacodynamic endpoints."
Collapse
Affiliation(s)
- Timothy A Yap
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, SpainAuthors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| | - David Lorente
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, SpainAuthors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| | - Aurelius Omlin
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| | - David Olmos
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| | - Johann S de Bono
- Authors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, SpainAuthors' Affiliations: Division of Clinical Studies, The Institute of Cancer Research; Drug Development Unit, Royal Marsden NHS Foundation Trust, Sutton, Surrey, United Kingdom; Kantonsspital St. Gallen, Department of Medical Oncology, Gallen, Switzerland; and Spanish National Cancer Research Centre, Madrid, Spain
| |
Collapse
|
11
|
Abstract
Clinical pharmacologic research plays a vital role in cancer drug development. In recent years, biomarker studies have become integral to this process, specifically the use of pharmacologic biomarkers in the development of targeted therapies and their translation to clinical practice. In this overview, we discuss the validation of pharmacodynamics (PD) biomarkers and highlight the circulating tumor DNA as a promising cancer biomarker to illustrate how PD biomarkers can be powerful tools for guiding treatment strategies. We provide insights into PD biomarker approaches for future development of novel therapies and their role in cancer medicine. See all articles in this CCR focus section, "Progress in pharmacodynamic endpoints."
Collapse
Affiliation(s)
- William Douglas Figg
- Authors' Affiliations: Clinical Pharmacology Program, Office of the Clinical Director, Molecular Pharmacology Section and Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland; and Northern Institute for Cancer Research, Newcastle University, Newcastle, United Kingdom
| | - David R Newell
- Authors' Affiliations: Clinical Pharmacology Program, Office of the Clinical Director, Molecular Pharmacology Section and Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland; and Northern Institute for Cancer Research, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|