1
|
Sengar D, Pathan NS, Gajbhiye V. D-bait: A siDNA for regulation of DNA-protein kinases against DNA damage and its implications in cancer. Int J Pharm 2025; 673:125416. [PMID: 40024452 DOI: 10.1016/j.ijpharm.2025.125416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/31/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
siDNA fragments, also called Dbait and Pbait, are small DNA oligonucleotides of 30-32 base pairs that cause impairment in DNA repair pathways. Like siRNA and miRNA molecules, which lead to the degradation of mRNA molecules through the Argonaute and Drosha machinery, respectively, Dbait molecules act as false DNA damage signals and trigger and exhaust the DNA repair machinery. In normal cells with no significant DNA damage, the influence of these molecules is negligible. However, in cancer, when there is heavy DNA damage due to replication and anticancer therapies, the cancer cell is heavily dependent on DNA repair proteins to keep the genome intact and limit breaks. This phenomenon primarily occurs during radiation therapy, as significant DNA damage surpasses several DNA repair mechanisms, causing an accumulation of unrepaired lesions and ultimately leading to cell death. This review explores the therapeutic capacity of siDNA molecules in cancer treatment by stimulating the repair mechanisms in cells that depend on DNA repair pathways. For aggressive malignancies such as glioblastoma, prostate cancer, and colorectal cancer, the use of siDNA as a radiosensitizer, especially when combined with other treatments, increases the vulnerability of tumor cells to radiation-induced DNA damage, hence potentially enhancing therapy results.
Collapse
Affiliation(s)
- Devyani Sengar
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Nida Sayed Pathan
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India
| | - Virendra Gajbhiye
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; Savitribai Phule Pune University, Pune 411007, India.
| |
Collapse
|
2
|
Gotorbe C, Segui F, Echavidre W, Durivault J, Blanchard T, Vial V, Pagnuzzi-Boncompagni M, Villeneuve R, Amblard R, Garnier N, Ortholan C, Serrano B, Picco V, Pouysségur J, Vucetic M, Montemagno C. Exploiting Integrin-αVβ3 to Enhance Radiotherapy Efficacy in Medulloblastoma via Ferroptosis. Curr Oncol 2024; 31:7390-7402. [PMID: 39590175 PMCID: PMC11592711 DOI: 10.3390/curroncol31110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/31/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Medulloblastoma, a malignant pediatric brain tumor, has a poor prognosis upon relapse, highlighting a critical clinical need. Our previous research linked medulloblastoma cell radioresistance to integrin-αvβ3 expression. β3-depleted (β3_KO) medulloblastoma cells exhibit lipid hydroxyperoxide accumulation after radiotherapy, indicating ferroptosis, a regulated cell death induced by ROS and inhibited by antioxidants such as cysteine, glutathione (GSH), and glutathione peroxidase 4 (GPx4). However, the link between αvβ3 expression, ferroptosis inhibition, and sensitivity to radiotherapy remains unclear. We showed that irradiated β3_KO medulloblastoma cells primarily die by ferroptosis, with β3-subunit expression correlating with radiotherapy sensitivity and anti-ferroptotic protein levels. Our findings suggest that integrin-αvβ3 signaling boosts oxidative stress resilience via mTORC1. Thus, targeting integrin-αvβ3 could enhance radiotherapy efficacy in medulloblastoma by inducing ferroptotic cell death.
Collapse
Affiliation(s)
- Célia Gotorbe
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| | - Fabien Segui
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| | - William Echavidre
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| | - Jérôme Durivault
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| | - Thays Blanchard
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| | - Valérie Vial
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| | - Marina Pagnuzzi-Boncompagni
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| | - Rémy Villeneuve
- Radiophysics Department, Princess Grace Hospital, 98000 Monaco, Monaco; (R.V.); (R.A.); (N.G.); (B.S.)
| | - Régis Amblard
- Radiophysics Department, Princess Grace Hospital, 98000 Monaco, Monaco; (R.V.); (R.A.); (N.G.); (B.S.)
| | - Nicolas Garnier
- Radiophysics Department, Princess Grace Hospital, 98000 Monaco, Monaco; (R.V.); (R.A.); (N.G.); (B.S.)
| | - Cécile Ortholan
- Radiotherapy Department, Princess Grace Hospital, 98000 Monaco, Monaco;
| | - Benjamin Serrano
- Radiophysics Department, Princess Grace Hospital, 98000 Monaco, Monaco; (R.V.); (R.A.); (N.G.); (B.S.)
| | - Vincent Picco
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| | - Jacques Pouysségur
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
- CNRS, INSERM, Centre A. Lacassagne, Institute for Research on Cancer & Aging (IRCAN), University Côte d’Azur, 06107 Nice, France
| | - Milica Vucetic
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| | - Christopher Montemagno
- Biomedical Department, Centre Scientifique de Monaco, 98000 Monaco, Monaco; (C.G.); (F.S.); (W.E.); (J.D.); (T.B.); (V.V.); (M.P.-B.); (V.P.); (J.P.)
| |
Collapse
|
3
|
Sesink A, Becerra M, Ruan JL, Leboucher S, Dubail M, Heinrich S, Jdey W, Petersson K, Fouillade C, Berthault N, Dutreix M, Girard PM. The AsiDNA™ decoy mimicking DSBs protects the normal tissue from radiation toxicity through a DNA-PK/p53/p21-dependent G1/S arrest. NAR Cancer 2024; 6:zcae011. [PMID: 38476631 PMCID: PMC10928987 DOI: 10.1093/narcan/zcae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
AsiDNA™, a cholesterol-coupled oligonucleotide mimicking double-stranded DNA breaks, was developed to sensitize tumour cells to radio- and chemotherapy. This drug acts as a decoy hijacking the DNA damage response. Previous studies have demonstrated that standalone AsiDNA™ administration is well tolerated with no additional adverse effects when combined with chemo- and/or radiotherapy. The lack of normal tissue complication encouraged further examination into the role of AsiDNA™ in normal cells. This research demonstrates the radioprotective properties of AsiDNA™. In vitro, AsiDNA™ induces a DNA-PK/p53/p21-dependent G1/S arrest in normal epithelial cells and fibroblasts that is absent in p53 deficient and proficient tumour cells. This cell cycle arrest improved survival after irradiation only in p53 proficient normal cells. Combined administration of AsiDNA™ with conventional radiotherapy in mouse models of late and early radiation toxicity resulted in decreased onset of lung fibrosis and increased intestinal crypt survival. Similar results were observed following FLASH radiotherapy in standalone or combined with AsiDNA™. Mechanisms comparable to those identified in vitro were detected both in vivo, in the intestine and ex vivo, in precision cut lung slices. Collectively, the results suggest that AsiDNA™ can partially protect healthy tissues from radiation toxicity by triggering a G1/S arrest in normal cells.
Collapse
Affiliation(s)
- Anouk Sesink
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Margaux Becerra
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Jia-Ling Ruan
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
| | - Sophie Leboucher
- Histology platform, Institut Curie, CNRS UMR3348, 91405 Orsay, France
| | - Maxime Dubail
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Sophie Heinrich
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Wael Jdey
- Valerio Therapeutics, 49 Bd du Général Martial Valin, 75015 Paris, France
| | - Kristoffer Petersson
- Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, UK
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund University, Lund, Sweden
| | - Charles Fouillade
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Nathalie Berthault
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Marie Dutreix
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| | - Pierre-Marie Girard
- Institut Curie, Université PSL, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
- Université Paris-Saclay, CNRS UMR 3347, INSERM U1021, 91405 Orsay, France
| |
Collapse
|
4
|
Peng X, Pan W, Jiang F, Chen W, Qi Z, Peng W, Chen J. Selective PARP1 Inhibitors, PARP1-based Dual-Target Inhibitors, PROTAC PARP1 Degraders, and Prodrugs of PARP1 Inhibitors for Cancer Therapy. Pharmacol Res 2022; 186:106529. [DOI: 10.1016/j.phrs.2022.106529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
|
5
|
The Usefulness of Autoradiography for DNA Repair Proteins Activity Detection in the Cytoplasm towards Radiolabeled Oligonucleotides Containing 5′,8-Cyclo-2′-deoxyAdenosine. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Autoradiography of 32P-radiolabeled oligonucleotides is one of the most precise detection methods of DNA repair processes. In this study, autoradiography allowed assessing the activity of proteins in the cytoplasm involved in DNA repair. The cytoplasm is the site of protein biosynthesis but is also a target cellular compartment of synthetic therapeutic oligonucleotide (STO) delivery. The DNA-based drugs may be impaired by radiation-induced lesions, such as clustered DNA lesions (CDL) and/or 5′,8-cyclo-2′-deoxypurines (cdPu). CDL and cdPu may appear in the sequence of STO after irradiation and subsequently impair DNA repair, as shown in previous studies. Hence, the interesting questions are (1) is it safe to combine STO treatment with radiotherapy; (2) are repair proteins active in the cytoplasm; and (3) is their activity different in the cytoplasm than in the nucleus? This unique study examined whether the proteins involved in the DNA repair are affected by the CDL while they are still present in the cytoplasm of xrs5, BJ, and XPC cells. Double-stranded oligonucleotides with bi-stranded CDL were used (containing AP site in one strand and a (5′S) or (5′R) 5′,8-cyclo-2′-deoxyadenosine (cdA) in the other strand located 1 or 4 bp in both directions). The results have shown that the proteins involved in the repair were active in the cytoplasm, but less than in the nucleus. The general trends aligned for cytoplasm and nucleus—lesions located in the 5′-end direction inhibited the course of DNA repair. The combination of STO with radiotherapy should be applied carefully, as unrepaired lesions within STO may impair their therapeutic efficiency.
Collapse
|
6
|
The Current Landscape of Targeted Clinical Trials in Non-WNT/Non-SHH Medulloblastoma. Cancers (Basel) 2022; 14:cancers14030679. [PMID: 35158947 PMCID: PMC8833659 DOI: 10.3390/cancers14030679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Medulloblastoma is a form of malignant brain tumor that arises predominantly in infants and young children and can be divided into different groups based on molecular markers. The group of non-WNT/non-SHH medulloblastoma includes a spectrum of heterogeneous subgroups that differ in their biological characteristics, genetic underpinnings, and clinical course of disease. Non-WNT/non-SHH medulloblastoma is currently treated with surgery, chemotherapy, and radiotherapy; however, new drugs are needed to treat patients who are not yet curable and to reduce treatment-related toxicity and side effects. We here review which new treatment options for non-WNT/non-SHH medulloblastoma are currently clinically tested. Furthermore, we illustrate the challenges that have to be overcome to reach a new therapeutic standard for non-WNT/non-SHH medulloblastoma, for instance the current lack of good preclinical models, and the necessity to conduct trials in a comparably small patient collective. Abstract Medulloblastoma is an embryonal pediatric brain tumor and can be divided into at least four molecularly defined groups. The category non-WNT/non-SHH medulloblastoma summarizes medulloblastoma groups 3 and 4 and is characterized by considerable genetic and clinical heterogeneity. New therapeutic strategies are needed to increase survival rates and to reduce treatment-related toxicity. We performed a noncomprehensive targeted review of the current clinical trial landscape and literature to summarize innovative treatment options for non-WNT/non-SHH medulloblastoma. A multitude of new drugs is currently evaluated in trials for which non-WNT/non-SHH patients are eligible, for instance immunotherapy, kinase inhibitors, and drugs targeting the epigenome. However, the majority of these trials is not restricted to medulloblastoma and lacks molecular classification. Whereas many new molecular targets have been identified in the last decade, which are currently tested in clinical trials, several challenges remain on the way to reach a new therapeutic strategy for non-WNT/non-SHH medulloblastoma. These include the severe lack of faithful preclinical models and predictive biomarkers, the question on how to stratify patients for clinical trials, and the relative lack of studies that recruit large, homogeneous patient collectives. Innovative trial designs and international collaboration will be a key to eventually overcome these obstacles.
Collapse
|
7
|
Targeting DNA Repair and Chromatin Crosstalk in Cancer Therapy. Cancers (Basel) 2021; 13:cancers13030381. [PMID: 33498525 PMCID: PMC7864178 DOI: 10.3390/cancers13030381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Targeting aberrant DNA repair in cancers in addition to transcription and replication is an area of interest for cancer researchers. Inhibition of DNA repair selectively in cancer cells leads to cytotoxic or cytostatic effects and overcomes survival advantages imparted by chromosomal translocations or mutations. In this review, we highlight the relevance of DNA repair-linked events in developmental diseases and cancers and also discuss mechanisms to overcome these events that participate in different cellular processes. Abstract Aberrant DNA repair pathways that underlie developmental diseases and cancers are potential targets for therapeutic intervention. Targeting DNA repair signal effectors, modulators and checkpoint proteins, and utilizing the synthetic lethality phenomena has led to seminal discoveries. Efforts to efficiently translate the basic findings to the clinic are currently underway. Chromatin modulation is an integral part of DNA repair cascades and an emerging field of investigation. Here, we discuss some of the key advancements made in DNA repair-based therapeutics and what is known regarding crosstalk between chromatin and repair pathways during various cellular processes, with an emphasis on cancer.
Collapse
|