1
|
Strell C, Rodríguez-Tomàs E, Östman A. Functional and clinical roles of stromal PDGF receptors in tumor biology. Cancer Metastasis Rev 2024; 43:1593-1609. [PMID: 38980580 PMCID: PMC11554757 DOI: 10.1007/s10555-024-10194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024]
Abstract
PDGF receptors play pivotal roles in both developmental and physiological processes through the regulation of mesenchymal cells involved in paracrine instructive interactions with epithelial or endothelial cells. Tumor biology studies, alongside analyses of patient tissue samples, provide strong indications that the PDGF signaling pathways are also critical in various types of human cancer. This review summarizes experimental findings and correlative studies, which have explored the biological mechanisms and clinical relevance of PDGFRs in mesenchymal cells of the tumor microenvironment. Collectively, these studies support the overall concept that the PDGF system is a critical regulator of tumor growth, metastasis, and drug efficacy, suggesting yet unexploited targeting opportunities. The inter-patient variability in stromal PDGFR expression, as being linked to prognosis and treatment responses, not only indicates the need for stratified approaches in upcoming therapeutic investigations but also implies the potential for the development of PDGFRs as biomarkers of clinical utility, interestingly also in settings outside PDGFR-directed treatments.
Collapse
Affiliation(s)
- Carina Strell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Bergen University, Bergen, Norway
| | | | - Arne Östman
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, Bergen University, Bergen, Norway.
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Qi Y, Deng SM, Wang KS. Receptor tyrosine kinases in breast cancer treatment: unraveling the potential. Am J Cancer Res 2024; 14:4172-4196. [PMID: 39417188 PMCID: PMC11477839 DOI: 10.62347/kivs3169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Breast cancer is a multifactorial disease driven by acquired genetic and epigenetic changes that lead to aberrant regulation of cellular signaling pathways. Receptor tyrosine kinases (RTKs), a class of critical receptors, are involved in the initiation and progression of breast cancer. RTKs are cell surface receptors with unique structures and biological characteristics, which respond to environmental signals by initiating signaling cascades such as the mitogen-activated protein kinase (MAPK) pathway, Janus kinase (JAK)/signal transducer, activator of transcription (STAT) pathway, and phosphoinositide 3-kinase (PI3K)/AKT pathway. The critical role of RTKs makes them suitable targets for breast cancer treatment. Targeted therapies against RTKs have been developed in recent years, evaluated in clinical trials, and approved for several cancer types, including breast cancer. However, breast cancer displays molecular heterogeneity and exhibits different therapeutic responses to various drug types, leading to limited effectiveness of targeted therapy against RTKs. In this review, we summarize the structural and functional characteristics of selected RTKs and discuss the mechanisms and current status of drug therapy involving different protein tyrosine kinases in breast cancer progression.
Collapse
Affiliation(s)
- Yu Qi
- Department of Pathology, School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
| | - Shu-Min Deng
- Department of Pathology, School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
| | - Kuan-Song Wang
- Department of Pathology, School of Basic Medical Sciences, Central South UniversityChangsha, Hunan, China
- Department of Pathology, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| |
Collapse
|
3
|
Reid SE, Pantaleo J, Bolivar P, Bocci M, Sjölund J, Morsing M, Cordero E, Larsson S, Malmberg M, Seashore-Ludlow B, Pietras K. Cancer-associated fibroblasts rewire the estrogen receptor response in luminal breast cancer, enabling estrogen independence. Oncogene 2024; 43:1113-1126. [PMID: 38388711 PMCID: PMC10997519 DOI: 10.1038/s41388-024-02973-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
Advanced breast cancers represent a major therapeutic challenge due to their refractoriness to treatment. Cancer-associated fibroblasts (CAFs) are the most abundant constituents of the tumor microenvironment and have been linked to most hallmarks of cancer. However, the influence of CAFs on therapeutic outcome remains largely unchartered. Here, we reveal that spatial coincidence of abundant CAF infiltration with malignant cells was associated with reduced estrogen receptor (ER)-α expression and activity in luminal breast tumors. Notably, CAFs mediated estrogen-independent tumor growth by selectively regulating ER-α signaling. Whereas most prototypical estrogen-responsive genes were suppressed, CAFs maintained gene expression related to therapeutic resistance, basal-like differentiation, and invasion. A functional drug screen in co-cultures identified effector pathways involved in the CAF-induced regulation of ER-α signaling. Among these, the Transforming Growth Factor-β and the Janus kinase signaling cascades were validated as actionable targets to counteract the CAF-induced modulation of ER-α activity. Finally, genes that were downregulated in cancer cells by CAFs were predictive of poor response to endocrine treatment. In conclusion, our work reveals that CAFs directly control the luminal breast cancer phenotype by selectively modulating ER-α expression and transcriptional function, and further proposes novel targets to disrupt the crosstalk between CAFs and tumor cells to reinstate treatment response to endocrine therapy in patients.
Collapse
Affiliation(s)
- Steven E Reid
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden
| | - Jessica Pantaleo
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden
| | - Paulina Bolivar
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden
| | - Matteo Bocci
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden
| | - Jonas Sjölund
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden
| | - Mikkel Morsing
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden
| | - Eugenia Cordero
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden
| | - Sara Larsson
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden
| | - Maria Malmberg
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden
| | - Brinton Seashore-Ludlow
- Department of Oncology-Pathology, SciLifeLab, Stockholm, Sweden
- Chemical Biology Consortium Sweden (CBCS), Karolinska Institute, Stockholm, Sweden
| | - Kristian Pietras
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University Cancer Centre, Medicon Village, Lund University, Lund, Sweden.
| |
Collapse
|
4
|
Yang N, Hellevik T, Berzaghi R, Martinez‐Zubiaurre I. Radiation-induced effects on TGF-β and PDGF receptor signaling in cancer-associated fibroblasts. Cancer Rep (Hoboken) 2024; 7:e2018. [PMID: 38488488 PMCID: PMC10941573 DOI: 10.1002/cnr2.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) consist of heterogeneous connective tissue cells and are often constituting the most abundant cell type in the tumor stroma. Radiation effects on tumor stromal components like CAFs in the context of radiation treatment is not well-described. AIM This study explores potential changes induced by ionizing radiation (IR) on platelet-derived growth factor (PDGF)/PDGFRs and transforming growth factor-beta (TGF-β)/TGFβRs signaling systems in CAFs. METHODS AND RESULTS Experiments were carried out by employing primary cultures of human CAFs isolated from freshly resected non-small cell lung carcinoma tumor tissues. CAF cultures from nine donors were treated with one high (1 × 18 Gy) or three fractionated (3 × 6 Gy) radiation doses. Alterations in expression levels of TGFβRII and PDGFRα/β induced by IR were analyzed by western blots and flow cytometry. In the presence or absence of cognate ligands, receptor activation was studied in nonirradiated and irradiated CAFs. Radiation exposure did not exert changes in expression of PDGF or TGF-β receptors in CAFs. Additionally, IR alone was unable to trigger activation of either receptor. The radiation regimens tested did not affect PDGFRβ signaling in the presence of PDGF-BB. In contrast, signaling via pSmad2/3 and pSmad1/5/8 appeared to be down-regulated in irradiated CAFs after stimulation with TGF-β, as compared with controls. CONCLUSION Our data demonstrate that IR by itself is insufficient to induce measurable changes in PDGF or TGF-β receptor expression levels or to induce receptor activation in CAFs. However, in the presence of their respective ligands, exposure to radiation at certain doses appear to interfere with TGF-β receptor signaling.
Collapse
Affiliation(s)
- Nannan Yang
- Department of Community Medicine, Faculty of Health SciencesUiT The Arctic University of NorwayTromsøNorway
| | - Turid Hellevik
- Department of Radiation OncologyUniversity Hospital of North NorwayTromsøNorway
| | - Rodrigo Berzaghi
- Department of Clinical Medicine, Faculty of Health SciencesUiT The Arctic University of NorwayTromsøNorway
| | - Inigo Martinez‐Zubiaurre
- Department of Clinical Medicine, Faculty of Health SciencesUiT The Arctic University of NorwayTromsøNorway
| |
Collapse
|
5
|
Pellinen T, Paavolainen L, Martín-Bernabé A, Papatella Araujo R, Strell C, Mezheyeuski A, Backman M, La Fleur L, Brück O, Sjölund J, Holmberg E, Välimäki K, Brunnström H, Botling J, Moreno-Ruiz P, Kallioniemi O, Micke P, Östman A. Fibroblast subsets in non-small cell lung cancer: Associations with survival, mutations, and immune features. J Natl Cancer Inst 2023; 115:71-82. [PMID: 36083003 DOI: 10.1093/jnci/djac178] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/30/2022] [Accepted: 09/06/2022] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are molecularly heterogeneous mesenchymal cells that interact with malignant cells and immune cells and confer anti- and protumorigenic functions. Prior in situ profiling studies of human CAFs have largely relied on scoring single markers, thus presenting a limited view of their molecular complexity. Our objective was to study the complex spatial tumor microenvironment of non-small cell lung cancer (NSCLC) with multiple CAF biomarkers, identify novel CAF subsets, and explore their associations with patient outcome. METHODS Multiplex fluorescence immunohistochemistry was employed to spatially profile the CAF landscape in 2 population-based NSCLC cohorts (n = 636) using antibodies against 4 fibroblast markers: platelet-derived growth factor receptor-alpha (PDGFRA) and -beta (PDGFRB), fibroblast activation protein (FAP), and alpha-smooth muscle actin (αSMA). The CAF subsets were analyzed for their correlations with mutations, immune characteristics, and clinical variables as well as overall survival. RESULTS Two CAF subsets, CAF7 (PDGFRA-/PDGFRB+/FAP+/αSMA+) and CAF13 (PDGFRA+/PDGFRB+/FAP-/αSMA+), showed statistically significant but opposite associations with tumor histology, driver mutations (tumor protein p53 [TP53] and epidermal growth factor receptor [EGFR]), immune features (programmed death-ligand 1 and CD163), and prognosis. In patients with early stage tumors (pathological tumor-node-metastasis IA-IB), CAF7 and CAF13 acted as independent prognostic factors. CONCLUSIONS Multimarker-defined CAF subsets were identified through high-content spatial profiling. The robust associations of CAFs with driver mutations, immune features, and outcome suggest CAFs as essential factors in NSCLC progression and warrant further studies to explore their potential as biomarkers or therapeutic targets. This study also highlights multiplex fluorescence immunohistochemistry-based CAF profiling as a powerful tool for the discovery of clinically relevant CAF subsets.
Collapse
Affiliation(s)
- Teijo Pellinen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Lassi Paavolainen
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | | | | | - Carina Strell
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Artur Mezheyeuski
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Max Backman
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Linnea La Fleur
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Oscar Brück
- Hematology Research Unit Helsinki, University of Helsinki and Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Jonas Sjölund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University Cancer Centre, Lund University, Sweden
| | - Erik Holmberg
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Katja Välimäki
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Hans Brunnström
- Division of Pathology, Lund University, Skåne University Hospital, Lund, Sweden
| | - Johan Botling
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Pablo Moreno-Ruiz
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Olli Kallioniemi
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Science for Life Laboratory (SciLifeLab), Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
6
|
Udayasiri RI, Luo T, Gorringe KL, Fox SB. Identifying recurrences and metastasis after ductal carcinoma in situ (DCIS) of the breast. Histopathology 2023; 82:106-118. [PMID: 36482277 PMCID: PMC10953414 DOI: 10.1111/his.14804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/11/2022] [Indexed: 12/13/2022]
Abstract
Ductal carcinoma in situ (DCIS) of the breast is a non-invasive tumour that has the potential to progress to invasive ductal carcinoma (IDC). Thus, it represents a treatment dilemma: alone it does not present a risk to life, however, left untreated it may progress to a life-threatening condition. Current clinico-pathological features cannot accurately predict which patients with DCIS have invasive potential, and therefore clinicians are unable to quantify the risk of progression for an individual patient. This leads to many women being over-treated, while others may not receive sufficient treatment to prevent invasive recurrence. A better understanding of the molecular features of DCIS, both tumour-intrinsic and the microenvironment, could offer the ability to better predict which women need aggressive treatment, and which can avoid therapies carrying significant side-effects and such as radiotherapy. In this review, we summarise the current knowledge of DCIS, and consider future research directions.
Collapse
Affiliation(s)
- Ruwangi I Udayasiri
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Tongtong Luo
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Kylie L Gorringe
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| | - Stephen B Fox
- Peter MacCallum Cancer Centre and the Sir Peter MacCallum Department of OncologyThe University of MelbourneMelbourneVICAustralia
| |
Collapse
|
7
|
Zhu XX, Li JH, Ni X, Wu X, Hou X, Li YX, Li SJ, Zhao W, Yin XY. Pancreatic ductal adenocarcinoma cells regulated the gemcitabine-resistance function of CAFs by LINC00460. Cancer Sci 2022; 113:3735-3750. [PMID: 36047966 PMCID: PMC9633316 DOI: 10.1111/cas.15547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal malignancy with extremely poor prognosis. Gemcitabine resistance is a major challenge in the treatment of PDAC. Here, we showed that LINC00460 was associated with the response to gemcitabine both in PDAC patients and PDAC‐PDX. After knocking down LINC00460 in PDAC tumor cells, results of RNA sequencing followed by gene ontology analysis indicated that LINC00460 influenced the activity of growth factors and modified the extracellular matrix. FISH showed that LINC00460 is mostly located in the cytoplasm. Results of RNA pull‐down, LC–MS/MS, RIP, and immunoblotting confirmed that LINC00460 could directly bind to PDAP1. Furthermore, we demonstrated that LINC00460 mediated the cellular communication of PDAC tumor cells and CAFs by PDAP1/PDGFA/PDGFR signaling pathway and regulated the gemcitabine‐resistance function of CAFs, which could be reversed by treatment with a PDGFR inhibitor (crenolanib). PDAC‐PDX tumors with lower expression of LINC00460 showed a better response to gemcitabine plus crenolanib treatment. Our finding supported the application of LINC00460 in precision medicine that uses gemcitabine plus crenolanib to treat PDAC with low expression of LINC00460.
Collapse
Affiliation(s)
- Xiao-Xu Zhu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian-Hui Li
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xuhao Ni
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao Wu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xun Hou
- Center for Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ya-Xiong Li
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shi-Jin Li
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Zhao
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|