1
|
Grothey B, Lyu SI, Quaas A, Simon AG, Jung JO, Schröder W, Bruns CJ, Schiffmann LM, Popp FC, Schmidt T, Knipper K. Proteomic characterization of MET-amplified esophageal adenocarcinomas reveals enrichment of alternative splicing- and androgen signaling-related proteins. Cell Mol Life Sci 2025; 82:112. [PMID: 40074836 PMCID: PMC11904063 DOI: 10.1007/s00018-025-05635-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/11/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Esophageal adenocarcinomas (EACs) represent an evolving tumor entity with high mortality rates. MET amplification is a recurrent driver in EACs and is associated with decreased patient survival. However, the response to MET inhibitors is limited. Recent studies have identified several mechanisms that lead to resistance against MET inhibitors in different tumor entities. Nonetheless, a characterization of additional vulnerable targets beyond MET has not been conducted in MET-amplified EACs. METHODS In this study, we determined the MET amplification status in a cohort of more than 900 EACs using fluorescence in situ hybridization (FISH) and compared the proteomes of MET-amplified (n = 20) versus non-amplified tumors (n = 39) by mass spectrometry. RESULTS We identified a phenotype, present in almost all MET-amplified tumors, which shows an enrichment of alternative RNA splicing, and androgen receptor signaling proteins, as well as decreased patient survival. Additionally, our analyses revealed a negative correlation between MET expression and patient survival in MET-amplified EACs, indicating biological heterogeneity with clinical relevance despite the presence of MET amplification as the predominant oncogenic driver. Furthermore, quantitative immunohistochemical analysis of the inflammatory tumor microenvironment showed that an increased percentage of M2 macrophages is associated with lower overall survival in MET-amplified EACs. CONCLUSIONS Our results provide valuable insights into possible new therapeutic approaches for MET-amplified EACs for further research.
Collapse
Affiliation(s)
- Bastian Grothey
- Faculty of Medicine, Institute of Pathology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Su Ir Lyu
- Faculty of Medicine, Institute of Pathology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Faculty of Medicine, Institute of Pathology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Adrian Georg Simon
- Faculty of Medicine, Institute of Pathology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Jin-On Jung
- Faculty of Medicine, Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Wolfgang Schröder
- Faculty of Medicine, Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Christiane J Bruns
- Faculty of Medicine, Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Lars M Schiffmann
- Faculty of Medicine, Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Felix C Popp
- Faculty of Medicine, Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Thomas Schmidt
- Faculty of Medicine, Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Karl Knipper
- Faculty of Medicine, Department of General, Visceral and Cancer Surgery, University Hospital of Cologne, University of Cologne, Cologne, Germany.
| |
Collapse
|
2
|
Gibert MK, Zhang Y, Saha S, Marcinkiewicz P, Dube C, Hudson K, Sun Y, Bednarek S, Chagari B, Sarkar A, Roig-Laboy C, Neace N, Saoud K, Setiady I, Hanif F, Schiff D, Kumar P, Kefas B, Hafner M, Abounader R. A comprehensive analysis of Transcribed Ultra Conserved Regions uncovers important regulatory functions of novel non-coding transcripts in gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.557444. [PMID: 38562826 PMCID: PMC10983853 DOI: 10.1101/2023.09.12.557444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Transcribed Ultra-Conserved Regions (TUCRs) represent a severely understudied class of putative non-coding RNAs (ncRNAs) that are 100% conserved across multiple species. We performed the first-ever analysis of TUCRs in glioblastoma (GBM) and low-grade gliomas (LGG). We leveraged large human datasets to identify the genomic locations, chromatin accessibility, transcription, differential expression, correlation with survival, and predicted functions of all 481 TUCRs, and identified TUCRs that are relevant to glioma biology. Of these, we investigated the expression, function, and mechanism of action of the most highly upregulated intergenic TUCR, uc.110, identifying it as a new tumor enhancer. Uc.110 was highly overexpressed in GBM and LGG, where it promoted malignancy and tumor growth. Uc.110 activated the WNT pathway by upregulating the expression of membrane frizzled-related protein (MFRP), by sponging the tumor suppressor microRNA miR-544. This pioneering study shows important roles for TUCRs in gliomas and provides an extensive database and novel methods for future TUCR research.
Collapse
|
3
|
Wang M, You L, Su Z, He Y, Li D, Liu Z. BUB1 induces AKT/mTOR pathway activity to promote EMT induction in human small cell lung cancer. Sci Rep 2024; 14:20654. [PMID: 39232038 PMCID: PMC11375037 DOI: 10.1038/s41598-024-71644-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
Small cell lung cancer (SCLC) is a very aggressive tumor. Abnormal expression of BUB1 has been reported in several cancer types, wherein it plays a range of functional roles. This work aimed to elucidate the functional significance and molecular impacts of BUB1 in SCLC. It was found that SCLC cell lines exhibited significant BUB1 upregulation relative to control bronchial cells using data from the Gene Expression Omnibus (GEO) database and verified by immunohistochemical staining. BUB1 was also found to promote the proliferative, migratory, invasive activity of SCLC cells, as shown by CCK-8, 3D migration wound-healing, and Transwell assays, as well as flow cytometry. Additionally, it was found that BUB1 silencing enhanced E-cadherin expression while suppressing N-cadherin, Vimentin, ZEB-1, and Snail levels, as shown by Western immunoblotting. The loss of BUB1 also reduced p-AKT and p-mTOR levels without altering total AKT or mTOR protein levels. In conclusion, BUB1 functions as an oncogenic promoter in SCLC, potentially regulating the epithelial-mesenchymal transition by activation of AKT/mTOR signaling.
Collapse
Affiliation(s)
- Moufeng Wang
- Department of Oncology, The First Affiliated Hospital of Fujian Medical University, No. 20 Chazhong Road, Fuzhou, 350005, Fujian, China
- Department of Oncology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Lijie You
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Zhixiong Su
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Yufang He
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China
| | - Deyu Li
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
| | - Zhenhua Liu
- Department of Oncology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
4
|
Gibert MK, Zhang Y, Saha S, Marcinkiewicz P, Dube C, Hudson K, Sun Y, Bednarek S, Chagari B, Sarkar A, Roig-Laboy C, Neace N, Saoud K, Setiady I, Hanif F, Schiff D, Kumar P, Kefas B, Hafner M, Abounader R. A first comprehensive analysis of Transcribed Ultra Conserved Regions uncovers important regulatory functions of novel non-coding transcripts in gliomas. RESEARCH SQUARE 2024:rs.3.rs-4164642. [PMID: 38699302 PMCID: PMC11065071 DOI: 10.21203/rs.3.rs-4164642/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Transcribed Ultra-Conserved Regions (TUCRs) represent a severely understudied class of putative non-coding RNAs (ncRNAs) that are 100% conserved across multiple species. We performed the first-ever analysis of TUCRs in glioblastoma (GBM) and low-grade gliomas (LGG). We leveraged large human datasets to identify the genomic locations, chromatin accessibility, transcription, differential expression, correlation with survival, and predicted functions of all 481 TUCRs, and identified TUCRs that are relevant to glioma biology. Of these, we investigated the expression, function, and mechanism of action of the most highly upregulated intergenic TUCR, uc.110, identifying it as a new oncogene. Uc.110 was highly overexpressed in GBM and LGG, where it promoted malignancy and tumor growth. Uc.110 activated the WNT pathway by upregulating the expression of membrane frizzled-related protein (MFRP), by sponging the tumor suppressor microRNA miR-544. This pioneering study shows important roles for TUCRs in gliomas and provides an extensive database and novel methods for future TUCR research.
Collapse
Affiliation(s)
- Myron K Gibert
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Ying Zhang
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Shekhar Saha
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Pawel Marcinkiewicz
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Collin Dube
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Kadie Hudson
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Yunan Sun
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Sylwia Bednarek
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Bilhan Chagari
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Aditya Sarkar
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Christian Roig-Laboy
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Natalie Neace
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Karim Saoud
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Initha Setiady
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - Farina Hanif
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
| | - David Schiff
- University of Virginia Department of Neurology, Charlottesville, VA, 22908, USA
| | - Pankaj Kumar
- University of Virginia Department of Public Health Sciences and Bioinformatics Core, Charlottesville, VA, 22908, USA
| | | | | | - Roger Abounader
- University of Virginia Department of Microbiology, Immunology & Cancer Biology, Charlottesville, VA, 22908, USA
- University of Virginia Department of Neurology, Charlottesville, VA, 22908, USA
- University of Virginia Department of Cancer Center, Charlottesville, VA, 22908, USA
| |
Collapse
|
5
|
Shu P, Mo J, Li Z, Li M, Zhu W, Du Z. Ferulic acid in synergy with retinol alleviates oxidative injury of HaCaT cells during UVB-induced photoaging. Aging (Albany NY) 2024; 16:7153-7173. [PMID: 38643459 PMCID: PMC11087097 DOI: 10.18632/aging.205749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/20/2024] [Indexed: 04/22/2024]
Abstract
Application of retinol (Vitamin A, VA) in skincare is limited for instability, poor water solubility, and skin intolerance that combats skin aging. We employed computer-aided virtual screening and cell experiments with transcriptomics, thereby unveiling the comprehensive gene expression and regulation pathway of photoaging HaCaT cell treated with ferulic acid (FA) in synergizing with VA. Through network pharmacology analysis, the combined use of VA and FA exhibited highly correlated cross-targets with skin aging acting on EGFR, PTPN1, ESR2, GSK3B, BACE1, PYGL, PTGS2 and APP. The indicators of oxidative stress, such as SOD, GSH, MDA, CAT and ROS in HaCaT cells after co-administration, were significantly improved from those in photoaging group (p<0.0001). 155 differential expressed genes (DEGs) were specific between groups, while reducing the expression of PTGS2 was identified as an important regulatory factor in photoaging HaCaT cells by VA and FA. Those DEGs of co-administration group focused on oxidative-reduction enzyme activity, skin growth, keratinization, and steroid biosynthesis. Apparently, the co-administration of VA and FA effectively mitigated the process of UVB-induced photoaging by reducing oxidative stress injury, inflammation responses, and regulating cell growth. This synergistic approach significantly slowed down the photoaging progression and improved the applied performance of VA in HaCaT cells.
Collapse
Affiliation(s)
- Peng Shu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, P.R. China
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, Guangdong, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jiaxin Mo
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, P.R. China
| | - Zunjiang Li
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, P.R. China
| | - Mingjie Li
- HBN Research Institute and Biological Laboratory, Shenzhen Hujia Technology Co., Ltd., Shenzhen 518000, Guangdong, P.R. China
| | - Wei Zhu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510006, Guangdong, P.R. China
| | - Zhiyun Du
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, CAS Key Laboratory of Chemistry of Plant Resources in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
6
|
Bhutada I, Khambati F, Cheng SY, Tiek DM, Duckett D, Lawrence H, Vogelbaum MA, Mo Q, Chellappan SP, Padmanabhan J. CDK7 and CDK9 inhibition interferes with transcription, translation, and stemness, and induces cytotoxicity in GBM irrespective of temozolomide sensitivity. Neuro Oncol 2024; 26:70-84. [PMID: 37551745 PMCID: PMC10768977 DOI: 10.1093/neuonc/noad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is refractory to current treatment modalities while side effects of treatments result in neurotoxicity and cognitive impairment. Here we test the hypothesis that inhibiting CDK7 or CDK9 would effectively combat GBM with reduced neurotoxicity. METHODS We examined the effect of a CDK7 inhibitor, THZ1, and multiple CDK9 inhibitors (SNS032, AZD4573, NVP2, and JSH150) on GBM cell lines, patient-derived temozolomide (TMZ)-resistant and responsive primary tumor cells and glioma stem cells (GSCs). Biochemical changes were assessed by western blotting, immunofluorescence, multispectral imaging, and RT-PCR. In vivo, efficacy was assessed in orthotopic and subcutaneous xenograft models. RESULTS CDK7 and CDK9 inhibitors suppressed the viability of TMZ-responsive and resistant GBM cells and GSCs at low nanomolar concentrations, with limited cytotoxic effects in vivo. The inhibitors abrogated RNA Pol II and p70S6K phosphorylation and nascent protein synthesis. Furthermore, the self-renewal of GSCs was significantly reduced with a corresponding reduction in Sox2 and Sox9 levels. Analysis of TCGA data showed increased expression of CDK7, CDK9, SOX2, SOX9, and RPS6KB1 in GBM; supporting this, multispectral imaging of a TMA revealed increased levels of CDK9, Sox2, Sox9, phospho-S6, and phospho-p70S6K in GBM compared to normal brains. RNA-Seq results suggested that inhibitors suppressed tumor-promoting genes while inducing tumor-suppressive genes. Furthermore, the studies conducted on subcutaneous and orthotopic GBM tumor xenograft models showed that administration of CDK9 inhibitors markedly suppressed tumor growth in vivo. CONCLUSIONS Our results suggest that CDK7 and CDK9 targeted therapies may be effective against TMZ-sensitive and resistant GBM.
Collapse
Affiliation(s)
- Isha Bhutada
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Fatema Khambati
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Shi-Yuan Cheng
- The Ken and Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Deanna M Tiek
- The Ken and Ruth Devee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute Northwestern Medicine, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Derek Duckett
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Harshani Lawrence
- Department of Drug Discovery, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Michael A Vogelbaum
- Department of Neuro-Oncology and Neuro-Oncology Program, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Qianxing Mo
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Srikumar P Chellappan
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Jaya Padmanabhan
- Department of Tumor Biology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
7
|
Ge M, Zhu Y, Wei M, Piao H, He M. Improving the efficacy of anti-EGFR drugs in GBM: Where we are going? Biochim Biophys Acta Rev Cancer 2023; 1878:188996. [PMID: 37805108 DOI: 10.1016/j.bbcan.2023.188996] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/11/2023] [Accepted: 09/29/2023] [Indexed: 10/09/2023]
Abstract
The therapies targeting mutations of driver genes in cancer have advanced into clinical trials for a variety of tumors. In glioblastoma (GBM), epidermal growth factor receptor (EGFR) is the most commonly mutated oncogene, and targeting EGFR has been widely investigated as a promising direction. However, the results of EGFR pathway inhibitors have not been satisfactory. Limited blood-brain barrier (BBB) permeability, drug resistance, and pathway compensation mechanisms contribute to the failure of anti-EGFR therapies. This review summarizes recent research advances in EGFR-targeted therapy for GBM and provides insight into the reasons for the unsatisfactory results of EGFR-targeted therapy. By combining the results of preclinical studies with those of clinical trials, we discuss that improved drug penetration across the BBB, the use of multi-target combinations, and the development of peptidomimetic drugs under the premise of precision medicine may be promising strategies to overcome drug resistance in GBM.
Collapse
Affiliation(s)
- Manxi Ge
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Yan Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, China.
| | - Haozhe Piao
- Department of Neurosurgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, China; Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Shenyang, China.
| |
Collapse
|
8
|
Altintas DM, Comoglio PM. An Observatory for the MET Oncogene: A Guide for Targeted Therapies. Cancers (Basel) 2023; 15:4672. [PMID: 37760640 PMCID: PMC10526818 DOI: 10.3390/cancers15184672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
The MET proto-oncogene encodes a pivotal tyrosine kinase receptor, binding the hepatocyte growth factor (HGF, also known as scatter factor, SF) and governing essential biological processes such as organogenesis, tissue repair, and angiogenesis. The pleiotropic physiological functions of MET explain its diverse role in cancer progression in a broad range of tumors; genetic/epigenetic alterations of MET drive tumor cell dissemination, metastasis, and acquired resistance to conventional and targeted therapies. Therefore, targeting MET emerged as a promising strategy, and many efforts were devoted to identifying the optimal way of hampering MET signaling. Despite encouraging results, however, the complexity of MET's functions in oncogenesis yields intriguing observations, fostering a humbler stance on our comprehension. This review explores recent discoveries concerning MET alterations in cancer, elucidating their biological repercussions, discussing therapeutic avenues, and outlining future directions. By contextualizing the research question and articulating the study's purpose, this work navigates MET biology's intricacies in cancer, offering a comprehensive perspective.
Collapse
Affiliation(s)
| | - Paolo M. Comoglio
- IFOM ETS—The AIRC Institute of Molecular Oncology, 20139 Milano, Italy;
| |
Collapse
|
9
|
Possible role of combined therapy targeting MET and pro-HGF activation for renal cell carcinoma: analysis by human HGF-producing SCID mice. Hum Cell 2023; 36:775-785. [PMID: 36708441 DOI: 10.1007/s13577-023-00857-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/10/2023] [Indexed: 01/29/2023]
Abstract
MET is a high-affinity receptor tyrosine kinase of HGF (hepatocyte growth factor). HGF is secreted as an inactive single-chain precursor (pro-HGF), which requires proteolytic activation for conversion to an active form. HGF activator inhibitor (HAI)-2 is a transmembrane Kunitz-type serine protease inhibitor, which inhibits all pro-HGF-activating enzymes. In RCC, increased expression of MET and decreased expression of HAI-2 were reported to be poor prognostic factors. In the current study, we tried to inhibit the growth of RCC cells by dual inhibition of both MET phosphorylation and pro-HGF-activation using MET inhibitor and HAI-2 overexpression. A transgenic mouse model which expressed human HGF (HGF mouse) was used for in vivo analysis to evaluate the HGF/MET signaling axis accurately. Initially, doxycycline-induced HAI-2 overexpression RCC cells (786-O-HAI2) were prepared. The cells were cultured with pro-HGF, and inhibitory effect of MET inhibitor (SCC244) and HAI-2 was evaluated by phosphorylation of MET and cell proliferation. Next, the cells were subcutaneously implanted to HGF mice and the growth inhibition was determined by SCC244 and HAI-2. Single use of each inhibitor showed significant inhibition in MET phosphorylation, migration and proliferation of 786-O-HAI2 cells; however, the strongest effect was observed by combined use of both inhibitors. Although in vivo analysis also showed apparent downregulation of MET phosphorylation and growth inhibition in combined treatment, statistical significance was not observed compared with single use of MET inhibitor. Combined treatment with MET-TKI and HAI-2 suggested to consider as a candidate for new strong therapy for RCC.
Collapse
|
10
|
Wang Z, Xing Y, Li B, Li X, Liu B, Wang Y. Molecular pathways, resistance mechanisms and targeted interventions in non-small-cell lung cancer. MOLECULAR BIOMEDICINE 2022; 3:42. [PMID: 36508072 PMCID: PMC9743956 DOI: 10.1186/s43556-022-00107-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/03/2022] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. The discovery of tyrosine kinase inhibitors effectively targeting EGFR mutations in lung cancer patients in 2004 represented the beginning of the precision medicine era for this refractory disease. This great progress benefits from the identification of driver gene mutations, and after that, conventional and new technologies such as NGS further illustrated part of the complex molecular pathways of NSCLC. More targetable driver gene mutation identification in NSCLC patients greatly promoted the development of targeted therapy and provided great help for patient outcomes including significantly improved survival time and quality of life. Herein, we review the literature and ongoing clinical trials of NSCLC targeted therapy to address the molecular pathways and targeted intervention progress in NSCLC. In addition, the mutations in EGFR gene, ALK rearrangements, and KRAS mutations in the main sections, and the less common molecular alterations in MET, HER2, BRAF, ROS1, RET, and NTRK are discussed. The main resistance mechanisms of each targeted oncogene are highlighted to demonstrate the current dilemma of targeted therapy in NSCLC. Moreover, we discuss potential therapies to overcome the challenges of drug resistance. In this review, we manage to display the current landscape of targetable therapeutic patterns in NSCLC in this era of precision medicine.
Collapse
Affiliation(s)
- Zixi Wang
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yurou Xing
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Bingjie Li
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xiaoyu Li
- grid.412901.f0000 0004 1770 1022Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Bin Liu
- grid.54549.390000 0004 0369 4060Department of Medical Oncology, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Yongsheng Wang
- grid.412901.f0000 0004 1770 1022Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
11
|
Thakur A, Faujdar C, Sharma R, Sharma S, Malik B, Nepali K, Liou JP. Glioblastoma: Current Status, Emerging Targets, and Recent Advances. J Med Chem 2022; 65:8596-8685. [PMID: 35786935 PMCID: PMC9297300 DOI: 10.1021/acs.jmedchem.1c01946] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Glioblastoma (GBM) is a highly malignant
brain tumor characterized
by a heterogeneous population of genetically unstable and highly infiltrative
cells that are resistant to chemotherapy. Although substantial efforts
have been invested in the field of anti-GBM drug discovery in the
past decade, success has primarily been confined to the preclinical
level, and clinical studies have often been hampered due to efficacy-,
selectivity-, or physicochemical property-related issues. Thus, expansion
of the list of molecular targets coupled with a pragmatic design of
new small-molecule inhibitors with central nervous system (CNS)-penetrating
ability is required to steer the wheels of anti-GBM drug discovery
endeavors. This Perspective presents various aspects of drug discovery
(challenges in GBM drug discovery and delivery, therapeutic targets,
and agents under clinical investigation). The comprehensively covered
sections include the recent medicinal chemistry campaigns embarked
upon to validate the potential of numerous enzymes/proteins/receptors
as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Chetna Faujdar
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida 201307, India
| | - Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Basant Malik
- Department of Sterile Product Development, Research and Development-Unit 2, Jubiliant Generics Ltd., Noida 201301, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
12
|
Ratliff M, Kim H, Qi H, Kim M, Ku B, Azorin DD, Hausmann D, Khajuria RK, Patel A, Maier E, Cousin L, Ogier A, Sahm F, Etminan N, Bunse L, Winkler F, El-Khoury V, Platten M, Kwon YJ. Patient-Derived Tumor Organoids for Guidance of Personalized Drug Therapies in Recurrent Glioblastoma. Int J Mol Sci 2022; 23:ijms23126572. [PMID: 35743016 PMCID: PMC9223608 DOI: 10.3390/ijms23126572] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 01/07/2023] Open
Abstract
An obstacle to effective uniform treatment of glioblastoma, especially at recurrence, is genetic and cellular intertumoral heterogeneity. Hence, personalized strategies are necessary, as are means to stratify potential targeted therapies in a clinically relevant timeframe. Functional profiling of drug candidates against patient-derived glioblastoma organoids (PD-GBO) holds promise as an empirical method to preclinically discover potentially effective treatments of individual tumors. Here, we describe our establishment of a PD-GBO-based functional profiling platform and the results of its application to four patient tumors. We show that our PD-GBO model system preserves key features of individual patient glioblastomas in vivo. As proof of concept, we tested a panel of 41 FDA-approved drugs and were able to identify potential treatment options for three out of four patients; the turnaround from tumor resection to discovery of treatment option was 13, 14, and 15 days, respectively. These results demonstrate that this approach is a complement and, potentially, an alternative to current molecular profiling efforts in the pursuit of effective personalized treatment discovery in a clinically relevant time period. Furthermore, these results warrant the use of PD-GBO platforms for preclinical identification of new drugs against defined morphological glioblastoma features.
Collapse
Affiliation(s)
- Miriam Ratliff
- Department of Neurosurgery, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (R.K.K.); (E.M.); (N.E.)
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.D.A.); (D.H.); (F.W.)
- Correspondence: (M.R.); (Y.-J.K.)
| | - Hichul Kim
- Personalized Therapy Discovery, Department of Cancer Research, Luxembourg Institute of Health, 3555 Dudelange, Luxembourg; (H.K.); (V.E.-K.)
- Early Discovery and Technology Development, Ksilink, 67000 Strasbourg, France; (L.C.); (A.O.)
| | - Hao Qi
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.Q.); (L.B.); (M.P.)
| | - Minsung Kim
- Department of Biomedical Science, Seoul National University College of Medicine, Seoul 110799, Korea;
| | - Bosung Ku
- Central R&D Center, Medical & Bio Decision (MBD), Suwon 16229, Korea;
| | - Daniel Dominguez Azorin
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.D.A.); (D.H.); (F.W.)
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - David Hausmann
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.D.A.); (D.H.); (F.W.)
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Rajiv K. Khajuria
- Department of Neurosurgery, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (R.K.K.); (E.M.); (N.E.)
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.D.A.); (D.H.); (F.W.)
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Areeba Patel
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.P.); (F.S.)
| | - Elena Maier
- Department of Neurosurgery, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (R.K.K.); (E.M.); (N.E.)
| | - Loic Cousin
- Early Discovery and Technology Development, Ksilink, 67000 Strasbourg, France; (L.C.); (A.O.)
| | - Arnaud Ogier
- Early Discovery and Technology Development, Ksilink, 67000 Strasbourg, France; (L.C.); (A.O.)
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (A.P.); (F.S.)
| | - Nima Etminan
- Department of Neurosurgery, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (R.K.K.); (E.M.); (N.E.)
| | - Lukas Bunse
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.Q.); (L.B.); (M.P.)
- Mannheim Center for Translational Neurosciences (MCTN), Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Frank Winkler
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.D.A.); (D.H.); (F.W.)
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Victoria El-Khoury
- Personalized Therapy Discovery, Department of Cancer Research, Luxembourg Institute of Health, 3555 Dudelange, Luxembourg; (H.K.); (V.E.-K.)
- Luxembourg Center of Neuropathology (LCNP), Department of Cancer Research, Luxembourg Institute of Health, 3555 Dudelange, Luxembourg
| | - Michael Platten
- Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (H.Q.); (L.B.); (M.P.)
- Mannheim Center for Translational Neurosciences (MCTN), Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- DKFZ Hector Cancer Institute, University Medical Center Mannheim, 68167 Mannheim, Germany
| | - Yong-Jun Kwon
- Personalized Therapy Discovery, Department of Cancer Research, Luxembourg Institute of Health, 3555 Dudelange, Luxembourg; (H.K.); (V.E.-K.)
- Early Discovery and Technology Development, Ksilink, 67000 Strasbourg, France; (L.C.); (A.O.)
- Correspondence: (M.R.); (Y.-J.K.)
| |
Collapse
|
13
|
Pang L, Khan F, Dunterman M, Chen P. Pharmacological targeting of the tumor–immune symbiosis in glioblastoma. Trends Pharmacol Sci 2022; 43:686-700. [PMID: 35534356 PMCID: PMC9288491 DOI: 10.1016/j.tips.2022.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Glioblastoma (GBM) is the most common and highly lethal form of primary brain tumor in adults. The median survival of GBM patients is approximately 14-16 months despite multimodal therapies. Emerging evidence has substantiated the critical role of symbiotic interactions between GBM cells and noncancerous immune cells (e.g., myeloid cells and T cells) in regulating tumor progression and therapy resistance. Approaches to target the tumor-immune symbiosis have emerged as a promising therapeutic strategy for GBM. Here, we review the recent developments for pharmacological targeting of the GBM-immune symbiosis and highlight the role of such strategies to improve the effectiveness of immunotherapies in GBM.
Collapse
|
14
|
Fabro F, Lamfers MLM, Leenstra S. Advancements, Challenges, and Future Directions in Tackling Glioblastoma Resistance to Small Kinase Inhibitors. Cancers (Basel) 2022; 14:600. [PMID: 35158868 PMCID: PMC8833415 DOI: 10.3390/cancers14030600] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
Despite clinical intervention, glioblastoma (GBM) remains the deadliest brain tumor in adults. Its incurability is partly related to the establishment of drug resistance, both to standard and novel treatments. In fact, even though small kinase inhibitors have changed the standard clinical practice for several solid cancers, in GBM, they did not fulfill this promise. Drug resistance is thought to arise from the heterogeneity of GBM, which leads the development of several different mechanisms. A better understanding of the evolution and characteristics of drug resistance is of utmost importance to improve the current clinical practice. Therefore, the development of clinically relevant preclinical in vitro models which allow careful dissection of these processes is crucial to gain insights that can be translated to improved therapeutic approaches. In this review, we first discuss the heterogeneity of GBM, which is reflected in the development of several resistance mechanisms. In particular, we address the potential role of drug resistance mechanisms in the failure of small kinase inhibitors in clinical trials. Finally, we discuss strategies to overcome therapy resistance, particularly focusing on the importance of developing in vitro models, and the possible approaches that could be applied to the clinic to manage drug resistance.
Collapse
Affiliation(s)
| | | | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus University Medical Center, 3015 CN Rotterdam, The Netherlands; (F.F.); (M.L.M.L.)
| |
Collapse
|
15
|
Papavassiliou KA, Papavassiliou AG. Transcription factors in glioblastoma - Molecular pathogenesis and clinical implications. Biochim Biophys Acta Rev Cancer 2022; 1877:188667. [PMID: 34894431 DOI: 10.1016/j.bbcan.2021.188667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/15/2022]
Abstract
Glioblastoma, also known as glioblastoma multiforme (GBM), is one of the most lethal human cancers, however, the molecular mechanisms driving GBM remain largely elusive. Recent studies have revealed that transcription factors are significantly involved in GBM biology. Transcription factors (TFs), which are proteins that bind DNA to regulate gene expression, have critical roles at focal points in signaling pathways, orchestrating many cellular processes, such as cell growth and proliferation, differentiation, apoptosis, immune responses, and metabolism. Dysregulated or mutated TFs are common in GBM, resulting in aberrant gene expression that promotes tumor initiation, progression, and resistance to conventional therapies. In the present Review, we focus on TFs that are implicated in GBM pathogenesis, highlighting their oncogenic or tumor suppressive functions and describing the molecular mechanisms underlying their effect on GBM cells. We also discuss their use as biomarkers for GBM prognosis and therapeutic response, as well as their targeting with drugs for GBM treatment. Deciphering the role of TFs in the biology of GBM will provide new insights into the pathological mechanisms and reveal novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Athens, Greece.
| |
Collapse
|
16
|
Najem H, Khasraw M, Heimberger AB. Immune Microenvironment Landscape in CNS Tumors and Role in Responses to Immunotherapy. Cells 2021; 10:2032. [PMID: 34440802 PMCID: PMC8393758 DOI: 10.3390/cells10082032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/14/2022] Open
Abstract
Despite the important evolution of immunotherapeutic agents, brain tumors remain, in general, refractory to immune therapeutics. Recent discoveries have revealed that the glioma microenvironment includes a wide variety of immune cells in various states that play an important role in the process of tumorigenesis. Anti-tumor immune activity may be occurring or induced in immunogenic hot spots or at the invasive edge of central nervous system (CNS) tumors. Understanding the complex heterogeneity of the immune microenvironment in gliomas will likely be the key to unlocking the full potential of immunotherapeutic strategies. An essential consideration will be the induction of immunological effector responses in the setting of the numerous aspects of immunosuppression and evasion. As such, immune therapeutic combinations are a fundamental objective for clinical studies in gliomas. Through immune profiling conducted on immune competent murine models of glioma and ex vivo human glioma tissue, we will discuss how the frequency, distribution of immune cells within the microenvironment, and immune modulatory processes, may be therapeutically modulated to lead to clinical benefits.
Collapse
Affiliation(s)
- Hinda Najem
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Mustafa Khasraw
- The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC 27710, USA;
| | - Amy B. Heimberger
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
17
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
18
|
Khater AR, Abou-Antoun T. Mesenchymal Epithelial Transition Factor Signaling in Pediatric Nervous System Tumors: Implications for Malignancy and Cancer Stem Cell Enrichment. Front Cell Dev Biol 2021; 9:654103. [PMID: 34055785 PMCID: PMC8155369 DOI: 10.3389/fcell.2021.654103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Malignant nervous system cancers in children are the most devastating and worrisome diseases, specifically due to their aggressive nature and, in some cases, inoperable location in critical regions of the brain and spinal cord, and the impermeable blood-brain barrier that hinders delivery of pharmaco-therapeutic compounds into the tumor site. Moreover, the delicate developmental processes of the nervous system throughout the childhood years adds another limitation to the therapeutic modalities and doses used to treat these malignant cancers. Therefore, pediatric oncologists are charged with the daunting responsibility of attempting to deliver effective cures to these children, yet with limited doses of the currently available therapeutic options in order to mitigate the imminent neurotoxicity of radio- and chemotherapy on the developing nervous system. Various studies reported that c-Met/HGF signaling is affiliated with increased malignancy and stem cell enrichment in various cancers such as high-grade gliomas, high-risk medulloblastomas, and MYCN-amplified, high-risk neuroblastomas. Therapeutic interventions that are utilized to target c-Met signaling in these malignant nervous system cancers have shown benefits in basic translational studies and preclinical trials, but failed to yield significant clinical benefits in patients. While numerous pre-clinical data reported promising results with the use of combinatorial therapy that targets c-Met with other tumorigenic pathways, therapeutic resistance remains a problem, and long-term cures are rare. The possible mechanisms, including the overexpression and activation of compensatory tumorigenic mechanisms within the tumors or ineffective drug delivery methods that may contribute to therapeutic resistance observed in clinical trials are elaborated in this review.
Collapse
Affiliation(s)
- Amanda Rose Khater
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Tamara Abou-Antoun
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| |
Collapse
|
19
|
Cheng HS, Marvalim C, Zhu P, Law CLD, Low ZYJ, Chong YK, Ang BT, Tang C, Tan NS. Kinomic profile in patient-derived glioma cells during hypoxia reveals c-MET-PI3K dependency for adaptation. Theranostics 2021; 11:5127-5142. [PMID: 33859738 PMCID: PMC8039937 DOI: 10.7150/thno.54741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/17/2021] [Indexed: 01/05/2023] Open
Abstract
Hypoxic microenvironment is a hallmark of solid tumors, especially glioblastoma. The strong reliance of glioma-propagating cells (GPCs) on hypoxia-induced survival advantages is potentially exploitable for drug development. Methods: To identify key signaling pathways for hypoxia adaptation by patient-derived GPCs, we performed a kinase inhibitor profiling by screening 188 small molecule inhibitors against 130 different kinases in normoxia and hypoxia. Potential kinase candidates were prioritized for in vitro and in vivo investigations using a ranking algorithm that integrated information from the kinome connectivity network and estimated patients' survival based on expression status. Results: Hypoxic drug screen highlighted extensive modifications of kinomic landscape and a crucial functionality of c-MET-PI3K. c-MET inhibitors diminished phosphorylation of c-MET and PI3K in GPCs subjected to hypoxia, suggesting its role in the hypoxic adaptation of GPCs. Mechanistically, the inhibition of c-MET and PI3K impaired antioxidant defense, leading to oxidative catastrophe and apoptosis. Repurposed c-MET inhibitors PF04217903 and tivantinib exhibited hypoxic-dependent drug synergism with temozolomide, resulting in reduced tumor load and growth of GPC xenografts. Detailed analysis of bulk and single-cell glioblastoma transcriptomes associates the cellular subpopulation over-expressing c-MET with inflamed, hypoxic, metastatic, and stem-like phenotypes. Conclusions: Thus, our "bench to bedside (the use of patient-derived GPCs and xenografts for basic research) and back (validation with independent glioblastoma transcriptome databases)" analysis unravels the novel therapeutic indications of c-MET and PI3K/Akt inhibitors for the treatment of glioblastoma, and potentially other cancers, in the hypoxic tumor microenvironment.
Collapse
|
20
|
Hasbum A, Quintanilla J, Jr JA, Ding MH, Levy A, Chew SA. Strategies to better treat glioblastoma: antiangiogenic agents and endothelial cell targeting agents. Future Med Chem 2021; 13:393-418. [PMID: 33399488 PMCID: PMC7888526 DOI: 10.4155/fmc-2020-0289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most prevalent and aggressive form of glioma, with poor prognosis and high mortality rates. As GBM is a highly vascularized cancer, antiangiogenic therapies to halt or minimize the rate of tumor growth are critical to improving treatment. In this review, antiangiogenic therapies, including small-molecule drugs, nucleic acids and proteins and peptides, are discussed. The authors further explore biomaterials that have been utilized to increase the bioavailability and bioactivity of antiangiogenic factors for better antitumor responses in GBM. Finally, the authors summarize the current status of biomaterial-based targeting moieties that target endothelial cells in GBM to more efficiently deliver therapeutics to these cells and avoid off-target cell or organ side effects.
Collapse
Affiliation(s)
- Asbiel Hasbum
- School of Medicine, University of Texas Rio Grande Valley, Edinburg, TX 78541, USA
| | - Jaqueline Quintanilla
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Juan A Amieva Jr
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - May-Hui Ding
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| | - Arkene Levy
- Dr Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, FL 33314, USA
| | - Sue Anne Chew
- Department of Health & Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX 78526, USA
| |
Collapse
|
21
|
Ou A, Ott M, Fang D, Heimberger AB. The Role and Therapeutic Targeting of JAK/STAT Signaling in Glioblastoma. Cancers (Basel) 2021; 13:437. [PMID: 33498872 PMCID: PMC7865703 DOI: 10.3390/cancers13030437] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma remains one of the deadliest and treatment-refractory human malignancies in large part due to its diffusely infiltrative nature, molecular heterogeneity, and capacity for immune escape. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway contributes substantively to a wide variety of protumorigenic functions, including proliferation, anti-apoptosis, angiogenesis, stem cell maintenance, and immune suppression. We review the current state of knowledge regarding the biological role of JAK/STAT signaling in glioblastoma, therapeutic strategies, and future directions for the field.
Collapse
Affiliation(s)
- Alexander Ou
- Department of Neuro-Oncology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA;
| | - Martina Ott
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Dexing Fang
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Amy B. Heimberger
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| |
Collapse
|
22
|
Moosavi F, Giovannetti E, Peters GJ, Firuzi O. Combination of HGF/MET-targeting agents and other therapeutic strategies in cancer. Crit Rev Oncol Hematol 2021; 160:103234. [PMID: 33497758 DOI: 10.1016/j.critrevonc.2021.103234] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
MET receptor has emerged as a druggable target across several human cancers. Agents targeting MET and its ligand hepatocyte growth factor (HGF) including small molecules such as crizotinib, tivantinib and cabozantinib or antibodies including rilotumumab and onartuzumab have proven their values in different tumors. Recently, capmatinib was approved for treatment of metastatic lung cancer with MET exon 14 skipping. In this review, we critically examine the current evidence on how HGF/MET combination therapies may take advantage of synergistic effects, overcome primary or acquired drug resistance, target tumor microenvironment, modulate drug metabolism or tackle pharmacokinetic issues. Preclinical and clinical studies on the combination of HGF/MET-targeted agents with conventional chemotherapeutics or molecularly targeted treatments (including EGFR, VEGFR, HER2, RAF/MEK, and PI3K/Akt targeting agents) and also the value of biomarkers are examined. Our deeper understanding of molecular mechanisms underlying successful pharmacological combinations is crucial to find the best personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
23
|
Pudelko L, Jaehrling F, Reusch C, Vitri S, Stroh C, Linde N, Sanderson MP, Musch D, Lebrun CJ, Keil M, Esdar C, Blaukat A, Rosell R, Schumacher KM, Karachaliou N. SHP2 Inhibition Influences Therapeutic Response to Tepotinib in Tumors with MET Alterations. iScience 2020; 23:101832. [PMID: 33305187 PMCID: PMC7718487 DOI: 10.1016/j.isci.2020.101832] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/03/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Tepotinib is an oral MET inhibitor approved for metastatic non-small cell lung cancer (NSCLC) harboring MET exon 14 (METex14) skipping mutations. Examining treatment-naive or tepotinib-resistant cells with MET amplification or METex14 skipping mutations identifies other receptor tyrosine kinases (RTKs) that co-exist in cells prior to tepotinib exposure and become more prominent upon tepotinib resistance. In a small cohort of patients with lung cancer with MET genetic alterations treated with tepotinib, gene copy number gains of other RTKs were found at baseline and affected treatment outcome. An Src homology 2 domain-containing phosphatase 2 (SHP2) inhibitor delayed the emergence of tepotinib resistance and synergized with tepotinib in treatment-naive and tepotinib-resistant cells as well as in xenograft models. Alternative signaling pathways potentially diminish the effect of tepotinib monotherapy, and the combination of tepotinib with an SHP2 inhibitor enables the control of tumor growth in cells with MET genetic alterations.
Collapse
Affiliation(s)
- Linda Pudelko
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Frank Jaehrling
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Christof Reusch
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Sanziago Vitri
- Rosell Oncology Institute (IOR), Dexeus University Hospital, QuironSalud Group, 08028 Barcelona, Spain
| | - Christopher Stroh
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Nina Linde
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Michael P. Sanderson
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Doreen Musch
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | | | - Marina Keil
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Christina Esdar
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Andree Blaukat
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
| | - Rafael Rosell
- Rosell Oncology Institute (IOR), Dexeus University Hospital, QuironSalud Group, 08028 Barcelona, Spain
- Germans Trias i Pujol Research Institute and Hospital (IGTP), Molecular and Cellular Oncology Laboratory, Badalona 08916, Spain
- Pangaea Oncology, Laboratory of Molecular Biology, Quirón-Dexeus University Institute, 08028 Barcelona, Spain
- Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Badalona 08916, Spain
| | | | - Niki Karachaliou
- Translational Innovation Platform Oncology, Merck KGaA, Darmstadt 64293, Germany
- Global Clinical Development, Merck KGaA, Darmstadt 64293, Germany
| |
Collapse
|
24
|
HGF/MET Signaling in Malignant Brain Tumors. Int J Mol Sci 2020; 21:ijms21207546. [PMID: 33066121 PMCID: PMC7590206 DOI: 10.3390/ijms21207546] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 12/13/2022] Open
Abstract
Hepatocyte growth factor (HGF) ligand and its receptor tyrosine kinase (RTK) mesenchymal-epithelial transition factor (MET) are important regulators of cellular processes such as proliferation, motility, angiogenesis, and tissue regeneration. In healthy adult somatic cells, this ligand and receptor pair is expressed at low levels and has little activity except when tissue injuries arise. In cancer cells, HGF/MET are often overexpressed, and this overexpression is found to correlate with tumorigenesis, metastasis, and poorer overall prognosis. This review focuses on the signaling of these molecules in the context of malignant brain tumors. RTK signaling pathways are among the most common and universally dysregulated pathways in gliomas. We focus on the role of HGF/MET in the following primary malignant brain tumors: astrocytomas, glioblastomas, oligodendrogliomas, ependymomas, and embryonal central nervous system tumors (including medulloblastomas and others). Brain metastasis, as well as current advances in targeted therapies, are also discussed.
Collapse
|
25
|
Inhibition of HDAC1/2 Along with TRAP1 Causes Synthetic Lethality in Glioblastoma Model Systems. Cells 2020; 9:cells9071661. [PMID: 32664214 PMCID: PMC7407106 DOI: 10.3390/cells9071661] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
The heterogeneity of glioblastomas, the most common primary malignant brain tumor, remains a significant challenge for the treatment of these devastating tumors. Therefore, novel combination treatments are warranted. Here, we showed that the combined inhibition of TRAP1 by gamitrinib and histone deacetylases (HDAC1/HDAC2) through romidepsin or panobinostat caused synergistic growth reduction of established and patient-derived xenograft (PDX) glioblastoma cells. This was accompanied by enhanced cell death with features of apoptosis and activation of caspases. The combination treatment modulated the levels of pro- and anti-apoptotic Bcl-2 family members, including BIM and Noxa, Mcl-1, Bcl-2 and Bcl-xL. Silencing of Noxa, BAK and BAX attenuated the effects of the combination treatment. At the metabolic level, the combination treatment led to an enhanced reduction of oxygen consumption rate and elicited an unfolded stress response. Finally, we tested whether the combination treatment of gamitrinib and panobinostat exerted therapeutic efficacy in PDX models of glioblastoma (GBM) in mice. While single treatments led to mild to moderate reduction in tumor growth, the combination treatment suppressed tumor growth significantly stronger than single treatments without induction of toxicity. Taken together, we have provided evidence that simultaneous targeting of TRAP1 and HDAC1/2 is efficacious to reduce tumor growth in model systems of glioblastoma.
Collapse
|
26
|
Ilan Y. Overcoming Compensatory Mechanisms toward Chronic Drug Administration to Ensure Long-Term, Sustainable Beneficial Effects. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:335-344. [PMID: 32671136 PMCID: PMC7341037 DOI: 10.1016/j.omtm.2020.06.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic administration of drugs leads to the activation of compensatory mechanisms that may inhibit some of their activity and induce unwanted toxicity. These mechanisms are an obstacle for maintaining a sustainable effect for many chronic medications. Pathways that adapt to the burden induced by chronic drugs, whether or not related to the underlying disease, can lead to a partial or complete loss of effect. Variability characterizes many biological systems and manifests itself as large intra- and inter-individual differences in the response to drugs. Circadian rhythm-based chronotherapy is further associated with variability in responses noted among patients. This paper reviews current knowledge regarding the loss of effect of chronic medications and the range of variabilities that have been described in responses and loss of responses. Establishment of a personalized platform for overcoming these prohibitive mechanisms is presented as a model for ensuring long-term sustained medication effects. This novel platform implements personalized variability signatures and individualized circadian rhythms for preventing and opposing the prohibitive effect of the compensatory mechanisms induced by chronic drug administration.
Collapse
Affiliation(s)
- Yaron Ilan
- Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, IL91120 Jerusalem, Israel
- Corresponding author: Yaron Ilan, MD, Department of Medicine, Hebrew University-Hadassah Medical Center, Ein-Kerem, POB 1200, IL91120 Jerusalem, Israel
| |
Collapse
|
27
|
The c-MET oncoprotein: Function, mechanisms of degradation and its targeting by novel anti-cancer agents. Biochim Biophys Acta Gen Subj 2020; 1864:129650. [PMID: 32522525 DOI: 10.1016/j.bbagen.2020.129650] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The c-MET oncoprotein drives cancer progression in a variety of tumors through its signaling transduction pathways. This oncoprotein is also degraded by multiple mechanisms involving the lysosome, proteasome and cleavage by proteases. Targeting c-MET degradation pathways may result in effective therapeutic strategies. SCOPE OF REVIEW Since the discovery of oncogenic functions of c-MET, there has been a great deal of effort to develop anti-cancer drugs targeting this oncoprotein. Unexpectedly, novel di-2-pyridylketone thiosemicarbazones that demonstrate marked anti-tumor activity, down-regulate c-MET through their ability to bind intracellular iron and via mechanisms including, down-regulation of MET mRNA, enhanced lysosomal processing and increased metalloprotease-mediated cleavage. MAJOR CONCLUSIONS The c-MET oncoprotein regulation and degradation pathways are complex. However, with increasing understanding of its degradation mechanisms, there is also greater opportunities to therapeutically target these pathways. GENERAL SIGNIFICANCE Understanding the mechanisms of degradation of c-MET protein and its regulation could lead to novel therapeutics.
Collapse
|
28
|
Huang X, Li E, Shen H, Wang X, Tang T, Zhang X, Xu J, Tang Z, Guo C, Bai X, Liang T. Targeting the HGF/MET Axis in Cancer Therapy: Challenges in Resistance and Opportunities for Improvement. Front Cell Dev Biol 2020; 8:152. [PMID: 32435640 PMCID: PMC7218174 DOI: 10.3389/fcell.2020.00152] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/25/2020] [Indexed: 12/28/2022] Open
Abstract
Among hundreds of thousands of signal receptors contributing to oncogenic activation, tumorigenesis, and metastasis, the hepatocyte growth factor (HGF) receptor - also called tyrosine kinase MET - is a promising target in cancer therapy as its axis is involved in several different cancer types. It is also associated with poor outcomes and is involved in the development of therapeutic resistance. Several HGF/MET-neutralizing antibodies and MET kinase-specific small molecule inhibitors have been developed, resulting in some context-dependent progress in multiple cancer treatments. Nevertheless, the concomitant therapeutic resistance largely inhibits the translation of such targeted drug candidates into clinical application. Until now, numerous studies have been performed to understand the molecular, cellular, and upstream mechanisms that regulate HGF/MET-targeted drug resistance, further explore novel strategies to reduce the occurrence of resistance, and improve therapeutic efficacy after resistance. Intriguingly, emerging evidence has revealed that, in addition to its conventional function as an oncogene, the HGF/MET axis stands at the crossroads of tumor autophagy, immunity, and microenvironment. Based on current progress, this review summarizes the current challenges and simultaneously proposes future opportunities for HGF/MET targeting for therapeutic cancer interventions.
Collapse
Affiliation(s)
- Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Enliang Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Hang Shen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Xun Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Tianyu Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Xiaozhen Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Jian Xu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Zengwei Tang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Chengxiang Guo
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Xueli Bai
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| | - Tingbo Liang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Innovation Center for the Study of Pancreatic Diseases, Zhejiang Province, Hangzhou, China
| |
Collapse
|
29
|
Yu H, Li Z, Wang M. Expression and prognostic role of E2F transcription factors in high-grade glioma. CNS Neurosci Ther 2020; 26:741-753. [PMID: 32064771 PMCID: PMC7299000 DOI: 10.1111/cns.13295] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Patients with high‐grade glioma (HGG) suffered poor survival due to inherent or acquired therapeutic resistance and refractory recurrence. The outcome of HGG patients has improved little during the past decade. Therefore, molecular signatures are urgently needed for improving diagnosis, survival prediction and identification of therapeutic targets for HGG. E2F transcription factors (E2Fs), a family of transcription factors recognized as master regulators of cell proliferation, have been found to be involved in the pathogenesis of various tumor types. Aims To investigate the expression of E2Fs and their prognosis value in high‐grade glioma (HGG). Results Expression of E2Fs was analyzed in 394 HGG samples from TCGA dataset. E2Fs were generally expressed in HGG. Except for E2F3 and E2F5, expression of E2Fs was significantly upregulated and linked with grade progression. E2F1, E2F2, E2F7, and E2F8 were highly correlated with aggressive proliferation oncogenes, as well as potential therapeutic resistance oncogenes. Elevated E2Fs (not E2F3) were associated with adverse tumor features and poorer outcome. E2F7 and E2F8 exhibited superior outcome prediction performance compared with other E2Fs. Additionally, E2F7 and E2F8 independently predicted poorer survival in HGG patients. Gene set enrichment analysis identified a variety of critical oncogenic pathways that were tightly associated with E2F7 or E2F8, including epithelial‐mesenchymal transition, NFκB, STAT3, angiogenesis pathways. Furthermore, elevated expression of E2F7 indicated worse therapeutic response of HGG to irradiation and silencing of E2F7 conferred higher cell‐killing effect when combined with irradiation treatment. Mechanically, E2F7 directly regulates the transcriptional activity of EZH2 via binding at the corresponding promoter area. Conclusions E2Fs (except for E2F3 and E2F5) are highly expressed in HGG and indicate adverse outcome. E2F7 and E2F8 were identified as novel potential prognostic markers in HGG. E2F7 was further validated to be closely associated with radioresistance of HGG and a critical transcriptional regulator of EZH2.
Collapse
Affiliation(s)
- Hai Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhijin Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Maode Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
30
|
Zhang Y, Nguyen TTT, Shang E, Mela A, Humala N, Mahajan A, Zhao J, Shu C, Torrini C, Sanchez-Quintero MJ, Kleiner G, Bianchetti E, Westhoff MA, Quinzii CM, Karpel-Massler G, Bruce JN, Canoll P, Siegelin MD. MET Inhibition Elicits PGC1α-Dependent Metabolic Reprogramming in Glioblastoma. Cancer Res 2019; 80:30-43. [PMID: 31694905 DOI: 10.1158/0008-5472.can-19-1389] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/18/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
The receptor kinase c-MET has emerged as a target for glioblastoma therapy. However, treatment resistance emerges inevitably. Here, we performed global metabolite screening with metabolite set enrichment coupled with transcriptome and gene set enrichment analysis and proteomic screening, and identified substantial reprogramming of tumor metabolism involving oxidative phosphorylation and fatty acid oxidation (FAO) with substantial accumulation of acyl-carnitines accompanied by an increase of PGC1α in response to genetic (shRNA and CRISPR/Cas9) and pharmacologic (crizotinib) inhibition of c-MET. Extracellular flux and carbon tracing analyses (U-13C-glucose, U-13C-glutamine, and U-13C-palmitic acid) demonstrated enhanced oxidative metabolism, which was driven by FAO and supported by increased anaplerosis of glucose carbons. These findings were observed in concert with increased number and fusion of mitochondria and production of reactive oxygen species. Genetic interference with PGC1α rescued this oxidative phenotype driven by c-MET inhibition. Silencing and chromatin immunoprecipitation experiments demonstrated that cAMP response elements binding protein regulates the expression of PGC1α in the context of c-MET inhibition. Interference with both oxidative phosphorylation (metformin, oligomycin) and β-oxidation of fatty acids (etomoxir) enhanced the antitumor efficacy of c-MET inhibition. Synergistic cell death was observed with c-MET inhibition and gamitrinib treatment. In patient-derived xenograft models, combination treatments of crizotinib and etomoxir, and crizotinib and gamitrinib were significantly more efficacious than single treatments and did not induce toxicity. Collectively, we have unraveled the mechanistic underpinnings of c-MET inhibition and identified novel combination therapies that may enhance its therapeutic efficacy. SIGNIFICANCE: c-MET inhibition causes profound metabolic reprogramming that can be targeted by drug combination therapies.
Collapse
Affiliation(s)
- Yiru Zhang
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Trang T T Nguyen
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Enyuan Shang
- Department of Biological Sciences, Bronx Community College, City University of New York, Bronx, New York
| | - Angeliki Mela
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Nelson Humala
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Aayushi Mahajan
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Junfei Zhao
- Department of Biomedical Informatics, Columbia University, New York, New York
| | - Chang Shu
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Consuelo Torrini
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | | | - Giulio Kleiner
- Department of Neurology, Columbia University Medical Center, New York, New York
| | - Elena Bianchetti
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, New York
| | | | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York.
| |
Collapse
|
31
|
Susman S, Pîrlog R, Leucuța D, Mitre AO, Padurean VA, Melincovici C, Moldovan I, Crișan D, Florian SI. The role of p-Stat3 Y705 immunohistochemistry in glioblastoma prognosis. Diagn Pathol 2019; 14:124. [PMID: 31690341 PMCID: PMC6829927 DOI: 10.1186/s13000-019-0903-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/14/2019] [Indexed: 12/27/2022] Open
Abstract
Background In spite of the multimodal treatment used today, glioblastoma is still the most aggressive and lethal cerebral tumour. To increase survival in these patients, novel therapeutic targets must be discovered. Signal transducer and activator of transcription 3 (Stat3), a transcription factor that controls normal cell differentiation and survival is also involved in neoplastic celltransformation. In this study we evaluated the immunohistochemical expression of pY705-Stat3 in patients with primary glioblastoma and determined its prognostic role by correlating it with survival. Methods This retrospective study included 94 patients diagnosed with glioblastoma. We determined the localization, number of positive cells, and marker intensity for pY705-Stat3 in these patients with the use of immunohistochemistry. The prognostic role was determined by correlating pY705-Stat3 expression on formalin-fixed paraffin-embedded tumour tissues with the patient’s survival in univariate and multivariate COX regressions. Results We found a statistically significant difference in survival between the patients with more than 20% pY705-Stat3 positive cells and those with less than 20% pY705-Stat3 positive cells (8.9 months median survival versus 13.7 months medial survival, p < 0.001). On multivariate analyses with the COX proportional hazards regression model including pY705-Stat3 expression, age and relapse status, pY705-Stat3 status was an independent prognostic factor in glioblastoma (P < 0.001). Conclusion The results obtained show that the immunohistochemical expression of pY705-Stat3 correlates with survival in glioblastoma. This study identifies Stat3 as a possible target for existing or new developed Stat3 inhibitors.
Collapse
Affiliation(s)
- Sergiu Susman
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349, Cluj-Napoca, Romania. .,Department of Pathology, Imogen Research Centre, Cluj-Napoca, Romania.
| | - Radu Pîrlog
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Daniel Leucuța
- Department of Medical Informatics and Biostatistics, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei Otto Mitre
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | | | - Carmen Melincovici
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Ioana Moldovan
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349, Cluj-Napoca, Romania
| | - Doinița Crișan
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 6 Pasteur Street, 400349, Cluj-Napoca, Romania.,Department of Pathology, Emergency County Hospital, Cluj-Napoca, Romania
| | - Stefan Ioan Florian
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Neurosurgery, Emergency County Hospital, Cluj-Napoca, Romania
| |
Collapse
|
32
|
Yang L, Lin S, Xu L, Lin J, Zhao C, Huang X. Novel activators and small-molecule inhibitors of STAT3 in cancer. Cytokine Growth Factor Rev 2019; 49:10-22. [PMID: 31677966 DOI: 10.1016/j.cytogfr.2019.10.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
Excessive activation of signal transducer and activator of transcription 3 (STAT3) signaling is observed in a subset of many cancers, making activated STAT3 a highly promising potential therapeutic target supported by multiple preclinical and clinical studies. However, early-phase clinical trials have produced mixed results with STAT3-targeted cancer therapies, revealing substantial complexity to targeting aberrant STAT3 signaling. This review discusses the diverse mechanisms of oncogenic activation of STAT3, and the small molecule inhibitors of STAT3 in cancer treatment.
Collapse
Affiliation(s)
- Lehe Yang
- Department of Respiratory Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China; Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Shichong Lin
- Department of Respiratory Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Lingyuan Xu
- Department of Respiratory Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Chengguang Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Xiaoying Huang
- Department of Respiratory Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
33
|
Cao J, Zhao E, Zhu Q, Ji J, Wei Z, Xu B, Cui H. Tubeimoside-1 Inhibits Glioblastoma Growth, Migration, and Invasion via Inducing Ubiquitylation of MET. Cells 2019; 8:E774. [PMID: 31349699 PMCID: PMC6721480 DOI: 10.3390/cells8080774] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/14/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Tubeimoside-1 (TBMS1) is one of the extracts of rhizoma bolbostemmae, which has remarkable anti-cancer function in the treatment of esophagus and gastric cancer in traditional Chinese medicine. However the mechanisms of its anti-cancer function is remain unclear. In this study, we demonstrate that TBMS1 could inhibit cell growth and metastasis in glioblastoma. MET is a member of the receptor tyrosine kinase family, which amplifies frequently in various human cancers. As an important proto-oncogene, multiple inhibitors have been developed for the therapy of cancers. Here, we found TBMS1 could reduce/decrease the protein level of MET via increasing its Ubiquitination degradation. Therefore, TBMS1 is a promising compound for the treatment of glioblastoma and an inhibitor of MET.
Collapse
Affiliation(s)
- Jiangjun Cao
- Chongqing Engineering Research Center of Antitumor Natural Drugs, Chongqing Three Gorges Medical College, Chongqing 404120, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
- Institute of Medicine of Southwest University, Southwest University, Chongqing 400715, China
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Qingzong Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Juanli Ji
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Zekun Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Bo Xu
- Institute of Medicine of Southwest University, Southwest University, Chongqing 400715, China.
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
34
|
Dawson JC, Warchal SJ, Carragher NO. Drug Screening Platforms and RPPA. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1188:203-226. [PMID: 31820390 DOI: 10.1007/978-981-32-9755-5_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Since its inception as a scalable and cost-effective method for precise quantification of the abundance of multiple protein analytes and post-translational epitopes across large sample sets, reverse phase protein array (RPPA) has been utilized as a drug discovery tool. Key RPPA drug discovery applications include primary screening of abundance or activation state of nominated protein targets, secondary screening for toxicity and selectivity, mechanism-of-action profiling, biomarker discovery, and drug combination discovery. In recent decades, drug discovery strategies have evolved dramatically in response to continual advances in technology platforms supporting high-throughput screening, structure-based drug design, new therapeutic modalities, and increasingly more complex and disease-relevant cell-based and in vivo preclinical models of disease. Advances in biological laboratory capabilities in drug discovery are complemented by significant developments in bioinformatics and computational approaches for integrating large complex datasets. Bioinformatic and computational analysis of integrated molecular, pathway network and phenotypic datasets enhance multiple stages of the drug discovery process and support more informative drug target hypothesis generation and testing. In this chapter we discuss and present examples demonstrating how the latest advances in RPPA complement and integrate with other emerging drug screening platforms to support a new era of more informative and evidence-led drug discovery strategies.
Collapse
Affiliation(s)
- John C Dawson
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Scott J Warchal
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland, UK.
| |
Collapse
|
35
|
Du M, Wang J, Chen H, Wang S, Chen L, Xu Y, Su F, Lu X. MicroRNA‑200a suppresses migration and invasion and enhances the radiosensitivity of NSCLC cells by inhibiting the HGF/c‑Met signaling pathway. Oncol Rep 2018; 41:1497-1508. [PMID: 30569179 PMCID: PMC6365696 DOI: 10.3892/or.2018.6925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Hepatocyte growth factor (HGF), an activator of the c‑Met signaling pathway, is involved in tumor invasiveness, metastasis and radiotherapy resistance. In the present study, a novel HGF regulatory pathway in lung cancer involving micro-RNAs (miRNAs/miR) is described. Immunohistochemical staining and western blot analyses demonstrated that HGF was upregulated and associated with miR‑200a downregulation in non‑small cell lung cancer (NSCLC) samples compared with normal lung tissues. The association between HGF and miR‑200a was associated with the degree of tumor malignancy and cell migration and invasion. miR‑200a negatively regulated HGF expression by targeting the 3'‑untranslated region of the HGF mRNA. miR‑200a overexpression induced HGF downregulation, decreased NSCLC cell migration and invasion, promoted apoptosis, and decreased cell survival in A549 and H1299 cells in response to ionizing radiation. The present results revealed a previously uncharacterized role of miRNA‑200a in regulating tumor malignancy and radiosensitivity by suppressing HGF expression, a key factor in the HGF/c‑Met pathway.
Collapse
Affiliation(s)
- Menghua Du
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jin Wang
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Huan Chen
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Shouli Wang
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Liesong Chen
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Yichang Xu
- Department of Pathology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Fengtao Su
- Cancer Institute, Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Xueguan Lu
- Department of Oncology and Radiotherapy, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|