1
|
Brewer J, Wiesner GL, Clayton EW, Benedetti DJ. Oopherectomy in a Child to Reduce Cancer Risk: Oncogenetic, Ethical, and Legal Considerations. Pediatrics 2025; 155:e2024068269. [PMID: 40068817 DOI: 10.1542/peds.2024-068269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 12/02/2024] [Indexed: 04/02/2025] Open
Abstract
In the following case, we will discuss the clinical, ethical, and legal intricacies associated with the management of a young child with a hereditary cancer predisposition syndrome. Patients with germline pathogenic variants in SMARCA4 are at an increased risk for development of small cell carcinoma of the ovary-hypercalcemic type, malignant rhabdoid tumors, and some lung cancers. This case highlights the complexity of a case wherein a mother is found to have this genetic syndrome, and further testing reveals her daughter to have the same pathogenic variant. Through this case, we explore the oncologic, genetic, legal, and ethical considerations at play when making an irreversible decision for a child that affects her current and future medical and reproductive capacities. To do so would mitigate the risk of future malignancy, adding a layer of legal and ethical complexity. Although each contributor individually concludes that surgery in this case should be delayed, this case demonstrates the need for an individualized approach that considers medical evidence, patient and family interests, and child welfare.
Collapse
Affiliation(s)
- Jennifer Brewer
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Georgia L Wiesner
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ellen W Clayton
- Center for Biomedical Ethics and Society, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel J Benedetti
- Center for Biomedical Ethics and Society, Vanderbilt University Medical Center, Nashville, Tennessee
- Division of Hematology/Oncology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
2
|
Kuhlen M, Schaller T, Dintner S, Stadler N, Hofmann TG, Schmutz M, Claus R, Frühwald MC, Golas MM. Double Heterozygous Pathogenic Variants in TP53 and CHEK2 in Boy with Undifferentiated Embryonal Sarcoma of the Liver. Int J Mol Sci 2024; 25:11489. [PMID: 39519042 PMCID: PMC11545958 DOI: 10.3390/ijms252111489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Undifferentiated embryonal sarcoma of the liver is a rare mesenchymal malignancy that predominantly occurs in children. The relationship between this tumor entity and germline pathogenic variants (PVs) remains undefined. Here, we present the clinical case of a male patient diagnosed with undifferentiated embryonal sarcoma of the liver. Both germline and tumor samples were analyzed using next-generation sequencing. In the tumor tissue, PVs in TP53 (NM_000546.5):c.532del p.(His178Thrfs*69) and CHEK2 (NM_007194.4):c.85C>T p.(Gln29*) were identified, with both confirmed to be of germline origin. Copy number analyses indicated a loss of the wildtype TP53 allele in the tumor, consistent with a second hit, while it was the variant CHEK2 allele that was lost in the tumor. Our data indicate that the germline TP53 PV acts as a driver of tumorigenesis in the reported case and support a complex interaction between the germline TP53 and CHEK2 PVs. This case highlights the dynamic interplays of genetic alterations in tumorigenesis and emphasizes the need for continued investigation into the complex interactions between TP53 and CHEK2 PVs and into the association of undifferentiated embryonal sarcoma of the liver and Li-Fraumeni syndrome.
Collapse
Affiliation(s)
- Michaela Kuhlen
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
| | - Tina Schaller
- Pathology, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
| | - Sebastian Dintner
- Pathology, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
| | - Nicole Stadler
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
| | - Thomas G. Hofmann
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Maximilian Schmutz
- Hematology and Oncology, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
| | - Rainer Claus
- Pathology, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
- Comprehensive Cancer Center Augsburg, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
| | - Michael C. Frühwald
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
| | - Monika M. Golas
- Human Genetics, Faculty of Medicine, University of Augsburg, 86156 Augsburg, Germany
| |
Collapse
|
3
|
Bakhuizen JJ, van Dijk F, Koudijs MJ, Bladergroen RS, Bon SBB, Hopman SMJ, Kester LA, Kranendonk MEG, Loeffen JLC, Smetsers SE, Sonneveld E, Tachdjian M, de Vos-Kerkhof E, Goudie C, Merks JHM, Kuiper RP, Jongmans MCJ. Comparison of clinical selection-based genetic testing with phenotype-agnostic extensive germline sequencing to diagnose genetic predisposition in children with cancer: a prospective diagnostic study. THE LANCET. CHILD & ADOLESCENT HEALTH 2024; 8:751-761. [PMID: 39159644 DOI: 10.1016/s2352-4642(24)00144-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Germline data have become widely available in paediatric oncology since the introduction of paired tumour-germline sequencing. To guide best practice in cancer predisposition syndrome (CPS) diagnostics, we aimed to assess the diagnostic yield of extensive germline analysis compared with clinical selection-based genetic testing among all children with cancer. METHODS In this prospective diagnostic study, all children (aged 0-19 years) with newly diagnosed neoplasms treated in the Netherlands national centre, the Princess Máxima Center for Pediatric Oncology (Utrecht, Netherlands), between June 1, 2020, and July 31, 2022, were offered two approaches to identify CPSs. In a phenotype-driven approach, paediatric oncologists used the McGill Interactive Pediatric OncoGenetic Guidelines tool to select children for referral to a clinical geneticist, and for genetic testing. In a phenotype-agnostic approach, CPS gene panel sequencing (143 genes) was offered to all children. In children declining the research CPS gene panel, 49 CPS genes were still analysed as part of routine diagnostics by the pathologist. Children with a causative CPS identified before neoplasm diagnosis were excluded. The primary objective was to compare the number and type of patients diagnosed with a CPS between the two approaches. FINDINGS 1052 children were eligible for this study, of whom 733 (70%) completed both the phenotype-driven approach and received phenotype-agnostic CPS gene panel sequencing (143 genes n=600; 49 genes n=133). In 53 children, a CPS was identified: 14 (26%) were diagnosed by the phenotype-driven approach only, 22 (42%) by CPS gene sequencing only, and 17 (32%) by both approaches. In 27 (51%) of the 53 children, the identified CPS was considered causative for the child's neoplasm. Only one (4%) of the 27 causative CPSs was missed by the phenotype-driven approach and was identified solely by phenotype-agnostic CPS gene sequencing. In 26 (49%) children, a CPS with uncertain causality was identified, including 14 adult-onset CPSs. The CPSs with uncertain causality were mainly detected by the phenotype-agnostic approach (21 [81%] of 26). INTERPRETATION Phenotype-driven genetic testing and phenotype-agnostic CPS gene panel sequencing were complementary. The phenotype-driven approach identified the most causative CPSs. CPS gene panel sequencing identified additional CPSs, many of those with uncertain causality, but some with clinical utility. We advise clinical evaluation for CPSs in all children with neoplasms. Phenotype-agnostic testing of all CPS genes is preferably conducted only in research settings and should be paired with counseling. FUNDING Stichting Kinderen Kankervrij.
Collapse
Affiliation(s)
- Jette J Bakhuizen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Freerk van Dijk
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marco J Koudijs
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | | | - Saskia M J Hopman
- Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Lennart A Kester
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Jan L C Loeffen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | | - Edwin Sonneveld
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Melissa Tachdjian
- Research Institute of the McGill University Health Centre, Child Health and Human Development Program, Montreal, QC, Canada
| | | | - Catherine Goudie
- Research Institute of the McGill University Health Centre, Child Health and Human Development Program, Montreal, QC, Canada; Department of Pediatrics, Division of Hematology-Oncology, McGill University Health Centre, Montreal, QC, Canada
| | - Johannes H M Merks
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Division of Imaging and Oncology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marjolijn C J Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
4
|
Das A, MacFarland SP, Meade J, Hansford JR, Schneider KW, Kuiper RP, Jongmans MCJ, Lesmana H, Schultz KAP, Nichols KE, Durno C, Zelley K, Porter CC, States LJ, Ben-Shachar S, Savage SA, Kalish JM, Walsh MF, Scott HS, Plon SE, Tabori U. Clinical Updates and Surveillance Recommendations for DNA Replication Repair Deficiency Syndromes in Children and Young Adults. Clin Cancer Res 2024; 30:3378-3387. [PMID: 38860976 DOI: 10.1158/1078-0432.ccr-23-3994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/29/2024] [Accepted: 05/02/2024] [Indexed: 06/12/2024]
Abstract
Replication repair deficiency (RRD) is a pan-cancer mechanism characterized by abnormalities in the DNA mismatch repair (MMR) system due to pathogenic variants in the PMS2, MSH6, MSH2, or MLH1 genes, and/or in the polymerase-proofreading genes POLE and POLD1. RRD predisposition syndromes (constitutional MMR deficiency, Lynch, and polymerase proofreading-associated polyposis) share overlapping phenotypic and biological characteristics. Moreover, cancers stemming from germline defects of one mechanism can acquire somatic defects in another, leading to complete RRD. Here we describe the recent advances in the diagnostics, surveillance, and clinical management for children with RRD syndromes. For patients with constitutional MMR deficiency, new data combining clinical insights and cancer genomics have revealed genotype-phenotype associations and helped in the development of novel functional assays, diagnostic guidelines, and surveillance recommendations. Recognition of non-gastrointestinal/genitourinary malignancies, particularly aggressive brain tumors, in select children with Lynch and polymerase proofreading-associated polyposis syndromes harboring an RRD biology have led to new management considerations. Additionally, universal hypermutation and microsatellite instability have allowed immunotherapy to be a paradigm shift in the treatment of RRD cancers independent of their germline etiology. These advances have also stimulated a need for expert recommendations about genetic counseling for these patients and their families. Future collaborative work will focus on newer technologies such as quantitative measurement of circulating tumor DNA and functional genomics to tailor surveillance and clinical care, improving immune surveillance; develop prevention strategies; and deliver these novel discoveries to resource-limited settings to maximize benefits for patients globally.
Collapse
Affiliation(s)
- Anirban Das
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Suzanne P MacFarland
- Division of Oncology, Cancer Predisposition Program, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Julia Meade
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jordan R Hansford
- Michael Rice Centre for Hematology and Oncology, Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Kami W Schneider
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Roland P Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Marjolijn C J Jongmans
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Genetics, Utrecht University Medical Center, Utrecht, the Netherlands
| | - Harry Lesmana
- Department of Pediatric Hematology/Oncology and BMT, Cleveland Clinic, Cleveland, Ohio
| | - Kris Ann P Schultz
- Cancer and Blood Disorders, Children's Minnesota, Minneapolis, Minnesota
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Carol Durno
- Division of Gastroenterology and Hepatology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Zane Cohen Center, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kristin Zelley
- Hereditary Cancer Predisposition Program, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Lisa J States
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shay Ben-Shachar
- Clalit Research Institute, Ramat-Gan, Tel Aviv University, Tel-Aviv, Israel
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Departments of Pediatrics and Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael F Walsh
- Divisions of Solid Tumor and Clinical Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hamish S Scott
- Center for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia, Australia
| | - Sharon E Plon
- Texas Children's Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Uri Tabori
- Division of Haematology Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Kaffai S, Angelova-Toshkin D, Weins AB, Ickinger S, Steinke-Lange V, Vollert K, Frühwald MC, Kuhlen M. Cancer predisposing syndromes in childhood and adolescence pose several challenges necessitating interdisciplinary care in dedicated programs. Front Pediatr 2024; 12:1410061. [PMID: 38887560 PMCID: PMC11180882 DOI: 10.3389/fped.2024.1410061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Introduction Genetic disposition is a major etiologic factor in childhood cancer. More than 100 cancer predisposing syndromes (CPS) are known. Surveillance protocols seek to mitigate morbidity and mortality. To implement recommendations in patient care and to ascertain that the constant gain of knowledge forces its way into practice specific pediatric CPS programs were established. Patients and methods We retrospectively analyzed data on children, adolescents, and young adults referred to our pediatric CPS program between October 1, 2021, and March 31, 2023. Follow-up ended on December 31, 2023. Results We identified 67 patients (30 male, 36 female, 1 non-binary, median age 9.5 years). Thirty-five patients were referred for CPS surveillance, 32 for features suspicious of a CPS including café-au-lait macules (n = 10), overgrowth (n = 9), other specific symptoms (n = 4), cancer suspicious of a CPS (n = 6), and rare neoplasms (n = 3). CPS was confirmed by clinical criteria in 6 patients and genetic testing in 7 (of 13). In addition, 6 clinically unaffected at-risk relatives were identified carrying a cancer predisposing pathogenic variant. A total of 48 patients were eventually diagnosed with CPS, surveillance recommendations were on record for 45. Of those, 8 patients did not keep their appointments for various reasons. Surveillance revealed neoplasms (n = 2) and metachronous tumors (n = 4) by clinical (n = 2), radiological examination (n = 2), and endoscopy (n = 2). Psychosocial counselling was utilized by 16 (of 45; 35.6%) families. Conclusions The diverse pediatric CPSs pose several challenges necessitating interdisciplinary care in specified CPS programs. To ultimately improve outcome including psychosocial well-being joint clinical and research efforts are necessary.
Collapse
Affiliation(s)
- Stefanie Kaffai
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Daniela Angelova-Toshkin
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Andreas B. Weins
- Augsburger Zentrum für Seltene Erkrankungen, University of Augsburg, Augsburg, Germany
| | - Sonja Ickinger
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | | | - Kurt Vollert
- Department of Diagnostic and Interventional Radiology, University of Augsburg, Augsburg, Germany
| | - Michael C. Frühwald
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Michaela Kuhlen
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
6
|
Kuhlen M, Hofmann TG, Golas MM. Puzzling phenomenon: adult-onset cancer predisposition and pediatric cancer. Trends Cancer 2024; 10:481-485. [PMID: 38503638 DOI: 10.1016/j.trecan.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
Pathogenic variants (PVs) in DNA repair-linked adult-onset cancer predisposition genes, including double heterozygosity, are increasingly identified in pediatric patients with cancer. Their role in childhood cancer, however, remains poorly understood. Integrating comprehensive tumor analysis is integral for understanding the contribution of such PVs in cancer development and personalized cancer care.
Collapse
Affiliation(s)
- Michaela Kuhlen
- Pediatrics and Adolescent Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany.
| | - Thomas G Hofmann
- Institute of Toxicology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Monika M Golas
- Human Genetics, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| |
Collapse
|
7
|
Kratz CP, Lupo PJ, Zelley K, Schienda J, Nichols KE, Stewart DR, Malkin D, Brodeur GM, Maxwell K, Plon SE, Walsh MF. Adult-Onset Cancer Predisposition Syndromes in Children and Adolescents-To Test or not to Test? Clin Cancer Res 2024; 30:1733-1738. [PMID: 38411636 DOI: 10.1158/1078-0432.ccr-23-3683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/17/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
With the increasing use of comprehensive germline genetic testing of children and adolescents with cancer, it has become evident that pathogenic variants (PV) in adult-onset cancer predisposition genes (aoCPG) underlying adult-onset cancer predisposition syndromes, such as Lynch syndrome or hereditary breast and ovarian cancer, are enriched and reported in 1% to 2% of children and adolescents with cancer. However, the causal relationship between PVs in aoCPGs and childhood cancer is still under investigation. The best-studied examples include heterozygous PVs in mismatch repair genes associated with Lynch syndrome in children with mismatch repair deficient high-grade glioma, heterozygous PVs in BARD1 in childhood neuroblastoma, and heterozygous PVs in BRCA2 in children with rhabdomyosarcoma. The low penetrance for pediatric cancers is considered to result from a combination of the low baseline risk of cancer in childhood and the report of only a modest relative risk of disease in childhood. Therefore, we do not advise that healthy children empirically be tested for PVs in an aoCPG before adulthood outside a research study. However, germline panel testing is increasingly being performed in children and adolescents with cancer, and exome and genome sequencing may be offered more commonly in this population in the future. The precise pediatric cancer risks and spectra associated with PVs in aoCPGs, underlying cellular mechanisms and somatic mutational signatures, as well as treatment response, second neoplasm risks, and psycho-oncological aspects require further research.
Collapse
Affiliation(s)
- Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Philip J Lupo
- Department of Pediatrics, Division of Hematology/Oncology, Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Kristin Zelley
- Division of Oncology at the Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Jaclyn Schienda
- Department of Pediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts
| | - Kim E Nichols
- Department of Oncology, St Jude Children's Research Hospital, Memphis, Tennessee
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | - David Malkin
- Division of Hematology/Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Garrett M Brodeur
- Division of Oncology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kara Maxwell
- Department of Medicine, Hematology-Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sharon E Plon
- Department of Pediatrics, Division of Hematology/Oncology, Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Michael F Walsh
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|