1
|
Li X, Han Z, Ai J. Synergistic targeting strategies for prostate cancer. Nat Rev Urol 2025:10.1038/s41585-025-01042-6. [PMID: 40394240 DOI: 10.1038/s41585-025-01042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2025] [Indexed: 05/22/2025]
Abstract
Prostate cancer is the second most commonly diagnosed cancer and the fifth leading cause of death among men worldwide. Androgen deprivation therapy is a common prostate cancer treatment, but its efficacy is often hindered by the development of resistance, which results in reducing survival benefits. Immunotherapy showed great promise in treating solid tumours; however, clinically significant improvements have not been demonstrated for patients with prostate cancer, highlighting specific drawbacks of this therapeutic modality. Hence, exploring novel strategies to synergistically enhance the efficacy of prostate cancer immunotherapy is imperative. Clinical investigations have focused on the combined use of targeted or gene therapy and immunotherapy for prostate cancer. Notably, tumour-specific antigens and inflammatory mediators are released from tumour cells after targeted or gene therapy, and the recruitment and infiltration of immune cells, including CD8+ T cells and natural killer cells activated by immunotherapy, are further augmented, markedly improving the efficacy and prognosis of prostate cancer. Thus, immunotherapy, targeted therapy and gene therapy could have reciprocal synergistic effects in prostate cancer in combination, resulting in a proposed synergistic model encompassing these three therapeutic modalities, presenting novel potential treatment strategies for prostate cancer.
Collapse
Affiliation(s)
- Xuanji Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Han
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Yan L, Su P, Sun X. Role of multi‑omics in advancing the understanding and treatment of prostate cancer (Review). Mol Med Rep 2025; 31:130. [PMID: 40116118 PMCID: PMC11938414 DOI: 10.3892/mmr.2025.13495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/27/2025] [Indexed: 03/23/2025] Open
Abstract
The application of multi‑omics methodologies, encompassing genomics, transcriptomics, proteomics, metabolomics and integrative genomics, has markedly enhanced the understanding of prostate cancer (PCa). These methods have facilitated the identification of molecular pathways and biomarkers crucial for the early detection, prognostic evaluation and personalized treatment of PCa. Studies using multi‑omics technologies have elucidated how alterations in gene expression and protein interactions contribute to PCa progression and treatment resistance. Furthermore, the integration of multi‑omics data has been used in the identification of novel therapeutic targets and the development of innovative treatment modalities, such as precision medicine. The evolving landscape of multi‑omics research holds promise for not only deepening the understanding of PCa biology but also for fostering the development of more effective and tailored therapeutic interventions, ultimately improving patient outcomes. The present review aims to synthesize current findings from multi‑omics studies associated with PCa and to assess their implications for the improvement of patient management and therapeutic outcomes. The insights provided may guide future research directions and clinical practices in the fight against PCa.
Collapse
Affiliation(s)
- Li Yan
- Department of Urology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Pengxiao Su
- Department of Urology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Xiaoke Sun
- Department of Urology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
3
|
Beretta GL, Cassinelli G, Rossi G, Azzariti A, Corbeau I, Tosi D, Perego P. Novel insights into taxane pharmacology: An update on drug resistance mechanisms, immunomodulation and drug delivery strategies. Drug Resist Updat 2025; 81:101223. [PMID: 40086175 DOI: 10.1016/j.drup.2025.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Taxanes are effective in several solid tumors. Paclitaxel, the main clinically available taxane, was approved in the early nineties, for the treatment of ovarian cancer and later on, together with the analogs docetaxel and cabazitaxel, for other malignancies. By interfering with microtubule function and impairing the separation of sister cells at mitosis, taxanes act as antimitotic agents, thereby counteracting the high proliferation rate of cancer cells. The action of taxanes goes beyond their antimitotic function because their main cellular targets, the microtubules, participate in multiple processes such as intracellular transport and cell shape maintenance. The clinical efficacy of taxanes is limited by the development of multiple resistance mechanisms. Among these, extracellular vesicles have emerged as new players. In addition, taxane metronomic schedules shows an impact on the tumor microenvironment reflected by antiangiogenic and immunomodulatory effects, an aspect of growing interest considering their inclusion in treatment regimens with immunotherapeutics. Preclinical studies have paved the bases for synergistic combinations of taxanes both with conventional and targeted agents. A variety of drug delivery strategies have provided novel opportunities to increase the drug activity. The ability of taxanes to orchestrate different cellular effects amenable to modulation suggests novel options to improve cures in lethal malignancies.
Collapse
Affiliation(s)
- Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| | - Giacomina Rossi
- Unit of Neurology 8, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, Bari 70124, Italy.
| | - Iléana Corbeau
- Early Clinical Trial Unit, Medical Oncology Department, Institut régional du Cancer de Montpellier, Inserm U1194, Montpellier University, 208, rue de Apothicaires, 34298 Montpellier, France; Fondazione Gianni Bonadonna, via Bertani, 14, Milan 20154, Italy.
| | - Diego Tosi
- Early Clinical Trial Unit, Medical Oncology Department, Institut régional du Cancer de Montpellier, Inserm U1194, Montpellier University, 208, rue de Apothicaires, 34298 Montpellier, France; Fondazione Gianni Bonadonna, via Bertani, 14, Milan 20154, Italy.
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| |
Collapse
|
4
|
Glaviano A, Singh SK, Lee EHC, Okina E, Lam HY, Carbone D, Reddy EP, O'Connor MJ, Koff A, Singh G, Stebbing J, Sethi G, Crasta KC, Diana P, Keyomarsi K, Yaffe MB, Wander SA, Bardia A, Kumar AP. Cell cycle dysregulation in cancer. Pharmacol Rev 2025; 77:100030. [PMID: 40148026 DOI: 10.1016/j.pharmr.2024.100030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/12/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer is a systemic manifestation of aberrant cell cycle activity and dysregulated cell growth. Genetic mutations can determine tumor onset by either augmenting cell division rates or restraining normal controls such as cell cycle arrest or apoptosis. As a result, tumor cells not only undergo uncontrolled cell division but also become compromised in their ability to exit the cell cycle accurately. Regulation of cell cycle progression is enabled by specific surveillance mechanisms known as cell cycle checkpoints, and aberrations in these signaling pathways often culminate in cancer. For instance, DNA damage checkpoints, which preclude the generation and augmentation of DNA damage in the G1, S, and G2 cell cycle phases, are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Notably, tumors have evolved to become dependent on checkpoints for their survival. For example, checkpoint pathways such as the DNA replication stress checkpoint and the mitotic checkpoint rarely undergo mutations and remain intact because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation leading to cell death. In this review, we initially focus on cell cycle control pathways and specific functions of checkpoint signaling involved in normal and cancer cells and then proceed to examine how cell cycle control and checkpoint mechanisms can provide new therapeutic windows that can be exploited for cancer therapy. SIGNIFICANCE STATEMENT: DNA damage checkpoints are often defective in cancer cells, allowing cell division in spite of the accumulation of genetic errors. Conversely, DNA replication stress and mitotic checkpoints rarely undergo mutations because any aberrant activity could result in irreparable damage or catastrophic chromosomal missegregation, leading to cancer cell death. This review focuses on the checkpoint signaling mechanisms involved in cancer cells and how an emerging understanding of these pathways can provide new therapeutic opportunities for cancer therapy.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Samarendra K Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - E Hui Clarissa Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - E Premkumar Reddy
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mark J O'Connor
- Discovery Centre, AstraZeneca, Francis Crick Avenue, Cambridge CB2 0AA, United Kingdom
| | - Andrew Koff
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, New York
| | - Garima Singh
- School of Biotechnology, Institute of Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Justin Stebbing
- School of Life Sciences, Anglia Ruskin University, Cambridge, United Kingdom
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Karen Carmelina Crasta
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore, Singapore
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael B Yaffe
- MIT Center for Precision Cancer Medicine, Koch Institute for Integrative Cancer Research, Broad Institute, Massachusetts Institute of Technology, Cambridge, Boston, Massachusetts
| | - Seth A Wander
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aditya Bardia
- Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Siskin M, Economides MP, Wise DR. Cyclin-Dependent Kinase Inhibition in Prostate Cancer: Past, Present, and Future. Cancers (Basel) 2025; 17:774. [PMID: 40075623 PMCID: PMC11898528 DOI: 10.3390/cancers17050774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Despite significant progress, prostate cancer remains a leading cause of death. Cyclin-dependent kinase (CDK) 4/6 inhibitors, which are already approved for the treatment of hormone receptor-positive breast cancer, are undergoing extensive testing as monotherapy and in various combinations as a potentially valuable treatment modality in prostate cancer patients. Thus far, a limited number of these studies have published results, which have been largely disappointing. AREAS COVERED In this review, we describe the biologic rationale for the use of CDK4/6 inhibitors in prostate cancer, the existing clinical data describing their use in prostate cancer, and ongoing clinical trials of CDK4/6 inhibitors as monotherapy and in combination for the treatment of prostate cancer. In particular, we focus on possible resistance mechanisms that may be particularly relevant in prostate cancer patients, leading to de novo and acquired resistance, and we highlight novel strategies that can overcome this resistance. CONCLUSIONS Current clinical trials are actively working to (1) refine the role of CDK4/6 inhibitors in prostate cancer patients; (2) develop new inhibitors of other cell-cycle targets, such as CDK2 and CDK7; and (3) explore novel combination therapies with inhibitors of other relevant pathways, such as PI3K or MAPK. Further genomic subtyping of advanced prostate cancer will likely shed light on the subsets of patients most likely to benefit from cell-cycle-targeted agents.
Collapse
Affiliation(s)
| | | | - David R. Wise
- Genitourinary Medical Oncology Service, Perlmutter Cancer Center, NYU Langone Heath Center, New York, NY 10016, USA; (M.S.); (M.P.E.)
| |
Collapse
|
6
|
Pedrani M, Barizzi J, Salfi G, Nepote A, Testi I, Merler S, Castelo-Branco L, Mestre RP, Turco F, Tortola L, Theurillat JP, Gillessen S, Vogl U. The Emerging Predictive and Prognostic Role of Aggressive-Variant-Associated Tumor Suppressor Genes Across Prostate Cancer Stages. Int J Mol Sci 2025; 26:318. [PMID: 39796175 PMCID: PMC11719667 DOI: 10.3390/ijms26010318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Aggressive variant prostate cancer (AVPC) is characterized by a molecular signature involving combined defects in TP53, RB1, and/or PTEN (AVPC-TSGs), identifiable through immunohistochemistry or genomic analysis. The reported prevalence of AVPC-TSG alterations varies widely, reflecting differences in assay sensitivity, treatment pressure, and disease stage evolution. Although robust clinical evidence is still emerging, the study of AVPC-TSG alterations in prostate cancer (PCa) is promising. Alterations in TP53, RB1, and PTEN, as well as the combined loss of AVPC-TSGs, may have significant implications for prognosis and treatment. These biomarkers might help predict responses to various therapies, including hormonal treatments, cytotoxic agents, radiotherapy, and targeted therapies. Understanding the impact of these molecular alterations in patients with PCa is crucial for personalized management. In this review, we provide a comprehensive overview of the emerging prognostic and predictive roles of AVPC-TSG alterations across PCa stages. Moreover, we discuss the implications of different methods used for detecting AVPC-TSG alterations and summarize factors influencing their prevalence. As our comprehension of the genomic landscape of PCa disease deepens, incorporating genomic profiling into clinical decision making will become increasingly important for improving patient outcomes.
Collapse
Affiliation(s)
- Martino Pedrani
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Jessica Barizzi
- Istituto Cantonale di Patologia, Ente Ospedaliero Cantonale (EOC), 6600 Locarno, Switzerland
| | - Giuseppe Salfi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Alessandro Nepote
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- AOU San Luigi Gonzaga, Department of Oncology, University of Torino, 10124 Torino, Italy
| | - Irene Testi
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Sara Merler
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Section of Innovation Biomedicine—Oncology Area, Department of Engineering for Innovation Medicine, University of Verona and Verona University Hospital Trust, 37126 Verona, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Luis Castelo-Branco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Ricardo Pereira Mestre
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
| | - Fabio Turco
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Luigi Tortola
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland;
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Silke Gillessen
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Ursula Vogl
- Oncology Institute of Southern Switzerland (IOSI), Ente Ospedaliero Cantonale (EOC), 6500 Bellinzona, Switzerland; (M.P.); (A.N.); (S.M.); (R.P.M.); (F.T.); (S.G.)
| |
Collapse
|
7
|
Asciolla JJ, Wu X, Adamopoulos C, Gavathiotis E, Poulikakos PI. Resistance mechanisms and therapeutic strategies of CDK4 and CDK6 kinase targeting in cancer. NATURE CANCER 2025; 6:24-40. [PMID: 39885369 DOI: 10.1038/s43018-024-00893-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/09/2024] [Indexed: 02/01/2025]
Abstract
Cyclin-dependent kinases (CDKs) 4 and 6 (CDK4/6) are important regulators of the cell cycle. Selective CDK4/6 small-molecule inhibitors have shown clinical activity in hormonal receptor-positive (HR+) metastatic breast cancer, but their effectiveness remains limited in other cancer types. CDK4/6 degradation and improved selectivity across CDK paralogs are approaches that could expand the effectiveness of CDK4/6 targeting. Recent studies also suggest the use of CDK4/6-targeting agents in cancer immunotherapy. In this Review, we highlight recent advancements in the mechanistic understanding and development of pharmacological approaches targeting CDK4/6. Collectively, these developments pose new challenges and opportunities for rationally designing more effective treatments.
Collapse
Affiliation(s)
- James J Asciolla
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xuewei Wu
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- China Innovation Center of Roche, Shanghai, China
| | - Christos Adamopoulos
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Department of Medicine, Department of Oncology, Montefiore Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Poulikos I Poulikakos
- Department of Oncological Sciences, Precision Immunology Institute, the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
8
|
Liu Y, Deng Y, Yang C, Naranmandura H. Double-Faced Immunological Effects of CDK4/6 Inhibitors on Cancer Treatment: Challenges and Perspectives. Bioengineering (Basel) 2024; 11:1084. [PMID: 39593745 PMCID: PMC11591775 DOI: 10.3390/bioengineering11111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Cyclin-dependent kinases (CDKs) are generally involved in the progression of cell cycle and cell division in normal cells, while abnormal activations of CDKs are deemed to be a driving force for accelerating cell proliferation and tumorigenesis. Therefore, CDKs have become ideal therapeutic targets for cancer treatment. The U.S FDA has approved three CDK4/6 inhibitors (CDK4/6is) for the treatment of patients with hormone receptor-positive (HR+) or human epidermal growth factor receptor 2-negative (HER2-) advanced or metastatic breast cancer, and these drugs showed impressive results in clinics. Besides cell-cycle arrest, there is growing evidence that CDK4/6is exert paradoxical roles on cancer treatment by altering the immune system. Indeed, clinical data showed that CDK4/6is could change the immune system to exert antitumor effects, while these changes also caused tumor resistance to CDK4/6i. However, the molecular mechanism for the regulation of the immune system by CDK4/6is is unclear. In this review, we comprehensively discuss the paradoxical immunological effects of CDK4/6is in cancer treatment, elucidating their anticancer mechanisms through immunomodulatory activity and induction of acquired drug resistance by dysregulating the immune microenvironment. More importantly, we suggest a few strategies including combining CDK4/6is with immunotherapy to overcome drug resistance.
Collapse
Affiliation(s)
- Yongqin Liu
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Hematology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiying Deng
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Hematology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chang Yang
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Hematology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hua Naranmandura
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China
- Department of Hematology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Perez AM, Haberland NI, Miteva M, Wikramanayake TC. Chemotherapy-Induced Alopecia by Docetaxel: Prevalence, Treatment and Prevention. Curr Oncol 2024; 31:5709-5721. [PMID: 39330051 PMCID: PMC11431623 DOI: 10.3390/curroncol31090423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Docetaxel is a commonly used taxane chemotherapeutic agent in the treatment of a variety of cancers, including breast cancer, ovarian cancer, prostate cancer, non-small cell lung cancer, gastric cancer, and head and neck cancer. Docetaxel exerts its anti-cancer effects through inhibition of the cell cycle and induction of proapoptotic activity. However, docetaxel also impacts rapidly proliferating normal cells in the scalp hair follicles (HFs), rendering the HFs vulnerable to docetaxel-induced cell death and leading to chemotherapy-induced alopecia (CIA). In severe cases, docetaxel causes persistent or permanent CIA (pCIA) when hair does not grow back completely six months after chemotherapy cessation. Hair loss has severe negative impacts on patients' quality of life and may even compromise their compliance with treatment. This review discusses the notable prevalence of docetaxel-induced CIA and pCIA, as well as their prevention and management. At this moment, scalp cooling is the standard of care to prevent CIA. Treatment options to promote hair regrowth include but are not limited to minoxidil, photobiomodulation (PBMT), and platelet-rich plasma (PRP). In addition, a handful of current clinical trials are exploring additional agents to treat or prevent CIA. Research models of CIA, particularly ex vivo human scalp HF organ culture and in vivo mouse models with human scalp xenografts, will help expedite the translation of bench findings of CIA prevention and/or amelioration to the clinic.
Collapse
Affiliation(s)
- Aleymi M. Perez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.M.P.); (N.I.H.); (M.M.)
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Nicole I. Haberland
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.M.P.); (N.I.H.); (M.M.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Mariya Miteva
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.M.P.); (N.I.H.); (M.M.)
| | - Tongyu C. Wikramanayake
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.M.P.); (N.I.H.); (M.M.)
- Cancer Control Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
10
|
Agarwal N, Castellano D, Alonso-Gordoa T, Arranz Arija JA, Colomba E, Gravis G, Mourey L, Oudard S, Fléchon A, González M, Rey PM, Schweizer MT, Gallardo E, Johnston E, Balar A, Haddad N, Appiah AK, Nacerddine K, Piulats JM. A Signal-Finding Study of Abemaciclib in Heavily Pretreated Patients with Metastatic Castration-Resistant Prostate Cancer: Results from CYCLONE 1. Clin Cancer Res 2024; 30:2377-2383. [PMID: 38512117 PMCID: PMC11145166 DOI: 10.1158/1078-0432.ccr-23-3436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/23/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors radically changed the treatment paradigm for breast cancer. Similar to estrogen receptor in breast cancer, androgen receptor signaling activates cyclin D-CDK4/6, driving proliferation and resistance to hormonal manipulation in prostate cancer. This study was designed to detect signals of clinical activity for abemaciclib in treatment-refractory metastatic castration-resistant prostate cancer (mCRPC). PATIENTS AND METHODS Eligible patients had progressive mCRPC, measurable disease, and previously received ≥1 novel hormonal agent(s) and 2 lines of taxane chemotherapy. Abemaciclib 200 mg twice daily was administered on a continuous dosing schedule. Primary endpoint was objective response rate (ORR) without concurrent bone progression. This study was designed to detect a minimum ORR of 12.5%. RESULTS At trial entry, 40 (90.9%) of 44 patients had objective radiographic disease progression, 4 (9.1%) had prostate-specific antigen (PSA)-only progression, and 20 (46.5%) had visceral metastases (of these, 60% had liver metastases). Efficacy analyses are as follows: ORR without concurrent bone progression: 6.8%; disease control rate: 45.5%; median time to PSA progression: 6.5 months [95% confidence interval (CI), 3.2-NA]; median radiographic PFS; 2.7 months (95% CI, 1.9-3.7); and median OS, 8.4 months (95% CI, 5.6-12.7). Most frequent grade ≥3 treatment-emergent adverse events (AE) were neutropenia (25.0%), anemia, and fatigue (11.4% each). No grade 4 or 5 AEs were related to abemaciclib. CONCLUSIONS Abemaciclib monotherapy was well tolerated and showed clinical activity in this heavily pretreated population, nearly half with visceral metastases. This study is considered preliminary proof-of-concept and designates CDK4/6 as a valid therapeutic target in prostate cancer.
Collapse
Affiliation(s)
- Neeraj Agarwal
- Huntsman Cancer Institute, University of Utah (NCI-CCC), Salt Lake City, Utah
| | | | | | | | | | | | - Loic Mourey
- IUCT-Oncopole Claudius Regaud, Toulouse, France
| | - Stephane Oudard
- Georges Pompidou Hospital, University Paris Cité, Paris, France
| | - Aude Fléchon
- Cancérologie Médicale, Centre Léon-Bérard, Lyon, France
| | | | - Pablo M. Rey
- Hospital de la Santa Creu i Sant Pau-Oncology, Barcelona, Spain
| | | | - Enrique Gallardo
- Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| | | | - Arjun Balar
- Eli Lilly and Company, Indianapolis, Indiana
| | | | | | | | | |
Collapse
|
11
|
Duan XP, Qin BD, Jiao XD, Liu K, Wang Z, Zang YS. New clinical trial design in precision medicine: discovery, development and direction. Signal Transduct Target Ther 2024; 9:57. [PMID: 38438349 PMCID: PMC10912713 DOI: 10.1038/s41392-024-01760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
In the era of precision medicine, it has been increasingly recognized that individuals with a certain disease are complex and different from each other. Due to the underestimation of the significant heterogeneity across participants in traditional "one-size-fits-all" trials, patient-centered trials that could provide optimal therapy customization to individuals with specific biomarkers were developed including the basket, umbrella, and platform trial designs under the master protocol framework. In recent years, the successive FDA approval of indications based on biomarker-guided master protocol designs has demonstrated that these new clinical trials are ushering in tremendous opportunities. Despite the rapid increase in the number of basket, umbrella, and platform trials, the current clinical and research understanding of these new trial designs, as compared with traditional trial designs, remains limited. The majority of the research focuses on methodologies, and there is a lack of in-depth insight concerning the underlying biological logic of these new clinical trial designs. Therefore, we provide this comprehensive review of the discovery and development of basket, umbrella, and platform trials and their underlying logic from the perspective of precision medicine. Meanwhile, we discuss future directions on the potential development of these new clinical design in view of the "Precision Pro", "Dynamic Precision", and "Intelligent Precision". This review would assist trial-related researchers to enhance the innovation and feasibility of clinical trial designs by expounding the underlying logic, which be essential to accelerate the progression of precision medicine.
Collapse
Affiliation(s)
- Xiao-Peng Duan
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bao-Dong Qin
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Dong Jiao
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke Liu
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Zhan Wang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
12
|
Liang H, Yang C, Zeng R, Song Y, Wang J, Xiong W, Yan B, Jin X. Targeting CBX3 with a Dual BET/PLK1 Inhibitor Enhances the Antitumor Efficacy of CDK4/6 Inhibitors in Prostate Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302368. [PMID: 37949681 PMCID: PMC10754129 DOI: 10.1002/advs.202302368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/10/2023] [Indexed: 11/12/2023]
Abstract
The development of castration-resistant prostate cancer (CRPC) is a significant factor that reduces life expectancy among patients with prostate cancer. Previously, it is reported that CDK4/6 inhibitors can overcome the resistance of CRPC to BET inhibitors by destabilizing BRD4, suggesting that the combination of CDK4/6 inhibitors and BET inhibitors is a promising approach for treating CRPC. In this study, candidates that affect the combined antitumor effect of CDK4/6 inhibitors and BET inhibitors on CRPC is aimed to examine. The data demonstrates that CBX3 is abnormally upregulated in CDK4/6 inhibitors-resistant cells. CBX3 is almost positively correlated with the cell cycle in multiple malignancies and is downregulated by BET inhibitors. Mechanistically, it is showed that CBX3 is transcriptionally upregulated by BRD4 in CRPC cells. Moreover, it is demonstrated that CBX3 modulated the sensitivity of CRPC to CDK4/6 inhibitors by binding with RB1 to release E2F1. Furthermore, it is revealed that PLK1 phosphorylated CBX3 to enhance the interaction between RB1 and CBX3, and desensitize CRPC cells to CDK4/6 inhibitors. Given that BRD4 regulates CBX3 expression and PLK1 affects the binding between RB1 and CBX3, it is proposed that a dual BRD4/PLK1 inhibitor can increase the sensitivity of CRPC cells to CDK4/6 inhibitors partially through CBX3.
Collapse
Affiliation(s)
- Huaiyuan Liang
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Uro‐Oncology Institute of Central South UniversityChangshaHunan410011China
| | - Chunguang Yang
- Department of UrologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Ruijiang Zeng
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Uro‐Oncology Institute of Central South UniversityChangshaHunan410011China
| | - Yingqiu Song
- Cancer centerUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jianxi Wang
- Department of UrologyThe Third Hospital of ChangshaChangshaHunan410011China
| | - Wei Xiong
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Uro‐Oncology Institute of Central South UniversityChangshaHunan410011China
| | - Binyuan Yan
- Department of UrologyPelvic Floor Disorders CenterThe Seventh Affiliated HospitalSun Yat‐sen UniversityShenzhen518107China
| | - Xin Jin
- Department of UrologyThe Second Xiangya HospitalCentral South UniversityChangshaHunan410011China
- Uro‐Oncology Institute of Central South UniversityChangshaHunan410011China
| |
Collapse
|
13
|
von Amsberg G, Todenhöfer T. [Metastatic castration-resistant prostate cancer-emerging trends in therapy]. UROLOGIE (HEIDELBERG, GERMANY) 2023; 62:1289-1294. [PMID: 37955661 DOI: 10.1007/s00120-023-02223-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND An increasing understanding of the cellular processes involved in growth, metastasis and development of resistance enable the development of new treatment strategies for advanced prostate cancer. OBJECTIVES Using selected examples, the aim of this report is to present current developments to the reader and to give an outlook on possible upcoming changes in the treatment of advanced prostate cancer. MATERIALS AND METHODS Narrative report based on expert consensus, supported by a literature search in PubMed (MEDLINE) and the abstract databases of the American Society of Clinical Oncology (ASCO) and European Society of Medical Oncology (ESMO). Examples were selected to illustrate current developments without claiming completeness. RESULTS The androgen receptor (AR) signal transduction pathway remains a focus of scientific interest. Androgen synthesis inhibitors and AR degraders are promising new approaches to overcome resistance mediated by AR mutations or splice variants. Inhibition of key switch sites of alternative signaling pathways such as AKT or CDK4/6 provide additional treatment options, including combinational strategies through a tight linkage with the AR signaling pathway. A better understanding of tumor microenvironment and immune response is required for novel immunotherapeutic strategies using bispecific T‑cell engagers (BiTEs) and chimeric antigen receptor (CAR) T cells. CONCLUSION New treatment strategies give hope that we will be able to intervene even more effectively in the course of disease of advanced prostate cancer in the future. However, a major challenge, especially for the implementation of targeted treatment approaches, is likely to be the heterogeneity of tumor progression not only inter- but also intrapersonally.
Collapse
Affiliation(s)
- Gunhild von Amsberg
- II. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg Eppendorf, 20246, Martinstraße 52, Hamburg, Deutschland
- Martini Klinik, Hamburg, Deutschland
| | - Tilman Todenhöfer
- Studienpraxis Urologie, Steinengrabenstr. 17, 72622, Nürtingen, Deutschland.
- Medizinische Fakultät, Universität Tübingen, Tübingen, Deutschland.
| |
Collapse
|
14
|
Kurniali PC, Storandt MH, Jin Z. Utilization of Circulating Tumor Cells in the Management of Solid Tumors. J Pers Med 2023; 13:jpm13040694. [PMID: 37109080 PMCID: PMC10145886 DOI: 10.3390/jpm13040694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells shed from the primary tumor into circulation, with clusters of CTCs responsible for cancer metastases. CTC detection and isolation from the bloodstream are based on properties distinguishing CTCs from normal blood cells. Current CTC detection techniques can be divided into two main categories: label dependent, which depends upon antibodies that selectively bind cell surface antigens present on CTCs, or label-independent detection, which is detection based on the size, deformability, and biophysical properties of CTCs. CTCs may play significant roles in cancer screening, diagnosis, treatment navigation, including prognostication and precision medicine, and surveillance. In cancer screening, capturing and evaluating CTCs from peripheral blood could be a strategy to detect cancer at its earliest stage. Cancer diagnosis using liquid biopsy could also have tremendous benefits. Full utilization of CTCs in the clinical management of malignancies may be feasible in the near future; however, several challenges still exist. CTC assays currently lack adequate sensitivity, especially in early-stage solid malignancies, due to low numbers of detectable CTCs. As assays improve and more trials evaluate the clinical utility of CTC detection in guiding therapies, we anticipate increased use in cancer management.
Collapse
Affiliation(s)
- Peter C Kurniali
- Sanford Cancer Center, 701 E Rosser Ave, Bismarck, ND 58501, USA
- Department of Internal Medicine, Division of Hematology/Oncology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | |
Collapse
|
15
|
Bae SY, Bergom HE, Day A, Greene JT, Sychev ZE, Larson G, Corey E, Plymate SR, Freedman TS, Hwang JH, Drake JM. ZBTB7A as a novel vulnerability in neuroendocrine prostate cancer. Front Endocrinol (Lausanne) 2023; 14:1093332. [PMID: 37065756 PMCID: PMC10090553 DOI: 10.3389/fendo.2023.1093332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/08/2023] [Indexed: 03/31/2023] Open
Abstract
Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer. NEPC is characterized by the loss of androgen receptor (AR) signaling and transdifferentiation toward small-cell neuroendocrine (SCN) phenotypes, which results in resistance to AR-targeted therapy. NEPC resembles other SCN carcinomas clinically, histologically and in gene expression. Here, we leveraged SCN phenotype scores of various cancer cell lines and gene depletion screens from the Cancer Dependency Map (DepMap) to identify vulnerabilities in NEPC. We discovered ZBTB7A, a transcription factor, as a candidate promoting the progression of NEPC. Cancer cells with high SCN phenotype scores showed a strong dependency on RET kinase activity with a high correlation between RET and ZBTB7A dependencies in these cells. Utilizing informatic modeling of whole transcriptome sequencing data from patient samples, we identified distinct gene networking patterns of ZBTB7A in NEPC versus prostate adenocarcinoma. Specifically, we observed a robust association of ZBTB7A with genes promoting cell cycle progression, including apoptosis regulating genes. Silencing ZBTB7A in a NEPC cell line confirmed the dependency on ZBTB7A for cell growth via suppression of the G1/S transition in the cell cycle and induction of apoptosis. Collectively, our results highlight the oncogenic function of ZBTB7A in NEPC and emphasize the value of ZBTB7A as a promising therapeutic strategy for targeting NEPC tumors.
Collapse
Affiliation(s)
- Song Yi Bae
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
| | - Hannah E. Bergom
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, United States
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
| | - Abderrahman Day
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, United States
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, United States
| | - Joseph T. Greene
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
| | - Zoi E. Sychev
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
| | - Gabrianne Larson
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, United States
| | - Stephen R. Plymate
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, United States
- Geriatric Research, Education, and Clinical Center, Veterans Affairs (VA) Puget Sound Health Care System, Seattle, WA, United States
| | - Tanya S. Freedman
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota-Twin Cities, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Justin H. Hwang
- Department of Medicine, University of Minnesota-Twin Cities, Minneapolis, MN, United States
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, United States
- Department of Urology, University of Washington, Seattle, WA, United States
| | - Justin M. Drake
- Department of Pharmacology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
- Department of Urology, University of Washington, Seattle, WA, United States
- Department of Urology, University of Minnesota-Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
16
|
Wen L, Wei Q, Livingston MJ, Dong G, Li S, Hu X, Li Y, Huo Y, Dong Z. PFKFB3 mediates tubular cell death in cisplatin nephrotoxicity by activating CDK4. Transl Res 2023; 253:31-40. [PMID: 36243313 PMCID: PMC10416729 DOI: 10.1016/j.trsl.2022.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Nephrotoxicity is a major side effect of cisplatin, a widely used cancer therapy drug. However, the mechanism of cisplatin nephrotoxicity remains unclear and no effective kidney protective strategies are available. Here, we report the induction of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in both in vitro cell culture and in vivo mouse models of cisplatin nephrotoxicity. Notably, PFKFB3 was mainly induced in the nucleus of kidney tubular cells, suggesting a novel function other than its canonical role in glycolysis. Both pharmacological inhibition and genetic silencing of PFKFB3 led to the suppression of cisplatin-induced apoptosis in cultured renal proximal tubular cells (RPTCs). Moreover, cisplatin-induced kidney injury or nephrotoxicity was ameliorated in renal proximal tubule-specific PFKFB3 knockout mice. Mechanistically, we demonstrated the interaction of PFKFB3 with cyclin-dependent kinase 4 (CDK4) during cisplatin treatment, resulting in CDK4 activation and consequent phosphorylation and inactivation of retinoblastoma tumor suppressor (Rb). Inhibition of CDK4 reduced cisplatin-induced apoptosis in RPTCs and kidney injury in mice. Collectively, this study unveils a novel pathological role of PFKFB3 in cisplatin nephrotoxicity through the activation of the CDK4/Rb pathway, suggesting a new kidney protective strategy for cancer patients by blocking PFKFB3.
Collapse
Affiliation(s)
- Lu Wen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Man J Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Siyao Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Xiaoru Hu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Ying Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, China; Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, USA; Research Department, Charlie Norwood VA Medical Center, Augusta, Georgia, USA.
| |
Collapse
|
17
|
Pozas J, Álvarez Rodríguez S, Fernández VA, Burgos J, Santoni M, Manneh Kopp R, Molina-Cerrillo J, Alonso-Gordoa T. Androgen Receptor Signaling Inhibition in Advanced Castration Resistance Prostate Cancer: What Is Expected for the Near Future? Cancers (Basel) 2022; 14:6071. [PMID: 36551557 PMCID: PMC9776956 DOI: 10.3390/cancers14246071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The androgen signaling pathway is the cornerstone in the treatment of high risk or advanced prostate cancer patients. However, in recent years, different mechanisms of resistance have been defined in this field, limiting the efficacy of the currently approved antiandrogen drugs. Different therapeutic approaches are under research to assess the role of combination therapies against escape signaling pathways or the development of novel antiandrogen drugs to try to solve the primary or acquired resistance against androgen dependent or independent pathways. The present review aims to summarize the current state of androgen inhibition in the therapeutic algorithm of patients with advanced prostate cancer and the mechanisms of resistance to those available drugs. In addition, this review conducted a comprehensive overview of the main present and future research approaches in the field of androgen receptor inhibition to overcome these resistances and the potential new drugs under research coming into this setting.
Collapse
Affiliation(s)
- Javier Pozas
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
| | - Sara Álvarez Rodríguez
- Urology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | | | - Javier Burgos
- Urology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | - Matteo Santoni
- Medical Oncology Department, Mazerata Hospital, 62100 Macerata, Italy
| | - Ray Manneh Kopp
- Sociedad de Oncología y Hematología del Cesar, Valledupar 200001, Colombia
| | - Javier Molina-Cerrillo
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| | - Teresa Alonso-Gordoa
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, 28034 Madrid, Spain
- The Ramon y Cajal Health Research Institute (IRYCIS), CIBERONC, 28034 Madrid, Spain
- Medicine School, Alcalá University, 28805 Madrid, Spain
| |
Collapse
|
18
|
Liu G, Chen T, Zhang X, Ma X, Shi H. Small molecule inhibitors targeting the cancers. MedComm (Beijing) 2022; 3:e181. [PMID: 36254250 PMCID: PMC9560750 DOI: 10.1002/mco2.181] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Compared with traditional therapies, targeted therapy has merits in selectivity, efficacy, and tolerability. Small molecule inhibitors are one of the primary targeted therapies for cancer. Due to their advantages in a wide range of targets, convenient medication, and the ability to penetrate into the central nervous system, many efforts have been devoted to developing more small molecule inhibitors. To date, 88 small molecule inhibitors have been approved by the United States Food and Drug Administration to treat cancers. Despite remarkable progress, small molecule inhibitors in cancer treatment still face many obstacles, such as low response rate, short duration of response, toxicity, biomarkers, and resistance. To better promote the development of small molecule inhibitors targeting cancers, we comprehensively reviewed small molecule inhibitors involved in all the approved agents and pivotal drug candidates in clinical trials arranged by the signaling pathways and the classification of small molecule inhibitors. We discussed lessons learned from the development of these agents, the proper strategies to overcome resistance arising from different mechanisms, and combination therapies concerned with small molecule inhibitors. Through our review, we hoped to provide insights and perspectives for the research and development of small molecule inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Gui‐Hong Liu
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Tao Chen
- Department of CardiologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xin Zhang
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xue‐Lei Ma
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Hua‐Shan Shi
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
19
|
Giannareas N, Zhang Q, Yang X, Na R, Tian Y, Yang Y, Ruan X, Huang D, Yang X, Wang C, Zhang P, Manninen A, Wang L, Wei GH. Extensive germline-somatic interplay contributes to prostate cancer progression through HNF1B co-option of TMPRSS2-ERG. Nat Commun 2022; 13:7320. [PMID: 36443337 PMCID: PMC9705428 DOI: 10.1038/s41467-022-34994-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Genome-wide association studies have identified 270 loci conferring risk for prostate cancer (PCa), yet the underlying biology and clinical impact remain to be investigated. Here we observe an enrichment of transcription factor genes including HNF1B within PCa risk-associated regions. While focused on the 17q12/HNF1B locus, we find a strong eQTL for HNF1B and multiple potential causal variants involved in the regulation of HNF1B expression in PCa. An unbiased genome-wide co-expression analysis reveals PCa-specific somatic TMPRSS2-ERG fusion as a transcriptional mediator of this locus and the HNF1B eQTL signal is ERG fusion status dependent. We investigate the role of HNF1B and find its involvement in several pathways related to cell cycle progression and PCa severity. Furthermore, HNF1B interacts with TMPRSS2-ERG to co-occupy large proportion of genomic regions with a remarkable enrichment of additional PCa risk alleles. We finally show that HNF1B co-opts ERG fusion to mediate mechanistic and biological effects of the PCa risk-associated locus 17p13.3/VPS53/FAM57A/GEMIN4. Taken together, we report an extensive germline-somatic interaction between TMPRSS2-ERG fusion and genetic variations underpinning PCa risk association and progression.
Collapse
Affiliation(s)
- Nikolaos Giannareas
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Qin Zhang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Xiayun Yang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Rong Na
- Division of Urology, Department of Surgery, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Yijun Tian
- Department of Tumour Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yuehong Yang
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Xiaohao Ruan
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Da Huang
- Department of Urology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqun Yang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peng Zhang
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Liang Wang
- Department of Tumour Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Gong-Hong Wei
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine and Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| |
Collapse
|