1
|
Krass M, Kolster M, Valenzuela JI, Moldenhauer L, Kagelmacher M, Niesler N, Weng A, Zerial M, Nagel G, Fuchs H. Recombinant Expression of a Ready-to-Use EGF Variant Equipped With a Single Conjugation Site for Click-Chemistry. Eng Life Sci 2025; 25:e70015. [PMID: 40104837 PMCID: PMC11913717 DOI: 10.1002/elsc.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/02/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025] Open
Abstract
The epidermal growth factor (EGF) receptor is commonly targeted in cancer therapy because it is overexpressed in many malignant cells. However, a general problem is to couple the targeting moieties and the drug molecules in a way that results in a homogeneous product. Here, we overcome this issue by engineering a variant of EGF with a single conjugation site for coupling virtually any payload. The recombinant EGF variant K-EGFRR was expressed in E. coli Rosetta with a 4-6 mg/L yield. To confirm the accessibility of the introduced functional group, the ligand was equipped with a sulfo-cyanine dye with a loading of 0.65 dye per ligand, which enables tracking in vitro. The kinetics and affinity of ligand-receptor interaction were evaluated by enzyme-linked immunosorbent assay and surface plasmon resonance. The affinity of K-EGFRR was slightly higher when compared to the wild-type EGF (K D: 5.9 vs. 7.3 nM). Moreover, the ligand-receptor interaction and uptake in a cellular context were evaluated by flow cytometry and quantitative high-content imaging. Importantly, by attaching heterobifunctional polyethylene glycol linkers, we allowed orthogonal click-conjugation of the ligand to any payload of choice, making K-EGFRR an ideal candidate for targeted drug delivery.
Collapse
Affiliation(s)
- Melanie Krass
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Berlin Germany
| | - Meike Kolster
- Institut für Pharmazie Freie Universität Berlin Berlin Germany
| | | | - Lena Moldenhauer
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Berlin Germany
| | - Marten Kagelmacher
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Berlin Germany
- Institut für Chemie und Biochemie Freie Universität Berlin Berlin Germany
| | - Nicole Niesler
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Berlin Germany
| | - Alexander Weng
- Institut für Pharmazie Freie Universität Berlin Berlin Germany
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics Dresden Germany
| | - Gregor Nagel
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Berlin Germany
| | - Hendrik Fuchs
- Institute of Diagnostic Laboratory Medicine, Clinical Chemistry and Pathobiochemistry Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin Berlin Germany
| |
Collapse
|
2
|
Zhu YS, Wu J, Zhi F. Advances in conjugate drug delivery System: Opportunities and challenges. Int J Pharm 2024; 667:124867. [PMID: 39454974 DOI: 10.1016/j.ijpharm.2024.124867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Ideal drug delivery system is designed to accurately deliver the drug to its intended site. The development of conjugate drug delivery system introduces a novel pathway to precise drug delivery with advantages over traditional methods. The core of a conjugate drug delivery system comprises a molecule with two functional components, bounded by a linker structure. One component is responsible for delivering or stabilizing the conjugate, while the other is used to provide the therapeutic or diagnostic effects of the bioactivity. Conjugate drug delivery system improves patient health by maintaining the structural stability of drugs in molecular form, delivering therapeutics or diagnostic material to the target site, minimising off-target accumulation and promoting patient compliance. This system includes various types of drug conjugates that modulate drug pharmacokinetics, stability, absorption, and exposure in lesions and healthy tissues. In this review, we focus on the key characteristics and recent advances of various conjugate drug delivery systems and explore their mechanisms. We also point out the current challenges faced by conjugate drug delivery system and look forward to the future prospects.
Collapse
Affiliation(s)
- Yi-Shen Zhu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, PuZhuNanLu No.30, Nanjing 211816, Jiangsu Province, China.
| | - Jiaqi Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, PuZhuNanLu No.30, Nanjing 211816, Jiangsu Province, China
| | - Feng Zhi
- Department of Neurosurgery, Clinical Medical Research Center, Third Affiliated Hospital of Soochow University, Juqian Road No.185, Changzhou 213000, Jiangsu Province, China
| |
Collapse
|
3
|
Chen F, Xu Y, Liu X, Dong N, Tian L. TIGIT + CD4 + regulatory T cells enhance PD-1 expression on CD8 + T cells and promote tumor growth in a murine ovarian cancer model. J Ovarian Res 2024; 17:252. [PMID: 39707532 DOI: 10.1186/s13048-024-01578-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
Immune checkpoint-based immunotherapy has shown limited efficacy in the treatment of ovarian cancer. In recent years, the emergence of immune checkpoint co-targeting therapies, led by the combination targeting of TIGIT and FAK, has shown promise in ovarian cancer treatment. Our preliminary research indicates that TIGIT is predominantly expressed in regulatory T cells during ovarian cancer. However, the therapeutic impact of TIGIT targeting based on regulatory T cells in ovarian cancer remains to be elucidated. We utilized ID8 cells to establish a mouse model of ovarian cancer. Through flow cytometry and co-culture methods, we validated the relationship between the functionality of regulatory T cells and tumor masses, and confirmed the crucial role of TIGIT in immune suppression in ovarian cancer. Furthermore, using Foxp3-diphtheria toxin receptor (DTR) mice, we substantiated that the combined TIGIT antibody treatment, based on targeting regulatory T cells, effectively slowed down the progression of ovarian cancer. Taken together, our results have demonstrated that dual targeting of regulatory T cells and TIGIT effectively retards tumor growth, laying the groundwork for the clinical application of immune checkpoint combination therapies. Future research in ovarian cancer immunotherapy is leaning towards a strategy that combines multiple targets, and specific cell-type immunotherapies.
Collapse
Affiliation(s)
- Fengzhen Chen
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| | - Yanying Xu
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Xiangyu Liu
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Na Dong
- Department of Gynecology, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Lei Tian
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Nankai University, Tianjin No. 4 Hospital, Tianjin, 300222, China
| |
Collapse
|
4
|
Liao JB, Jejurikar NS, Hitchcock-Bernhardt KM, Gwin WR, Reichow JL, Dang Y, Childs JS, Coveler AL, Swensen RE, Goff BA, Disis ML, Salazar LG. Intraperitoneal immunotherapy with denileukin diftitox (ONTAK) in recurrent refractory ovarian cancer. Gynecol Oncol 2024; 191:74-79. [PMID: 39362046 PMCID: PMC11637896 DOI: 10.1016/j.ygyno.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Denileukin diftitox (ONTAK) is a diphtheria/IL-2R fusion protein able to deplete regulatory T cells in peripheral blood. Regulatory T cells in the local immune microenvironment have been shown to be associated with poor prognosis in ovarian cancer. This study examined whether denileukin diftitox (ONTAK) could be safely administered intraperitoneal in patients with advanced refractory ovarian cancer and assessed its effects on regulatory T cells and tumor associated cytokines in ascites and peripheral blood. PATIENTS AND METHODS A phase I dose escalation study of intraperitoneal denileukin diftitox (ONTAK) enrolled 10 patients with advanced, refractory ovarian carcinoma at 3 doses (5 μg/kg, 15 μg/kg, and 25 μg/kg). Serial CA-125 measurements assessed clinical response. Regulatory T cells were quantified using RT-PCR and cytokine levels measured by Luminex. RESULTS The maximum tolerated dose was 15 μg/kg with a dose limiting toxicity observed in 1 out of 6 patients in the expansion group. The majority of adverse events were transient grades 1-2. One patient treated at the 25 μg/kg dose experienced cytokine storm with prolonged hospitalization. 3 patients had decreases in CA-125 after treatment but none met criteria for partial response. Treatment with denileukin diftitox (ONTAK) decreased regulatory T cells in peripheral blood and ascites. Treated patients did not show any significant changes in IL-8, TGF-β, sIL2Ra in ascites or peripheral blood. CONCLUSIONS Denileukin diftitox (ONTAK) can be safely administered intraperitoneally to recurrent refractory ovarian cancer patients. Regulatory T cells were reduced in ascites and peripheral blood, but there were no significant changes in cytokine levels. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov # NCT00357448.
Collapse
Affiliation(s)
- John B Liao
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, United States of America; UW Medicine Cancer Vaccine Institute, University of Washington, 850 Republican St, Seattle, WA 98195, United States of America.
| | - Nikita S Jejurikar
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, United States of America; UW Medicine Cancer Vaccine Institute, University of Washington, 850 Republican St, Seattle, WA 98195, United States of America
| | - Katie M Hitchcock-Bernhardt
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, United States of America; UW Medicine Cancer Vaccine Institute, University of Washington, 850 Republican St, Seattle, WA 98195, United States of America
| | - William R Gwin
- UW Medicine Cancer Vaccine Institute, University of Washington, 850 Republican St, Seattle, WA 98195, United States of America
| | - Jessica L Reichow
- UW Medicine Cancer Vaccine Institute, University of Washington, 850 Republican St, Seattle, WA 98195, United States of America
| | - Yushe Dang
- UW Medicine Cancer Vaccine Institute, University of Washington, 850 Republican St, Seattle, WA 98195, United States of America
| | - Jennifer S Childs
- UW Medicine Cancer Vaccine Institute, University of Washington, 850 Republican St, Seattle, WA 98195, United States of America
| | - Andrew L Coveler
- UW Medicine Cancer Vaccine Institute, University of Washington, 850 Republican St, Seattle, WA 98195, United States of America
| | - Ron E Swensen
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, United States of America; UW Medicine Cancer Vaccine Institute, University of Washington, 850 Republican St, Seattle, WA 98195, United States of America; Valley Medical Center, 400 South 43(rd) Street, Renton, WA 98055, United States of America
| | - Barbara A Goff
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, United States of America
| | - Mary L Disis
- UW Medicine Cancer Vaccine Institute, University of Washington, 850 Republican St, Seattle, WA 98195, United States of America
| | - Lupe G Salazar
- UW Medicine Cancer Vaccine Institute, University of Washington, 850 Republican St, Seattle, WA 98195, United States of America
| |
Collapse
|
5
|
Liu X, Shen J, Yan H, Hu J, Liao G, Liu D, Zhou S, Zhang J, Liao J, Guo Z, Li Y, Yang S, Li S, Chen H, Guo Y, Li M, Fan L, Li L, Luo P, Zhao M, Liu Y. Posttransplant complications: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e669. [PMID: 39224537 PMCID: PMC11366828 DOI: 10.1002/mco2.669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Posttransplantation complications pose a major challenge to the long-term survival and quality of life of organ transplant recipients. These complications encompass immune-mediated complications, infectious complications, metabolic complications, and malignancies, with each type influenced by various risk factors and pathological mechanisms. The molecular mechanisms underlying posttransplantation complications involve a complex interplay of immunological, metabolic, and oncogenic processes, including innate and adaptive immune activation, immunosuppressant side effects, and viral reactivation. Here, we provide a comprehensive overview of the clinical features, risk factors, and molecular mechanisms of major posttransplantation complications. We systematically summarize the current understanding of the immunological basis of allograft rejection and graft-versus-host disease, the metabolic dysregulation associated with immunosuppressive agents, and the role of oncogenic viruses in posttransplantation malignancies. Furthermore, we discuss potential prevention and intervention strategies based on these mechanistic insights, highlighting the importance of optimizing immunosuppressive regimens, enhancing infection prophylaxis, and implementing targeted therapies. We also emphasize the need for future research to develop individualized complication control strategies under the guidance of precision medicine, ultimately improving the prognosis and quality of life of transplant recipients.
Collapse
Affiliation(s)
- Xiaoyou Liu
- Department of Organ transplantationThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Junyi Shen
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hongyan Yan
- Department of Organ transplantationThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Jianmin Hu
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guorong Liao
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ding Liu
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Song Zhou
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jie Zhang
- Department of Organ transplantationThe First Affiliated Hospital, Guangzhou Medical UniversityGuangzhouChina
| | - Jun Liao
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zefeng Guo
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuzhu Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Siqiang Yang
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shichao Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hua Chen
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ying Guo
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Min Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Lipei Fan
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Liuyang Li
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Peng Luo
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Ming Zhao
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yongguang Liu
- Department of Organ transplantationZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
6
|
Nie W, He Y, Mi X, He S, Chen J, Zhang Y, Wang B, Zheng S, Qian Z, Gao X. Immunostimulatory CKb11 gene combined with immune checkpoint PD-1/PD-L1 blockade activates immune response and simultaneously overcomes the immunosuppression of cancer. Bioact Mater 2024; 39:239-254. [PMID: 38832303 PMCID: PMC11145080 DOI: 10.1016/j.bioactmat.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 06/05/2024] Open
Abstract
Immunosuppression tumor microenvironment (TME) seriously impedes anti-tumor immune response, resulting in poor immunotherapy effect of cancer. This study develops a folate-modified delivery system to transport the plasmids encoding immune stimulatory chemokine CKb11 and PD-L1 inhibitors to tumor cells, resulting in high CKb11 secretion from tumor cells, successfully activating immune cells and increasing cytokine secretion to reshape the TME, and ultimately delaying tumor progression. The chemokine CKb11 enhances the effectiveness of tumor immunotherapy by increasing the infiltration of immune cells in TME. It can cause high expression of IFN-γ, which is a double-edged sword that inhibits tumor growth while causing an increase in the expression of PD-L1 on tumor cells. Therefore, combining CKb11 with PD-L1 inhibitors can counterbalance the suppressive impact of PD-L1 on anti-cancer defense, leading to a collaborative anti-tumor outcome. Thus, utilizing nanotechnology to achieve targeted delivery of immune stimulatory chemokines and immune checkpoint inhibitors to tumor sites, thereby reshaping immunosuppressive TME for cancer treatment, has great potential as an immunogene therapy in clinical applications.
Collapse
Affiliation(s)
- Wen Nie
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Yihong He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Xue Mi
- Department of Pharmacy, West China Second University Hospital of Sichuan University, 610041, Chengdu, PR China
| | - Shi He
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Jing Chen
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Yunchu Zhang
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Bilan Wang
- Department of Pharmacy, West China Second University Hospital of Sichuan University, 610041, Chengdu, PR China
| | - Songping Zheng
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Zhiyong Qian
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| | - Xiang Gao
- Department of Neurosurgery and Institute of Neurosurgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Chengdu, PR China
| |
Collapse
|
7
|
Ebrahimi B, Viswanadhapalli S, Pratap UP, Rahul G, Yang X, Pitta Venkata P, Drel V, Santhamma B, Konda S, Li X, Sanchez ALR, Yan H, Sareddy GR, Xu Z, Singh BB, Valente PT, Chen Y, Lai Z, Rao M, Kost ER, Curiel T, Tekmal RR, Nair HB, Vadlamudi RK. Pharmacological inhibition of the LIF/LIFR autocrine loop reveals vulnerability of ovarian cancer cells to ferroptosis. NPJ Precis Oncol 2024; 8:118. [PMID: 38789520 PMCID: PMC11126619 DOI: 10.1038/s41698-024-00612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Of all gynecologic cancers, epithelial-ovarian cancer (OCa) stands out with the highest mortality rates. Despite all efforts, 90% of individuals who receive standard surgical and cytotoxic therapy experience disease recurrence. The precise mechanism by which leukemia inhibitory factor (LIF) and its receptor (LIFR) contribute to the progression of OCa remains unknown. Analysis of cancer databases revealed that elevated expression of LIF or LIFR was associated with poor progression-free survival of OCa patients and a predictor of poor response to chemotherapy. Using multiple primary and established OCa cell lines or tissues that represent five subtypes of epithelial-OCa, we demonstrated that LIF/LIFR autocrine signaling is active in OCa. Moreover, treatment with LIFR inhibitor, EC359 significantly reduced OCa cell viability and cell survival with an IC50 ranging from 5-50 nM. Furthermore, EC359 diminished the stemness of OCa cells. Mechanistic studies using RNA-seq and rescue experiments unveiled that EC359 primarily induced ferroptosis by suppressing the glutathione antioxidant defense system. Using multiple in vitro, ex vivo and in vivo models including cell-based xenografts, patient-derived explants, organoids, and xenograft tumors, we demonstrated that EC359 dramatically reduced the growth and progression of OCa. Additionally, EC359 therapy considerably improved tumor immunogenicity by robust CD45+ leukocyte tumor infiltration and polarizing tumor-associated macrophages (TAMs) toward M1 phenotype while showing no impact on normal T-, B-, and other immune cells. Collectively, our findings indicate that the LIF/LIFR autocrine loop plays an essential role in OCa progression and that EC359 could be a promising therapeutic agent for OCa.
Collapse
Affiliation(s)
- Behnam Ebrahimi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Suryavathi Viswanadhapalli
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
| | - Uday P Pratap
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Gopalam Rahul
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Xue Yang
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Prabhakar Pitta Venkata
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Viktor Drel
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | | | - Xiaonan Li
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Hui Yan
- Department of microbiology and immunology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Gangadhara R Sareddy
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Zhenming Xu
- Department of microbiology and immunology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Brij B Singh
- Department of Periodontics, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Philip T Valente
- Department of Pathology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Yidong Chen
- Department of Population Sciences, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Manjeet Rao
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Edward R Kost
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Tyler Curiel
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, NH, 03755, USA
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | | | - Ratna K Vadlamudi
- Department of Obstetrics and Gynecology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, TX, 78229, USA.
- Audie L. Murphy Division, South Texas Veterans Health Care System, San Antonio, TX, 78229, USA.
| |
Collapse
|
8
|
Zhang Y, Xue W, Xu C, Nan Y, Mei S, Ju D, Wang S, Zhang X. Innate Immunity in Cancer Biology and Therapy. Int J Mol Sci 2023; 24:11233. [PMID: 37510993 PMCID: PMC10379825 DOI: 10.3390/ijms241411233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Immunotherapies including adaptive immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells, have developed the treatment of cancer in clinic, and most of them focus on activating T cell immunity. Although these strategies have obtained unprecedented clinical responses, only limited subsets of cancer patients could receive long-term benefits, highlighting the demand for identifying novel targets for the new era of tumor immunotherapy. Innate immunity has been demonstrated to play a determinative role in the tumor microenvironment (TME) and influence the clinical outcomes of tumor patients. A thorough comprehension of the innate immune cells that infiltrate tumors would allow for the development of new therapeutics. In this review, we outline the role and mechanism of innate immunity in TME. Moreover, we discuss innate immunity-based cancer immunotherapy in basic and clinical studies. Finally, we summarize the challenges in sufficiently motivating innate immune responses and the corresponding strategies and measures to improve anti-tumor efficacy. This review could aid the comprehension of innate immunity and inspire the creation of brand-new immunotherapies for the treatment of cancer.
Collapse
Affiliation(s)
- Yuxia Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenjing Xue
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Caili Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuang Mei
- Shanghai Tinova Immune Therapeutics Co., Ltd., Shanghai 201413, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shaofei Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
9
|
Bai H, Padron AS, Deng Y, Liao YJ, Murray CJ, Ontiveros C, Kari SJ, Kancharla A, Kornepati AVR, Garcia M, Reyes RM, Gupta HB, Conejo-Garcia JR, Curiel T. Pharmacological tumor PDL1 depletion with chlorambucil treats ovarian cancer and melanoma: improves antitumor immunity and renders anti-PDL1-resistant tumors anti-PDL1-sensitive through NK cell effects. J Immunother Cancer 2023; 11:e004871. [PMID: 36759012 PMCID: PMC9923271 DOI: 10.1136/jitc-2022-004871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Tumor intracellular programmed cell death ligand-1 (PDL1) mediates pathologic signals that regulate clinical treatment responses distinctly from surface-expressed PDL1 targeted by αPDL1 immune checkpoint blockade antibodies. METHODS We performed a drug screen for tumor cell PDL1 depleting drugs that identified Food and Drug Administration (FDA)-approved chlorambucil and also 9-[2-(phosphonomethoxy)ethyl] guanine. We used in vitro and in vivo assays to evaluate treatment and signaling effects of pharmacological tumor PDL1 depletion focused on chlorambucil as FDA approved, alone or plus αPDL1. RESULTS PDL1-expressing mouse and human ovarian cancer lines and mouse melanoma were more sensitive to chlorambucil-mediated proliferation inhibition in vitro versus corresponding genetically PDL1-depleted lines. Orthotopic peritoneal PDL1-expressing ID8agg ovarian cancer and subcutaneous B16 melanoma tumors were more chlorambucil-sensitive in vivo versus corresponding genetically PDL1-depleted tumors. Chlorambucil enhanced αPDL1 efficacy in tumors otherwise αPDL1-refractory, and improved antitumor immunity and treatment efficacy in a natural killer cell-dependent manner alone and plus αPDL1. Chlorambucil-mediated PDL1 depletion was relatively tumor-cell selective in vivo, and treatment efficacy was preserved in PDL1KO hosts, demonstrating tumor PDL1-specific treatment effects. Chlorambucil induced PDL1-dependent immunogenic tumor cell death which could help explain immune contributions. Chlorambucil-mediated PDL1 reduction mechanisms were tumor cell-type-specific and involved transcriptional or post-translational mechanisms, including promoting PDL1 ubiquitination through the GSK3β/β-TRCP pathway. Chlorambucil-mediated tumor cell PDL1 depletion also phenocopied genetic PDL1 depletion in reducing tumor cell mTORC1 activation and tumor initiating cell content, and in augmenting autophagy, suggesting additional treatment potential. CONCLUSIONS Pharmacological tumor PDL1 depletion with chlorambucil targets tumor-intrinsic PDL1 signaling that mediates treatment resistance, especially in αPDL1-resistant tumors, generates PDL1-dependent tumor immunogenicity and inhibits tumor growth in immune-dependent and independent manners. It could improve treatment efficacy of selected agents in otherwise treatment-refractory, including αPDL1-refractory cancers, and is rapidly clinically translatable.
Collapse
Affiliation(s)
- Haiyan Bai
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
| | - Alvaro S Padron
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Yilun Deng
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Yiji J Liao
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
| | - Clare J Murray
- Medicine, University of Texas Health, San Antonio, Texas, USA
- The Graduate School of Biomedical Sciences, UTHSCSA, San Antonio, Texas, USA
| | - Carlos Ontiveros
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
- The Graduate School of Biomedical Sciences, UTHSCSA, San Antonio, Texas, USA
| | - Suresh J Kari
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
| | - Aravind Kancharla
- Med Hematology/Oncology, UT Health Long School of Medicine, San Antonio, Texas, USA
| | - Anand V R Kornepati
- The Graduate School of Biomedical Sciences, UTHSCSA, San Antonio, Texas, USA
| | - Myrna Garcia
- The Graduate School of Biomedical Sciences, UTHSCSA, San Antonio, Texas, USA
- UT Health Long School of Medicine, San Antonio, Texas, USA
| | - Ryan Michael Reyes
- The Graduate School of Biomedical Sciences, UTHSCSA, San Antonio, Texas, USA
- UT Health Long School of Medicine, San Antonio, Texas, USA
- Division of Hematology/Medical Oncology, UT Health Long School of Medicine, San Antonio, Texas, USA
| | - Harshita B Gupta
- Department of Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | - Tyler Curiel
- Department of Medicine, University of Texas Health, San Antonio, Texas, USA
- The Graduate School of Biomedical Sciences, UTHSCSA, San Antonio, Texas, USA
- UT Health Long School of Medicine, San Antonio, Texas, USA
- Medicine, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
10
|
Long M, Mims AS, Li Z. Factors Affecting the Cancer Immunotherapeutic Efficacy of T Cell Bispecific Antibodies and Strategies for Improvement. Immunol Invest 2022; 51:2176-2214. [PMID: 36259611 DOI: 10.1080/08820139.2022.2131569] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
T-cell bispecific antibodies (T-BsAbs) are a new class of cancer immunotherapy drugs that can simultaneously bind to tumor-associated antigens on target cells and to the CD3 subunit of the T-cell receptor (TCR) on T cells. In the last decade, numerous T-BsAbs have been developed for the treatment of both hematological malignancies and solid tumors. Among them, blinatumomab has been successfully used to treat CD19 positive malignancies and has been approved by the FDA as standard care for acute lymphoblastic leukemia (ALL). However, in many clinical scenarios, the efficacy of T-BsAbs remains unsatisfactory. To further improve T-BsAb therapy, it will be crucial to better understand the factors affecting treatment efficacy and the nature of the T-BsAb-induced immune response. Herein, we first review the studies on the potential mechanisms by which T-BsAbs activate T-cells and how they elicit efficient target killing despite suboptimal costimulatory support. We focus on analyzing reports from clinical trials and preclinical studies, and summarize the factors that have been identified to impact the efficacy of T-BsAbs. Lastly, we review current and propose new approaches to improve the clinical efficacy of T-BsAbs.
Collapse
Affiliation(s)
- Meixiao Long
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA.,Division of Medical Oncology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| |
Collapse
|
11
|
Gao Z, Zhang Q, Zhang X, Song Y. Advance of T regulatory cells in tumor microenvironment remodeling and immunotherapy in pancreatic cancer. EUR J INFLAMM 2022; 20. [DOI: 10.1177/1721727x221092900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive, deadly, and is rarely diagnosed early. Regulatory T cells (Treg) are a multifunctional class of immunosuppressive T cells that help maintain immunologic homeostasis and participate in autoimmune diseases, transplants, and tumors. This cell type mediates immune homeostasis, tolerance, and surveillance and is associated with poor outcomes in PDAC. Tregs remodel the tumor immune microenvironment, mediate tumor immune escape, and promote tumor invasion and metastasis. A promising area of research involves regulating Tregs to reduce their infiltration into tumor tissues. However, the complexity of the immune microenvironment has limited the efficacy of immunotherapy in PDAC. Treg modulation combined with other treatments is emerging. This review summarizes the mechanisms of Tregs activity in tumor immune microenvironments in PDAC and the latest developments in immunotherapy and clinical trials.
Collapse
Affiliation(s)
- Zetian Gao
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Qiubo Zhang
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Xie Zhang
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yufei Song
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
12
|
Orr B, Mahdi H, Fang Y, Strange M, Uygun I, Rana M, Zhang L, Suarez Mora A, Pusateri A, Elishaev E, Kang C, Tseng G, Gooding W, Edwards RP, Kalinski P, Vlad AM. Phase I trial combining chemokine-targeting with loco-regional chemo-immunotherapy for recurrent, platinum-sensitive ovarian cancer shows induction of CXCR3 ligands and markers of type 1 immunity. Clin Cancer Res 2022; 28:2038-2049. [PMID: 35046055 DOI: 10.1158/1078-0432.ccr-21-3659] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/03/2021] [Accepted: 01/12/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Increased prevalence of cytotoxic T lymphocytes (CTL) in the tumor microenvironment (TME) predicts positive outcomes in patients with epithelial ovarian cancer (EOC), while the regulatory Treg cells predict poor outcomes. Guided by the synergistic activity of TLR3 ligands, interferon-a (IFNa) and cyclooxygenase-2 (COX-2) blockers in selectively enhancing CTL-attractants but suppressing Treg-attractants, we tested a novel intraperitoneal (IP) chemo-immunotherapy combination, to assess its tolerability and TME-modulatory impact in patients with recurrent EOC. METHODS Twelve patients were enrolled in phase I portion of the trial NCT02432378, and treated with IP cisplatin, IP rintatolimod (dsRNA, TLR3 ligand) and oral celecoxib (COX-2 blocker). Patients in cohorts 2, 3 and 4 also received IP IFNa at 2, 6 and 18 million units (MU), respectively. Primary objectives were to evaluate safety, identify phase 2 recommended dose (P2RD) and characterize changes in the immune TME. Peritoneal resident cells and IP wash fluid were profiled via NanoString and Meso Scale Discovery (MSD) multiplex assay, respectively. RESULTS The P2RD of IFNa was 6 MU. Median progression-free and overall survival were 8.4 and 30 months, respectively. Longitudinal sampling of the peritoneal cavity via IP washes demonstrated local upregulation of interferon-stimulated genes (ISG), including CTL-attracting chemokines (CXCL-9, -10, -11), MHC I/II, perforin and granzymes. These changes were present two days post chemokine modulation and subsided within one week. CONCLUSION The chemokine-modulating IP-CITC is safe, tolerable, and associated with ISG changes that favor CTL chemoattraction and function. This combination (plus DC vaccine) will be tested in a phase II trial.
Collapse
Affiliation(s)
- Brian Orr
- Gynecologic Oncology, Medical University of South Carolina
| | - Haider Mahdi
- Gynecologic Oncology, University of Pittsburgh Medical Center
| | - Yusi Fang
- Biostatistics, University of Pittsburgh, Graduate School of Public Health
| | | | - Ibrahim Uygun
- Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute
| | - Mainpal Rana
- Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine
| | - Lixin Zhang
- Immunology, University of Pittsburgh School of Medicine
| | | | | | - Esther Elishaev
- Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh
| | - Chaeryon Kang
- Biostatistics, University of Pittsburgh Graduate School of Public Health
| | | | | | - Robert P Edwards
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh
| | | | - Anda M Vlad
- Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine
| |
Collapse
|