1
|
Wani AK, Prakash A, Sena S, Akhtar N, Singh R, Chopra C, Ariyanti EE, Mudiana D, Yulia ND, Rahayu F. Unraveling molecular signatures in rare bone tumors and navigating the cancer pathway landscapes for targeted therapeutics. Crit Rev Oncol Hematol 2024; 196:104291. [PMID: 38346462 DOI: 10.1016/j.critrevonc.2024.104291] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Rare cancers (RCs), which account for over 20% of cancer cases, face significant research and treatment challenges due to their limited prevalence. This results in suboptimal outcomes compared to more common malignancies. Rare bone tumors (RBTs) constitute 5-10% of rare cancer cases and pose unique diagnostic complexities. The therapeutic potential of anti-cancer drugs for RBTs remains largely unexplored. Identifying molecular alterations in cancer-related genes and their associated pathways is essential for precision medicine in RBTs. Small molecule inhibitors and monoclonal antibodies targeting specific RBT-associated proteins show promise. Ongoing clinical trials aim to define RBT biomarkers, subtypes, and optimal treatment contexts, including combination therapies and immunotherapeutic agents. This review addresses the challenges in diagnosing, treating, and studying RBTs, shedding light on the current state of RBT biomarkers, potential therapeutic targets, and promising inhibitors. Rare cancers demand attention and innovative solutions to improve clinical outcomes.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India.
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Saikat Sena
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Esti Endah Ariyanti
- Research Center for Applied Botany, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Deden Mudiana
- Research Center for Ecology and Ethnobiology, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Nina Dwi Yulia
- Research Center for Applied Botany, National Research and Innovation Agency, Bogor 16911, Indonesia
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor 16911, Indonesia
| |
Collapse
|
2
|
Wang F, Zhang Y, Pang R, Shi S, Wang R. Scoulerine promotes cytotoxicity and attenuates stemness in ovarian cancer by targeting PI3K/AKT/mTOR axis. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2023; 73:475-488. [PMID: 37708956 DOI: 10.2478/acph-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/08/2023] [Indexed: 09/16/2023]
Abstract
In women, ovarian cancer is a common gynecological cancer associated with poor prognosis, reoccurrence and chemoresistance. Scoulerine, a benzylisoquinoline alkaloid, has been reported effective against several carcinomas. Thus, we investigated the impact of scoulerine on ovarian cancer cells (OVCAR3). Cell viability was assessed by MTT assay, migration was determined by Boyden Chamber assay, while the invasion was monitored by Boyden Chamber assay using the matrigel. The stemness properties of OVCAR3 cells were observed by tumorsphere assay. Epithelial to mesenchymal transition (EMT) and stemness-related protein markers were monitored by real-time PCR analysis and immunoblotting. Scoulerine inhibits the viability of OVCAR3 cells with the IC 50 observed at 10 µmol L-1 after 48 h treatment. Scoulerine inhibited the colony-forming ability, migration and invasiveness of OVCAR3 cells in a dose-dependent fashion. Scoulerine treatment also drastically reduced the spheroid-forming ability of OVCAR3 cells. The mesenchymal and stemness--related markers like N-cadherin, vimentin, CD-44, Oct-4, Sox-2 and Aldh1A1 were downregulated, whereas the epithelial markers like E-cadherin and CD-24 were upregulated in scoulerine-treated cells. The upstream PI3K/Akt/mTOR-axis was downregulated in scoulerine-treated cells. We concluded that scoulerine successfully perturbs the cancerous properties of OVCAR3 cells by targeting the PI3K/Akt/mTOR axis. In vivo studies revealed a substantial decrease in tumor mass and volume after scoulerine treatment. Furthermore, scoulerine treatment was found to decrease oxidative stress factors in ovarian cancer mice model. Scoulerine is a potential anticancer agent against ovarian cancer and can be considered as a lead molecule for this malignancy, provided further investigations are performed.
Collapse
Affiliation(s)
- Fang Wang
- Department of Gynaecology, Xuzhou Medical University Affiliated Hospital of Lianyungang Lianyungang, Jiangsu, China
| | - Yang Zhang
- Department of Gynaecology, Xuzhou Medical University Affiliated Hospital of Lianyungang Lianyungang, Jiangsu, China
| | - Rui Pang
- Department of Gynaecology, Xuzhou Medical University Affiliated Hospital of Lianyungang Lianyungang, Jiangsu, China
| | - Shaohong Shi
- Department of Gynaecology, Xuzhou Medical University Affiliated Hospital of Lianyungang Lianyungang, Jiangsu, China
| | - Ran Wang
- Department of Clinical laboratory, Xuzhou Medical University Affiliated Hospital of Lianyungang Lianyungang Jiangsu, China
| |
Collapse
|
3
|
Wilczyński JR, Wilczyński M, Paradowska E. "DEPHENCE" system-a novel regimen of therapy that is urgently needed in the high-grade serous ovarian cancer-a focus on anti-cancer stem cell and anti-tumor microenvironment targeted therapies. Front Oncol 2023; 13:1201497. [PMID: 37448521 PMCID: PMC10338102 DOI: 10.3389/fonc.2023.1201497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023] Open
Abstract
Ovarian cancer, especially high-grade serous type, is the most lethal gynecological malignancy. The lack of screening programs and the scarcity of symptomatology result in the late diagnosis in about 75% of affected women. Despite very demanding and aggressive surgical treatment, multiple-line chemotherapy regimens and both approved and clinically tested targeted therapies, the overall survival of patients is still unsatisfactory and disappointing. Research studies have recently brought some more understanding of the molecular diversity of the ovarian cancer, its unique intraperitoneal biology, the role of cancer stem cells, and the complexity of tumor microenvironment. There is a growing body of evidence that individualization of the treatment adjusted to the molecular and biochemical signature of the tumor as well as to the medical status of the patient should replace or supplement the foregoing therapy. In this review, we have proposed the principles of the novel regimen of the therapy that we called the "DEPHENCE" system, and we have extensively discussed the results of the studies focused on the ovarian cancer stem cells, other components of cancer metastatic niche, and, finally, clinical trials targeting these two environments. Through this, we have tried to present the evolving landscape of treatment options and put flesh on the experimental approach to attack the high-grade serous ovarian cancer multidirectionally, corresponding to the "DEPHENCE" system postulates.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, Lodz, Poland
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother's Health Center-Research Institute, Lodz, Poland
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
4
|
Zhang R, Roque DM, Reader J, Lin J. Combined inhibition of IL‑6 and IL‑8 pathways suppresses ovarian cancer cell viability and migration and tumor growth. Int J Oncol 2022; 60:50. [PMID: 35315502 PMCID: PMC8973967 DOI: 10.3892/ijo.2022.5340] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/13/2021] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer type in the United States. The success of current chemotherapies is limited by chemoresistance and side effects. Targeted therapy is a promising future direction for cancer therapy. In the present study, the efficacy of co‑targeting IL‑6 and IL‑8 in human ovarian cancer cells by bazedoxifene (Baze) + SCH527123 (SCH) treatment was examined. ELISA, cell viability, cell proliferation, cell migration, cell invasion, western blotting and peritoneal ovarian tumor mouse model analyses were performed to analyze the expression levels of IL‑6 and IL‑8, tumor growth, tumor migration and invasion, and the possible pathways of human ovarian cancer cell lines (SKOV3, CAOV3 and OVCAR3) and patient‑derived OV75 ovarian cancer cells. Each cell line was treated by monotherapy or combination therapy. The results demonstrated that IL‑6 and IL‑8 were secreted by human ovarian cancer cell lines. Compared with the DMSO control, the combination of IL‑6/glycoprotein 130 inhibitor Baze and IL‑8 inhibitor SCH synergistically inhibited cell viability in ovarian cancer cells. Baze + SCH also inhibited cell migration and invasion, suppressed ovarian tumor growth and inhibited STAT3 and AKT phosphorylation, as well as survivin expression. Therefore, co‑targeting the IL‑6 and IL‑8 signaling pathways may be an effective approach for ovarian cancer treatment.
Collapse
Affiliation(s)
- Ruijie Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Dana M Roque
- Division of Gynecologic Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jocelyn Reader
- Division of Gynecologic Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Lupia M, Melocchi V, Bizzaro F, Lo Riso P, Dama E, Baronio M, Ranghiero A, Barberis M, Bernard L, Bertalot G, Giavazzi R, Testa G, Bianchi F, Cavallaro U. Integrated molecular profiling of patient-derived ovarian cancer models identifies clinically relevant signatures and tumor vulnerabilities. Int J Cancer 2022; 151:240-254. [PMID: 35218560 PMCID: PMC9310611 DOI: 10.1002/ijc.33983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 12/24/2022]
Abstract
High‐grade serous ovarian carcinoma (HGSOC) is a highly aggressive and intractable neoplasm, mainly because of its rapid dissemination into the abdominal cavity, a process that is favored by tumor‐associated peritoneal ascites. The precise molecular alterations involved in HGSOC onset and progression remain largely unknown due to the high biological and genetic heterogeneity of this tumor. We established a set of different tumor samples (termed the As11‐set) derived from a single HGSOC patient, consisting of peritoneal ascites, primary tumor cells, ovarian cancer stem cells (OCSC) and serially propagated tumor xenografts. The As11‐set was subjected to an integrated RNA‐seq and DNA‐seq analysis which unveiled molecular alterations that marked the different types of samples. Our profiling strategy yielded a panel of signatures relevant in HGSOC and in OCSC biology. When such signatures were used to interrogate the TCGA dataset from HGSOC patients, they exhibited prognostic and predictive power. The molecular alterations also identified potential vulnerabilities associated with OCSC, which were then tested functionally in stemness‐related assays. As a proof of concept, we defined PI3K signaling as a novel druggable target in OCSC.
Collapse
Affiliation(s)
- Michela Lupia
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCCS, Milan, Italy
| | - Valentina Melocchi
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Francesca Bizzaro
- Laboratory of Tumor Metastasis Therapeutics, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Pietro Lo Riso
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Elisa Dama
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Micol Baronio
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Massimo Barberis
- Pathology Unit, European Institute of Oncology IRCCS, Milan, Italy
| | - Loris Bernard
- Clinical Genomics Lab, European Institute of Oncology IRCCS, Milan, Italy
| | - Giovanni Bertalot
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Raffaella Giavazzi
- Laboratory of Tumor Metastasis Therapeutics, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, Milan, Italy
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Haemato-Oncology, University of Milan, Italy
| | - Fabrizio Bianchi
- Unit of Cancer Biomarkers, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Ugo Cavallaro
- Unit of Gynaecological Oncology Research, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
6
|
CC Chemokine Ligand 7 Derived from Cancer-Stimulated Macrophages Promotes Ovarian Cancer Cell Invasion. Cancers (Basel) 2021; 13:cancers13112745. [PMID: 34206004 PMCID: PMC8198020 DOI: 10.3390/cancers13112745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
In the tumor microenvironment, macrophages have been suggested to be stimulated by tumor cells, becoming tumor-associated macrophages that promote cancer development and progression. We examined the effect of these macrophages on human ovarian cancer cell invasion and found that conditioned medium of macrophages stimulated by ovarian cancer cells (OC-MQs) significantly increased cell invasion. CC chemokine ligand 7 (CCL7) expression and production were significantly higher in OC-MQs than in the control macrophages. Peritoneal macrophages from patients with ovarian cancer showed higher CCL7 expression levels than those from healthy controls. Inhibition of CCL7 using siRNA and neutralizing antibodies reduced the OC-MQ-CM-induced ovarian cancer cell invasion. CC chemokine receptor 3 (CCR3) was highly expressed in human ovarian cancer cells, and a specific inhibitor of this receptor reduced the OC-MQ-CM-induced invasion. Specific signaling and transcription factors were associated with enhanced CCL7 expression in OC-MQs. CCL7-induced invasion required the expression of matrix metalloproteinase 9 via activation of extracellular signal-related kinase signaling in human ovarian cancer cells. These data suggest that tumor-associated macrophages can affect human ovarian cancer metastasis via the CCL7/CCR3 axis.
Collapse
|
7
|
Mogi K, Yoshihara M, Iyoshi S, Kitami K, Uno K, Tano S, Koya Y, Sugiyama M, Yamakita Y, Nawa A, Tomita H, Kajiyama H. Ovarian Cancer-Associated Mesothelial Cells: Transdifferentiation to Minions of Cancer and Orchestrate Developing Peritoneal Dissemination. Cancers (Basel) 2021; 13:1352. [PMID: 33802781 PMCID: PMC8002484 DOI: 10.3390/cancers13061352] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/18/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer has one of the poorest prognoses among carcinomas. Advanced ovarian cancer often develops ascites and peritoneal dissemination, which is one of the poor prognostic factors. From the perspective of the "seed and soil" hypothesis, the intra-abdominal environment is like the soil for the growth of ovarian cancer (OvCa) and mesothelial cells (MCs) line the top layer of this soil. In recent years, various functions of MCs have been reported, including supporting cancer in the OvCa microenvironment. We refer to OvCa-associated MCs (OCAMs) as MCs that are stimulated by OvCa and contribute to its progression. OCAMs promote OvCa cell adhesion to the peritoneum, invasion, and metastasis. Elucidation of these functions may lead to the identification of novel therapeutic targets that can delay OvCa progression, which is difficult to cure.
Collapse
Affiliation(s)
- Kazumasa Mogi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan; (K.M.); (S.I.); (K.K.); (K.U.); (S.T.)
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan; (K.M.); (S.I.); (K.K.); (K.U.); (S.T.)
| | - Shohei Iyoshi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan; (K.M.); (S.I.); (K.K.); (K.U.); (S.T.)
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstr. 19A, 79104 Freiburg, Germany
| | - Kazuhisa Kitami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan; (K.M.); (S.I.); (K.K.); (K.U.); (S.T.)
| | - Kaname Uno
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan; (K.M.); (S.I.); (K.K.); (K.U.); (S.T.)
- Division of Clinical Genetics, Lund University, Sölvegatan 19, 22184 Lund, Sweden
| | - Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan; (K.M.); (S.I.); (K.K.); (K.U.); (S.T.)
| | - Yoshihiro Koya
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (Y.K.); (M.S.); (Y.Y.); (A.N.)
| | - Mai Sugiyama
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (Y.K.); (M.S.); (Y.Y.); (A.N.)
| | - Yoshihiko Yamakita
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (Y.K.); (M.S.); (Y.Y.); (A.N.)
| | - Akihiro Nawa
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (Y.K.); (M.S.); (Y.Y.); (A.N.)
| | - Hiroyuki Tomita
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan;
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8560, Japan; (K.M.); (S.I.); (K.K.); (K.U.); (S.T.)
| |
Collapse
|
8
|
Chu L, Wang F, Zhang W, Li HF, Xu J, Tong XW. Periostin Secreted by Carcinoma-Associated Fibroblasts Promotes Ovarian Cancer Cell Platinum Resistance Through the PI3K/Akt Signaling Pathway. Technol Cancer Res Treat 2020; 19:1533033820977535. [PMID: 33302812 PMCID: PMC7734496 DOI: 10.1177/1533033820977535] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Periostin (POSTN) is a protein secreted by mesenchymal cells. Periostin is upregulated in several cancer types and overexpression is associated with poor prognosis. However, the functional role and molecular underpinnings of periostin in epithelial ovarian cancer (EOC) is unknown. In the present study, periostin was found to be significantly upregulated in EOC stroma. Functional studies revealed that periostin could decrease cisplatin (DDP)-induced apoptosis in EOC. Periostin led to DDP resistance in EOC cells, potentially through the PI3K/Akt signaling pathway. We generated periostin-overexpressing fibroblasts and found that EOC cells were resistant to DDP when co-cultured with periostin-overexpressing fibroblasts. The findings of the present study indicated that periostin secreted by cancer-associated stromal cells may be a potential therapeutic target for EOC.
Collapse
Affiliation(s)
- Lei Chu
- Department of Gynecology and Obstetrics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fangce Wang
- Department of Hematology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjun Zhang
- Department of Hematology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huai-Fang Li
- Department of Gynecology and Obstetrics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Xu
- Advanced Institute of Translational Medicine, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Wen Tong
- Department of Gynecology and Obstetrics, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Wen KC, Sung PL, Wu ATH, Chou PC, Lin JH, Huang CYF, Yeung SCJ, Lee MH. Neoadjuvant metformin added to conventional chemotherapy synergizes anti-proliferative effects in ovarian cancer. J Ovarian Res 2020; 13:95. [PMID: 32825834 PMCID: PMC7442990 DOI: 10.1186/s13048-020-00703-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/10/2020] [Indexed: 11/30/2022] Open
Abstract
Background Ovarian cancer is the leading cause of cancer-related death among women. Complete cytoreductive surgery followed by platinum-taxene chemotherapy has been the gold standard for a long time. Various compounds have been assessed in an attempt to combine them with conventional chemotherapy to improve survival rates or even overcome chemoresistance. Many studies have shown that an antidiabetic drug, metformin, has cytotoxic activity in different cancer models. However, the synergism of metformin as a neoadjuvant formula plus chemotherapy in clinical trials and basic studies remains unclear for ovarian cancer. Methods We applied two clinical databases to survey metformin use and ovarian cancer survival rate. The Cancer Genome Atlas dataset, an L1000 microarray with Gene Set Enrichment Analysis (GSEA) analysis, Western blot analysis and an animal model were used to study the activity of the AKT/mTOR pathway in response to the synergistic effects of neoadjuvant metformin combined with chemotherapy. Results We found that ovarian cancer patients treated with metformin had significantly longer overall survival than patients treated without metformin. The protein profile induced by low- concentration metformin in ovarian cancer predominantly involved the AKT/mTOR pathway. In combination with chemotherapy, the neoadjuvant metformin protocol showed beneficial synergistic effects in vitro and in vivo. Conclusions This study shows that neoadjuvant metformin at clinically relevant dosages is efficacious in treating ovarian cancer, and the results can be used to guide clinical trials.
Collapse
Affiliation(s)
- Kuo-Chang Wen
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Pi-Lin Sung
- Department of Obstetrics and Gynecology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan.,Department of Obstetrics and Gynecology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.,Department of Obstetrics and Gynecology, Huei-Sheng Clinic, New Taipei City, 23561, Taiwan
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ping-Chieh Chou
- Department of Molecular and Cellular Oncology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Jun-Hung Lin
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital and School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Chi-Ying F Huang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Sai-Ching J Yeung
- Department of Emergency Medicine, Division of Internal Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Mong-Hong Lee
- Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Erheng Rd, Guangzhou, 510655, P.R. China.
| |
Collapse
|
10
|
Yoshihara M, Kajiyama H, Yokoi A, Sugiyama M, Koya Y, Yamakita Y, Liu W, Nakamura K, Moriyama Y, Yasui H, Suzuki S, Yamamoto Y, Ricciardelli C, Nawa A, Shibata K, Kikkawa F. Ovarian cancer-associated mesothelial cells induce acquired platinum-resistance in peritoneal metastasis via the FN1/Akt signaling pathway. Int J Cancer 2020; 146:2268-2280. [PMID: 31904865 PMCID: PMC7065188 DOI: 10.1002/ijc.32854] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/17/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022]
Abstract
Peritoneal dissemination of ovarian cancer (OvCa) arises from the surface of the peritoneum, covered by monolayer of mesothelial cells (MCs). Given that both OvCa cells and MCs are present in the same peritoneal metastatic microenvironment, they may establish cell-to-cell crosstalk or phenotypic alterations including the acquisition of platinum-resistance in OvCa cells. Herein, we report how OvCa-associated mesothelial cells (OCAMs) induce platinum-resistance in OvCa cells through direct cell-to-cell crosstalk. We evaluated mutual associations between OvCa cells and human primary MCs with in vitro coculturing experimental models and in silico omics data analysis. The role of OCAMs was also investigated using clinical samples and in vivo mice models. Results of in vitro experiments show that mesenchymal transition is induced in OCAMs primarily by TGF-β1 stimulation. Furthermore, OCAMs influence the behavior of OvCa cells as a component of the tumor microenvironment of peritoneal metastasis. Mechanistically, OCAMs can induce decreased platinum-sensitivity in OvCa cells via induction of the FN1/Akt signaling pathway via cell-to-cell interactions. Histological analysis of OvCa peritoneal metastasis also illustrated FN1 expression in stromal cells that are supposed to originate from MCs. Further, we also confirmed the activation of Akt signaling in OvCa cells in contact with TGF-β1 stimulated peritoneum, using an in vivo mice model. Our results suggest that the tumor microenvironment, enhanced by direct cell-to-cell crosstalk between OvCa cells and OCAMs, induces acquisition of platinum-resistance in OvCa cells, which may serve as a novel therapeutic target for prevention of OvCa peritoneal dissemination.
Collapse
Affiliation(s)
- Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mai Sugiyama
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Nagoya, Japan
| | - Yoshihiro Koya
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Nagoya, Japan
| | | | - Wenting Liu
- Bell Research Center for Reproductive Health and Cancer, Nagoya, Japan
| | - Kae Nakamura
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Nagoya, Japan
| | - Yoshinori Moriyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Yasui
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiro Suzuki
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yusuke Yamamoto
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Carmela Ricciardelli
- Discipline of Obstetrics and Gynaecology, Adelaide Medical School, Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - Akihiro Nawa
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Bell Research Center for Reproductive Health and Cancer, Nagoya, Japan
| | - Kiyosumi Shibata
- Department of Obstetrics and Gynecology, Fujita Health University Bantane Hospital, Nagoya, Japan
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
11
|
Binju M, Amaya-Padilla MA, Wan G, Gunosewoyo H, Suryo Rahmanto Y, Yu Y. Therapeutic Inducers of Apoptosis in Ovarian Cancer. Cancers (Basel) 2019; 11:E1786. [PMID: 31766284 PMCID: PMC6896143 DOI: 10.3390/cancers11111786] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancers remain one of the most common causes of gynecologic cancer-related death in women worldwide. The standard treatment comprises platinum-based chemotherapy, and most tumors develop resistance to therapeutic drugs. One mechanism of developing drug resistance is alterations of molecules involved in apoptosis, ultimately assisting in the cells' capability to evade death. Thus, there is a need to focus on identifying potential drugs that restore apoptosis in cancer cells. Here, we discuss the major inducers of apoptosis mediated through various mechanisms and their usefulness as potential future treatment options for ovarian cancer. Broadly, they can target the apoptotic pathways directly or affect apoptosis indirectly through major cancer-pathways in cells. The direct apoptotic targets include the Bcl-2 family of proteins and the inhibitor of apoptotic proteins (IAPs). However, indirect targets include processes related to homologous recombination DNA repair, micro-RNA, and p53 mutation. Besides, apoptosis inducers may also disturb major pathways converging into apoptotic signals including janus kinase (JAK)/signal transducer and activator of transcription 3 (STAT3), wingless-related integration site (Wnt)/β-Catenin, mesenchymal-epithelial transition factor (MET)/hepatocyte growth factor (HGF), mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK), and phosphatidylinositol 3-kinase (PI3K)/v-AKT murine thymoma viral oncogene homologue (AKT)/mammalian target of rapamycin (mTOR) pathways. Several drugs in our review are undergoing clinical trials, for example, birinapant, DEBIO-1143, Alisertib, and other small molecules are in preclinical investigations showing promising results in combination with chemotherapy. Molecules that exhibit better efficacy in the treatment of chemo-resistant cancer cells are of interest but require more extensive preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Mudra Binju
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Monica Angelica Amaya-Padilla
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Graeme Wan
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Hendra Gunosewoyo
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
| | - Yohan Suryo Rahmanto
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21231, USA
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | - Yu Yu
- School of Pharmacy & Biomedical Sciences, Curtin University, Curtin Health Innovative Research Institute, Perth, WA 6102, Australia
- University of Western Australia Medical School, Division of Obstetrics & Gynaecology, Perth, WA 6009, Australia
| |
Collapse
|
12
|
Mormile R. Aspirin Use and Risk of Ovarian Cancer: More Player Pathways for a Common Starting Point? Cancer Invest 2019; 37:415-416. [PMID: 31446811 DOI: 10.1080/07357907.2019.1653464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, Moscati Hospital , Aversa , Italy
| |
Collapse
|
13
|
Deng J, Bai X, Feng X, Ni J, Beretov J, Graham P, Li Y. Inhibition of PI3K/Akt/mTOR signaling pathway alleviates ovarian cancer chemoresistance through reversing epithelial-mesenchymal transition and decreasing cancer stem cell marker expression. BMC Cancer 2019; 19:618. [PMID: 31234823 PMCID: PMC6591840 DOI: 10.1186/s12885-019-5824-9] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/12/2019] [Indexed: 12/18/2022] Open
Abstract
Background Ovarian cancer is the most common malignant tumor of the female reproductive tract. Chemoresistance is a major challenge for current ovarian cancer therapy. However, the mechanism underlying epithelial ovarian cancer (EOC) chemoresistance is not completely uncovered. The phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling is an important intracellular pathway in regulating cell cycle, quiescence, and proliferation. The aim of this study is to investigate the role of PI3K/Akt/mTOR signaling pathway and its association with epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) marker expression in EOC chemoresistance. Methods The expressions of EMT and CSC markers were detected by immunofluorescence, western blot, and quantitative real-time PCR. BEZ235, a dual PI3K/mTOR inhibitor, was employed to investigate the role of PI3K/Akt/ mTOR signaling in regulating EMT and CSC marker expression. Students’ t test and one-way ANOVA with Tukey’s post-hoc test were used to compare the data from different groups. Results We found that EMT and CSC marker expression were significantly enhanced in chemoresistant EOC cells, which was accompanied by the activation of PI3K/Akt/mTOR signaling. Compared with single cisplatin treatment, combined treatment with BEZ235 and cisplatin significantly disrupted the colony formation ability, induced higher ROS level and more apoptosis in chemoresistant EOC cells. Furthermore, the combination approach effectively inhibited PI3K/Akt/mTOR signaling pathway, reversed EMT, and decreased CSC marker expression in chemoresistant EOC cells compared with cisplatin mono-treatment. Conclusions Our results first demonstrate that EMT and enhanced CSC marker expression triggered by activated PI3K/Akt/mTOR signaling are involved in the chemoresistance of EOC, and BEZ235 in combination with cisplatin might be a promising treatment option to reverse EOC chemoresistance. Electronic supplementary material The online version of this article (10.1186/s12885-019-5824-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junli Deng
- Cancer Care Centre, St George Hospital, 4-10 South St, Kogarah, NSW, 2217, Australia.,St George and Sutherland Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia.,Department of Gynaecological Oncology, Henan Cancer Hospital, Henan, 450008, China
| | - Xupeng Bai
- Cancer Care Centre, St George Hospital, 4-10 South St, Kogarah, NSW, 2217, Australia.,St George and Sutherland Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Xiaojie Feng
- Cancer Care Centre, St George Hospital, 4-10 South St, Kogarah, NSW, 2217, Australia.,St George and Sutherland Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia.,Department of Gynaecological Oncology, Henan Cancer Hospital, Henan, 450008, China
| | - Jie Ni
- Cancer Care Centre, St George Hospital, 4-10 South St, Kogarah, NSW, 2217, Australia.,St George and Sutherland Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Julia Beretov
- Cancer Care Centre, St George Hospital, 4-10 South St, Kogarah, NSW, 2217, Australia.,St George and Sutherland Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia.,Anatomical Pathology, NSW Health Pathology, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Peter Graham
- Cancer Care Centre, St George Hospital, 4-10 South St, Kogarah, NSW, 2217, Australia.,St George and Sutherland Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Yong Li
- Cancer Care Centre, St George Hospital, 4-10 South St, Kogarah, NSW, 2217, Australia. .,St George and Sutherland Clinical School, UNSW Sydney, Kensington, NSW, 2052, Australia. .,School of Basic Medical Sciences, Zhengzhou University, Henan, 450001, China.
| |
Collapse
|
14
|
A novel PI3K/mTOR dual inhibitor, CMG002, overcomes the chemoresistance in ovarian cancer. Gynecol Oncol 2019; 153:135-148. [PMID: 30686552 DOI: 10.1016/j.ygyno.2019.01.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Ovarian cancer is the leading cause of gynecologic-related mortality worldwide. Despite successful initial treatment, overall survival rates are very low because tumors develop resistance to chemotherapeutic drugs. The PI3K/mTOR pathway is a key signaling pathway involved in drug resistance of ovarian cancer cells. The aim of this study was to examine the effect of a newly developed PI3K/mTOR dual inhibitor, CMG002, on chemoresistant ovarian cancer cells. METHODS We examined the effects of CMG002, and its synergistic effects when combined with paclitaxel or cisplatin, on cell viability, cell cycle arrest, and apoptosis of PTX-resistant SKpac17 or cisplatin-resistant A2780cis ovarian cancer cells in vitro. Western blot analysis was performed to assess expression of PI3K, p-mTOR, p-Akt, p-S6, Bim, and caspase-3. In vivo studies were carried out in a xenograft mouse model, followed by TUNEL and immunohistochemical staining of excised tumor tissue. RESULTS CMG002 showed marked toxicity against chemoresistant ovarian cancer cells and re-sensitized these cells to chemotherapeutic agents by suppressing cell proliferation and inducing G1 cell cycle arrest and apoptosis. In vivo xenograft studies revealed that treatment with CMG002, either alone or in combination with paclitaxel or cisplatin, led to a marked reduction in tumor growth. CMG002 caused marked suppression of mTOR (Ser2448), Akt (Ser473), Akt (Thr308), and S6 (Ser235/236) phosphorylation, both in vitro and in vivo. CONCLUSION Taken together, CMG002, a very potent PI3K/mTOR dual inhibitor, induced cytotoxicity in chemoresistant ovarian cancer cells, suggesting that this novel inhibitor might be a new therapeutic strategy for chemoresistant ovarian cancer.
Collapse
|
15
|
Li AJ, Li HG, Tang EJ, Wu W, Chen Y, Jiang HH, Lin MB, Yin L. PIK3CA and TP53 mutations predict overall survival of stage II/III colorectal cancer patients. World J Gastroenterol 2018; 24:631-640. [PMID: 29434452 PMCID: PMC5799864 DOI: 10.3748/wjg.v24.i5.631] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the predictive value of PIK3CA and TP53 mutation status in colorectal cancer (CRC) patients treated with 5-fluorouracil-based chemotherapy.
METHODS In this study, a total of 315 patients with histologically proven CRC were enrolled from Yangpu Hospital affiliated to Shanghai Tongji University between 2007 and 2011. Of these patients, 241 with stage II/III CRC received 5-fluorouracil-based adjuvant chemotherapy. Formalin-fixed paraffin-embedded lesion samples of the patients with curatively resected CRC were collected. Next-generation sequencing was performed to identify somatic gene mutations. The correlation of PIK3CA and TP53 mutation status with overall survival (OS) was analyzed using a Cox proportional hazard model and the Kaplan-Meier method.
RESULTS Among the 241 patients with stage II/III in this cohort, the PIK3CA and/or TP53 mutation was detected in 177 patients, among which 54 patients had PIK3CA and TP53 double mutations. The PIK3CA or TP53 mutation was not significantly correlated with OS in univariate and multivariate analyses. Compared with patients without PIK3CA and TP53 mutations, those with double PIK3CA-TP53 mutations showed a significantly worse survival (univariate HR = 2.21; 95%CI: 1.15-4.24; multivariate HR = 2.02; 95%CI: 1.04-3.91). The PIK3CA mutation located in the kinase domain showed a trend toward a shorter OS compared with wild-type tumors (multivariate HR = 1.56; 95%CI: 1.00-2.44; P = 0.052). The Kaplan-Meier curve showed that patients harboring the PIK3CA mutation located in the kinase domain had a worse clinical outcome than those with wild-type status (Log-rank P = 0.041)
CONCLUSION Double mutation of PIK3CA and TP53 is correlated with a shorter OS in stage II/III CRC patients treated with 5-fluorouracil-based therapy.
Collapse
Affiliation(s)
- A-Jian Li
- Department of General Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Hua-Guang Li
- Center for Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Er-Jiang Tang
- Center for Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Wei Wu
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Ying Chen
- Center for Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Hui-Hong Jiang
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Mou-Bin Lin
- Department of General Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Lu Yin
- Department of General Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
16
|
Avan A, Narayan R, Giovannetti E, Peters GJ. Role of Akt signaling in resistance to DNA-targeted therapy. World J Clin Oncol 2016; 7:352-369. [PMID: 27777878 PMCID: PMC5056327 DOI: 10.5306/wjco.v7.i5.352] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/25/2016] [Accepted: 07/29/2016] [Indexed: 02/06/2023] Open
Abstract
The Akt signal transduction pathway controls most hallmarks of cancer. Activation of the Akt cascade promotes a malignant phenotype and is also widely implicated in drug resistance. Therefore, the modulation of Akt activity is regarded as an attractive strategy to enhance the efficacy of cancer therapy and irradiation. This pathway consists of phosphatidylinositol 3 kinase (PI3K), mammalian target of rapamycin, and the transforming serine-threonine kinase Akt protein isoforms, also known as protein kinase B. DNA-targeted agents, such as platinum agents, taxanes, and antimetabolites, as well as radiation have had a significant impact on cancer treatment by affecting DNA replication, which is aberrantly activated in malignancies. However, the caveat is that they may also trigger the activation of repairing mechanisms, such as upstream and downstream cascade of Akt survival pathway. Thus, each target can theoretically be inhibited in view of improving the potency of conventional treatment. Akt inhibitors, e.g., MK-2206 and perifosine, or PI3K modulators, e.g., LY294002 and Wortmannin, have shown some promising results in favor of sensitizing the cancer cells to the therapy in vitro and in vivo, which have provided the rationale for incorporation of these novel agents into multimodality treatment of different malignancies. Nevertheless, despite the acceptable safety profile of some of these agents in the clinical studies, with regard to the efficacy, the results are still too preliminary. Hence, we need to wait for the upcoming data from the ongoing trials before utilizing them into the standard care of cancer patients.
Collapse
|
17
|
Deregulation of EGFR/PI3K and activation of PTEN by photodynamic therapy combined with carboplatin in human anaplastic thyroid cancer cells and xenograft tumors in nude mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 148:118-127. [DOI: 10.1016/j.jphotobiol.2015.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/16/2015] [Accepted: 03/16/2015] [Indexed: 12/22/2022]
|
18
|
Moawad EY. Identifying and Predicting the Effectiveness of Carboplatin In Vivo and In Vitro and Evaluating its Combination with Paclitaxel. INDIAN JOURNAL OF GYNECOLOGIC ONCOLOGY 2015. [DOI: 10.1007/s40944-015-0001-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Anti-tumour activity of phosphoinositide-3-kinase antagonist AEZS-126 in models of ovarian cancer. Arch Gynecol Obstet 2014; 291:131-41. [PMID: 25115278 DOI: 10.1007/s00404-014-3389-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/21/2014] [Indexed: 01/01/2023]
Abstract
PURPOSE Platinum resistance is the most crucial problem for treatment of ovarian cancer. There is a clinical need for new treatment strategies which overcome platinum resistance. Recently high level of AKT was shown to be involved in platinum resistance and furthermore in resistance against Natural-killer (NK)-cell mediated killing in ovarian cancer. METHODS Here, we investigate the ability of the PI3K/AKT inhibitor AEZS-126 alone and in combination with rapamycin to selectively target ovarian cancer cell proliferation and survival in vitro by MTT-assays and FACS based analysis. Furthermore the mechanism of cytotoxicity is analysed by FACS based assays. The NK-killing efficiency of ovarian cancer cells with and without pre-treatment with AEZS-126 was analysed. RESULTS AEZS-126 showed good anti-tumour activity in in vitro models of ovarian cancer. Main mechanism of cytotoxicity seems to be necroptosis which could be abrogated by co-incubation with necrostatin-1. Furthermore pre-treatment of platinum resistant cells with AEZS-126 resulted in an increased accessibility of these tumour cells for killing by NK-cells. CONCLUSION We demonstrated the highly efficient anti-tumour activity of AEZS-126 in in vitro models of ovarian cancer. Due to the good anti-tumour activity and the expected increase in NK-cell mediated killing even of platinum resistant tumour cells, AEZS-126 seems to be a promising candidate for clinical testing in ovarian cancer.
Collapse
|
20
|
Weigel MT, Rath K, Alkatout I, Wenners AS, Schem C, Maass N, Jonat W, Mundhenke C. Nilotinib in combination with carboplatin and paclitaxel is a candidate for ovarian cancer treatment. Oncology 2014; 87:232-45. [PMID: 25116401 DOI: 10.1159/000363656] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 04/28/2014] [Indexed: 11/19/2022]
Abstract
PURPOSE Nilotinib is a selective tyrosine kinase inhibitor of c-Kit, Abl and platelet-derived growth factor receptor-α/β. To evaluate nilotinib's potential use as a treatment of human ovarian cancer, we tested nilotinib's preclinical activity in ovarian cancer cell lines with different tyrosine kinase expression patterns. METHODS The effects of nilotinib on ovarian cancer cell growth were studied alone and in combination with carboplatin and paclitaxel. Proapoptotic and antimigratory effects were examined using TUNEL and migration assays. RESULTS Nilotinib alone and in combination with carboplatin and paclitaxel significantly inhibited cell growth in PDGFR-α-positive ovarian cancer cell lines. The combination of nilotinib with carboplatin and paclitaxel showed synergistic effects on cell proliferation. Nilotinib treatment led to the inhibition of cell migration alone and in combination with carboplatin and paclitaxel. Apoptosis induction occurred in response to nilotinib that increased in combination with carboplatin. CONCLUSIONS Nilotinib may be a feasible targeted therapy option for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Marion T Weigel
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Beltran PJ, Calzone FJ, Mitchell P, Chung YA, Cajulis E, Moody G, Belmontes B, Li CM, Vonderfecht S, Velculescu VE, Yang G, Qi J, Slamon DJ, Konecny GE. Ganitumab (AMG 479) inhibits IGF-II-dependent ovarian cancer growth and potentiates platinum-based chemotherapy. Clin Cancer Res 2014; 20:2947-58. [PMID: 24727326 DOI: 10.1158/1078-0432.ccr-13-3448] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE Insulin-like growth factor 1 receptor (IGF-IR) has been implicated in the pathogenesis of ovarian cancer. Ganitumab is an investigational, fully human monoclonal antibody against IGF-IR. Here, we explore the therapeutic potential of ganitumab for the treatment of ovarian cancer. EXPERIMENTAL DESIGN The effects of ganitumab were tested in vitro against a panel of 23 established ovarian cancer cell lines. The ability of ganitumab to inhibit IGF-I-, IGF-II-, and insulin-mediated signaling was examined in vitro and in tumor xenografts using ovarian cancer models displaying IGF-IR/PI3K/AKT pathway activation by two distinct mechanisms, PTEN loss and IGF-II overexpression. Drug interactions between ganitumab and cisplatin, carboplatin, or paclitaxel were studied in vitro and in vivo. RESULTS In vitro, growth inhibition varied significantly among individual ovarian cancer cell lines. IGF-II mRNA and phospho-IGF-IR protein expression were quantitatively correlated with response to ganitumab, and PTEN mutations conferred resistance to ganitumab. Ganitumab potently inhibited baseline and IGF-I-, IGF-II-, and insulin-induced IGF-IR and IGF-IR/insulin hybrid receptor signaling in vitro and in vivo. Synergistic and additive drug interactions were seen for ganitumab and carboplatin or paclitaxel in vitro. Furthermore, ganitumab significantly increased the efficacy of cisplatin in ovarian cancer xenograft models in vivo. CONCLUSIONS These observations provide a biologic rationale to test ganitumab as a single agent or in combination with carboplatin/cisplatin and paclitaxel in patients with ovarian cancer. Moreover, assessment of tumor expression of IGF-II, phospho-IGF-IR, or PTEN status may help select patients with ovarian cancer who are most likely to benefit from ganitumab. Clin Cancer Res; 20(11); 2947-58. ©2014 AACR.
Collapse
Affiliation(s)
- Pedro J Beltran
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Frank J Calzone
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Petia Mitchell
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Young-Ah Chung
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Elaina Cajulis
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Gordon Moody
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Brian Belmontes
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Chi-Ming Li
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Steven Vonderfecht
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Victor E Velculescu
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Guorong Yang
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Jingwei Qi
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Dennis J Slamon
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Gottfried E Konecny
- Authors' Affiliations: Oncology Research Therapeutic Area, Genomics Analysis Unit, Department of Pathology, Amgen Inc., Thousand Oaks; Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California; and The Ludwig Center and the Howard Hughes Medical Institute, Kimmel Cancer Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| |
Collapse
|
22
|
Jeong JY, Kim KS, Moon JS, Song JA, Choi SH, Kim KI, Kim TH, An HJ. Targeted inhibition of phosphatidyl inositol-3-kinase p110β, but not p110α, enhances apoptosis and sensitivity to paclitaxel in chemoresistant ovarian cancers. Apoptosis 2014; 18:509-20. [PMID: 23371322 PMCID: PMC3604599 DOI: 10.1007/s10495-013-0807-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K) pathway is one of the critical signaling cascades playing important roles in the chemoresistance of human cancer cells, including ovarian cancer. In this study, we investigated the potential of targeting the PI3K p110β-isoform as a novel approach to overcome the chemoresistance in ovarian cancer. The effects on apoptosis, cell viability, proliferation and migration in chemoresistant ovarian cancer cell were determined following targeted p110β inhibition by small interfering RNA (siRNA). Seven paclitaxel (PTX)-resistant sublines (SKpacs and A2780pac) were produced from SKOV3 and A2780 ovarian cancer cell lines. We, first, evaluated the expression of PI3K p110 isoforms in chemosensitive and chemoresistant ovarian cancer cell lines and patient specimens, and found that p110β-isoform was significantly overexpressed both in a panel of ovarian cancer samples, and in PTX-resistant sublines compared with their parent cell lines. RNA interference-mediated p110β silencing augmented PTX-mediated apoptosis (31.15 ± 13.88 %) and reduced cell viability (67 %) in PTX-resistant cells, whereas targeting p110α did not show a significant change in cell viability and apoptosis. In addition, p110β silencing impaired cell proliferation (60 %) in PTX-resistant SKpac cells. We also found the combined treatment group with p110β siRNA and PTX showed a significant inhibition of tumor growth of SKpac cells compared to the PTX-only treated group in a xenograft nude mouse model. Thus, the siRNA-mediated silencing of PI3K p110β resensitizes PTX-resistant ovarian cancer cells, and may be a useful therapeutic strategy for PTX-resistant ovarian cancers.
Collapse
Affiliation(s)
- Ju-yeon Jeong
- Department of Pathology, College of Medicine, CHA University, 351 Yatap-dong, Gyeonggi-Do, Seongnam Si Bundang-gu 463-712, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Raleigh DR, Haas-Kogan DA. Molecular targets and mechanisms of radiosensitization using DNA damage response pathways. Future Oncol 2013; 9:219-33. [PMID: 23414472 DOI: 10.2217/fon.12.185] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The cellular reaction to genomic instability includes a network of signal transduction pathways collectively referred to as the DNA damage response (DDR). Activated by a variety of DNA lesions, the DDR orchestrates cell cycle arrest and DNA repair, and initiates apoptosis in instances where damage cannot be repaired. As such, disruption of the DDR increases the prevalence of DNA damage secondary to incomplete repair, and in doing so, enhances radiation-induced cytotoxicity. This article describes the molecular agents and their targets within DDR pathways that sensitize cells to radiation. Moreover, it reviews the therapeutic implications of these compounds, provides an overview of relevant clinical trials and offers a viewpoint on the evolution of the field in the years to come.
Collapse
Affiliation(s)
- David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | | |
Collapse
|
24
|
Yoo HJ, Kim BR, Byun HJ, Park SY, Rho SB. BLU enhances the effects of anti-angiogenic activity in combination with gemcitabine-based chemotherapeutic agents. Int J Biochem Cell Biol 2013; 45:1236-45. [DOI: 10.1016/j.biocel.2013.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 12/13/2022]
|
25
|
Rho SB, Byun HJ, Kim BR, Kim IS, Lee JH, Yoo R, Park ST, Park SH. GABAA receptor-binding protein promotes sensitivity to apoptosis induced by chemotherapeutic agents. Int J Oncol 2013; 42:1807-14. [PMID: 23545901 DOI: 10.3892/ijo.2013.1866] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/08/2013] [Indexed: 11/06/2022] Open
Abstract
In the present study, the expression of human γ-aminobutyrate type A (GABAA) receptor-binding protein (GABARBP) is downregulated in ovarian cancer cell lines and tissues. We also found that the specific function of GABAPBP was that of a novel pro-apoptotic protein. Both GABARBP and cisplatin suppressed cancer cell proliferation in a concentration-dependent manner. The combined treatment of GABARBP and cisplatin was more effective in inhibiting cell growth, as well as cell migration, than with either drug treatment alone. At the same time, the treatment combination is correlated with the downregulation of cyclin D1 and CDK4, arrested cell cycle progression in the G₀-G₁ phase and enhancing p53 expression, while also reducing Bcl-2 and Bcl-xL expression. The p53 and p21 promoter luciferase activities were induced by GABARBP, whereas there was no effect on the p53-/- and p21-/- system. In addition, p53 activity was validated with UV irradiation and siGABARBP. Taken together, our results indicate that GABARBP can regulate the pro-apoptotic activity of cisplatin via the upregulation of p53 expression.
Collapse
Affiliation(s)
- Seung Bae Rho
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do 410-769, Republic of Korea.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Hu JL, Xiao L, Li ZY, Wang Q, Chang Y, Jin Y. Upregulation of HO-1 is accompanied by activation of p38MAPK and mTOR in human oesophageal squamous carcinoma cells. Cell Biol Int 2013; 37:584-92. [PMID: 23412940 DOI: 10.1002/cbin.10075] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/06/2013] [Indexed: 12/31/2022]
Affiliation(s)
- Jian-Li Hu
- Cancer Centre, Union Hospital, Huazhong University of Science and Technology; 1277 Jiefangdadao Jianghan District, Wuhan; Hubei; 430022; PR China
| | - Lan Xiao
- Department of Obstetrics and Gynecology; First Affiliated Hospital, An Hui Medical College; 218 Jixi Road, Hefei; AnHui; 230022; PR China
| | - Zhen-Yun Li
- Cancer Centre, Union Hospital, Huazhong University of Science and Technology; 1277 Jiefangdadao Jianghan District, Wuhan; Hubei; 430022; PR China
| | - Qiong Wang
- Cancer Centre, Union Hospital, Huazhong University of Science and Technology; 1277 Jiefangdadao Jianghan District, Wuhan; Hubei; 430022; PR China
| | - Yu Chang
- Cancer Centre, Union Hospital, Huazhong University of Science and Technology; 1277 Jiefangdadao Jianghan District, Wuhan; Hubei; 430022; PR China
| | - Yi Jin
- Laboratory Department; Union Hospital, Huazhong University of Science and Technology; 1277 Jiefangdadao Jianghan District, Wuhan; Hubei; 430022; PR China
| |
Collapse
|
27
|
Hahne JC, Meyer SR, Gambaryan S, Walter U, Dietl J, Engel JB, Honig A. Immune escape of AKT overexpressing ovarian cancer cells. Int J Oncol 2013; 42:1630-5. [PMID: 23467686 DOI: 10.3892/ijo.2013.1846] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/04/2013] [Indexed: 11/06/2022] Open
Abstract
Platinum-resistance is the most crucial problem for treatment of ovarian cancer. There is a clinical need for new treatment strategies which overcome platinum resistance. As survival is strongly influenced by immunological parameters, immunotherapeutic strategies appear promising. Therefore a better understanding of the interaction between ovarian tumour cells and cells of the immune system is a necessary prerequisite. In the present study we aimed to enlighten the interactions between platinum resistant and platinum sensitive ovarian cancer cells and natural-killer (NK)-cells. Modified FATAL assay was used for determining the killing efficiency of NK-cells for the parental A2780 cells and the cis-platinum resistant A2780cis human ovarian cancer cells. Expression of pro- and anti-apoptotic genes as well as ligands involved in NK-cell receptor recognition were analysed by RT-PCR and flow cytometric analysis. The efficiency of NK mediated cell lysis differs between A2780 cells and the cis-platinum-resistant A2780cis cells. A2780cis cells are less accessible for NK-cell mediated killing. Based on this observation we characterized the molecular basis for resistance mechanisms. Besides an increase in anti-apoptotic genes (especially CIAP-1 and -2) that probably render A2780cis cells more resistant against apoptosis an increased amount of soluble MICA/B seems to be responsible for the lower killing rate of platinum-resistant A2780cis cells compared to their parental A2780 cells.
Collapse
Affiliation(s)
- Jens C Hahne
- Department of Gynecology, University Hospital of Würzburg, D-97080 Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
28
|
Kodigepalli KM, Dutta PS, Bauckman KA, Nanjundan M. SnoN/SkiL expression is modulated via arsenic trioxide-induced activation of the PI3K/AKT pathway in ovarian cancer cells. FEBS Lett 2012. [PMID: 23178716 DOI: 10.1016/j.febslet.2012.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SnoN/SkiL (TGFβ regulator) is dysregulated in ovarian cancer, a disease associated with acquired drug-resistance. Arsenic trioxide (As₂O₃, used in treating APL) induces SnoN to oppose the apoptotic response in ovarian cancer cells. We now report that As₂O₃ increases phosphorylation of EGFR/p66ShcA and EGFR degradation. As₂O₃ activates Src(Y416) whose activity (inhibited by PP2) modulates EGFR activation, its interaction with Shc/Grb2, and p-AKT. Inhibition of PI3K reduces SnoN and cell survival. Although EGFR or MAPK1 siRNA did not alter SnoN expression, As₂O₃-induced cleaved PARP was reduced together with increased XIAP. Collectively, As₂O₃ mediates an initial rise in pY-Src(416) to regulate the PI3K/AKT pathway which increases SnoN and cell survival; these early events may counter the cell death response associated with increased pY-EGFR/MAPK activation.
Collapse
Affiliation(s)
- Karthik M Kodigepalli
- University of South Florida, Department of Cell Biology, Microbiology, and Molecular Biology, 4202 East Fowler Avenue, ISA2015, Tampa, FL, United States
| | | | | | | |
Collapse
|
29
|
Kaye SB, Poole CJ, Dańska-Bidzińska A, Gianni L, Del Conte G, Gorbunova V, Novikova E, Strauss A, Moczko M, McNally VA, Ross G, Vergote I. A randomized phase II study evaluating the combination of carboplatin-based chemotherapy with pertuzumab versus carboplatin-based therapy alone in patients with relapsed, platinum-sensitive ovarian cancer. Ann Oncol 2012; 24:145-52. [PMID: 23002282 DOI: 10.1093/annonc/mds282] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Pertuzumab, a humanized monoclonal antibody targeting human epidermal growth factor receptor (HER)-mediated signalling, has shown activity in ovarian cancer in preclinical models and in the clinic. This randomized phase II study evaluated efficacy and safety of pertuzumab in combination with carboplatin-based chemotherapy in patients with platinum-sensitive, recurrent advanced ovarian cancer. PATIENTS AND METHODS Patients were randomized to receive six cycles of chemotherapy (carboplatin and either paclitaxel (Taxol) or gemcitabine) with or without pertuzumab. The primary end point was progression-free survival (PFS) as determined by Response Evaluation Criteria in Solid Tumors and/or by CA 125 measurements. Secondary end points evaluated the response rate, safety profile, duration of response, time to progression and overall survival for both treatment arms. RESULTS A total of 149 patients received either chemotherapy with pertuzumab (arm A, n=74) or chemotherapy alone (arm B, n=75). There was no significant difference either in median PFS or in the secondary end points between the two arms. No differences were seen in an exploratory biomarker analysis of HER3 mRNA expression between the two arms. Pertuzumab was well tolerated, with no increase in cardiac adverse events compared with chemotherapy alone. CONCLUSIONS The addition of pertuzumab to carboplatin-based chemotherapy did not substantially prolong PFS in unselected patients with platinum-sensitive ovarian cancer.
Collapse
Affiliation(s)
- S B Kaye
- CRUK Department of Medical Oncology, The Royal Marsden Hospital and The Institute of Cancer Research, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Hahne JC, Honig A, Meyer SR, Gambaryan S, Walter U, Wischhusen J, Häussler SFM, Segerer SE, Fujita N, Dietl J, Engel JB. Downregulation of AKT reverses platinum resistance of human ovarian cancers in vitro. Oncol Rep 2012; 28:2023-8. [PMID: 22992944 DOI: 10.3892/or.2012.2041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/24/2012] [Indexed: 11/06/2022] Open
Abstract
Platinum resistance is the most crucial problem for treatment of ovarian cancer. Increasing evidence points towards AKT overexpression as a mechanistic reason for this clinical condition. The present study evaluates the effect of overexpression and downregulation of AKT on the sensitivity to cisplatin in a platinum-resistant human ovarian cancer cell line and the corresponding platinum-sensitive parental cell line. A2780 and A2780cis ovarian cancer cell lines were stably transfected with an AKT-sense and AKT-antisense plasmid. Successful transfection was evaluated by western blot analysis. Cytotoxic effects of cisplatin were evaluated by metabolic (MTT) and clonogenicity assays as well as by FACS analysis. AKT overexpression (confirmed by western blotting) converted platinum-sensitive A2780 into platinum-resistant cells as shown by MTT assay. Importantly, platinum resistance of A2780cis cells could be reversed by downregulation of AKT, as demonstrated by MTT and clonogenicity assays and FACS analysis. Our data provide strong evidence that cisplatin resistance in ovarian cancer is mediated by AKT overexpression and can be overcome by AKT downregulation, thus, providing a rationale for clinical phase II/III studies combining AKT inhibitors with cisplatin.
Collapse
Affiliation(s)
- J C Hahne
- Department of Gynecology, University of Würzburg, D-97080 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wempe SL, Gamarra-Luques CD, Telleria CM. Synergistic lethality of mifepristone and LY294002 in ovarian cancer cells. CANCER GROWTH AND METASTASIS 2012; 6:1-13. [PMID: 23420486 PMCID: PMC3571730 DOI: 10.4137/cgm.s11124] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have previously shown that the antiprogestin and antiglucocorticoid mifepristone inhibits the growth of ovarian cancer cells. In this work, we hypothesized that cellular stress caused by mifepristone is limited to cytostasis and that cell killing is avoided as a consequence of the persistent activity of the PI3K/Akt survival pathway. To investigate the role of this pathway in mifepristone-induced growth inhibition, human ovarian cancer cells of various histological subtypes and genetic backgrounds were exposed to cytostatic doses of mifepristone in the presence or absence of the PI3K inhibitor, LY294002. The activation of Akt in ovarian cancer cells, as marked by its phosphorylation on Ser473, was not modified by cytostatic concentrations of mifepristone, but it was blocked upon treatment with LY294002. The combination mifepristone/LY294002, but not the individual drugs, killed ovarian cancer cells via apoptosis, as attested by genomic DNA fragmentation and cleavage of caspase-3, and the concomitant downregulation of antiapoptotic proteins Bcl-2 and XIAP. From a pharmacological standpoint, when assessing cell growth inhibition using a median-dose analysis algorithm, the interaction between mifepristone and LY294002 was synergistic. The lethality caused by the combination mifepristone/LY294004 in 2-dimensional cell cultures was recapitulated in organized, 3-dimensional spheroids. This study demonstrates that mifepristone and LY294002 when used individually cause cell growth arrest; yet, when combined, they cause lethality.
Collapse
|
32
|
Chen J, Lan T, Hou J, Zhang J, An Y, Tie L, Pan Y, Liu J, Li X. Atorvastatin sensitizes human non-small cell lung carcinomas to carboplatin via suppression of AKT activation and upregulation of TIMP-1. Int J Biochem Cell Biol 2012; 44:759-69. [PMID: 22305890 DOI: 10.1016/j.biocel.2012.01.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 02/04/2023]
Abstract
Platinum-based chemotherapy is the standard treatment for advanced non-small-cell lung carcinomas (NSCLCs). However, the antitumoral effect of carboplatin displays unsatisfactory in NSCLCs treatment due to the AKT pathway-mediated carboplatin insensitive in NSCLCs treatment. Previous studies have shown that statins have antitumor activity, but it is unknown whether atorvastatin can reverse carboplatin resistance in lung cancer. Treatment with atorvastatin and carboplatin reduced the growth of xenograft A549 tumors in nude mice and enhanced the survival rate compared with carboplatin alone. Atorvastatin in combination with carboplatin had stronger effects on growth inhibition and apoptosis of NSCLC than either agent used individually. Carboplatin conferred anti-invasive effect in NSCLC cells mainly through inhibition of AKT activity and resultant upregulation of TIMP-1. However, the inhibitory effect on AKT activity by carboplatin was short-term. Additional atorvastatin administration resulted in synergistic inhibition of NSCLC cell invasion and stimulation of TIMP-1 expression with carboplatin through stronger and persistent inhibition of AKT activity both in vivo and in vitro. The synergy of atorvastatin and carboplatin was confirmed using another human lung carcinoma cell line (H1299). Altogether, our data demonstrate that atorvastatin may overcome carboplatin resistance in lung cancer by suppressing AKT activity and upregulating TIMP-1. A combination of atorvastatin and carboplatin may be an effective strategy in clinical therapy against NSCLCs.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University and Institute of System Biomedicine, Peking University, Beijing 100191, China
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lee KB, Byun HJ, Park SH, Park CY, Lee SH, Rho SB. CYR61 controls p53 and NF-κB expression through PI3K/Akt/mTOR pathways in carboplatin-induced ovarian cancer cells. Cancer Lett 2011; 315:86-95. [PMID: 22078465 DOI: 10.1016/j.canlet.2011.10.016] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/11/2011] [Accepted: 10/11/2011] [Indexed: 12/27/2022]
Abstract
CYR61 over-expression promotes cell proliferation by inhibiting carboplatin-induced apoptosis, decreasing Bax expression, and increasing Bcl-xL, Mcl-1, and Bcl-2. At the same time, down-regulating p53 expression, while up-regulated NF-κB expression. Additionally, p21 and p53 promoter activities were reduced, while NF-κB and Bcl-2 activities increased. In parallel, CYR61-expressing cells, during carboplatin-induced apoptosis, resulted in an increase of Akt phosphorylation, while rapamycin-treated cells were not affected. Carboplatin effectively inhibited the activation of mTOR signaling cascade, which includes mTOR, 4E-BP1, p70S6K, HIF-1α, and VEGF. These results provide evidence that CYR61 promotes cell proliferation and inhibits apoptosis.
Collapse
Affiliation(s)
- Kwang-Beom Lee
- Department of Obstetrics and Gynecology, Gachon University Gil Hospital, Guwol-Dong, Namdong-Gu, Inchen, Republic of Korea
| | | | | | | | | | | |
Collapse
|
34
|
Jang ER, Kim YJ, Myung SC, Kim W, Lee CS. Different effect of protein kinase B/Akt and extracellular signal-regulated kinase inhibition on trichostatin A-induced apoptosis in epithelial ovarian carcinoma cell lines. Mol Cell Biochem 2011; 353:1-11. [PMID: 21380726 DOI: 10.1007/s11010-011-0768-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/24/2011] [Indexed: 01/09/2023]
Abstract
Histone deacetylase inhibitor-induced apoptosis in cancer cells may be mediated by the Ras/Raf/MEK/ERK and protein kinase B/Akt signaling pathways. However, inhibition of ERK and Akt activity has different effects on proliferation and apoptosis in cancer cells. We assessed and compared the inhibitory effects of Akt and ERK pathways on the apoptotic effect of trichostatin A using the human epithelial carcinoma cell lines OVCAR-3 and SK-OV-3. Trichostatin A induced nuclear damage, decrease in Bid and Bcl-2 protein levels, increase in Bax levels, cytochrome c release, activation of caspases (8, 9, and 3) and increase in tumor suppressor p53 levels. Akt inhibitor potentiated trichostatin A-induced apoptosis-related protein activation and cell death, whereas ERK inhibitor exhibited an additive toxic effect. These results suggest that the Akt and ERK inhibitors may have a differential effect on trichostatin A-induced apoptosis in human epithelial ovarian carcinoma cell lines. Akt inhibitor may potentiate the apoptotic effect of trichostatin A on ovarian carcinoma cell lines by increasing the activation of the caspase-8-dependent pathway and the mitochondria-mediated cell death pathway, leading to caspase activation. In contrast, ERK inhibitor may exhibit an additive toxic effect on trichostatin A toxicity by increasing apoptosis-related protein activation.
Collapse
Affiliation(s)
- Eun-Ra Jang
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 156-756, South Korea
| | | | | | | | | |
Collapse
|
35
|
Santiskulvong C, Konecny GE, Fekete M, Chen KYM, Karam A, Mulholland D, Eng C, Wu H, Song M, Dorigo O. Dual targeting of phosphoinositide 3-kinase and mammalian target of rapamycin using NVP-BEZ235 as a novel therapeutic approach in human ovarian carcinoma. Clin Cancer Res 2011; 17:2373-84. [PMID: 21372221 DOI: 10.1158/1078-0432.ccr-10-2289] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE This study evaluates the effect of dual PI3K and mTOR inhibition using NVP-BEZ235 in preclinical models of ovarian cancer as a potential novel therapeutic strategy. EXPERIMENTAL DESIGN Inhibition of PI3K/Akt/mTOR signaling by NVP-BEZ235 was demonstrated by immunoblotting. The effect on cell proliferation was assessed in 18 ovarian cancer cell lines, including four pairs of syngeneic cisplatin-sensitive and cisplatin-resistant cell lines. The in vivo effects of NVP-BEZ235 on established tumor growth were evaluated using an immunocompetent, transgenic murine ovarian cancer model (LSL-K-ras(G12D/+)Pten(loxP/loxP)). RESULTS NVP-BEZ235 decreased cell proliferation in all ovarian cancer cell lines assayed and sensitized cisplatin-resistant cells to the cytotoxic effects of cisplatin. Cell lines with PI3K-activating mutations or Pten deletions were significantly more sensitive to the effect of NVP-BEZ235 than cell lines without these mutations (P < 0.05). A statistically significant correlation was found between relative levels of p4E-BP1 and the IC(50) for NVP-BEZ235. In LSL-K-ras(G12D/+)Pten(loxP/loxP) mice with established intraperitoneal tumor disease, oral administration of NVP-BEZ235 decreased pAkt, p4E-BP1 and Ki67 in tumor tissue, and resulted in significantly longer survival compared to control animals (P < 0.05). NVP-BEZ235 also induced cell cycle arrest, caspase 3 activity, and reduced cell migration. CONCLUSIONS Targeting PI3K and mTOR simultaneously using NVP-BEZ235 effectively inhibits ovarian cancer cell growth even in the presence of platinum resistance and prolongs survival of mice with intra-abdominal ovarian tumor disease. We propose that dual PI3K and mTOR inhibition using NVP-BEZ235 may be an effective novel therapeutic approach in patients with ovarian cancer.
Collapse
Affiliation(s)
- Chintda Santiskulvong
- Division of Gynecologic Oncology, Departments of Obstetrics and Gynecology, UCLA David Geffen School of Medicine, Los Angeles, CA 90095-1740, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Karam AK, Santiskulvong C, Fekete M, Zabih S, Eng C, Dorigo O. Cisplatin and PI3kinase inhibition decrease invasion and migration of human ovarian carcinoma cells and regulate matrix-metalloproteinase expression. Cytoskeleton (Hoboken) 2010; 67:535-44. [PMID: 20607860 DOI: 10.1002/cm.20465] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Targeting of the PI3K (phosphoinositide3-kinase)/Akt/mTOR pathway in human ovarian cancer cells is a promising novel therapeutic strategy. We investigated the effects of cisplatin and the PI3K inhibitor LY294002 on invasion, migration and the expression of essential matrix metalloproteinases (MMPs) in ovarian cancer cells. SKOV3, OVCAR5 and IGROV1 human ovarian cancer cell lines were treated with cisplatin, LY294002 and a combination of both drugs. Invasion and migration of treated cells was assessed using Matrigel and uncoated PET membrane assays. Expression levels of pro-MMP2, MMP2, TIMP1, TIMP2 and MT1-MMP were determined using Western Blotting. Gel zymography was used to quantitate the functional levels of active MMP2. All three cell lines showed significantly reduced invasion and migration after treatment with cisplatin, LY294002, and the combination of both drugs compared to untreated controls. In SKOV3 cells, cisplatin alone and in combination with LY294002 resulted in a 6.3 and 7.1-fold reduction in the total amount of activated MMP2. TIMP1 expression decreased by 5.0, 6.6 and 28.4-fold with cisplatin, LY294002 and the combination respectively (P < 0.05). In contrast, only cisplatin and the combination of both drugs resulted in a significant, 3.7 and 5.1-fold reduction in the level of TIMP2. Expression levels of MT1-MMP remained unchanged. These observations were corroborated in IGROV1 cell lines that showed similar changes of activated MMP2 and TIMP2 expression, but no significant decrease in TIMP1 levels. Our data suggests that inhibition of ovarian cancer cell motility is mediated via down-regulation of activated MMP2, TIMP1 and TIMP2 expression under these treatment conditions.
Collapse
Affiliation(s)
- Amer K Karam
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | | | |
Collapse
|
37
|
The inhibition of Bid expression by Akt leads to resistance to TRAIL-induced apoptosis in ovarian cancer cells. Oncogene 2010; 29:5523-36. [PMID: 20661217 PMCID: PMC3007125 DOI: 10.1038/onc.2010.288] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epithelial ovarian cancer (EOC) cells often show increased activity of the PI3K/Akt pathway. In addition, we have previously shown that EOC ascites induce Akt activation in the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-sensitive EOC cell line, CaOV3, leading to TRAIL-mediated apoptosis inhibition. In this study, we investigated the role of Akt in intrinsic resistance to TRAIL, which is common in EOC cells. We report that Akt activation reduces the sensitivity of EOC cells to TRAIL. TRAIL-resistant SKOV3ip1 and COV2 cells were sensitized to TRAIL-induced apoptosis by PI3K or Akt inhibitors although inhibition of PI3K/Akt signaling pathway did not interfere with the recruitment and processing of caspase-8 to the death-inducing signaling complex. Conversely, overexpression of Akt1 in TRAIL-sensitive cells promoted resistance to TRAIL. Although the fact that TRAIL-induced caspase-8 activation was observed in both sensitive and resistant cell lines, Bid cleavage occurred only in sensitive cells or in SKOV3ip1 cells treated with LY294002. Bid expression was low in resistant cells and Akt activation downregulated its expression. Depletion of Bid by siRNA in OVCAR3 cells was associated with a decrease in TRAIL-mediated apoptosis. Overexpression of Bid only in SKOV3ip1 cells enhanced TRAIL-induced apoptosis. Simultaneous blockade of Akt pathway further increased TRAIL-induced apoptosis. Thus, Akt acts upstream of mitochondria and inhibits TRAIL-induced apoptosis by decreasing Bid protein levels and possibly inhibiting its cleavage.
Collapse
|
38
|
Akt inhibitor enhances apoptotic effect of carboplatin on human epithelial ovarian carcinoma cell lines. Eur J Pharmacol 2010; 632:7-13. [PMID: 20096282 DOI: 10.1016/j.ejphar.2010.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 12/06/2009] [Accepted: 01/12/2010] [Indexed: 01/08/2023]
Abstract
Carboplatin and Akt inhibitor have been shown to induce apoptosis in cancer cells. However, the combined effect of Akt inhibitor on the apoptotic effect of carboplatin in epithelial ovarian cancer cells remains uncertain. In the respect of the induction of cell death signaling pathways, we assessed the combined effect of Akt inhibitor on the carboplatin toxicity in the human epithelial ovarian carcinoma cell lines OVCAR-3 and SK-OV-3. Carboplatin and Akt inhibitor induced nuclear damage, decreased Bid and Bcl-2 protein levels, induced cytochrome c release, activated caspase-3 and increased tumor suppressor p53 levels. Carboplatin increased in Bax levels, whereas Akt inhibitor decreased Bax levels. Akt inhibitor enhanced the carboplatin-induced apoptosis-related protein activation and cell death. Combination of carboplatin and Akt inhibitor-induced cell viability loss was reduced by selective inhibitors of caspase-8, -9 and -3. The results suggest that Akt inhibitor may enhance a carboplatin toxicity against ovarian carcinoma cell lines by increasing activation of the caspase-8 and Bid pathway as well as activation of the mitochondria-mediated apoptotic pathway, leading to mitochondrial cytochrome c release and subsequent caspase-3 activation. Combination of carboplatin and Akt inhibitor may provide a therapeutic benefit against ovarian adenocarcinoma.
Collapse
|
39
|
Markman B, Atzori F, Pérez-García J, Tabernero J, Baselga J. Status of PI3K inhibition and biomarker development in cancer therapeutics. Ann Oncol 2009; 21:683-691. [PMID: 19713247 DOI: 10.1093/annonc/mdp347] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K) signalling pathway is integral to diverse cellular functions, including cellular proliferation, differentiation and survival. The 'phosphate and tensin homologue deleted from chromosome 10' (PTEN) tumor suppressor gene plays a critical role as a negative regulator of this pathway. An array of genetic mutations and amplifications has been described affecting key components of this pathway, with implications not only for tumorigenesis but also for resistance to some classic cytotoxics and targeted agents. Emerging preclinical research has significantly advanced our understanding of the PI3K pathway and its complex machinations and interactions. This knowledge has enabled the evolution of rationally designed drugs targeting elements of this pathway. It is important that the development of suitable biomarkers continues in parallel to optimize use of these agents. A new generation of PI3K inhibitors is now entering early clinical trials, with much anticipation that they will add to the growing armamentarium of targeted cancer therapeutics.
Collapse
Affiliation(s)
- B Markman
- Medical Oncology Service, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - F Atzori
- Medical Oncology Service, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - J Pérez-García
- Medical Oncology Service, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - J Tabernero
- Medical Oncology Service, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - J Baselga
- Medical Oncology Service, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology, Universitat Autonoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
40
|
Wu Q, Chen Y, Cui G, Cheng Y. Wortmannin inhibits K562 leukemic cells by regulating PI3k/Akt channel in vitro. ACTA ACUST UNITED AC 2009; 29:451-6. [PMID: 19662361 DOI: 10.1007/s11596-009-0412-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Indexed: 01/20/2023]
Abstract
The inhibitory effect of wortmannin on leukemic cells and the possible mechanisms were examined. K562 cells were treated with wortmannin of various concentrations (3.125-100 nmol/L) for 0-72 h. MTT assay was used to evaluate the inhibitory effect of wortmannin on the growth of K562 cells. Cell apoptosis was detected by both Annexin-V FITC/PI double-labeled cytometry and transmission electron microscopy (TEM). The expression of p-Akt, T-p-Akt, NF-kappaBp65 and IKK-kappaB was determined by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR). Our results showed that wortmannin obviously inhibited growth and induced apoptosis of K562 cells in vitro in a time- and dose-dependent manner. The IC(50) value of wortmannin for 24 h was 25+/-0.14 nmol/L. Moreover, wortmannin induced K562 cells apoptosis in a dose-dependent manner. TEM revealed typical morphological changes of apoptosis in wortmannin-treated K562 cells, such as chromatin condensation, karyopyknosis, karyorhexis and apoptotic bodies. Additionally, several important intracellular protein kinases such as p-Akt, NF-kappaBp65 and IKK-kappaB experienced degradation of various degrees in a dose-dependent manner both at protein level and transcription level when cultured with wortmannin, but the expression of total Akt showed no change. It is concluded that wortmannin can inhibit the proliferation and induce apoptosis of K562 leukemia cells possibly by down-regulating the survival signaling pathways (PI3K/Akt and NF-kappaB channels).
Collapse
Affiliation(s)
- Qing Wu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | | | | | | |
Collapse
|
41
|
Schlosshauer PW, Li W, Lin KT, Chan JLK, Wang LH. Rapamycin by itself and additively in combination with carboplatin inhibits the growth of ovarian cancer cells. Gynecol Oncol 2009; 114:516-22. [PMID: 19576622 DOI: 10.1016/j.ygyno.2009.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 05/28/2009] [Accepted: 06/02/2009] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The current standard treatment for ovarian carcinoma, consisting of surgery followed by chemotherapy with carboplatin and paclitaxel, is fraught with a high rate of recurrences. We hypothesized that targeted inhibition of specific signaling pathways in combination with conventional drugs may increase chemotherapeutic efficacy. METHODS We analyzed the expression and activation profiles of various signaling pathways in nine established ovarian cancer cell lines (CAOV-3, ES2, PA-1, SKOV-3, NIHOVCAR3, OV90, TOV112D, A1847, A2780) and 24 freshly procured human ovarian tumors. The PI3 kinase pathway component Akt was frequently overexpressed and/or activated in tumor cells. The effect of several PI3K pathway inhibitors (rapamycin, LY294002, SH-6) and rapamycin in combination with carboplatin on various tumor cell growth characteristics was tested in cell lines and fresh tumor-derived transient monolayer and organ cultures. RESULTS Rapamycin by itself and additively with carboplatin inhibited the growth and invasion, and increased the sensitivity to anoikis of most of the ovarian cancer cell lines and fresh tumors. The additive inhibitory effect may be due to enhanced apoptosis as demonstrated by Poly-ADP-Ribose Polymerase (PARP) cleavage and Annexin V staining in cells treated with both rapamycin and carboplatin. CONCLUSIONS Rapamycin in combination with standard chemotherapeutic agents may improve the efficiency of ovarian cancer treatment.
Collapse
Affiliation(s)
- Peter W Schlosshauer
- Department of Pathology, The Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
42
|
Zhang XY, Zhang HY, Zhang PN, Lu X, Sun H. Elevated phosphatidylinositol 3-kinase activation and its clinicopathological significance in cervical cancer. Eur J Obstet Gynecol Reprod Biol 2008; 139:237-44. [DOI: 10.1016/j.ejogrb.2007.12.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Revised: 10/25/2007] [Accepted: 12/27/2007] [Indexed: 11/30/2022]
|
43
|
The efficacy and selectivity of tumor cell killing by Akt inhibitors are substantially increased by chloroquine. Bioorg Med Chem 2008; 16:7888-93. [PMID: 18691894 DOI: 10.1016/j.bmc.2008.07.076] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 07/23/2008] [Accepted: 07/25/2008] [Indexed: 11/22/2022]
Abstract
This study was to evaluate the enhancement value of chloroquine (CQ) in cancer cell killing when used in combination with Akt inhibitors. The results showed that the combination of CQ and Akt inhibitors is much more effective than either one alone. Importantly, the CQ-mediated chemosensitization of cell killing effects by Akt inhibitors is cancer specific. In particular, when combined with 10 microM CQ, 1,3-dihydro-1-(1-((4-(6-phenyl-1H-imidazo[4,5-g]quinoxalin-7-yl)phenyl)methyl)-4-piperidinyl)-2H-benzimidazol-2-one (an Akt1 and 2 inhibitor; compound 8) killed cancer cells 10-120 times more effectively than normal cells. Thus, CQ is a very effective and cancer-specific chemosensitizer when used in combination with Akt inhibitors.
Collapse
|
44
|
Yu X, Liu L, Cai B, He Y, Wan X. Suppression of anoikis by the neurotrophic receptor TrkB in human ovarian cancer. Cancer Sci 2008; 99:543-52. [PMID: 18201274 PMCID: PMC11159160 DOI: 10.1111/j.1349-7006.2007.00722.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 11/21/2007] [Accepted: 11/25/2007] [Indexed: 02/06/2023] Open
Abstract
TrkB is a neurotrophic tyrosine kinase receptor (Trk). To investigate its role in anoikis suppression in human ovarian cancer, we used reverse transcription-polymerase chain reaction and real-time polymerase chain reaction, immunohistochemistry, and western blotting to compare the expression levels of TrkB and its ligand brain-derived neurotrophic factor between (i) 20 epithelial ovarian cancers, their multicellular spheroids in ascites or great omentum metastatic lesions, and eight borderline or benign ovarian tumors, as well as four normal ovarian tissues; and (ii) three ovarian cancer cell lines cultured under different conditions: monolayer adhesive culture (adhesive cells), anchorage-independent culture (cell spheroids), and trypsinized cell spheroids placed in monolayer adhesive dishes (cell spheroids replaced). TrkB and brain-derived neurotrophic factor were overexpressed in epithelial ovarian cancers, and full-length TrkB was more often overexpressed in high-grade carcinomas and multicellular spheroids in ascites. Expression of TrkB mRNA was higher in OVCAR-3 cell spheroids than in adhesive cells. The expression of full-length TrkB protein was highest in OVCAR-3 cell spheroids, but its precursor was expressed highly in OVCAR-3 cells under all three culture conditions. The relationship between TrkB overexpression and phosphatidylinositol 3'-kinase (PI3K)-AKT pathway activation in OVCAR-3 cells was studied by western blotting and RNA interference. The PI3K-AKT pathway was highly activated in anoikis-survived cells and was inhibited when TrkB was silenced by small interfering RNA. Finally, the chemosensitivity and invasiveness of OVCAR-3 cells were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium, fluorescence-activated cell sorting, Matrigel invasion assay, and in vivo studies. Adhesive cells showed higher chemosensitivity and lower invasion ability than anoikis-survived cells. Our study suggests that TrkB might mediate anoikis suppression by activating the PI3K-AKT pathway in ovarian cancer cells.
Collapse
Affiliation(s)
- Xiaohui Yu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated First People's Hospital, No. 85 Wujin Road, Shanghai 200080, China
| | | | | | | | | |
Collapse
|
45
|
Westfall SD, Nilsson EE, Skinner MK. Role of Triptolide as an Adjunct Chemotherapy for Ovarian Cancer. Chemotherapy 2007; 54:67-76. [DOI: 10.1159/000112419] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2006] [Accepted: 06/04/2007] [Indexed: 11/19/2022]
|
46
|
Mundinger GS, Espina V, Liotta LA, Petricoin EF, Calvo KR. Clinical phosphoproteomic profiling for personalized targeted medicine using reverse phase protein microarray. Target Oncol 2006. [DOI: 10.1007/s11523-006-0025-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
47
|
Milan J, Charalambous C, Elhag R, Chen TC, Li W, Guan S, Hofman FM, Zidovetzki R. Multiple signaling pathways are involved in endothelin-1-induced brain endothelial cell migration. Am J Physiol Cell Physiol 2006; 291:C155-64. [PMID: 16452160 DOI: 10.1152/ajpcell.00239.2005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have observed that the vasoactive peptide endothelin-1 is a potent inducer of migration of primary human brain-derived microvascular endothelial cells. By blocking signal transduction pathways with specific inhibitors, and using dominant negative mutant infections, we have demonstrated that multiple pathways are involved in endothelin-1-induced migration. Absolutely required for migration are protein tyrosine kinase Src, Ras, protein kinase C (PKC), phosphatidylinositol 3-kinase, ERK, and JNK; partial requirements were exhibited by cAMP-activated protein kinase and p38 kinase. Partial elucidation of the signal transduction sequences showed that the MAPKs ERK, JNK, and p38 are positioned downstream of both PKC and cAMP-activated protein kinase in the signal transduction scheme. The results show that human brain endothelial cell migration has distinct characteristics, different from cells derived from other vascular beds, or from other species, often used as model systems. Furthermore, the results indicate that endothelin-1, secreted by many tumors, is an important contributor to tumor-produced proangiogenic microenvironment. This growth factor has been associated with increased microvessel density in tumors and is responsible for endothelial cell proliferation, migration, invasion, and tubule formation. Because many signal transduction pathways investigated in this study are potential or current targets for anti-angiogenesis therapy, these results are of critical importance for designing physiological antiangiogenic protocols.
Collapse
Affiliation(s)
- Johanna Milan
- Department of Cell Biology and Neuroscience, University of California, Riverside, 92521, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Van Meter TE, Broaddus WC, Cash D, Fillmore H. Cotreatment with a novel phosphoinositide analogue inhibitor and carmustine enhances chemotherapeutic efficacy by attenuating AKT activity in gliomas. Cancer 2006; 107:2446-54. [PMID: 17041888 DOI: 10.1002/cncr.22248] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Heightened activity of the AKT signaling pathway is prominent in malignant gliomas and has been suggested to play a role in treatment resistance. Selective targeting of AKT, therefore, may increase chemosensitivity. Recently, a novel class of AKT-selective inhibitors has been described, including SH-6, a phosphatidylinositol analogue. METHODS The effects of SH-6 on AKT signaling were tested in glioma cells, and the putative role of AKT signaling in chemoresistance was tested by attenuating AKT signaling pharmacologically and genetically. The initial characterization of SH-6 included treatment of glioma cells with increasing doses of SH-6 (0.30-30 microM) and examining the effects on AKT signaling proteins by Western blot analyses and in kinase assays with immunoprecipitated AKT1. Dose-response studies with SH-6 administered to glioma cell lines were performed using a luminescent cell-viability assay (0.1-30 microM). Studies examining the effect of carmustine, either alone or in combination with either the phosphatidylinositol 3-kinase inhibitor LY294002 or SH-6, were performed by cell viability assays and clonogenic survival assays. The effect of carmustine on AKT activity as a response to treatment also was examined. Caspase assays were used to examine the potential role of apoptosis in SH-6/ carmustine -elicited cell death. Finally, the induction of a dominant-negative AKT1 transgene was used in combination with carmustine to demonstrate the role of AKT1 in carmustine chemoresistance. RESULTS Serum-stimulated phosphorylation of AKT1 was inhibited by SH-6 at doses > or =10 microM (>70% decrease in Threonine 308 and Serine 473 phosphorylation of AKT1). In adenosine triphosphate assays, 72 hours of treatment with SH-6 led to 50% lethal doses near 10 microM for 2 cell lines tested. SH-6 enhancement of carmustine-mediated cell death led to synergistic increases in Caspase 3/Capsase 7 activity, implicating apoptosis as the cell death mechanism. In clonogenic assays, SH-6 cotreatment with carmustine significantly decreased the number of colonies at 10 microM (P < .05) compared with carmustine alone. No decrease was observed in cells that were treated with SH-6 alone (10 microM). LY294002 (10 microM) was also able to enhance the effects of carmustine significantly in both cell lines. CONCLUSIONS In the current study, the authors characterized the efficacy of a new class of adjuvant chemotherapeutics that show promise in enhancing the efficacy of standard chemotherapy regimens in gliomas.
Collapse
Affiliation(s)
- Timothy E Van Meter
- Department of Neurosurgery, Virginia Commonwealth University, Medical College of Virginia Campus, Richmond, Virginia 23230, USA.
| | | | | | | |
Collapse
|