1
|
Métois A, Bordeleau ME, Theret L, Hajmirza A, Moujaber O, Spinella JF, Chagraoui J, Mayotte N, Boivin I, Audemard É, Aubert L, Lisi V, Khakipoor B, Farah A, Bonneil É, Robert A, Lippens J, Moraitis A, Béliveau F, Feghaly A, Boucher G, Marcotte R, Gendron P, Thibault P, Lemieux S, Richard-Carpentier G, Lavallée VP, Hébert J, Roux PP, Sauvageau G. IL1RAP is an immunotherapeutic target for normal karyotype triple-mutated acute myeloid leukemia. Biomark Res 2025; 13:61. [PMID: 40229904 PMCID: PMC11995633 DOI: 10.1186/s40364-025-00769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/16/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Surface antigens of potential clinical significance remain under-characterized in AML. The European Leukemia Network classifies normal karyotype AML (NK-AML) mutated for NPM1 (NPM1c) as a distinct entity associated with favorable outcomes if not associated with FLT3-ITD mutation. A subset of NPM1c NK-AML shows additional mutations in 2 genes: FLT3 (FLT3-ITD) and DNMT3 A. These leukemias, also referred to as NK triple mutated AML (NKt-AML), are particularly difficult to eradicate with current treatment options. Therefore, novel therapies are necessary that use proteins specifically expressed at the surface. METHODS In order to identify surface antigens for immunotherapy in NKt-AML, an extensive multi-omic analysis was conducted on primary AML samples. Surface proteome enrichment was performed on 100 primary AML samples, twelve of which were NKt-AML. Transcriptome analysis was carried out on the 691 primary AML samples, and single-cell RNA sequencing was conducted on 23 primary AML samples. RESULTS Herein, using multi-omics data from the Leucegene collection, we identify IL1RAP as a promising antigen for this AML subgroup. We demonstrate that IL1RAP is expressed at the surface of primitive AML cells reminiscent of leukemic stem cells in NKt-AML primary human AML specimens, while showing relatively low expression levels in normal bone marrow HSCs. Furthermore, results indicate that elevated IL1RAP expression associates with poor overall and relapse-free survival in the Leucegene cohort of AML patients and predicts nonresponse to hematopoietic stem cell transplantation. Finally, we show that IL1RAP protein is internalized following exposure to specific antibodies, suggesting that IL1RAP represents an interesting target for antibody-drug conjugate development in NKt-AML. CONCLUSIONS IL1RAP exhibits preferential expression within NKt-AML, correlating with diminished overall survival rates and diminished responsiveness to hematopoietic stem cell transplantation. Moreover, internalization of IL1RAP presents a promising avenue for immunotherapeutic intervention.
Collapse
Affiliation(s)
- Arnaud Métois
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
| | - Marie-Eve Bordeleau
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
| | - Louis Theret
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
| | - Azadeh Hajmirza
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
| | - Ossama Moujaber
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
| | - Jean-François Spinella
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
| | - Jalila Chagraoui
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
| | - Nadine Mayotte
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
| | - Isabel Boivin
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
| | - Éric Audemard
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
| | - Léo Aubert
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
| | - Véronique Lisi
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Québec, H3 T 1 C5, Canada
| | - Banafsheh Khakipoor
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Québec, H3 T 1 C5, Canada
| | - Azer Farah
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Québec, H3 T 1 C5, Canada
| | - Éric Bonneil
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
| | - Alma Robert
- Medical Devices Research Center, National Research Council Canada, Montréal, Québec, H4P 2R2, Canada
| | - Julie Lippens
- Medical Devices Research Center, National Research Council Canada, Montréal, Québec, H4P 2R2, Canada
| | - Anna Moraitis
- Medical Devices Research Center, National Research Council Canada, Montréal, Québec, H4P 2R2, Canada
| | - François Béliveau
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, Québec, H1 T 2M4, Canada
| | - Albert Feghaly
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
| | - Geneviève Boucher
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
| | - Richard Marcotte
- Human Health Therapeutic Research Center National Research Council Canada, Montréal, Québec, H4P 2R2, Canada
| | - Patrick Gendron
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
| | - Pierre Thibault
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
- Department of Chemistry, Faculty of Arts and Science, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
| | - Sébastien Lemieux
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
| | - Guillaume Richard-Carpentier
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 2 C1, Canada
- Department of Medicine, Division of Medical Oncology and Hematology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, M5S 1 A8, Canada
| | - Vincent-Philippe Lavallée
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, Québec, H3 T 1 C5, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
- Hematology and Oncology Division, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Québec, H3 T 1 C5, Canada
| | - Josée Hébert
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, Québec, H1 T 2M4, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
- Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montréal, Québec, H1 T 2M4, Canada
| | - Philippe P Roux
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
- Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada
| | - Guy Sauvageau
- The Leucegene Project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada.
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, Québec, H1 T 2M4, Canada.
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, H3 T 1 J4, Canada.
- Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montréal, Québec, H1 T 2M4, Canada.
| |
Collapse
|
2
|
Tabata R, Yamamoto N, Tabata C. Supportive effect of corticosteroid on bone marrow recovery in FLT3/ITD positive acute myeloid leukemia with trisomy 13. J Steroid Biochem Mol Biol 2025; 248:106697. [PMID: 39922322 DOI: 10.1016/j.jsbmb.2025.106697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/10/2025]
Abstract
Trisomy 13 is a rare chromosomal abnormality mainly observed in patients with FAB M0, and is associated with increased FLT3 expression, characterized by aggressive and inferior outcomes. Herein, we describe a case of FLT3/ITD-positive acute myeloid leukemia with trisomy 13, whose neutropenia and thrombocytopenia were improved by corticosteroids with a decrease in blasts in the peripheral blood without chemotherapy. Only short-term chemotherapy could be administered because of the patient's poor general condition. In contrast, repeated administration of methylprednisolone pulse therapy followed by high-dose prednisolone was required to control the interstitial pneumonitis. Although appropriate chemotherapy, such as oral administration of FLT inhibitors, could not be administered, a dramatic decrease in blasts and an increase in both neutrophils and platelets were observed. The addition of corticosteroids to chemotherapy is associated with a better clinical course in patients with hyperleukocytic and pediatric acute myeloid leukemia. In the present patient, the peripheral WBC count was not high, the steroids allowed for the recovery of normal hematopoiesis with diminishing blasts. Although stem cell transplantation is necessary to improve overall survival for aggressive acute myeloid leukemia, intensive chemotherapy cannot often be administered in frail older patients. Lower dose of steroids might be able to effectively control acute myeloid leukemia without serious adverse effects, resulting in a better clinical course in frail older patients with acute myeloid leukemia.
Collapse
Affiliation(s)
- Rie Tabata
- Department of Hematology, Saiseikai NOE Hospital, Osaka, Japan.
| | - Naoki Yamamoto
- Department of Respiratory Medicine, Saiseikai NOE Hospital, Osaka, Japan
| | - Chiharu Tabata
- Department of Pharmacy, School of Pharmacy, Hyogo Medical University, Hyogo, Japan
| |
Collapse
|
3
|
Bordeleau ME, Audemard É, Métois A, Theret L, Lisi V, Farah A, Spinella JF, Chagraoui J, Moujaber O, Aubert L, Khakipoor B, Mallinger L, Boivin I, Mayotte N, Hajmirza A, Bonneil É, Béliveau F, Pfammatter S, Feghaly A, Boucher G, Gendron P, Thibault P, Barabé F, Lemieux S, Richard-Carpentier G, Hébert J, Lavallée VP, Roux PP, Sauvageau G. Immunotherapeutic targeting of surfaceome heterogeneity in AML. Cell Rep 2024; 43:114260. [PMID: 38838225 DOI: 10.1016/j.celrep.2024.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/29/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
Immunotherapy remains underexploited in acute myeloid leukemia (AML) compared to other hematological malignancies. Currently, gemtuzumab ozogamicin is the only therapeutic antibody approved for this disease. Here, to identify potential targets for immunotherapeutic intervention, we analyze the surface proteome of 100 genetically diverse primary human AML specimens for the identification of cell surface proteins and conduct single-cell transcriptome analyses on a subset of these specimens to assess antigen expression at the sub-population level. Through this comprehensive effort, we successfully identify numerous antigens and markers preferentially expressed by primitive AML cells. Many identified antigens are targeted by therapeutic antibodies currently under clinical evaluation for various cancer types, highlighting the potential therapeutic value of the approach. Importantly, this initiative uncovers AML heterogeneity at the surfaceome level, identifies several antigens and potential primitive cell markers characterizing AML subgroups, and positions immunotherapy as a promising approach to target AML subgroup specificities.
Collapse
Affiliation(s)
- Marie-Eve Bordeleau
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| | - Éric Audemard
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Arnaud Métois
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Louis Theret
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Véronique Lisi
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
| | - Azer Farah
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
| | - Jean-François Spinella
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Jalila Chagraoui
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Ossama Moujaber
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Léo Aubert
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Banafsheh Khakipoor
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada
| | - Laure Mallinger
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Isabel Boivin
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Nadine Mayotte
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Azadeh Hajmirza
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Éric Bonneil
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - François Béliveau
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada
| | - Sybille Pfammatter
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Albert Feghaly
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Geneviève Boucher
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Patrick Gendron
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Pierre Thibault
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Department of Chemistry, Faculty of Arts and Science, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Frédéric Barabé
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 4G2, Canada
| | - Sébastien Lemieux
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| | - Guillaume Richard-Carpentier
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada; Department of Medicine, Division of Medical Oncology and Hematology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Josée Hébert
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada.
| | - Vincent-Philippe Lavallée
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC H3T 1C5, Canada; Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Hematology and Oncology Division, Centre Hospitalier Universitaire Sainte-Justine, Montréal, QC H3T 1C5, Canada.
| | - Philippe P Roux
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| | - Guy Sauvageau
- The Leucegene project at Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC H3T 1J4, Canada; Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada; Division of Hematology-Oncology, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada.
| |
Collapse
|
4
|
Brunetti M, Iasenza IA, Jenner AL, Raynal NJM, Eppert K, Craig M. Mathematical modelling of clonal reduction therapeutic strategies in acute myeloid leukemia. Leuk Res 2024; 140:107485. [PMID: 38579483 DOI: 10.1016/j.leukres.2024.107485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/21/2024] [Accepted: 03/12/2024] [Indexed: 04/07/2024]
Abstract
Over the years, the overall survival of older patients diagnosed with acute myeloid leukemia (AML) has not significantly increased. Although standard cytotoxic therapies that rapidly eliminate dividing myeloblasts are used to induce remission, relapse can occur due to surviving therapy-resistant leukemic stem cells (LSCs). Hence, anti-LSC strategies have become a key target to cure AML. We have recently shown that previously approved cardiac glycosides and glucocorticoids target LSC-enriched CD34+ cells in the primary human AML 8227 model with more efficacy than normal hematopoietic stem cells (HSCs). To translate these in vitro findings into humans, we developed a mathematical model of stem cell dynamics that describes the stochastic evolution of LSCs in AML post-standard-of-care. To this, we integrated population pharmacokinetic-pharmacodynamic (PKPD) models to investigate the clonal reduction potential of several promising candidate drugs in comparison to cytarabine, which is commonly used in high doses for consolidation therapy in AML patients. Our results suggest that cardiac glycosides (proscillaridin A, digoxin and ouabain) and glucocorticoids (budesonide and mometasone) reduce the expansion of LSCs through a decrease in their viability. While our model predicts that effective doses of cardiac glycosides are potentially too toxic to use in patients, simulations show the possibility of mometasone to prevent relapse through the glucocorticoid's ability to drastically reduce LSC population size. This work therefore highlights the prospect of these treatments for anti-LSC strategies and underlines the use of quantitative approaches to preclinical drug translation in AML.
Collapse
Affiliation(s)
- Mia Brunetti
- Département de Mathématiques et de Statistiques, Université de Montréal, 2900 Édouard Montpetit Blvd, Montréal, Québec H3T 1J4, Canada; Sainte-Justine University Hospital Azrieli Research Center, 3175 Chem. de la Côte-Sainte-Catherine, Montréal, Québec H3T 1C5, Canada
| | - Isabella A Iasenza
- Division of Experimental Medicine, Department of Medicine, McGill University, 845 Sherbrooke St W, Montréal, Québec H3A 0G4, Canada; Research Institute of the McGill University Health Centre, 1001 Décarie Blvd, Montréal, Québec H4A 3J1, Canada
| | - Adrianne L Jenner
- School of Mathematical Sciences, Queensland University of Technology, 2 George St, Brisbane, QLD 4000, Australia
| | - Noël J-M Raynal
- Sainte-Justine University Hospital Azrieli Research Center, 3175 Chem. de la Côte-Sainte-Catherine, Montréal, Québec H3T 1C5, Canada; Département de Pharmacologie et Physiologie, Université de Montréal, 2900 Édouard Montpetit Blvd, Montréal, Québec H3T 1J4, Canada
| | - Kolja Eppert
- Research Institute of the McGill University Health Centre, 1001 Décarie Blvd, Montréal, Québec H4A 3J1, Canada; Department of Pediatrics, McGill University, 845 Sherbrooke St W, Montréal, Québec H3A 0G4, Canada
| | - Morgan Craig
- Département de Mathématiques et de Statistiques, Université de Montréal, 2900 Édouard Montpetit Blvd, Montréal, Québec H3T 1J4, Canada; Sainte-Justine University Hospital Azrieli Research Center, 3175 Chem. de la Côte-Sainte-Catherine, Montréal, Québec H3T 1C5, Canada.
| |
Collapse
|
5
|
Bansal D, Davidson A, Supriyadi E, Njuguna F, Ribeiro RC, Kaspers GJL. SIOP PODC adapted risk stratification and treatment guidelines: Recommendations for acute myeloid leukemia in resource-limited settings. Pediatr Blood Cancer 2023; 70:e28087. [PMID: 31774234 DOI: 10.1002/pbc.28087] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 01/09/2023]
Abstract
In low- and middle-income countries (LMICs), limited resources, suboptimal risk stratification, and disproportionate patient-to-infrastructure ratio result in low survival of patients with acute myeloid leukemia (AML). A high incidence of relapse, inherent to the biology, renders management arduous. The challenge of treating AML in LMICs is of balancing the intensity of myelosuppressive chemotherapy, which appears necessary for cure, with available supportive care, which influences treatment-related mortality. The recommendations outlined in this paper are based on published evidence and expert opinion. The principle of this adapted protocol is to tailor treatment to available resources, reduce preventable toxic death, and direct limited resources toward those children who are most likely to be cured.
Collapse
Affiliation(s)
- Deepak Bansal
- Department of Pediatrics, Hematology-Oncology Unit, Advanced Pediatrics Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alan Davidson
- Haematology-Oncology Service, Red Cross Children's Hospital, Cape Town, South Africa
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
| | - Eddy Supriyadi
- Pediatric Hematology-Oncology Division, Department of Pediatrics, Universitas Gadjah Mada, Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Festus Njuguna
- Department of Child Health and Paediatrics, Moi University, Eldoret, Kenya
| | - Raul C Ribeiro
- St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
6
|
Wang H, Zhou J, Ma X, Jiao C, Chen E, Wu Z, Zhang Y, Pan M, Cui J, Luan C, Ge J. Dexamethasone enhances venetoclax-induced apoptosis in acute myeloid leukemia cells. Med Oncol 2023; 40:193. [PMID: 37261571 DOI: 10.1007/s12032-023-02056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Acute myeloid leukemia (AML) therapies have been significantly improved by the development of medicines that can target BCL-2. On the other hand, non-recurrent alterations in oncogenic pathways and gene expression patterns have already been linked to therapeutic resistance to venetoclax therapy. Bone marrow mesenchymal stromal cells (BM-MSCs) support leukemic cells in preventing chemotherapy-induced apoptosis by mitochondrial transfer in leukemic microenvironment. In this study, we investigated the enhancement of the antitumor effect of BCL-2 inhibitor venetoclax by dexamethasone. In particular, dexamethasone had no significant effect on the viability of AML cells, but dexamethasone combined with venetoclax could significantly increase the apoptosis of AML cells induced by venetoclax. When AML cells were co-cultured with BM-MSCs, dexamethasone combined with venetoclax showed additional anti-tumor effect compared to venetoclax alone. Venetoclax increased reactive oxygen species level in co-cultured AML cells, contributed to transfer more mitochondria from BM-MSCs to AML cells and protect AML cells from apoptosis. Dexamethasone combined with venetoclax induced more apoptosis, but dexamethasone reduced the venetoclax-induced reactive oxygen species level in AML cells and reduced the transfer of mitochondria from BM-MSCs to AML cells. This may lead to a diminished protective effect of BM-MSCs on AML cells. Together, our findings indicated that venetoclax in combination with dexamethasone could be a promising therapy in AML.
Collapse
Affiliation(s)
- Haixia Wang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Junjie Zhou
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Xiaoyu Ma
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Changqing Jiao
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Enbo Chen
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Zhonghui Wu
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yan Zhang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Mengya Pan
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jianling Cui
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Chengxin Luan
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Jian Ge
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
7
|
Singh H, Kumar M, Kanungo H. Role of Gene Mutations in Acute Myeloid Leukemia: A Review Article. Glob Med Genet 2023; 10:123-128. [PMID: 37360004 PMCID: PMC10289861 DOI: 10.1055/s-0043-1770768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023] Open
Abstract
Acute myeloid leukemia (AML) is an immensely heterogeneous disease characterized by the clonal growth of promyelocytes or myeloblasts in bone marrow as well as in peripheral blood or tissue. Enhancement in the knowledge of the molecular biology of cancer and recognition of intermittent mutations in AML contribute to favorable circumstances to establish targeted therapies and enhance the clinical outcome. There is high interest in the development of therapies that target definitive abnormalities in AML while eradicating leukemia-initiating cells. In recent years, there has been a better knowledge of the molecular abnormalities that lead to the progression of AML, and the application of new methods in molecular biology techniques has increased that facilitating the advancement of investigational drugs. In this review, literature or information on various gene mutations for AML is discussed. English language articles were scrutinized in plentiful directories or databases like PubMed, Science Direct, Web of Sciences, Google Scholar, and Scopus. The important keywords used for searching databases is "Acute myeloid leukemia", "Gene mutation in Acute myeloid leukemia", "Genetic alteration in Acute myeloid leukemia," and "Genetic abnormalities in Acute myeloid leukemia."
Collapse
Affiliation(s)
- Himanshu Singh
- Department of Oral and Maxillofacial Pathology and Oral Microbiology, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| | - Magesh Kumar
- Department of Periodontics, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| | - Himanshu Kanungo
- Department of Orthodontics and Dentofacial Orthopaedics, Index Institute of Dental Sciences, Indore, Madhya Pradesh, India
| |
Collapse
|
8
|
Roussel X, Garnache Ottou F, Renosi F. Plasmacytoid Dendritic Cells, a Novel Target in Myeloid Neoplasms. Cancers (Basel) 2022; 14:cancers14143545. [PMID: 35884612 PMCID: PMC9317563 DOI: 10.3390/cancers14143545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Plasmacytoid dendritic cells (pDC) are the main type I interferon producing cells in humans and are able to modulate innate and adaptive immune responses. Tumor infiltration by plasmacytoid dendritic cells is already well described and is associated with poor outcomes in cancers due to the tolerogenic activity of pDC. In hematological diseases, Blastic Plasmacytoid Dendritic Cells Neoplasm (BPDCN), aggressive leukemia derived from pDCs, is well described, but little is known about tumor infiltration by mature pDC described in Myeloid Neoplasms (MN). Recently, mature pDC proliferation (MPDCP) has been described as a differential diagnosis of BPDCN associated with acute myeloid leukemia (pDC-AML), myelodysplastic syndrome (pDC-MDS) and chronic myelomonocytic leukemia (pDC-CMML). Tumor cells are myeloid blasts and/or mature myeloid cells from related myeloid disorders and pDC derived from a clonal proliferation. The poor prognosis associated with MPDCP requires a better understanding of pDC biology, MN oncogenesis and immune response. This review provides a comprehensive overview about the biological aspects of pDCs, the description of pDC proliferation in MN, and an insight into putative therapies in pDC-AML regarding personalized medicine.
Collapse
Affiliation(s)
- Xavier Roussel
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, 25000 Besancon, France;
- Department of Clinical Hematology, University Hospital of Besançon, 25000 Besançon, France
- Correspondence: (X.R.); (F.R.)
| | - Francine Garnache Ottou
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, 25000 Besancon, France;
- Etablissement Français du Sang Bourgogne Franche-Comté, Laboratoire d’Hématologie et d’Immunologie Régional, 25020 Besançon, France
| | - Florian Renosi
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, 25000 Besancon, France;
- Etablissement Français du Sang Bourgogne Franche-Comté, Laboratoire d’Hématologie et d’Immunologie Régional, 25020 Besançon, France
- Correspondence: (X.R.); (F.R.)
| |
Collapse
|
9
|
Kellaway SG, Coleman DJL, Cockerill PN, Raghavan M, Bonifer C. Molecular Basis of Hematological Disease Caused by Inherited or Acquired RUNX1 Mutations. Exp Hematol 2022; 111:1-12. [PMID: 35341804 DOI: 10.1016/j.exphem.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/04/2022]
Abstract
The transcription factor RUNX1 is essential for correct hematopoietic development; in its absence in the germ line, blood stem cells are not formed. RUNX1 orchestrates dramatic changes in the chromatin landscape at the onset of stem cell formation, which set the stage for both stem self-renewal and further differentiation. However, once blood stem cells are formed, the mutation of the RUNX1 gene is not lethal but can lead to various hematopoietic defects and a predisposition to cancer. Here we summarize the current literature on inherited and acquired RUNX1 mutations, with a particular emphasis on mutations that alter the structure of the RUNX1 protein itself, and place these changes in the context of what is known about RUNX1 function. We also summarize which mutant RUNX1 proteins are actually expressed in cells and discuss the molecular mechanism underlying how such variants reprogram the epigenome setting stem cells on the path to malignancy.
Collapse
Affiliation(s)
- Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| | - Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Manoj Raghavan
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK; Centre of Clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| |
Collapse
|
10
|
Genomic landscape of hyperleukocytic acute myeloid leukemia. Blood Cancer J 2022; 12:4. [PMID: 34987148 PMCID: PMC8733030 DOI: 10.1038/s41408-021-00601-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
|
11
|
Merati G, Rossi M, Gallì A, Roncoroni E, Zibellini S, Rizzo E, Pietra D, Picone C, Rocca B, Cabrera CPT, Gelli E, Santacroce E, Arcaini L, Zappasodi P. Enrichment of Double RUNX1 Mutations in Acute Leukemias of Ambiguous Lineage. Front Oncol 2021; 11:726637. [PMID: 34540694 PMCID: PMC8444989 DOI: 10.3389/fonc.2021.726637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/05/2021] [Indexed: 11/13/2022] Open
Abstract
Acute leukemia of ambiguous lineage (ALAL) is a rare type of leukemia and represents an unmet clinical need. In fact, due to heterogeneity, substantial rarity and absence of clinical trials, there are no therapeutic guidelines available. We investigated the genetic basis of 10 cases of ALAL diagnosed at our centre from 2008 and 2020, through a targeted myeloid and lymphoid sequencing approach. We show that this rare group of acute leukemias is enriched in myeloid-gene mutations. In particular we found that RUNX1 mutations, which have been found double mutated in 40% of patients and tend to involve both alleles, are associated with an undifferentiated phenotype and with lineage ambiguity. Furthermore, because this feature is typical of acute myeloid leukemia with minimal differentiation, we believe that our data strengthen the idea that acute leukemia with ambiguous lineage, especially those with an undifferentiated phenotype, might be genetically more closer to acute myeloid leukemia rather than acute lymphoblastic leukemia. These data enrich the knowledge on the genetic basis of ALAL and could have clinical implications as an acute myeloid leukemia (AML) - oriented chemotherapeutic approach might be more appropriate.
Collapse
Affiliation(s)
- Gabriele Merati
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marianna Rossi
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna Gallì
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Roncoroni
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Silvia Zibellini
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Daniela Pietra
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cristina Picone
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Barbara Rocca
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Eleonora Gelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Luca Arcaini
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Patrizia Zappasodi
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
12
|
RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. Blood Adv 2021; 4:1131-1144. [PMID: 32208489 DOI: 10.1182/bloodadvances.2019000901] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/03/2020] [Indexed: 01/07/2023] Open
Abstract
First reported in 1999, germline runt-related transcription factor 1 (RUNX1) mutations are a well-established cause of familial platelet disorder with predisposition to myeloid malignancy (FPD-MM). We present the clinical phenotypes and genetic mutations detected in 10 novel RUNX1-mutated FPD-MM families. Genomic analyses on these families detected 2 partial gene deletions, 3 novel mutations, and 5 recurrent mutations as the germline RUNX1 alterations leading to FPD-MM. Combining genomic data from the families reported herein with aggregated published data sets resulted in 130 germline RUNX1 families, which allowed us to investigate whether specific germline mutation characteristics (type, location) could explain the large phenotypic heterogeneity between patients with familial platelet disorder and different HMs. Comparing the somatic mutational signatures between the available familial (n = 35) and published sporadic (n = 137) RUNX1-mutated AML patients showed enrichment for somatic mutations affecting the second RUNX1 allele and GATA2. Conversely, we observed a decreased number of somatic mutations affecting NRAS, SRSF2, and DNMT3A and the collective genes associated with CHIP and epigenetic regulation. This is the largest aggregation and analysis of germline RUNX1 mutations performed to date, providing a unique opportunity to examine the factors underlying phenotypic differences and disease progression from FPD to MM.
Collapse
|
13
|
Adnan-Awad S, Kankainen M, Mustjoki S. Mutational landscape of chronic myeloid leukemia: more than a single oncogene leukemia. Leuk Lymphoma 2021; 62:2064-2078. [PMID: 33944660 DOI: 10.1080/10428194.2021.1894652] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The BCR-ABL1 fusion gene, which causes aberrant kinase activity and uncontrolled cell proliferation, is the hallmark of chronic myeloid leukemia (CML). The development of tyrosine kinase inhibitors (TKI) that target the BCR-ABL oncoprotein has led to dramatic improvement in CML management. However, some challenges remain to be addressed in the TKI era, including patient stratification and the selection of frontline TKIs and CML progression. Additionally, with the emerging goal of treatment-free remission (TFR) in CML management, biomarkers that predict the outcomes of stopping TKI remain to be identified. Notably, recent reports have revealed the power of genome screening in understanding the role of genome aberrations other than BCR-ABL1 in CML pathogenesis. These studies have discovered the presence of disease-phase specific mutations and linked certain mutations to inferior responses to TKI treatment and CML progression. A personalized approach that incorporates genetic data in tailoring treatment strategies has been successfully implemented in acute leukemia, and it represents a promising approach for the management of high-risk CML patients. In this article, we will review current knowledge about the mutational profile in different phases of CML as well as patterns of mutational dynamics in patients having different outcomes. We highlight the effects of somatic mutations involving certain genes (e.g. epigenetic modifiers) on the outcomes of TKI treatment. We also discuss the potential value of incorporating genetic data in treatment decisions and the routine care of CML patients as a future direction for optimizing CML management.
Collapse
Affiliation(s)
- Shady Adnan-Awad
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Satu Mustjoki
- Hematology Research Unit Helsinki, University of Helsinki and Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.,Translational Immunology Research Program and Department of Clinical Chemistry and Hematology, University of Helsinki, Helsinki, Finland.,iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| |
Collapse
|
14
|
Gonzales F, Barthélémy A, Peyrouze P, Fenwarth L, Preudhomme C, Duployez N, Cheok MH. Targeting RUNX1 in acute myeloid leukemia: preclinical innovations and therapeutic implications. Expert Opin Ther Targets 2021; 25:299-309. [PMID: 33906574 DOI: 10.1080/14728222.2021.1915991] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: RUNX1 is an essential transcription factor for normal and malignant hematopoiesis. RUNX1 forms a heterodimeric complex with CBFB. Germline mutations and somatic alterations (i.e. translocations, mutations and abnormal expression) are frequently associated with acute myeloid leukemia (AML) with RUNX1 mutations conferring unfavorable prognosis. Therefore, RUNX1 constitutes a potential innovative and interesting therapeutic target. In this review, we discuss recent therapeutic advances of RUNX1 targeting in AML.Areas covered: Firstly, we cover the clinical basis for RUNX1 targeting. We have subdivided recent therapeutic approaches either by common biochemical pathways or by similar pharmacological targets. Genome editing of RUNX1 induces anti-leukemic effects; however, off-target events prohibit clinical use. Several molecules inhibit the interaction between RUNX1/CBFB and control AML development and progression. BET protein antagonists target RUNX1 (i.e. specific BET inhibitors, BRD4 shRNRA, proteolysis targeting chimeras (PROTAC) or expression-mimickers). All these molecules improve survival in mutant RUNX1 AML preclinical models.Expert opinion: Some of these novel molecules have shown encouraging anti-leukemic potency at the preclinical stage. A better understanding of RUNX1 function in AML development and progression and its key downstream pathways, may result in more precise and more efficient RUNX1 targeting therapies.
Collapse
Affiliation(s)
- Fanny Gonzales
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France.,Pediatric Hematology Department, University Hospital of Lille, Lille, France
| | - Adeline Barthélémy
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France
| | - Pauline Peyrouze
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France
| | - Laurène Fenwarth
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France.,Laboratory of Hematology, CHU Lille, Lille, France
| | - Claude Preudhomme
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France.,Laboratory of Hematology, CHU Lille, Lille, France
| | - Nicolas Duployez
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France.,Laboratory of Hematology, CHU Lille, Lille, France
| | - Meyling H Cheok
- Factors of Leukemic cell Persistence, Univ. Lille, CNRS, Inserm, CHU Lille, IRCL, Canther, Lille, France
| |
Collapse
|
15
|
Al-Taie Z, Liu D, Mitchem JB, Papageorgiou C, Kaifi JT, Warren WC, Shyu CR. Explainable artificial intelligence in high-throughput drug repositioning for subgroup stratifications with interventionable potential. J Biomed Inform 2021; 118:103792. [PMID: 33915273 DOI: 10.1016/j.jbi.2021.103792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 03/26/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023]
Abstract
Enabling precision medicine requires developing robust patient stratification methods as well as drugs tailored to homogeneous subgroups of patients from a heterogeneous population. Developing de novo drugs is expensive and time consuming with an ultimately low FDA approval rate. These limitations make developing new drugs for a small portion of a disease population unfeasible. Therefore, drug repositioning is an essential alternative for developing new drugs for a disease subpopulation. This shows the importance of developing data-driven approaches that find druggable homogeneous subgroups within the disease population and reposition the drugs for these subgroups. In this study, we developed an explainable AI approach for patient stratification and drug repositioning. Contrast pattern mining and network analysis were used to discover homogeneous subgroups within a disease population. For each subgroup, a biomedical network analysis was done to find the drugs that are most relevant to a given subgroup of patients. The set of candidate drugs for each subgroup was ranked using an aggregated drug score assigned to each drug. The proposed method represents a human-in-the-loop framework, where medical experts use the data-driven results to generate hypotheses and obtain insights into potential therapeutic candidates for patients who belong to a subgroup. Colorectal cancer (CRC) was used as a case study. Patients' phenotypic and genotypic data was utilized with a heterogeneous knowledge base because it gives a multi-view perspective for finding new indications for drugs outside of their original use. Our analysis of the top candidate drugs for the subgroups identified by medical experts showed that most of these drugs are cancer-related, and most of them have the potential to be a CRC regimen based on studies in the literature.
Collapse
Affiliation(s)
- Zainab Al-Taie
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Department of Computer Science, College of Science for Women, University of Baghdad, Baghdad, Iraq
| | - Danlu Liu
- Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211, USA
| | - Jonathan B Mitchem
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA.
| | - Christos Papageorgiou
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA
| | - Jussuf T Kaifi
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO 65201, USA
| | - Wesley C Warren
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Department of Surgery, School of Medicine, University of Missouri, Columbia, MO 65212, USA; Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, 1201 Rollins Street, Columbia, MO 65211, USA
| | - Chi-Ren Shyu
- Institute for Data Science & Informatics, University of Missouri, Columbia, MO 65211, USA; Electrical Engineering and Computer Science Department, University of Missouri, Columbia, MO 65211, USA; Department of Medicine, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
16
|
Glucocorticoids enhance the antileukemic activity of FLT3 inhibitors in FLT3-mutant acute myeloid leukemia. Blood 2021; 136:1067-1079. [PMID: 32396937 DOI: 10.1182/blood.2019003124] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/24/2020] [Indexed: 02/01/2023] Open
Abstract
FLT3 is a frequently mutated gene that is highly associated with a poor prognosis in acute myeloid leukemia (AML). Despite initially responding to FLT3 inhibitors, most patients eventually relapse with drug resistance. The mechanism by which resistance arises and the initial response to drug treatment that promotes cell survival is unknown. Recent studies show that a transiently maintained subpopulation of drug-sensitive cells, so-called drug-tolerant "persisters" (DTPs), can survive cytotoxic drug exposure despite lacking resistance-conferring mutations. Using RNA sequencing and drug screening, we find that treatment of FLT3 internal tandem duplication AML cells with quizartinib, a selective FLT3 inhibitor, upregulates inflammatory genes in DTPs and thereby confers susceptibility to anti-inflammatory glucocorticoids (GCs). Mechanistically, the combination of FLT3 inhibitors and GCs enhances cell death of FLT3 mutant, but not wild-type, cells through GC-receptor-dependent upregulation of the proapoptotic protein BIM and proteasomal degradation of the antiapoptotic protein MCL-1. Moreover, the enhanced antileukemic activity by quizartinib and dexamethasone combination has been validated using primary AML patient samples and xenograft mouse models. Collectively, our study indicates that the combination of FLT3 inhibitors and GCs has the potential to eliminate DTPs and therefore prevent minimal residual disease, mutational drug resistance, and relapse in FLT3-mutant AML.
Collapse
|
17
|
Xiao W, Chan A, Waarts MR, Mishra T, Liu Y, Cai SF, Yao J, Gao Q, Bowman RL, Koche RP, Csete IS, DelGaudio NL, Derkach A, Baik J, Yanis S, Famulare CA, Patel M, Arcila ME, Stahl M, Rampal RK, Tallman MS, Zhang Y, Dogan A, Goldberg AD, Roshal M, Levine RL. Plasmacytoid dendritic cell expansion defines a distinct subset of RUNX1-mutated acute myeloid leukemia. Blood 2021; 137:1377-1391. [PMID: 32871587 PMCID: PMC7955409 DOI: 10.1182/blood.2020007897] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are the principal natural type I interferon-producing dendritic cells. Neoplastic expansion of pDCs and pDC precursors leads to blastic plasmacytoid dendritic cell neoplasm (BPDCN), and clonal expansion of mature pDCs has been described in chronic myelomonocytic leukemia. The role of pDC expansion in acute myeloid leukemia (AML) is poorly studied. Here, we characterize patients with AML with pDC expansion (pDC-AML), which we observe in ∼5% of AML cases. pDC-AMLs often possess cross-lineage antigen expression and have adverse risk stratification with poor outcome. RUNX1 mutations are the most common somatic alterations in pDC-AML (>70%) and are much more common than in AML without pDC expansion and BPDCN. We demonstrate that pDCs are clonally related to, as well as originate from, leukemic blasts in pDC-AML. We further demonstrate that leukemic blasts from RUNX1-mutated AML upregulate a pDC transcriptional program, poising the cells toward pDC differentiation and expansion. Finally, tagraxofusp, a targeted therapy directed to CD123, reduces leukemic burden and eliminates pDCs in a patient-derived xenograft model. In conclusion, pDC-AML is characterized by a high frequency of RUNX1 mutations and increased expression of a pDC transcriptional program. CD123 targeting represents a potential treatment approach for pDC-AML.
Collapse
Affiliation(s)
- Wenbin Xiao
- Department of Pathology, Hematopathology Service
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
| | | | - Michael R Waarts
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
| | - Tanmay Mishra
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
| | - Ying Liu
- Department of Pathology, Hematopathology Service
| | - Sheng F Cai
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
- Department of Medicine, Leukemia Service
| | - Jinjuan Yao
- Department of Pathology, Molecular Diagnostic Laboratory
| | - Qi Gao
- Department of Pathology, Hematopathology Service
| | - Robert L Bowman
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
| | | | - Isabelle S Csete
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
| | - Nicole L DelGaudio
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
| | | | - Jeeyeon Baik
- Department of Pathology, Hematopathology Service
| | - Sophia Yanis
- Department of Pathology, Hematopathology Service
| | | | | | - Maria E Arcila
- Department of Pathology, Hematopathology Service
- Department of Pathology, Molecular Diagnostic Laboratory
| | | | - Raajit K Rampal
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
- Department of Medicine, Leukemia Service
| | | | - Yanming Zhang
- Department of Pathology, Cytogenetics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ahmet Dogan
- Department of Pathology, Hematopathology Service
| | | | | | - Ross L Levine
- Human Oncology and Pathogenesis Program, Molecular Cancer Medicine Service
- Department of Medicine, Leukemia Service
- Center for Epigenetics Research
- Center for Hematologic Malignancies, and
| |
Collapse
|
18
|
Récher C. Clinical Implications of Inflammation in Acute Myeloid Leukemia. Front Oncol 2021; 11:623952. [PMID: 33692956 PMCID: PMC7937902 DOI: 10.3389/fonc.2021.623952] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the description of the tumor microenvironment of acute myeloid leukemia, including the comprehensive analysis of the leukemic stem cell niche and clonal evolution, indicate that inflammation may play a major role in many aspects of acute myeloid leukemia (AML) such as disease progression, chemoresistance, and myelosuppression. Studies on the mechanisms of resistance to chemotherapy or tyrosine kinase inhibitors along with high-throughput drug screening have underpinned the potential role of glucocorticoids in this disease classically described as steroid-resistant in contrast to acute lymphoblastic leukemia. Moreover, some mutated oncogenes such as RUNX1, NPM1, or SRSF2 transcriptionally modulate cell state in a manner that primes leukemic cells for glucocorticoid sensitivity. In clinical practice, inflammatory markers such as serum ferritin or IL-6 have a strong prognostic impact and may directly affect disease progression, whereas interesting preliminary data suggested that dexamethasone may improve the outcome for AML patients with a high white blood cell count, which paves the way to develop prospective clinical trials that evaluate the role of glucocorticoids in AML.
Collapse
Affiliation(s)
- Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| |
Collapse
|
19
|
High frequency of germline RUNX1 mutations in patients with RUNX1-mutated AML. Blood 2021; 135:1882-1886. [PMID: 32315381 DOI: 10.1182/blood.2019003357] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/30/2020] [Indexed: 12/26/2022] Open
Abstract
RUNX1 is mutated in ∼10% of adult acute myeloid leukemia (AML). Although most RUNX1 mutations in this disease are believed to be acquired, they can also be germline. Indeed, germline RUNX1 mutations result in the well-described autosomal-dominant familial platelet disorder with predisposition to hematologic malignancies (RUNX1-FPD, FPD/AML, FPDMM); ∼44% of affected individuals progress to AML or myelodysplastic syndromes. Using the Leucegene RUNX1 AML patient group, we sought to investigate the proportion of germline vs acquired RUNX1 mutations in this cohort. Our results showed that 30% of RUNX1 mutations in our AML cohort are germline. Molecular profiling revealed higher frequencies of NRAS mutations and other mutations known to activate various signaling pathways in these patients with RUNX1 germline-mutated AML. Moreover, 2 patients (mother and son) had co-occurrence of RUNX1 and CEBPA germline mutations, with variable AML disease onset at 59 and 27 years, respectively. Together, these data suggest a higher than anticipated frequency of germline RUNX1 mutations in the Leucegene cohort and further highlight the importance of testing for RUNX1 mutations in instances in which allogeneic stem cell transplantation using a related donor is envisioned.
Collapse
|
20
|
RUNX1 mutations in blast-phase chronic myeloid leukemia associate with distinct phenotypes, transcriptional profiles, and drug responses. Leukemia 2020; 35:1087-1099. [PMID: 32782381 PMCID: PMC8024199 DOI: 10.1038/s41375-020-01011-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Blast-phase chronic myeloid leukemia (BP-CML) is associated with additional chromosomal aberrations, RUNX1 mutations being one of the most common. Tyrosine kinase inhibitor therapy has only limited efficacy in BP-CML, and characterization of more defined molecular subtypes is warranted in order to design better treatment modalities for this poor prognosis patient group. Using whole-exome and RNA sequencing we demonstrate that PHF6 and BCORL1 mutations, IKZF1 deletions, and AID/RAG-mediated rearrangements are enriched in RUNX1mut BP-CML leading to typical mutational signature. On transcriptional level interferon and TNF signaling were deregulated in primary RUNX1mut CML cells and stem cell and B-lymphoid factors upregulated giving a rise to distinct phenotype. This was accompanied with the sensitivity of RUNX1mut blasts to CD19-CAR T cells in ex vivo assays. High-throughput drug sensitivity and resistance testing revealed leukemia cells from RUNX1mut patients to be highly responsive for mTOR-, BCL2-, and VEGFR inhibitors and glucocorticoids. These findings were further investigated and confirmed in CRISPR/Cas9-edited homozygous RUNX1−/− and heterozygous RUNX1−/mut BCR-ABL positive cell lines. Overall, our study provides insights into the pathogenic role of RUNX1 mutations and highlights personalized targeted therapy and CAR T-cell immunotherapy as potentially promising strategies for treating RUNX1mut BP-CML patients.
Collapse
|
21
|
A transcriptomic continuum of differentiation arrest identifies myeloid interface acute leukemias with poor prognosis. Leukemia 2020; 35:724-736. [PMID: 32655144 PMCID: PMC7932917 DOI: 10.1038/s41375-020-0965-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/11/2020] [Accepted: 07/01/2020] [Indexed: 12/17/2022]
Abstract
Classification of acute lymphoblastic and myeloid leukemias (ALL and AML) remains heavily based on phenotypic resemblance to normal hematopoietic precursors. This framework can provide diagnostic challenges for immunophenotypically heterogeneous immature leukemias, and ignores recent advances in understanding of developmental multipotency of diverse normal hematopoietic progenitor populations that are identified by transcriptional signatures. We performed transcriptional analyses of a large series of acute myeloid and lymphoid leukemias and detected significant overlap in gene expression between cases in different diagnostic categories. Bioinformatic classification of leukemias along a continuum of hematopoietic differentiation identified leukemias at the myeloid/T-lymphoid interface, which shared gene expression programs with a series of multi or oligopotent hematopoietic progenitor populations, including the most immature CD34+CD1a−CD7− subset of early thymic precursors. Within these interface acute leukemias (IALs), transcriptional resemblance to early lymphoid progenitor populations and biphenotypic leukemias was more evident in cases originally diagnosed as AML, rather than T-ALL. Further prognostic analyses revealed that expression of IAL transcriptional programs significantly correlated with poor outcome in independent AML patient cohorts. Our results suggest that traditional binary approaches to acute leukemia categorization are reductive, and that identification of IALs could allow better treatment allocation and evaluation of therapeutic options.
Collapse
|
22
|
Kirtonia A, Pandya G, Sethi G, Pandey AK, Das BC, Garg M. A comprehensive review of genetic alterations and molecular targeted therapies for the implementation of personalized medicine in acute myeloid leukemia. J Mol Med (Berl) 2020; 98:1069-1091. [PMID: 32620999 DOI: 10.1007/s00109-020-01944-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/18/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is an extremely heterogeneous disease defined by the clonal growth of myeloblasts/promyelocytes not only in the bone marrow but also in peripheral blood and/or tissues. Gene mutations and chromosomal abnormalities are usually associated with aberrant proliferation and/or block in the normal differentiation of hematopoietic cells. So far, the combination of cytogenetic profiling and molecular and gene mutation analyses remains an essential tool for the classification, diagnosis, prognosis, and treatment for AML. This review gives an overview on how the development of novel innovative technologies has allowed us not only to detect the genetic alterations as early as possible but also to understand the molecular pathogenesis of AML to develop novel targeted therapies. We also discuss the remarkable advances made during the last decade to understand the AML genome both at primary and relapse diseases and how genetic alterations might influence the distinct biological groups as well as the clonal evolution of disease during the diagnosis and relapse. Also, the review focuses on how the persistence of epigenetic gene mutations during morphological remission is associated with relapse. It is suggested that along with the prognostic and therapeutic mutations, the novel molecular targeted therapies either approved by FDA or those under clinical trials including CART-cell therapy would be of immense importance in the effective management of AML.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology (AIB), Amity University, Gurgaon, Haryana, 122413, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, 201313, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
23
|
Brown AL, Hahn CN, Scott HS. Secondary leukemia in patients with germline transcription factor mutations (RUNX1, GATA2, CEBPA). Blood 2020; 136:24-35. [PMID: 32430494 PMCID: PMC7332898 DOI: 10.1182/blood.2019000937] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Recognition that germline mutations can predispose individuals to blood cancers, often presenting as secondary leukemias, has largely been driven in the last 20 years by studies of families with inherited mutations in the myeloid transcription factors (TFs) RUNX1, GATA2, and CEBPA. As a result, in 2016, classification of myeloid neoplasms with germline predisposition for each of these and other genes was added to the World Health Organization guidelines. The incidence of germline mutation carriers in the general population or in various clinically presenting patient groups remains poorly defined for reasons including that somatic mutations in these genes are common in blood cancers, and our ability to distinguish germline (inherited or de novo) and somatic mutations is often limited by the laboratory analyses. Knowledge of the regulation of these TFs and their mutant alleles, their interaction with other genes and proteins and the environment, and how these alter the clinical presentation of patients and their leukemias is also incomplete. Outstanding questions that remain for patients with these germline mutations or their treating clinicians include: What is the natural course of the disease? What other symptoms may I develop and when? Can you predict them? Can I prevent them? and What is the best treatment? The resolution of many of the remaining clinical and biological questions and effective evidence-based treatment of patients with these inherited mutations will depend on worldwide partnerships among patients, clinicians, diagnosticians, and researchers to aggregate sufficient longitudinal clinical and laboratory data and integrate these data with model systems.
Collapse
MESH Headings
- Age of Onset
- Blood Cell Count
- CCAAT-Enhancer-Binding Proteins/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Disease Management
- Early Detection of Cancer
- Forecasting
- GATA2 Transcription Factor/genetics
- Genes, Neoplasm
- Genetic Counseling
- Genetic Predisposition to Disease
- Germ-Line Mutation
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Myelodysplastic Syndromes/genetics
- Neoplasms, Second Primary/genetics
- Penetrance
- Prognosis
Collapse
Affiliation(s)
- Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
24
|
Harnessing Gene Expression Profiles for the Identification of Ex Vivo Drug Response Genes in Pediatric Acute Myeloid Leukemia. Cancers (Basel) 2020; 12:cancers12051247. [PMID: 32429253 PMCID: PMC7281398 DOI: 10.3390/cancers12051247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/28/2022] Open
Abstract
Novel treatment strategies are of paramount importance to improve clinical outcomes in pediatric AML. Since chemotherapy is likely to remain the cornerstone of curative treatment of AML, insights in the molecular mechanisms that determine its cytotoxic effects could aid further treatment optimization. To assess which genes and pathways are implicated in tumor drug resistance, we correlated ex vivo drug response data to genome-wide gene expression profiles of 73 primary pediatric AML samples obtained at initial diagnosis. Ex vivo response of primary AML blasts towards cytarabine (Ara C), daunorubicin (DNR), etoposide (VP16), and cladribine (2-CdA) was associated with the expression of 101, 345, 206, and 599 genes, respectively (p < 0.001, FDR 0.004–0.416). Microarray based expression of multiple genes was technically validated using qRT-PCR for a selection of genes. Moreover, expression levels of BRE, HIF1A, and CLEC7A were confirmed to be significantly (p < 0.05) associated with ex vivo drug response in an independent set of 48 primary pediatric AML patients. We present unique data that addresses transcriptomic analyses of the mechanisms underlying ex vivo drug response of primary tumor samples. Our data suggest that distinct gene expression profiles are associated with ex vivo drug response, and may confer a priori drug resistance in leukemic cells. The described associations represent a fundament for the development of interventions to overcome drug resistance in AML, and maximize the benefits of current chemotherapy for sensitive patients.
Collapse
|
25
|
Yu J, Li Y, Zhang D, Wan D, Jiang Z. Clinical implications of recurrent gene mutations in acute myeloid leukemia. Exp Hematol Oncol 2020; 9:4. [PMID: 32231866 PMCID: PMC7099827 DOI: 10.1186/s40164-020-00161-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous clonal malignancy characterized by recurrent gene mutations. Genomic heterogeneity, patients’ individual variability, and recurrent gene mutations are the major obstacles among many factors that impact treatment efficacy of the AML patients. With the application of cost- and time-effective next-generation sequencing (NGS) technologies, an enormous diversity of genetic mutations has been identified. The recurrent gene mutations and their important roles in acute myeloid leukemia (AML) pathogenesis have been studied extensively. In this review, we summarize the recent development on the gene mutation in patients with AML.
Collapse
Affiliation(s)
- Jifeng Yu
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China.,2Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yingmei Li
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Danfeng Zhang
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Dingming Wan
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Zhongxing Jiang
- 1Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| |
Collapse
|
26
|
RUNX1 mutations enhance self-renewal and block granulocytic differentiation in human in vitro models and primary AMLs. Blood Adv 2020; 3:320-332. [PMID: 30709863 DOI: 10.1182/bloodadvances.2018024422] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/24/2018] [Indexed: 12/21/2022] Open
Abstract
To unravel molecular mechanisms by which Runt-related transcription factor 1 (RUNX1) mutations contribute to leukemic transformation, we introduced the RUNX1-S291fs300X mutation in human CD34+ stem/progenitor cells and in human induced pluripotent stem cells (iPSCs). In both models, RUNX1mut overexpression strongly impaired myeloid commitment. Instead, self-renewal was enhanced, as shown, by increased long-term culture-initiating cell frequencies and enhanced colony-forming cell replating capacity. Long-term suspension cultures with RUNX1mut-transduced cord blood (CB) CD34+ cells continued for more than 100 days, during which the cells displayed an immature granulocyte-macrophage progenitor-like CD34+/CD123+/CD45RA+ phenotype. The CD34+/CD38- hematopoietic stem cell (HSC) population most likely acted as cell of origin, as HSCs provided the best long-term proliferative potential on overexpression of RUNX1mut. CEBPA expression was reduced in RUNX1mut cells, and reexpression of CEBPA partly restored differentiation. RNA-seq analysis on CB/iPSC systems and on primary patient samples confirmed that RUNX1 mutations induce a myeloid differentiation block, and that a common set of RUNX1mut-upregulated target genes was strongly enriched for gene ontology terms associated with nucleosome assembly and chromatin structure. Interestingly, in comparison with AML1-ETO binding in acute myeloid leukemias (AMLs), we found significantly distinct genomic distribution and differential expression for RUNX1mut of genes such as TCF4, MEIS1, and HMGA2 that may potentially contribute to the underlying difference in clinical outcomes between RUNX1mut and AML1-ETO patients. In conclusion, RUNX1mut appears to induce a specific transcriptional program that contributes to leukemic transformation.
Collapse
|
27
|
UM171 induces a homeostatic inflammatory-detoxification response supporting human HSC self-renewal. PLoS One 2019; 14:e0224900. [PMID: 31703090 PMCID: PMC6839847 DOI: 10.1371/journal.pone.0224900] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Elucidation of the molecular cues required to balance adult stem cell self-renewal and differentiation is critical for advancing cellular therapies. Herein, we report that the hematopoietic stem cell (HSC) self-renewal agonist UM171 triggers a balanced pro- and anti-inflammatory/detoxification network that relies on NFKB activation and protein C receptor-dependent ROS detoxification, respectively. We demonstrate that within this network, EPCR serves as a critical protective component as its deletion hypersensitizes primitive hematopoietic cells to pro-inflammatory signals and ROS accumulation resulting in compromised stem cell function. Conversely, abrogation of the pro-inflammatory activity of UM171 through treatment with dexamethasone, cAMP elevating agents or NFkB inhibitors abolishes EPCR upregulation and HSC expansion. Together, these results show that UM171 stimulates ex vivo HSC expansion by establishing a critical balance between key pro- and anti-inflammatory mediators of self-renewal.
Collapse
|
28
|
Bisaillon R, Moison C, Thiollier C, Krosl J, Bordeleau ME, Lehnertz B, Lavallée VP, MacRae T, Mayotte N, Labelle C, Boucher G, Spinella JF, Boivin I, D’Angelo G, Lavallée S, Marinier A, Lemieux S, Hébert J, Sauvageau G. Genetic characterization of ABT-199 sensitivity in human AML. Leukemia 2019; 34:63-74. [DOI: 10.1038/s41375-019-0485-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/06/2019] [Accepted: 04/05/2019] [Indexed: 02/04/2023]
|
29
|
Yuan XQ, Chen P, Du YX, Zhu KW, Zhang DY, Yan H, Liu H, Liu YL, Cao S, Zhou G, Zeng H, Chen SP, Zhao XL, Yang J, Zeng WJ, Chen XP. Influence of DNMT3A R882 mutations on AML prognosis determined by the allele ratio in Chinese patients. J Transl Med 2019; 17:220. [PMID: 31291961 PMCID: PMC6621981 DOI: 10.1186/s12967-019-1959-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/21/2019] [Indexed: 01/13/2023] Open
Abstract
Background The influence of DNMT3A R882 mutations on adult acute myeloid leukemia (AML) prognosis is still controversial presently. The influence of R882 allele ratio on drug response and prognosis of AML is unknown yet. Besides, it is obscure whether anthracyclines are involved in chemoresistance resulted from R882 mutations. Methods DNMT3A R882 mutations in 870 adult AML patients receiving standard induction therapy were detected by pyrosequencing. Associations of the mutants with responses to induction therapy and disease prognosis were analyzed. Results DNMT3A R882 mutations were detected in 74 (8.51%) patients and allele ratio of the mutations ranged from 6 to 50% in the cohort. After the first and second courses of induction therapy including aclarubicin, complete remission rates were significantly lower in carriers of the DNMT3A R882 mutants as compared with R882 wildtype patients (P = 0.022 and P = 0.038, respectively). Compared with R882 wild-type patients, those with the R882 mutations showed significantly shorter overall survival (OS) and disease-free survival (DFS) (P = 1.92 × 10−4 and P = 0.004, respectively). Patients with higher allele ratio of R882 mutations showed a significantly shorter OS as compared with the lower allele ratio group (P = 0.035). Conclusion Our results indicate that the impact of DNMT3A R882 mutations on AML prognosis was determined by the mutant-allele ratio and higher allele ratio could predict a worse prognosis, which might improve AML risk stratification. In addition, DNMT3A R882 mutations were associated with an inferior response to induction therapy with aclarubicin in Chinese AML patients. Electronic supplementary material The online version of this article (10.1186/s12967-019-1959-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao-Qing Yuan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Peng Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Yin-Xiao Du
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Ke-Wei Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Dao-Yu Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Han Yan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Han Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Yan-Ling Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Shan Cao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Gan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China
| | - Hui Zeng
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Shu-Ping Chen
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xie-Lan Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jing Yang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Wen-Jing Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China.
| | - Xiao-Ping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
30
|
Baccelli I, Gareau Y, Lehnertz B, Gingras S, Spinella JF, Corneau S, Mayotte N, Girard S, Frechette M, Blouin-Chagnon V, Leveillé K, Boivin I, MacRae T, Krosl J, Thiollier C, Lavallée VP, Kanshin E, Bertomeu T, Coulombe-Huntington J, St-Denis C, Bordeleau ME, Boucher G, Roux PP, Lemieux S, Tyers M, Thibault P, Hébert J, Marinier A, Sauvageau G. Mubritinib Targets the Electron Transport Chain Complex I and Reveals the Landscape of OXPHOS Dependency in Acute Myeloid Leukemia. Cancer Cell 2019; 36:84-99.e8. [PMID: 31287994 DOI: 10.1016/j.ccell.2019.06.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 04/06/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
To identify therapeutic targets in acute myeloid leukemia (AML), we chemically interrogated 200 sequenced primary specimens. Mubritinib, a known ERBB2 inhibitor, elicited strong anti-leukemic effects in vitro and in vivo. In the context of AML, mubritinib functions through ubiquinone-dependent inhibition of electron transport chain (ETC) complex I activity. Resistance to mubritinib characterized normal CD34+ hematopoietic cells and chemotherapy-sensitive AMLs, which displayed transcriptomic hallmarks of hypoxia. Conversely, sensitivity correlated with mitochondrial function-related gene expression levels and characterized a large subset of chemotherapy-resistant AMLs with oxidative phosphorylation (OXPHOS) hyperactivity. Altogether, our work thus identifies an ETC complex I inhibitor and reveals the genetic landscape of OXPHOS dependency in AML.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Biomarkers
- Cell Line, Tumor
- Cell Survival/drug effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Electron Transport Complex I/antagonists & inhibitors
- Female
- Hematopoiesis/drug effects
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Mice
- Models, Biological
- Oxazoles/pharmacology
- Oxidative Phosphorylation/drug effects
- Protein Kinase Inhibitors/pharmacology
- Receptor, ErbB-2/antagonists & inhibitors
- Triazoles/pharmacology
Collapse
Affiliation(s)
- Irène Baccelli
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada.
| | - Yves Gareau
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada; Department of Chemistry, Université de Montréal Pavillon Roger-Gaudry, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3C 3J7, Canada
| | - Bernhard Lehnertz
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Stéphane Gingras
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada; Department of Chemistry, Université de Montréal Pavillon Roger-Gaudry, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3C 3J7, Canada
| | - Jean-François Spinella
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Sophie Corneau
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Nadine Mayotte
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Simon Girard
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Mélanie Frechette
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Valérie Blouin-Chagnon
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Koryne Leveillé
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Isabel Boivin
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Tara MacRae
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Jana Krosl
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Clarisse Thiollier
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Vincent-Philippe Lavallée
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Evgeny Kanshin
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Thierry Bertomeu
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Jasmin Coulombe-Huntington
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Corinne St-Denis
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Marie-Eve Bordeleau
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Geneviève Boucher
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Philippe P Roux
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada; Department of Pathology & Cell Biology, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal QC H3T 1J4, Canada
| | - Sébastien Lemieux
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada; Department of Computer Science & Operations Research, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada; Department of Biochemistry & Molecular Medicine, Université de Montréal Pavillon Roger-Gaudry, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Mike Tyers
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Pierre Thibault
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada
| | - Josée Hébert
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada; Leukemia Cell Bank of Quebec, 5415 Assumption Boulevard, Montréal, QC H1T 2M4, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, 5415 Assumption Boulevard, Montréal, QC H1T 2M4, Canada; Department of Medicine, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Anne Marinier
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada; Department of Chemistry, Université de Montréal Pavillon Roger-Gaudry, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3C 3J7, Canada.
| | - Guy Sauvageau
- The Leucegene Project at Institute for Research in Immunology (IRIC) and Cancer, Université de Montréal, 2950 Chemin de Polytechnique Pavillon, Marcelle-Coutu, Montréal, QC H3T 1J4, Canada; Leukemia Cell Bank of Quebec, 5415 Assumption Boulevard, Montréal, QC H1T 2M4, Canada; Division of Hematology, Maisonneuve-Rosemont Hospital, 5415 Assumption Boulevard, Montréal, QC H1T 2M4, Canada; Department of Medicine, Université de Montréal, 2900 Boulevard Édouard-Montpetit, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
31
|
Leukemic stem cell signatures identify novel therapeutics targeting acute myeloid leukemia. Blood Cancer J 2018; 8:52. [PMID: 29921955 PMCID: PMC6889502 DOI: 10.1038/s41408-018-0087-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 03/01/2018] [Accepted: 04/03/2018] [Indexed: 12/18/2022] Open
Abstract
Therapy for acute myeloid leukemia (AML) involves intense cytotoxic treatment and yet approximately 70% of AML are refractory to initial therapy or eventually relapse. This is at least partially driven by the chemo-resistant nature of the leukemic stem cells (LSCs) that sustain the disease, and therefore novel anti-LSC therapies could decrease relapses and improve survival. We performed in silico analysis of highly prognostic human AML LSC gene expression signatures using existing datasets of drug–gene interactions to identify compounds predicted to target LSC gene programs. Filtering against compounds that would inhibit a hematopoietic stem cell (HSC) gene signature resulted in a list of 151 anti-LSC candidates. Using a novel in vitro LSC assay, we screened 84 candidate compounds at multiple doses and confirmed 14 drugs that effectively eliminate human AML LSCs. Three drug families presenting with multiple hits, namely antihistamines (astemizole and terfenadine), cardiac glycosides (strophanthidin, digoxin and ouabain) and glucocorticoids (budesonide, halcinonide and mometasone), were validated for their activity against human primary AML samples. Our study demonstrates the efficacy of combining computational analysis of stem cell gene expression signatures with in vitro screening to identify novel compounds that target the therapy-resistant LSC at the root of relapse in AML.
Collapse
|
32
|
Bertoli S, Picard M, Bérard E, Griessinger E, Larrue C, Mouchel PL, Vergez F, Tavitian S, Yon E, Ruiz J, Delabesse E, Luquet I, Linares LK, Saland E, Carroll M, Danet-Desnoyers G, Sarry A, Huguet F, Sarry JE, Récher C. Dexamethasone in hyperleukocytic acute myeloid leukemia. Haematologica 2018. [PMID: 29519869 PMCID: PMC6058767 DOI: 10.3324/haematol.2017.184267] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Patients with acute myeloid leukemia and a high white blood cell count are at increased risk of early death and relapse. Because mediators of inflammation contribute to leukostasis and chemoresistance, dexamethasone added to chemotherapy could improve outcomes. This retrospective study evaluated the impact of adding or not adding dexamethasone to chemotherapy in a cohort of 160 patients with at least 50×109 white blood cells. In silico studies, primary samples, leukemic cell lines, and xenograft mouse models were used to explore the antileukemic activity of dexamethasone. There was no difference with respect to induction death rate, response, and infections between the 60 patients in the dexamethasone group and the 100 patients in the no dexamethasone group. Multivariate analysis showed that dexamethasone was significantly associated with improved relapse incidence (adjusted sub-HR: 0.30; 95% CI: 0.14–0.62; P=0.001), disease-free survival (adjusted HR: 0.50; 95% CI: 0.29–0.84; P=0.010), event-free survival (adjusted HR: 0.35; 95% CI: 0.21–0.58; P<0.001), and overall survival (adjusted HR: 0.41; 95% CI: 0.22–0.79; P=0.007). In a co-culture system, dexamethasone reduced the frequency of leukemic long-term culture initiating cells by 38% and enhanced the cytotoxicity of doxorubicin and cytarabine. In a patient-derived xenograft model treated with cytarabine, chemoresistant cells were enriched in genes of the inflammatory response modulated by dexamethasone. Dexamethasone also demonstrated antileukemic activity in NPM1-mutated samples. Dexamethasone may improve the outcome of acute myeloid leukemia patients receiving intensive chemotherapy. This effect could be due to the modulation of inflammatory chemoresistance pathways and to a specific activity in acute myeloid leukemia with NPM1 mutation.
Collapse
Affiliation(s)
- Sarah Bertoli
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, France.,Université Toulouse III Paul Sabatier, France.,Cancer Research Center of Toulouse, UMR1037-INSERM, ERL5294 CNRS, France
| | - Muriel Picard
- Service de Réanimation Polyvalente, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, France
| | - Emilie Bérard
- Service d'Epidémiologie, Centre Hospitalier Universitaire de Toulouse, France.,UMR 1027, INSERM-Université de Toulouse III, France
| | - Emmanuel Griessinger
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire, Nice, France
| | - Clément Larrue
- Cancer Research Center of Toulouse, UMR1037-INSERM, ERL5294 CNRS, France
| | - Pierre Luc Mouchel
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, France.,Cancer Research Center of Toulouse, UMR1037-INSERM, ERL5294 CNRS, France
| | - François Vergez
- Université Toulouse III Paul Sabatier, France.,Cancer Research Center of Toulouse, UMR1037-INSERM, ERL5294 CNRS, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, France
| | - Suzanne Tavitian
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, France
| | - Edwige Yon
- Service d'Epidémiologie, Centre Hospitalier Universitaire de Toulouse, France
| | - Jean Ruiz
- Service de Réanimation Polyvalente, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, France
| | - Eric Delabesse
- Université Toulouse III Paul Sabatier, France.,Cancer Research Center of Toulouse, UMR1037-INSERM, ERL5294 CNRS, France.,Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, France
| | - Laetitia Karine Linares
- IRCM, Institut de Recherche en Cancérologie de Montpellier-INSERM, U1194, France.,Université Montpellier, F-34298, France.,Institut Régional du Cancer Montpellier, France
| | - Estelle Saland
- Cancer Research Center of Toulouse, UMR1037-INSERM, ERL5294 CNRS, France
| | - Martin Carroll
- Stem Cell and Xenograft Core, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Gwenn Danet-Desnoyers
- Stem Cell and Xenograft Core, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Audrey Sarry
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, France
| | - Françoise Huguet
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, France
| | | | - Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, France .,Université Toulouse III Paul Sabatier, France.,Cancer Research Center of Toulouse, UMR1037-INSERM, ERL5294 CNRS, France
| |
Collapse
|
33
|
Andresen V, Gjertsen BT. Drug Repurposing for the Treatment of Acute Myeloid Leukemia. Front Med (Lausanne) 2017; 4:211. [PMID: 29238707 PMCID: PMC5712546 DOI: 10.3389/fmed.2017.00211] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/09/2017] [Indexed: 01/07/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by the accumulation of immature myeloid progenitor cells in the bone marrow, compromising of normal blood cell production and ultimately resulting in bone marrow failure. With a 20% overall survival rate at 5 years and 50% in the 18- to 65-year-old age group, new medicines are needed. It is proposed that development of repurposed drugs may be a part of the new therapy needed. AML is subdivided into recurrent molecular entities based on molecular genetics increasingly accessible for precision medicine. Novel therapy developments form a basis for novel multimodality therapy and include liposomal daunorubicin/cytarabine, broad or FLT3-specific tyrosine kinase inhibitors, Bcl-2 family inhibitors, selective inhibitors of nuclear export, metabolic inhibitors, and demethylating agents. The use of non-transplant immunotherapy is in early development in AML with the exceptional re-approval of a toxin-conjugated anti-CD33. However, the full potential of small molecule inhibitors and modalities like immunological checkpoint inhibitors, immunostimulatory small molecules, and CAR-T cell therapy is unknown. Some novel therapeutics will certainly benefit AML patient subgroups; however, due to high cost, more affordable alternatives are needed globally. Also the heterogeneity of AML will likely demand a broader repertoire of therapeutic molecules. Drug repurposing or repositioning represent a source for potential therapeutics with well-known toxicity profiles and reasonable prices. This implies that biomarkers of response need to accompany the development of antileukemic therapies for sharply defined patient subgroups. We will illustrate repurposing in AML with selected examples and discuss some experimental and regulatory limitations that may obstruct this development.
Collapse
Affiliation(s)
- Vibeke Andresen
- Center for Cancer Biomarkers (CCBIO), Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
| | - Bjørn T. Gjertsen
- Center for Cancer Biomarkers (CCBIO), Department of Clinical Science, Precision Oncology Research Group, University of Bergen, Bergen, Norway
- Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|