1
|
Shulkina A, Hacker K, Ehrmann JF, Budroni V, Mandlbauer A, Bock J, Grabarczyk DB, Edobor G, Cochella L, Clausen T, Versteeg GA. TRIM52 maintains cellular fitness and is under tight proteolytic control by multiple giant E3 ligases. Nat Commun 2025; 16:3894. [PMID: 40274822 PMCID: PMC12022042 DOI: 10.1038/s41467-025-59129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 04/09/2025] [Indexed: 04/26/2025] Open
Abstract
Tripartite motif 52 (TRIM52) exhibits strong positive selection in humans, yet is lost in many other mammals. In contrast to what one would expect for such a non-conserved factor, TRIM52 loss compromises cell fitness. We set out to determine the cellular function of TRIM52. Genetic and proteomic analyses revealed TRIM52 physically and functionally interacts with the DNA repair machinery. Our data suggest that TRIM52 limits topoisomerase 2 adducts, thereby preventing cell-cycle arrest. Consistent with a fitness-promoting function, TRIM52 is upregulated in various cancers, prompting us to investigate its regulatory pathways. We found TRIM52 to be targeted for ultra-rapid proteasomal degradation by the giant E3 ubiquitin ligases BIRC6, HUWE1, and UBR4/KCMF1. BIRC6 mono-ubiquitinates TRIM52, with subsequent extension by UBR4/KCMF1. These findings suggest a role for TRIM52 in maintaining genome integrity, and regulation of its own abundance through multi-ligase degradation.
Collapse
Affiliation(s)
- Alexandra Shulkina
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030, Vienna, Austria
| | - Kathrin Hacker
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Julian F Ehrmann
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030, Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Valentina Budroni
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030, Vienna, Austria
| | - Ariane Mandlbauer
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Johannes Bock
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Daniel B Grabarczyk
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Genevieve Edobor
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
| | - Luisa Cochella
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Gijs A Versteeg
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
- University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology and Genetics, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria.
| |
Collapse
|
2
|
Nitiss KC, Bandak A, Berger JM, Nitiss JL. Genome Instability Induced by Topoisomerase Misfunction. Int J Mol Sci 2024; 25:10247. [PMID: 39408578 PMCID: PMC11477040 DOI: 10.3390/ijms251910247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Topoisomerases alter DNA topology by making transient DNA strand breaks (DSBs) in DNA. The DNA cleavage reaction mechanism includes the formation of a reversible protein/DNA complex that allows rapid resealing of the transient break. This mechanism allows changes in DNA topology with minimal risks of persistent DNA damage. Nonetheless, small molecules, alternate DNA structures, or mutations in topoisomerase proteins can impede the resealing of the transient breaks, leading to genome instability and potentially cell death. The consequences of high levels of enzyme/DNA adducts differ for type I and type II topoisomerases. Top1 action on DNA containing ribonucleotides leads to 2-5 nucleotide deletions in repeated sequences, while mutant Top1 enzymes can generate large deletions. By contrast, small molecules that target Top2, or mutant Top2 enzymes with elevated levels of cleavage lead to small de novo duplications. Both Top1 and Top2 have the potential to generate large rearrangements and translocations. Thus, genome instability due to topoisomerase mis-function is a potential pathogenic mechanism especially leading to oncogenic progression. Recent studies support the potential roles of topoisomerases in genetic changes in cancer cells, highlighting the need to understand how cells limit genome instability induced by topoisomerases. This review highlights recent studies that bear on these questions.
Collapse
Affiliation(s)
- Karin C. Nitiss
- Pharmaceutical Sciences Department, University of Illinois Chicago, Rockford, IL 61107, USA;
| | - Afif Bandak
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 20215, USA; (A.B.); (J.M.B.)
| | - James M. Berger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD 20215, USA; (A.B.); (J.M.B.)
| | - John L. Nitiss
- Pharmaceutical Sciences Department, University of Illinois Chicago, Rockford, IL 61107, USA;
| |
Collapse
|
3
|
Revia S, Neumann F, Jabs J, Orio F, Sirrenberg C, Zimmermann A, Amendt C, Albers J. Peposertib, a DNA-PK Inhibitor, Enhances the Anti-Tumor Efficacy of Topoisomerase II Inhibitors in Triple-Negative Breast Cancer Models. Int J Mol Sci 2024; 25:5120. [PMID: 38791158 PMCID: PMC11121553 DOI: 10.3390/ijms25105120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Triple-negative breast cancer (TNBC) remains the most lethal subtype of breast cancer, characterized by poor response rates to current chemotherapies and a lack of additional effective treatment options. While approximately 30% of patients respond well to anthracycline- and taxane-based standard-of-care chemotherapy regimens, the majority of patients experience limited improvements in clinical outcomes, highlighting the critical need for strategies to enhance the effectiveness of anthracycline/taxane-based chemotherapy in TNBC. In this study, we report on the potential of a DNA-PK inhibitor, peposertib, to improve the effectiveness of topoisomerase II (TOPO II) inhibitors, particularly anthracyclines, in TNBC. Our in vitro studies demonstrate the synergistic antiproliferative activity of peposertib in combination with doxorubicin, epirubicin and etoposide in multiple TNBC cell lines. Downstream analysis revealed the induction of ATM-dependent compensatory signaling and p53 pathway activation under combination treatment. These in vitro findings were substantiated by pronounced anti-tumor effects observed in mice bearing subcutaneously implanted tumors. We established a well-tolerated preclinical treatment regimen combining peposertib with pegylated liposomal doxorubicin (PLD) and demonstrated strong anti-tumor efficacy in cell-line-derived and patient-derived TNBC xenograft models in vivo. Taken together, our findings provide evidence that co-treatment with peposertib has the potential to enhance the efficacy of anthracycline/TOPO II-based chemotherapies, and it provides a promising strategy to improve treatment outcomes for TNBC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Joachim Albers
- Research Unit Oncology, Merck Healthcare KGaA, Darmstadt, Germany; (S.R.)
| |
Collapse
|
4
|
Revia S, Budzinska MA, Bogatyrova O, Neumann F, Zimmermann A, Amendt C, Albers J. DNA-Dependent Protein Kinase Inhibitor Peposertib Potentiates the Cytotoxicity of Topoisomerase II Inhibitors in Synovial Sarcoma Models. Cancers (Basel) 2023; 16:189. [PMID: 38201616 PMCID: PMC10778103 DOI: 10.3390/cancers16010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Synovial sarcoma is a rare and highly aggressive subtype of soft tissue sarcoma. The clinical challenge posed by advanced or metastatic synovial sarcoma, marked by limited treatment options and suboptimal outcomes, necessitates innovative approaches. The topoisomerase II (Topo II) inhibitor doxorubicin has remained the cornerstone systemic treatment for decades, and there is pressing need for improved therapeutic strategies for these patients. This study highlights the potential to enhance the cytotoxic effects of doxorubicin within well-characterized synovial sarcoma cell lines using the potent and selective DNA-PK inhibitor, peposertib. In vitro investigations unveil a p53-mediated synergistic anti-tumor effect when combining doxorubicin with peposertib. The in vitro findings were substantiated by pronounced anti-tumor effects in mice bearing subcutaneously implanted tumors. A well-tolerated regimen for the combined application was established using both pegylated liposomal doxorubicin (PLD) and unmodified doxorubicin. Notably, the combination of PLD and peposertib displayed enhanced anti-tumor efficacy compared to unmodified doxorubicin at equivalent doses, suggesting an improved therapeutic window-a critical consideration for clinical translation. Efficacy studies in two patient-derived xenograft models of synovial sarcoma, accurately reflecting human metastatic disease, further validate the potential of this combined therapy. These findings align with previous evidence showcasing the synergy between DNA-PK inhibition and Topo II inhibitors in diverse tumor models, including breast and ovarian cancers. Our study extends the potential utility of combined therapy to synovial sarcoma.
Collapse
Affiliation(s)
- Steffie Revia
- Research Unit Oncology, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (S.R.)
| | | | - Olga Bogatyrova
- Research Unit Oncology, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (S.R.)
| | - Felix Neumann
- Research Unit Oncology, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (S.R.)
| | - Astrid Zimmermann
- Research Unit Oncology, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (S.R.)
| | - Christiane Amendt
- Research Unit Oncology, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (S.R.)
| | - Joachim Albers
- Research Unit Oncology, Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany; (S.R.)
| |
Collapse
|
5
|
Kciuk M, Kołat D, Kałuzińska-Kołat Ż, Gawrysiak M, Drozda R, Celik I, Kontek R. PD-1/PD-L1 and DNA Damage Response in Cancer. Cells 2023; 12:530. [PMID: 36831197 PMCID: PMC9954559 DOI: 10.3390/cells12040530] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
The application of immunotherapy for cancer treatment is rapidly becoming more widespread. Immunotherapeutic agents are frequently combined with various types of treatments to obtain a more durable antitumor clinical response in patients who have developed resistance to monotherapy. Chemotherapeutic drugs that induce DNA damage and trigger DNA damage response (DDR) frequently induce an increase in the expression of the programmed death ligand-1 (PD-L1) that can be employed by cancer cells to avoid immune surveillance. PD-L1 exposed on cancer cells can in turn be targeted to re-establish the immune-reactive tumor microenvironment, which ultimately increases the tumor's susceptibility to combined therapies. Here we review the recent advances in how the DDR regulates PD-L1 expression and point out the effect of etoposide, irinotecan, and platinum compounds on the anti-tumor immune response.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Damian Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Żaneta Kałuzińska-Kołat
- Department of Experimental Surgery, Faculty of Medicine, Medical University of Lodz, Narutowicza 60, 90-136 Lodz, Poland
| | - Mateusz Gawrysiak
- Department of Immunology and Allergy, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland
| | - Rafał Drozda
- Department of Gastrointestinal Endoscopy, Wl. Bieganski Hospital, 91-347 Lodz, Poland
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, 38039 Kayseri, Turkey
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| |
Collapse
|
6
|
Nicolette J, Luijten M, Sasaki JC, Custer L, Embry M, Froetschl R, Johnson G, Ouedraogo G, Settivari R, Thybaud V, Dearfield KL. Utility of a next-generation framework for assessment of genomic damage: A case study using the pharmaceutical drug candidate etoposide. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:512-525. [PMID: 34775645 PMCID: PMC9299499 DOI: 10.1002/em.22467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
We present a hypothetical case study to examine the use of a next-generation framework developed by the Genetic Toxicology Technical Committee of the Health and Environmental Sciences Institute for assessing the potential risk of genetic damage from a pharmaceutical perspective. We used etoposide, a genotoxic carcinogen, as a representative pharmaceutical for the purposes of this case study. Using the framework as guidance, we formulated a hypothetical scenario for the use of etoposide to illustrate the application of the framework to pharmaceuticals. We collected available data on etoposide considered relevant for assessment of genetic toxicity risk. From the data collected, we conducted a quantitative analysis to estimate margins of exposure (MOEs) to characterize the risk of genetic damage that could be used for decision-making regarding the predefined hypothetical use. We found the framework useful for guiding the selection of appropriate tests and selecting relevant endpoints that reflected the potential for genetic damage in patients. The risk characterization, presented as MOEs, allows decision makers to discern how much benefit is critical to balance any adverse effect(s) that may be induced by the pharmaceutical. Interestingly, pharmaceutical development already incorporates several aspects of the framework per regulations and health authority expectations. Moreover, we observed that quality dose response data can be obtained with carefully planned but routinely conducted genetic toxicity testing. This case study demonstrates the utility of the next-generation framework to quantitatively model human risk based on genetic damage, as applicable to pharmaceuticals.
Collapse
Affiliation(s)
| | - Mirjam Luijten
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | | | - Laura Custer
- Bristol‐Myers Squibb Company, Drug Safety EvaluationNew BrunswickNew JerseyUSA
| | - Michelle Embry
- Health and Environmental Sciences InstituteWashingtonDistrict of ColumbiaUSA
| | | | - George Johnson
- Swansea University Medical SchoolSwansea UniversitySwanseaUK
| | | | | | | | | |
Collapse
|
7
|
Zhang W, Gou P, Dupret JM, Chomienne C, Rodrigues-Lima F. Etoposide, an anticancer drug involved in therapy-related secondary leukemia: Enzymes at play. Transl Oncol 2021; 14:101169. [PMID: 34243013 PMCID: PMC8273223 DOI: 10.1016/j.tranon.2021.101169] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/13/2023] Open
Abstract
Etoposide is a semi-synthetic glycoside derivative of podophyllotoxin, also known as VP-16. It is a widely used anticancer medicine in clinics. Unfortunately, high doses or long-term etoposide treatment can induce therapy-related leukemia. The mechanism by which etoposide induces secondary hematopoietic malignancies is still unclear. In this article, we review the potential mechanisms of etoposide induced therapy-related leukemia. Etoposide related leukemogenesis is known to depend on reactive oxidative metabolites of etoposide, notably etoposide quinone, which interacts with cellular proteins such as topoisomerases II (TOP2), CREB-binding protein (CREBBP), and T-Cell Protein Tyrosine Phosphatase (TCPTP). CYP3A4 and CYP3A5 metabolize etoposide to etoposide catechol, which readily oxidizes to etoposide quinone. As a poison of TOP2 enzymes, etoposide and its metabolites induce DNA double-stranded breaks (DSB), and the accumulation of DSB triggers cell apoptosis. If the cell survives, the DSB gives rise to the likelihood of faulty DNA repair events. The gene translocation could occur in mixed-lineage leukemia (MLL) gene, which is well-known in leukemogenesis. Recently, studies have revealed that etoposide metabolites, especially etoposide quinone, can covalently bind to cysteines residues of CREBBP and TCPTP enzymes, . This leads to enzyme inhibition and further affects histone acetylation and phosphorylation of the JAK-STAT pathway, thus putatively altering the proliferation and differentiation of hematopoietic stem cells (HSC). In brief, current studies suggest that etoposide and its metabolites contribute to etoposide therapy-related leukemia through TOP2 mediated DSB and impairs specific enzyme activity, such as CREBBP and TCPTP.
Collapse
Affiliation(s)
- Wenchao Zhang
- Université de Paris, BFA, UMR 8251, CNRS, Paris F-75013, France.
| | - Panhong Gou
- Inserm UMR-S1131, Université de Paris, IRSL, Hôpital Saint-Louis, Paris, France
| | | | - Christine Chomienne
- Inserm UMR-S1131, Université de Paris, IRSL, Hôpital Saint-Louis, Paris, France; Service de Biologie Cellulaire, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Saint Louis, Paris, France
| | | |
Collapse
|
8
|
Tamura Y, Ohhata T, Niida H, Sakai S, Uchida C, Masumoto K, Katou F, Wutz A, Kitagawa M. Homologous recombination is reduced in female embryonic stem cells by two active X chromosomes. EMBO Rep 2021; 22:e52190. [PMID: 34309165 DOI: 10.15252/embr.202052190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
The reactivation of X-linked genes is observed in some primary breast tumors. Two active X chromosomes are also observed in female embryonic stem cells (ESCs), but whether double doses of X-linked genes affect DNA repair efficiency remains unclear. Here, we establish isogenic female/male ESCs and show that the female ESCs are more sensitive to camptothecin and have lower gene targeting efficiency than male ESCs, suggesting that homologous recombination (HR) efficiency is reduced in female ESCs. We also generate Xist-inducible female ESCs and show that the lower HR efficiency is restored when X chromosome inactivation is induced. Finally, we assess the X-linked genes with a role in DNA repair and find that Brcc3 is one of the genes involved in a network promoting proper HR. Our findings link the double doses of X-linked genes with lower DNA repair activity, and this may have relevance for common diseases in female patients, such as breast cancer.
Collapse
Affiliation(s)
- Yuka Tamura
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Chiharu Uchida
- Advanced Research Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuma Masumoto
- Department of Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Fuminori Katou
- Department of Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Anton Wutz
- Institute of Molecular Health Sciences, ETH Zürich, Zurich, Switzerland
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
9
|
Mollaei M, Hassan ZM, Khorshidi F, Langroudi L. Chemotherapeutic drugs: Cell death- and resistance-related signaling pathways. Are they really as smart as the tumor cells? Transl Oncol 2021; 14:101056. [PMID: 33684837 PMCID: PMC7938256 DOI: 10.1016/j.tranon.2021.101056] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/05/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Chemotherapeutic drugs kill cancer cells or control their progression all over the patient's body, while radiation- and surgery-based treatments perform in a particular site. Based on their mechanisms of action, they are classified into different groups, including alkylating substrates, antimetabolite agents, anti-tumor antibiotics, inhibitors of topoisomerase I and II, mitotic inhibitors, and finally, corticosteroids. Although chemotherapeutic drugs have brought about more life expectancy, two major and severe complications during chemotherapy are chemoresistance and tumor relapse. Therefore, we aimed to review the underlying intracellular signaling pathways involved in cell death and resistance in different chemotherapeutic drug families to clarify the shortcomings in the conventional single chemotherapy applications. Moreover, we have summarized the current combination chemotherapy applications, including numerous combined-, and encapsulated-combined-chemotherapeutic drugs. We further discussed the possibilities and applications of precision medicine, machine learning, next-generation sequencing (NGS), and whole-exome sequencing (WES) in promoting cancer immunotherapies. Finally, some of the recent clinical trials concerning the application of immunotherapies and combination chemotherapies were included as well, in order to provide a practical perspective toward the future of therapies in cancer cases.
Collapse
Affiliation(s)
- Mojtaba Mollaei
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran.
| | | | - Fatemeh Khorshidi
- Department of Immunology, School of Medicine, Tarbiat Modares University, Tehran, Iran; Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Langroudi
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
Swan RL, Poh LLK, Cowell IG, Austin CA. Small Molecule Inhibitors Confirm Ubiquitin-Dependent Removal of TOP2-DNA Covalent Complexes. Mol Pharmacol 2020; 98:222-233. [PMID: 32587095 PMCID: PMC7416847 DOI: 10.1124/mol.119.118893] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
DNA topoisomerase II (TOP2) is required for the unwinding and decatenation of DNA through the induction of an enzyme-linked double-strand break (DSB) in one DNA molecule and passage of another intact DNA duplex through the break. Anticancer drugs targeting TOP2 (TOP2 poisons) prevent religation of the DSB and stabilize a normally transient intermediate of the TOP2 reaction mechanism called the TOP2-DNA covalent complex. Subsequently, TOP2 remains covalently bound to each end of the enzyme-bridged DSB, which cannot be repaired until TOP2 is removed from the DNA. One removal mechanism involves the proteasomal degradation of the TOP2 protein, leading to the liberation of a protein-free DSB. Proteasomal degradation is often regulated by protein ubiquitination, and here we show that inhibition of ubiquitin-activating enzymes reduces the processing of TOP2A- and TOP2B-DNA complexes. Depletion or inhibition of ubiquitin-activating enzymes indicated that ubiquitination was required for the liberation of etoposide-induced protein-free DSBs and is therefore an important layer of regulation in the repair of TOP2 poison-induced DNA damage. TOP2-DNA complexes stabilized by etoposide were shown to be conjugated to ubiquitin, and this was reduced by inhibition or depletion of ubiquitin-activating enzymes. SIGNIFICANCE STATEMENT: There is currently great clinical interest in the ubiquitin-proteasome system and ongoing development of specific inhibitors. The results in this paper show that the therapeutic cytotoxicity of DNA topoisomerase II (TOP2) poisons can be enhanced through combination therapy with ubiquitin-activating enzyme inhibitors or by specific inhibition of the BMI/RING1A ubiquitin ligase, which would lead to increased cellular accumulation or persistence of TOP2-DNA complexes.
Collapse
Affiliation(s)
- Rebecca L Swan
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Luke L K Poh
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ian G Cowell
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Caroline A Austin
- Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
11
|
Feng X, Wu X, Wu Y, Zhao Z, Xiang C, Bai X, Liu X, Zhao J, Takeda S, Qing Y. Critical roles of tyrosyl-DNA phosphodiesterases in cell tolerance to carnosol-induced DNA damage. Cell Biol Int 2020; 44:1640-1650. [PMID: 32301547 DOI: 10.1002/cbin.11357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/02/2020] [Accepted: 04/11/2020] [Indexed: 02/05/2023]
Abstract
Carnosol is a natural compound with pharmacological action due to its anti-cancer properties. However, the precise mechanism for its anti-carcinogenic effect remains elusive. In this study, we used lymphoblastoid TK6 cell lines to identify the DNA damage and repair mechanisms of carnosol. Our results showed that carnosol induced DNA double-strand breaks (DSBs). We also found that cells lacking tyrosyl-DNA phosphodiesterase 1 (TDP1), an enzyme related to topoisomerase 1 (TOP1), and tyrosyl-DNA phosphodiesterase 2 (TDP2), an enzyme related to topoisomerase 2 (TOP2), were supersensitive to carnosol. Carnosol was found to induce the formation of the TOP1-DNA cleavage complex (TOP1cc) and TOP2-DNA cleavage complex (TOP2cc). When comparing the accumulation of γ-H2AX foci and the number of chromosomal aberrations (CAs) with wild-type (WT) cells, the susceptivity of the TDP1-/- and TDP2-/- cells were associated with an increased DNA damage. Our results provided evidence of carnosol inducing DNA lesions in TK6 cells and demonstrated that the damage induced by carnosol was associated with abnormal topoisomerase activity. We conclude that TDP1 and TDP2 play important roles in the anti-cancer effect of carnosol.
Collapse
Affiliation(s)
- Xiaoyu Feng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohua Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zilu Zhao
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Cuifang Xiang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xin Bai
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xin Liu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Jingxia Zhao
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yong Qing
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Khan H, McDonald MC, Williams SJ, Solomon PS. Assessing the efficacy of CRISPR/Cas9 genome editing in the wheat pathogen Parastagonspora nodorum. Fungal Biol Biotechnol 2020; 7:4. [PMID: 32257291 PMCID: PMC7110818 DOI: 10.1186/s40694-020-00094-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/19/2020] [Indexed: 12/20/2022] Open
Abstract
Background The genome-editing tool CRISPR/Cas9 has revolutionized gene manipulation by providing an efficient method to generate targeted mutations. This technique deploys the Cas9 endonuclease and a guide RNA (sgRNA) which interact to form a Cas9-sgRNA complex that initiates gene editing through the introduction of double stranded DNA breaks. We tested the efficacy of the CRISPR/Cas9 approach as a means of facilitating a variety of reverse genetic approaches in the wheat pathogenic fungus Parastagonospora nodorum. Results Parastagonospora nodorum protoplasts were transformed with the Cas9 protein and sgRNA in the form of a preassembled ribonuclear protein (RNP) complex targeting the Tox3 effector gene. Subsequent screening of the P. nodorum transformants revealed 100% editing of those mutants screened. We further tested the efficacy of RNP complex when co-transformed with a Tox3-Homology Directed Repair cassette harbouring 1 kb of homologous flanking DNA. Subsequent screening of resulting transformants demonstrated homologous recombination efficiencies exceeding 70%. A further transformation with a Tox3-Homology Directed Repair cassette harbouring a selectable marker with 50 bp micro-homology flanks was also achieved with 25% homologous recombination efficiency. The success of these homology directed repair approaches demonstrate that CRISPR/Cas9 is amenable to other in vivo DNA manipulation approaches such as the insertion of DNA and generating point mutations. Conclusion These data highlight the significant potential that CRISPR/Cas9 has in expediting transgene-free gene knockouts in Parastagonospora nodorum and also in facilitating other gene manipulation approaches. Access to these tools will significantly decrease the time required to assess the requirement of gene for disease and to undertake functional studies to determine its role.
Collapse
Affiliation(s)
- Haseena Khan
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - Megan C McDonald
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - Simon J Williams
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| | - Peter S Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, 2601 Australia
| |
Collapse
|
13
|
Xiang C, Wu X, Zhao Z, Feng X, Bai X, Liu X, Zhao J, Takeda S, Qing Y. Nonhomologous end joining and homologous recombination involved in luteolin-induced DNA damage in DT40 cells. Toxicol In Vitro 2020; 65:104825. [PMID: 32169435 DOI: 10.1016/j.tiv.2020.104825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/08/2020] [Accepted: 03/08/2020] [Indexed: 02/05/2023]
Abstract
Luteolin (3',4',5,7-tetrahydroxyflavone), a naturally occurring flavonoid, has been shown to have anticancer activity in many types of cancer cell lines. The anticancer capacity of luteolin may be related to its ability to induce DNA double-strand breaks (DSBs). Here, we used DT40 cells to determine whether nonhomologous end joining (NHEJ) and homologous recombination (HR) are involved in the repair mechanism of luteolin-induced DNA damage. Cells defective in Ku70 (an enzyme associated with NHEJ) or Rad54 (an enzyme essential for HR) were hypersensitive and presented more apoptosis in response to luteolin. Moreover, the sensitivity and apoptosis of Ku70-/- and Rad54-/- cells were associated with increased DNA damage when the numbers of γ-H2AX foci and chromosomal aberrations (CAs) were compared with those from WT cells. Additionally, after treatment with luteolin, Ku70-/- cells presented more Top2 covalent cleavage complexes (Top2cc). These results indicated that luteolin induced DSBs in DT40 cells and demonstrated that both NHEJ and HR participated in the repair of luteolin-induced DSBs, which might be related to the inhibition of topoisomerases. These results imply that simultaneous inhibition of NHEJ and HR with luteolin treatment would provide a powerful protocol in cancer chemotherapy.
Collapse
Affiliation(s)
- Cuifang Xiang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohua Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zilu Zhao
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xiaoyu Feng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xin Bai
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Xin Liu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Jingxia Zhao
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yong Qing
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
14
|
Sasaki JC, Allemang A, Bryce SM, Custer L, Dearfield KL, Dietz Y, Elhajouji A, Escobar PA, Fornace AJ, Froetschl R, Galloway S, Hemmann U, Hendriks G, Li HH, Luijten M, Ouedraogo G, Peel L, Pfuhler S, Roberts DJ, Thybaud V, van Benthem J, Yauk CL, Schuler M. Application of the adverse outcome pathway framework to genotoxic modes of action. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:114-134. [PMID: 31603995 DOI: 10.1002/em.22339] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 05/22/2023]
Abstract
In May 2017, the Health and Environmental Sciences Institute's Genetic Toxicology Technical Committee hosted a workshop to discuss whether mode of action (MOA) investigation is enhanced through the application of the adverse outcome pathway (AOP) framework. As AOPs are a relatively new approach in genetic toxicology, this report describes how AOPs could be harnessed to advance MOA analysis of genotoxicity pathways using five example case studies. Each of these genetic toxicology AOPs proposed for further development includes the relevant molecular initiating events, key events, and adverse outcomes (AOs), identification and/or further development of the appropriate assays to link an agent to these events, and discussion regarding the biological plausibility of the proposed AOP. A key difference between these proposed genetic toxicology AOPs versus traditional AOPs is that the AO is a genetic toxicology endpoint of potential significance in risk characterization, in contrast to an adverse state of an organism or a population. The first two detailed case studies describe provisional AOPs for aurora kinase inhibition and tubulin binding, leading to the common AO of aneuploidy. The remaining three case studies highlight provisional AOPs that lead to chromosome breakage or mutation via indirect DNA interaction (inhibition of topoisomerase II, production of cellular reactive oxygen species, and inhibition of DNA synthesis). These case studies serve as starting points for genotoxicity AOPs that could ultimately be published and utilized by the broader toxicology community and illustrate the practical considerations and evidence required to formalize such AOPs so that they may be applied to genetic toxicity evaluation schemes. Environ. Mol. Mutagen. 61:114-134, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | - Laura Custer
- Bristol-Myers Squibb Company, Drug Safety Evaluation, New Brunswick, New Jersey
| | | | - Yasmin Dietz
- Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | | | | | | | | | | | | | | | - Heng-Hong Li
- Georgetown University, Washington, District of Columbia
| | - Mirjam Luijten
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Lauren Peel
- Health and Environmental Sciences Institute, Washington, District of Columbia
| | | | | | - Véronique Thybaud
- Sanofi, Research and Development, Preclinical Safety, Vitry-sur-Seine, France
| | - Jan van Benthem
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Maik Schuler
- Pfizer Inc, World Wide Research and Development, Groton, Connecticut
| |
Collapse
|
15
|
Elevated signature of a gene module coexpressed with CDC20 marks genomic instability in glioma. Proc Natl Acad Sci U S A 2019; 116:6975-6984. [PMID: 30877245 DOI: 10.1073/pnas.1814060116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Genomic instability (GI) drives tumor heterogeneity and promotes tumor progression and therapy resistance. However, causative factors underlying GI and means for clinical detection of GI in glioma are inadequately identified. We describe here that elevated expression of a gene module coexpressed with CDC20 (CDC20-M), the activator of the anaphase-promoting complex in the cell cycle, marks GI in glioma. The CDC20-M, containing 139 members involved in cell proliferation, DNA damage response, and chromosome segregation, was found to be consistently coexpressed in glioma transcriptomes. The coexpression of these genes was conserved across multiple species and organ systems, particularly in human neural stem and progenitor cells. CDC20-M expression was not correlated with the morphological subtypes, nor with the recently defined molecular subtypes of glioma. CDC20-M signature was an independent and robust predictor for poorer prognosis in over 1,000 patients from four large databases. Elevated CDC20-M signature enabled the identification of individual glioma samples with severe chromosome instability and mutation burden and of primary glioma cell lines with extensive mitotic errors leading to chromosome mis-segregation. AURKA, a core member of CDC20-M, was amplified in one-third of CDC20-M-high gliomas with gene-dosage-dependent expression. MLN8237, a Food and Drug Administration-approved AURKA inhibitor, selectively killed temozolomide-resistant primary glioma cells in vitro and prolonged the survival of a patient-derived xenograft mouse model with a high-CDC20-M signature. Our findings suggest that application of the CDC20-M signature may permit more selective use of adjuvant therapies for glioma patients and that dysregulated CDC20-M members may provide a therapeutic vulnerability in glioma.
Collapse
|
16
|
Tombline G, Millen JI, Polevoda B, Rapaport M, Baxter B, Van Meter M, Gilbertson M, Madrey J, Piazza GA, Rasmussen L, Wennerberg K, White EL, Nitiss JL, Goldfarb DS. Effects of an unusual poison identify a lifespan role for Topoisomerase 2 in Saccharomyces cerevisiae. Aging (Albany NY) 2017; 9:68-97. [PMID: 28077781 PMCID: PMC5310657 DOI: 10.18632/aging.101114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 10/29/2016] [Indexed: 12/17/2022]
Abstract
A progressive loss of genome maintenance has been implicated as both a cause and consequence of aging. Here we present evidence supporting the hypothesis that an age-associated decay in genome maintenance promotes aging in Saccharomyces cerevisiae (yeast) due to an inability to sense or repair DNA damage by topoisomerase 2 (yTop2). We describe the characterization of LS1, identified in a high throughput screen for small molecules that shorten the replicative lifespan of yeast. LS1 accelerates aging without affecting proliferative growth or viability. Genetic and biochemical criteria reveal LS1 to be a weak Top2 poison. Top2 poisons induce the accumulation of covalent Top2-linked DNA double strand breaks that, if left unrepaired, lead to genome instability and death. LS1 is toxic to cells deficient in homologous recombination, suggesting that the damage it induces is normally mitigated by genome maintenance systems. The essential roles of yTop2 in proliferating cells may come with a fitness trade-off in older cells that are less able to sense or repair yTop2-mediated DNA damage. Consistent with this idea, cells live longer when yTop2 expression levels are reduced. These results identify intrinsic yTop2-mediated DNA damage as a potentially manageable cause of aging.
Collapse
Affiliation(s)
- Gregory Tombline
- Biology Department, University of Rochester, Rochester, NY 14627, USA
| | - Jonathan I Millen
- Biology Department, University of Rochester, Rochester, NY 14627, USA
| | - Bogdan Polevoda
- Biology Department, University of Rochester, Rochester, NY 14627, USA
| | - Matan Rapaport
- Biology Department, University of Rochester, Rochester, NY 14627, USA
| | - Bonnie Baxter
- Biology Department, University of Rochester, Rochester, NY 14627, USA
| | - Michael Van Meter
- Biology Department, University of Rochester, Rochester, NY 14627, USA
| | - Matthew Gilbertson
- Department of Biopharmaceutical Sciences, UIC College of Pharmacy at Rockford, Rockford, IL 61107, USA
| | - Joe Madrey
- Drug Discovery Division, Southern Research Institute, Birmingham AL, 35205, USA
| | - Gary A Piazza
- Drug Discovery Division, Southern Research Institute, Birmingham AL, 35205, USA
| | - Lynn Rasmussen
- Drug Discovery Division, Southern Research Institute, Birmingham AL, 35205, USA
| | - Krister Wennerberg
- Drug Discovery Division, Southern Research Institute, Birmingham AL, 35205, USA
| | - E Lucile White
- Drug Discovery Division, Southern Research Institute, Birmingham AL, 35205, USA
| | - John L Nitiss
- Department of Biopharmaceutical Sciences, UIC College of Pharmacy at Rockford, Rockford, IL 61107, USA
| | - David S Goldfarb
- Biology Department, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
17
|
Allam WR, Ashour ME, Waly AA, El-Khamisy S. Role of Protein Linked DNA Breaks in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1007:41-58. [PMID: 28840551 DOI: 10.1007/978-3-319-60733-7_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Topoisomerases are a group of specialized enzymes that function to maintain DNA topology by introducing transient DNA breaks during transcription and replication. As a result of abortive topoisomerases activity, topoisomerases catalytic intermediates may be trapped on the DNA forming topoisomerase cleavage complexes (Topcc). Topoisomerases trapping on the DNA is the mode of action of several anticancer drugs, it lead to formation of protein linked DAN breaks (PDBs). PDBs are now considered as one of the most dangerous forms of endogenous DNA damage and a major threat to genomic stability. The repair of PDBs involves both the sensing and repair pathways. Unsuccessful repair of PDBs leads to different signs of genomic instabilities such as chromosomal rearrangements and cancer predisposition. In this chapter we will summarize the role of topoisomerases induced PDBs, identification and signaling, repair, role in transcription. We will also discuss the role of PDBs in cancer with a special focus on prostate cancer.
Collapse
Affiliation(s)
- Walaa R Allam
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt.
| | - Mohamed E Ashour
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Amr A Waly
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt
| | - Sherif El-Khamisy
- Center for Genomics, Helmy Institute for Medical Sciences, Zewail City of Science and Technology, Giza, Egypt. .,Krebs Institute and Sheffield Institute for Nucleic Acids, Department of Molecular Biology and Biotechnology, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
18
|
Pommier Y, Sun Y, Huang SYN, Nitiss JL. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat Rev Mol Cell Biol 2016; 17:703-721. [DOI: 10.1038/nrm.2016.111] [Citation(s) in RCA: 662] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Gil Del Alcazar CR, Todorova PK, Habib AA, Mukherjee B, Burma S. Augmented HR Repair Mediates Acquired Temozolomide Resistance in Glioblastoma. Mol Cancer Res 2016; 14:928-940. [PMID: 27358111 DOI: 10.1158/1541-7786.mcr-16-0125] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/16/2016] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor in adults and is universally fatal. The DNA alkylating agent temozolomide is part of the standard-of-care for GBM. However, these tumors eventually develop therapy-driven resistance and inevitably recur. While loss of mismatch repair (MMR) and re-expression of MGMT have been shown to underlie chemoresistance in a fraction of GBMs, resistance mechanisms operating in the remaining GBMs are not well understood. To better understand the molecular basis for therapy-driven temozolomide resistance, mice bearing orthotopic GBM xenografts were subjected to protracted temozolomide treatment, and cell lines were generated from the primary (untreated) and recurrent (temozolomide-treated) tumors. As expected, the cells derived from primary tumors were sensitive to temozolomide, whereas the cells from the recurrent tumors were significantly resistant to the drug. Importantly, the acquired resistance to temozolomide in the recurrent lines was not driven by re-expression of MGMT or loss of MMR but was due to accelerated repair of temozolomide-induced DNA double-strand breaks (DSB). Temozolomide induces DNA replication-associated DSBs that are primarily repaired by the homologous recombination (HR) pathway. Augmented HR appears to underpin temozolomide resistance in the recurrent lines, as these cells were cross-resistant to other agents that induced replication-associated DSBs, exhibited faster resolution of damage-induced Rad51 foci, and displayed higher levels of sister chromatid exchanges (SCE). Furthermore, in light of recent studies demonstrating that CDK1 and CDK2 promote HR, it was found that CDK1/2 inhibitors countered the heightened HR in recurrent tumors and sensitized these therapy-resistant tumor cells to temozolomide. IMPLICATIONS Augmented HR repair is a novel mechanism underlying acquired temozolomide resistance in GBM, and this raises the possibility of improving the therapeutic response to temozolomide by targeting HR with small-molecule inhibitors of CDK1/2. Mol Cancer Res; 14(10); 928-40. ©2016 AACR.
Collapse
Affiliation(s)
| | | | - Amyn A Habib
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas. North Texas VA Medical Center, Dallas, Texas
| | - Bipasha Mukherjee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sandeep Burma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
20
|
Pham LM, Carvalho L, Schaus S, Kolaczyk ED. Perturbation Detection Through Modeling of Gene Expression on a Latent Biological Pathway Network: A Bayesian hierarchical approach. J Am Stat Assoc 2016; 111:73-92. [PMID: 27647944 DOI: 10.1080/01621459.2015.1110523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cellular response to a perturbation is the result of a dynamic system of biological variables linked in a complex network. A major challenge in drug and disease studies is identifying the key factors of a biological network that are essential in determining the cell's fate. Here our goal is the identification of perturbed pathways from high-throughput gene expression data. We develop a three-level hierarchical model, where (i) the first level captures the relationship between gene expression and biological pathways using confirmatory factor analysis, (ii) the second level models the behavior within an underlying network of pathways induced by an unknown perturbation using a conditional autoregressive model, and (iii) the third level is a spike-and-slab prior on the perturbations. We then identify perturbations through posterior-based variable selection. We illustrate our approach using gene transcription drug perturbation profiles from the DREAM7 drug sensitivity predication challenge data set. Our proposed method identified regulatory pathways that are known to play a causative role and that were not readily resolved using gene set enrichment analysis or exploratory factor models. Simulation results are presented assessing the performance of this model relative to a network-free variant and its robustness to inaccuracies in biological databases.
Collapse
|
21
|
Lee KC, Bramley RL, Cowell IG, Jackson GH, Austin CA. Proteasomal inhibition potentiates drugs targeting DNA topoisomerase II. Biochem Pharmacol 2016; 103:29-39. [PMID: 26794000 PMCID: PMC5071433 DOI: 10.1016/j.bcp.2015.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/22/2015] [Indexed: 01/15/2023]
Abstract
The reaction mechanism of DNA topoisomerase II (TOP2) involves a covalent double-strand break intermediate in which the enzyme is coupled to DNA via a 5′-phosphotyrosyl bond. This normally transient enzyme-bridged break is stabilised by drugs such as mitoxantrone, mAMSA, etoposide, doxorubicin, epirubicin and idarubicin, which are referred to as TOP2 poisons. Removal of topoisomerase II by the proteasome is involved in the repair of these lesions. In K562 cells, inhibiting the proteasome with MG132 significantly potentiated the growth inhibition by these six drugs that target topoisomerase II, and the highest level of potentiation was observed with mitoxantrone. Mitoxantrone also showed the greatest potentiation by MG132 in three Nalm 6 cell lines with differing levels of TOP2A or TOP2B. Mitoxantrone was also potentiated by the clinically used proteasome inhibitor PS341 (Velcade). We have also shown that proteasome inhibition with MG132 in K562 cells reduces the rate of removal of mitoxantrone or etoposide stabilised topoisomerase complexes from DNA, suggesting a possible mechanism for the potentiation of topoisomerase II drugs by proteasomal inhibition.
Collapse
Affiliation(s)
- Ka C Lee
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Rebecca L Bramley
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Ian G Cowell
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Graham H Jackson
- Institute for Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Caroline A Austin
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
22
|
Oei AL, Vriend LEM, Crezee J, Franken NAP, Krawczyk PM. Effects of hyperthermia on DNA repair pathways: one treatment to inhibit them all. Radiat Oncol 2015; 10:165. [PMID: 26245485 PMCID: PMC4554295 DOI: 10.1186/s13014-015-0462-0] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/13/2015] [Indexed: 12/03/2022] Open
Abstract
The currently available arsenal of anticancer modalities includes many DNA damaging agents that can kill malignant cells. However, efficient DNA repair mechanisms protect both healthy and cancer cells against the effects of treatment and contribute to the development of drug resistance. Therefore, anti-cancer treatments based on inflicting DNA damage can benefit from inhibition of DNA repair. Hyperthermia – treatment at elevated temperature – considerably affects DNA repair, among other cellular processes, and can thus sensitize (cancer) cells to DNA damaging agents. This effect has been known and clinically applied for many decades, but how heat inhibits DNA repair and which pathways are targeted has not been fully elucidated. In this review we attempt to summarize the known effects of hyperthermia on DNA repair pathways relevant in clinical treatment of cancer. Furthermore, we outline the relationships between the effects of heat on DNA repair and sensitization of cells to various DNA damaging agents.
Collapse
Affiliation(s)
- Arlene L Oei
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands. .,Department of Radiotherapy, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| | - Lianne E M Vriend
- Van Leeuwenhoek Centre for Advanced Microscopy (LCAM)-AMC, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | - Johannes Crezee
- Department of Radiotherapy, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| | - Nicolaas A P Franken
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands. .,Department of Radiotherapy, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands.
| | - Przemek M Krawczyk
- Van Leeuwenhoek Centre for Advanced Microscopy (LCAM)-AMC, Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Montecucco A, Zanetta F, Biamonti G. Molecular mechanisms of etoposide. EXCLI JOURNAL 2015; 14:95-108. [PMID: 26600742 PMCID: PMC4652635 DOI: 10.17179/excli2015-561] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/24/2014] [Indexed: 12/21/2022]
Abstract
Etoposide derives from podophyllotoxin, a toxin found in the American Mayapple. It was first synthesized in 1966 and approved for cancer therapy in 1983 by the U.S. Food and Drug Administration (Hande, 1998[25]). Starting from 1980s several studies demonstrated that etoposide targets DNA topoisomerase II activities thus leading to the production of DNA breaks and eliciting a response that affects several aspects of cell metabolisms. In this review we will focus on molecular mechanisms that account for the biological effect of etoposide.
Collapse
Affiliation(s)
| | - Francesca Zanetta
- Istituto di Genetica Molecolare, CNR, via Abbiategrasso 207, Pavia ; Dipartimento di Biologia e Biotecnologia, Università degli Studi di Pavia, via Ferrata 9, Pavia, Italy
| | | |
Collapse
|
24
|
Xu C, Zhang X, Qian Y, Chen X, Liu R, Zeng G, Zhao H, Fang W. A high-throughput gene disruption methodology for the entomopathogenic fungus Metarhizium robertsii. PLoS One 2014; 9:e107657. [PMID: 25222118 PMCID: PMC4164657 DOI: 10.1371/journal.pone.0107657] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
Systematic gene disruption is a direct way to interrogate a fungal genome to functionally characterize the full suite of genes involved in various biological processes. Metarhizium robertsii is extraordinarily versatile, and it is a pathogen of arthropods, a saprophyte and a beneficial colonizer of rhizospheres. Thus, M. robertsii can be used as a representative to simultaneously study several major lifestyles that are not shared by the "model" fungi Saccharomyces cerevisiae and Neurospora crassa; a systematic genetic analysis of M. robertsii will benefit studies in other fungi. In order to systematically disrupt genes in M. robertsii, we developed a high-throughput gene disruption methodology, which includes two technologies. One is the modified OSCAR-based, high-throughput construction of gene disruption plasmids. This technology involves two donor plasmids (pA-Bar-OSCAR with the herbicide resistance genes Bar and pA-Sur-OSCAR with another herbicide resistance gene Sur) and a recipient binary plasmid pPK2-OSCAR-GFP that was produced by replacing the Bar cassette in pPK2-bar-GFP with a ccdB cassette and recombination recognition sites. Using this technology, a gene disruption plasmid can be constructed in one cloning step in two days. The other is a highly efficient gene disruption technology based on homologous recombination using a Ku70 deletion mutant (ΔMrKu70) as the recipient strain. The deletion of MrKu70, a gene encoding a key component involved in nonhomologous end-joining DNA repair in fungi, dramatically increases the gene disruption efficiency. The frequency of disrupting the conidiation-associated gene Cag8 in ΔMrKu70 was 93% compared to 7% in the wild-type strain. Since ΔMrKu70 is not different from the wild-type strain in development, pathogenicity and tolerance to various abiotic stresses, it can be used as a recipient strain for a systematic gene disruption project to characterize the whole suite of genes involved in the biological processes of M. robertsii.
Collapse
Affiliation(s)
- Chuan Xu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xing Zhang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Qian
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoxuan Chen
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ran Liu
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Guohong Zeng
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Zhao
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiguo Fang
- Institute of Microbiology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
25
|
Trinh BQ, Ko SY, Barengo N, Lin SY, Naora H. Dual functions of the homeoprotein DLX4 in modulating responsiveness of tumor cells to topoisomerase II-targeting drugs. Cancer Res 2012; 73:1000-10. [PMID: 23222298 DOI: 10.1158/0008-5472.can-12-3538] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Topoisomerase II (TOP2)-targeting poisons such as anthracyclines and etoposide are commonly used for cancer chemotherapy and kill tumor cells by causing accumulation of DNA double-strand breaks (DSB). Several lines of evidence indicate that overexpression of TOP2A, the gene encoding topoisomerase IIα, increases sensitivity of tumor cells to TOP2 poisons, but it is not clear why some TOP2A-overexpressing (TOP2A-High) tumors respond poorly to these drugs. In this study, we identified that TOP2A expression is induced by DLX4, a homeoprotein that is overexpressed in breast and ovarian cancers. Analysis of breast cancer datasets revealed that TOP2A-high cases that also highly expressed DLX4 responded more poorly to anthracycline-based chemotherapy than TOP2A-high cases that expressed DLX4 at low levels. Overexpression of TOP2A alone in tumor cells increased the level of DSBs induced by TOP2 poisons. In contrast, DLX4 reduced the level of TOP2 poison-induced DSBs irrespective of its induction of TOP2A. DLX4 did not stimulate homologous recombination-mediated repair of DSBs. However, DLX4 interacted with Ku proteins, stimulated DNA-dependent protein kinase activity, and increased erroneous end-joining repair of DSBs. Whereas DLX4 did not reduce levels of TOP2 poison-induced DSBs in Ku-deficient cells, DLX4 stimulated DSB repair and reduced the level of TOP2 poison-induced DSBs when Ku was reconstituted in these cells. Our findings indicate that DLX4 induces TOP2A expression but reduces sensitivity of tumor cells to TOP2 poisons by stimulating Ku-dependent repair of DSBs. These opposing activities of DLX4 could explain why some TOP2A-overexpressing tumors are not highly sensitive to TOP2 poisons.
Collapse
Affiliation(s)
- Bon Q Trinh
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | | | | | | | | |
Collapse
|
26
|
Arentshorst M, Ram AFJ, Meyer V. Using non-homologous end-joining-deficient strains for functional gene analyses in filamentous fungi. Methods Mol Biol 2012; 835:133-150. [PMID: 22183652 DOI: 10.1007/978-1-61779-501-5_9] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fungal strains deficient in the non-homologous end-joining (NHEJ) pathway are excellent recipient strains for gene targeting approaches. In addition, NHEJ-deficiency can facilitate the formation of heterokaryons which allows rapid identification of essential genes. However, the use of NHEJ-deficient strains can also pose some limitations for gene function analyses. For example, lack of the NHEJ pathway can interfere with phenotypic analyses and complicate complementation studies. Moreover, heterokaryons are difficult to propagate and re-transform. We describe here strategies and methods to circumvent these problems and to better exploit the power of NHEJ-deficient strains. We provide methods for the establishment of transiently deficient NHEJ strains, for improved complementation analyses using AMA1-based vectors and for fast identification and propagation of heterokaryons. The methods described are applicable for a wide range of filamentous fungi.
Collapse
Affiliation(s)
- Mark Arentshorst
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | | | |
Collapse
|
27
|
FANCD2 but not FANCA promotes cellular resistance to type II topoisomerase poisons. Cancer Lett 2011; 305:86-93. [PMID: 21414716 DOI: 10.1016/j.canlet.2011.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 02/17/2011] [Accepted: 02/21/2011] [Indexed: 11/22/2022]
Abstract
Genetic or epigenetic inactivation of the pathway formed by the Fanconi Anemia (FA) and BRCA proteins occurs in several cancer types, including lung and breast cancer, rendering the affected tumors potentially hypersensitive to DNA crosslinking agents. However, the cytotoxicity of other commonly used cancer therapeutics in cells with FA/BRCA pathway defects remains to be defined. Building on earlier data that implicated BRCA1 and BRCA2 in the repair of DNA damage caused by the topoisomerase II poison etoposide, we studied the role of FANCD2 in mediating resistance to several topoisomerase II poisons. We establish that the loss of FANCD2 increases cell death in response to etoposide. FANCD2 promotes homologous recombination repair (HRR) and prevents DNA double-strand break formation and chromosomal aberrations in etoposide-treated cells. Strikingly, this function of FANCD2 is independent of FANCD2 foci formation and of FANCA, which is a member of the FA core complex upstream of FANCD2 mono-ubiquitination. Thus, FANCD2 appears to promote HRR in a mono-ubiquitination-independent manner in conjunction with BRCA1/2. These data add to an emerging body of evidence indicating that the FA pathway is not linear and that several protein subcomplexes with different functions exist. Our findings are potentially relevant for predicting the sensitivity of lung and breast cancers to etoposide and doxorubicin, respectively.
Collapse
|
28
|
Dunnick JK, Singh B, Nyska A, Peckham J, Kissling GE, Sanders JM. Investigating the potential for toxicity from long-term use of the herbal products, goldenseal and milk thistle. Toxicol Pathol 2011; 39:398-409. [PMID: 21300790 DOI: 10.1177/0192623310394211] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two-year toxicity studies were conducted on the widely used herbal products, goldenseal and milk thistle, in male and female F344/N rats and B6C3F1 mice. With goldenseal root powder, the primary finding was an increase in liver tumors in rats and mice, and with milk thistle extract, a decrease in spontaneous background tumors including mammary gland tumors in female rats and liver tumors in male mice. Increased tumorigenicity in rodents exposed to goldenseal root powder may be due in part to the topoisomerase inhibition properties of berberine, a major alkaloid constituent in goldenseal, or its metabolite, berberrubine. In the clinic, use of topoisomerase-inhibiting agents has been associated with secondary tumor formation and inhibition in DNA repair processes. In contrast, the radical-scavenging and antioxidant properties of silibinin and other flavonolignans in milk thistle extract may have contributed to the decrease in background tumors in rodents in the present studies. The fate of the active constituents of goldenseal and milk thistle is similar in humans and rodents; therefore, the modes of action may translate across species. Further studies are needed to extrapolate the findings to humans.
Collapse
Affiliation(s)
- June K Dunnick
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Lillo O, Bracesco N, Nunes E. Lethal and mutagenic interactions between γ-rays, cisplatin and etoposide at the cellular and molecular levels. Int J Radiat Biol 2010; 87:222-30. [PMID: 21133647 DOI: 10.3109/09553002.2010.518207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE We analysed the lethal and mutagenic interactions between γ-rays, cisplatin (Pt) and etoposide (E), three agents used in tumour chemoradiotherapy. Corresponding results at cellular and molecular levels could provide additional elements on involved mechanisms and, on antitumour activity and toxicity in combined cancer treatments. MATERIALS AND METHODS The yeast Saccharomyces cerevisiae SC7K(lys2-3) (auxotrophic for lysine) was used as eukaryotic model. Exponential growing cells were exposed to the mentioned agents, as single and combined treatments. Lethal and mutation interaction equations were determined as a function of doses according to quantitative models. DNA double-strand breaks were evaluated immediately after treatments, through pulsed-field electrophoresis and laser densitometry. RESULTS All three agents induced significant mutant frequency. The γ +Pt + E combination determined maximal lethal and mutagenic synergism, followed by γ + Pt and γ + E combinations. Meanwhile, Pt + E combination showed lethal additivity and very low mutagenic synergism. Pt + E double combination determined moderate DNA degradation. DNA degradation after γ-exposure, was similar to that of γ + Pt, γ + E and γ + Pt + E combinations. CONCLUSIONS Synergistic lethal and mutagenic interactions indicate crosstalk between non-homologous end joining, homologous recombination and postreplicative repair pathways. Pt + E additivity indicate independence of involved repair pathways. Furthermore, the quantification of interactive events may be an additional suitable tool in tumour therapy planning.
Collapse
Affiliation(s)
- Olga Lillo
- Department of Biophysics, Laboratory of Radiobiology, Faculty of Medicine, Universidad de la República, Montevideo, Uruguay.
| | | | | |
Collapse
|
30
|
Quennet V, Beucher A, Barton O, Takeda S, Löbrich M. CtIP and MRN promote non-homologous end-joining of etoposide-induced DNA double-strand breaks in G1. Nucleic Acids Res 2010; 39:2144-52. [PMID: 21087997 PMCID: PMC3064790 DOI: 10.1093/nar/gkq1175] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Topoisomerases class II (topoII) cleave and re-ligate the DNA double helix to allow the passage of an intact DNA strand through it. Chemotherapeutic drugs such as etoposide target topoII, interfere with the normal enzymatic cleavage/re-ligation reaction and create a DNA double-strand break (DSB) with the enzyme covalently bound to the 5'-end of the DNA. Such DSBs are repaired by one of the two major DSB repair pathways, non-homologous end-joining (NHEJ) or homologous recombination. However, prior to repair, the covalently bound topoII needs to be removed from the DNA end, a process requiring the MRX complex and ctp1 in fission yeast. CtIP, the mammalian ortholog of ctp1, is known to promote homologous recombination by resecting DSB ends. Here, we show that human cells arrested in G0/G1 repair etoposide-induced DSBs by NHEJ and, surprisingly, require the MRN complex (the ortholog of MRX) and CtIP. CtIP's function for repairing etoposide-induced DSBs by NHEJ in G0/G1 requires the Thr-847 but not the Ser-327 phosphorylation site, both of which are needed for resection during HR. This finding establishes that CtIP promotes NHEJ of etoposide-induced DSBs during G0/G1 phase with an end-processing function that is distinct to its resection function.
Collapse
Affiliation(s)
- Verena Quennet
- Radiation Biology and DNA Repair, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | | | | | | | | |
Collapse
|
31
|
Lillo O, Bracesco N, Nunes E. Lethal and mutagenic interactions between γ-rays, cisplatin and etoposide at the cellular and molecular levels. Int J Radiat Biol 2010. [DOI: 10.3109/09553002.2011.518207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
32
|
Topoisomerase II-mediated DNA damage is differently repaired during the cell cycle by non-homologous end joining and homologous recombination. PLoS One 2010; 5. [PMID: 20824055 PMCID: PMC2932731 DOI: 10.1371/journal.pone.0012541] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 08/10/2010] [Indexed: 11/26/2022] Open
Abstract
Topoisomerase II (Top2) is a nuclear enzyme involved in several metabolic processes of DNA. Chemotherapy agents that poison Top2 are known to induce persistent protein-mediated DNA double strand breaks (DSB). In this report, by using knock down experiments, we demonstrated that Top2α was largely responsible for the induction of γH2AX and cytotoxicity by the Top2 poisons idarubicin and etoposide in normal human cells. As DSB resulting from Top2 poisons-mediated damage may be repaired by non-homologous end joining (NHEJ) or homologous recombination (HR), we aimed to analyze both DNA repair pathways. We found that DNA-PKcs was rapidly activated in human cells, as evidenced by autophosphorylation at serine 2056, following Top2-mediated DNA damage. The chemical inhibition of DNA-PKcs by wortmannin and vanillin resulted in an increased accumulation of DNA DSB, as evaluated by the comet assay. This was supported by a hypersensitive phenotype to Top2 poisons of Ku80- and DNA-PKcs- defective Chinese hamster cell lines. We also showed that Rad51 protein levels, Rad51 foci formation and sister chromatid exchanges were increased in human cells following Top2-mediated DNA damage. In support, BRCA2- and Rad51C- defective Chinese hamster cells displayed hypersensitivity to Top2 poisons. The analysis by immunofluorescence of the DNA DSB repair response in synchronized human cell cultures revealed activation of DNA-PKcs throughout the cell cycle and Rad51 foci formation in S and late S/G2 cells. Additionally, we found an increase of DNA-PKcs-mediated residual repair events, but not Rad51 residual foci, into micronucleated and apoptotic cells. Therefore, we conclude that in human cells both NHEJ and HR are required, with cell cycle stage specificity, for the repair of Top2-mediated reversible DNA damage. Moreover, NHEJ-mediated residual repair events are more frequently associated to irreversibly damaged cells.
Collapse
|
33
|
Azarova AM, Lin RK, Tsai YC, Liu LF, Lin CP, Lyu YL. Genistein induces topoisomerase IIbeta- and proteasome-mediated DNA sequence rearrangements: Implications in infant leukemia. Biochem Biophys Res Commun 2010; 399:66-71. [PMID: 20638367 PMCID: PMC3376163 DOI: 10.1016/j.bbrc.2010.07.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Accepted: 07/13/2010] [Indexed: 10/19/2022]
Abstract
Genistein is a bioflavonoid enriched in soy products. However, high levels of maternal soy consumption have been linked to the development of infant leukemia ALL and AML. The majority of infant leukemia is linked to mixed lineage leukemia gene (MLL) translocations. Previous studies have implicated topoisomerase II (Top2) in genistein-induced infant leukemia. In order to understand the roles of the two Top2 isozymes in and the molecular mechanism for genistein-induced infant leukemia, we carried out studies in vitro using purified recombinant human Top2 isozymes, as well as studies in cultured mouse myeloid progenitor cells (32Dc13) and Top2beta knockout mouse embryonic fibroblasts (MEFs). First, we showed that genistein efficiently induced both Top2alpha and Top2beta cleavage complexes in the purified system as well as in cultured mouse cells. Second, genistein induced proteasomal degradation of Top2beta in 32Dc13 cells. Third, the genistein-induced DNA double-strand break (DSB) signal, gamma-H2AX, was dependent on the Top2beta isozyme and proteasome activity. Fourth, the requirement for Top2beta and proteasome activity was mirrored in genistein-induced DNA sequence rearrangements, as monitored by a DNA integration assay. Together, our results suggest a model in which genistein-induced Top2beta cleavage complexes are processed by proteasome, leading to the exposure of otherwise Top2beta-concealed DSBs and subsequent chromosome rearrangements, and implicate a major role of Top2beta and proteasome in genistein-induced infant leukemia.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- DNA/drug effects
- DNA Breaks, Double-Stranded
- DNA Topoisomerases, Type I/metabolism
- Genistein/adverse effects
- Humans
- Infant
- Isoenzymes/metabolism
- Leukemia, Myeloid, Acute/chemically induced
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Mice
- Proteasome Endopeptidase Complex/metabolism
- Recombination, Genetic/drug effects
Collapse
Affiliation(s)
- Anna M Azarova
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Sissi C, Palumbo M. In front of and behind the replication fork: bacterial type IIA topoisomerases. Cell Mol Life Sci 2010; 67:2001-24. [PMID: 20165898 PMCID: PMC11115839 DOI: 10.1007/s00018-010-0299-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 01/26/2010] [Accepted: 02/01/2010] [Indexed: 01/03/2023]
Abstract
Topoisomerases are vital enzymes specialized in controlling DNA topology, in particular supercoiling and decatenation, to properly handle nucleic acid packing and cell dynamics. The type IIA enzymes act by cleaving both strands of a double helix and having another strand from the same or another molecule cross the DNA gate before a re-sealing event completes the catalytic cycle. Here, we will consider the two types of IIA prokaryotic topoisomerases, DNA Gyrase and Topoisomerase IV, as crucial regulators of bacterial cell cycle progression. Their synergistic action allows control of chromosome packing and grants occurrence of functional transcription and replication processes. In addition to displaying a fascinating molecular mechanism of action, which transduces chemical energy into mechanical energy by means of large conformational changes, these enzymes represent attractive pharmacological targets for antibacterial chemotherapy.
Collapse
Affiliation(s)
- Claudia Sissi
- Department of Pharmaceutical Sciences, University of Padova, Via Marzolo 5, 35131, Padua, Italy.
| | | |
Collapse
|
35
|
Carvalho NDSP, Arentshorst M, Jin Kwon M, Meyer V, Ram AFJ. Expanding the ku70 toolbox for filamentous fungi: establishment of complementation vectors and recipient strains for advanced gene analyses. Appl Microbiol Biotechnol 2010; 87:1463-73. [PMID: 20422182 PMCID: PMC2892608 DOI: 10.1007/s00253-010-2588-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/22/2010] [Accepted: 03/25/2010] [Indexed: 11/28/2022]
Abstract
Mutants with a defective non-homologous-end-joining (NHEJ) pathway have boosted functional genomics in filamentous fungi as they are very efficient recipient strains for gene-targeting approaches, achieving homologous recombination frequencies up to 100%. For example, deletion of the ku70 homologous gene kusA in Aspergillus niger resulted in a recipient strain in which deletions of essential or non-essential genes can efficiently be obtained. To verify that the mutant phenotype observed is the result of a gene deletion, a complementation approach has to be performed. Here, an intact copy of the gene is transformed back to the mutant, where it should integrate ectopically into the genome. However, ectopic complementation is difficult in NHEJ-deficient strains, and the gene will preferably integrate via homologous recombination at its endogenous locus. To circumvent that problem, we have constructed autonomously replicating vectors useful for many filamentous fungi which contain either the pyrG allele or a hygromycin resistance gene as selectable markers. Under selective conditions, the plasmids are maintained, allowing complementation analyses; once the selective pressure is removed, the plasmid becomes lost and the mutant phenotype prevails. Another disadvantage of NHEJ-defective strains is their increased sensitivity towards DNA damaging conditions such as radiation. Thus, mutant analyses in these genetic backgrounds are limited and can even be obscured by pleiotropic effects. The use of sexual crossings for the restoration of the NHEJ pathway is, however, impossible in imperfect filamentous fungi such as A. niger. We have therefore established a transiently disrupted kusA strain as recipient strain for gene-targeting approaches.
Collapse
Affiliation(s)
- Neuza D S P Carvalho
- Department Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Heisig P. Type II topoisomerases--inhibitors, repair mechanisms and mutations. Mutagenesis 2009; 24:465-9. [PMID: 19762349 DOI: 10.1093/mutage/gep035] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Type II topoisomerases are ubiquitous enzymes that play an essential role in the control of replicative DNA synthesis and share structural and functional homology among different prokaryotic and eukaryotic organisms. Antibacterial fluoroquinolones target prokaryotic topoisomerases at concentrations 100- to 1000-fold lower than mammalian enzymes, the preferred targets of anticancer drugs such as etoposide. The mechanisms of action of both of these types of inhibitors involve the fixation of an intermediate reaction step, where the enzyme is covalently bound to an enzyme-mediated DNA double-strand break (DSB). The resulting ternary drug-enzyme-DNA complexes can then be converted to cleavage complexes that block further movement of the DNA replication fork, subsequently inducing stress responses. In haploid prokaryotic cells, stress responses include error-free and error-prone DNA damage repair pathways, such as homologous recombination and translesion synthesis, respectively. The latter can result in the acquisition of point mutations. Diploid mammalian cells are assumed to preferentially use recombination mechanisms for the repair of DSBs, an example of which, non-homologous end joining, is a major error-prone repair mechanism associated with an increased frequency of detectable small deletions, insertions and translocations. However, results obtained from safety testing of novel fluoroquinolones at high concentrations indicate that point mutations may also occur in mammalian cells. Recent data provide evidence for translesion synthesis catalysed by error-prone repair polymerases as a damage-tolerance repair mechanism of DSBs in eukaryotic cells. This paper discusses possible roles of different mechanisms for the repair of DSBs operating in both eukaryotic and prokaryotic cells that result in recombinational rearrangements, deletions/insertions as well as point mutations.
Collapse
Affiliation(s)
- Peter Heisig
- Pharmaceutical Biology and Microbiology, Department of Chemistry, University of Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany.
| |
Collapse
|
37
|
Kantidze OL, Razin SV. Chromatin loops, illegitimate recombination, and genome evolution. Bioessays 2009; 31:278-86. [PMID: 19260023 DOI: 10.1002/bies.200800165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Chromosomal rearrangements frequently occur at specific places ("hot spots") in the genome. These recombination hot spots are usually separated by 50-100 kb regions of DNA that are rarely involved in rearrangements. It is quite likely that there is a correlation between the above-mentioned distances and the average size of DNA loops fixed at the nuclear matrix. Recent studies have demonstrated that DNA loop anchorage regions can be fairly long and can harbor DNA recombination hot spots. We previously proposed that chromosomal DNA loops may constitute the basic units of genome organization in higher eukaryotes. In this review, we consider recombination between DNA loop anchorage regions as a possible source of genome evolution.
Collapse
Affiliation(s)
- Omar L Kantidze
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
38
|
Li AY, Boo LM, Wang SY, Lin HH, Wang CC, Yen Y, Chen BP, Chen DJ, Ann DK. Suppression of nonhomologous end joining repair by overexpression of HMGA2. Cancer Res 2009; 69:5699-706. [PMID: 19549901 PMCID: PMC2737594 DOI: 10.1158/0008-5472.can-08-4833] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Understanding the molecular details associated with aberrant high mobility group A2 (HMGA2) gene expression is key to establishing the mechanism(s) underlying its oncogenic potential and effect on the development of therapeutic strategies. Here, we report the involvement of HMGA2 in impairing DNA-dependent protein kinase (DNA-PK) during the nonhomologous end joining (NHEJ) process. We showed that HMGA2-expressing cells displayed deficiency in overall and precise DNA end-joining repair and accumulated more endogenous DNA damage. Proper and timely activation of DNA-PK, consisting of Ku70, Ku80, and DNA-PKcs subunits, is essential for the repair of DNA double strand breaks (DSB) generated endogenously or by exposure to genotoxins. In cells overexpressing HMGA2, accumulation of histone 2A variant X phosphorylation at Ser-139 (gamma-H2AX) was associated with hyperphosphorylation of DNA-PKcs at Thr-2609 and Ser-2056 before and after the induction of DSBs. Also, the steady-state complex of Ku and DNA ends was altered by HMGA2. Microirradiation and real-time imaging in living cells revealed that HMGA2 delayed the release of DNA-PKcs from DSB sites, similar to observations found in DNA-PKcs mutants. Moreover, HMGA2 alone was sufficient to induce chromosomal aberrations, a hallmark of deficiency in NHEJ-mediated DNA repair. In summary, a novel role for HMGA2 to interfere with NHEJ processes was uncovered, implicating HMGA2 in the promotion of genome instability and tumorigenesis.
Collapse
Affiliation(s)
- Angela Y.J. Li
- Department of Clinical and Molecular Pharmacology, City of Hope National Medical Center, Duarte, CA 91010
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033
| | - Lee Ming Boo
- Department of Clinical and Molecular Pharmacology, City of Hope National Medical Center, Duarte, CA 91010
| | - Shih-Ya Wang
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - H. Helen Lin
- Department of Clinical and Molecular Pharmacology, City of Hope National Medical Center, Duarte, CA 91010
| | - Clay C.C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033
| | - Yun Yen
- Department of Clinical and Molecular Pharmacology, City of Hope National Medical Center, Duarte, CA 91010
| | - Benjamin P.C. Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - David J. Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - David K. Ann
- Department of Clinical and Molecular Pharmacology, City of Hope National Medical Center, Duarte, CA 91010
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90033
| |
Collapse
|
39
|
Abstract
Recent molecular studies have expanded the biological contexts in which topoisomerase II (TOP2) has crucial functions, including DNA replication, transcription and chromosome segregation. Although the biological functions of TOP2 are important for ensuring genomic integrity, the ability to interfere with TOP2 and generate enzyme-mediated DNA damage is an effective strategy for cancer chemotherapy. The molecular tools that have allowed an understanding of the biological functions of TOP2 are also being applied to understanding the details of drug action. These studies promise refined targeting of TOP2 as an effective anticancer strategy.
Collapse
Affiliation(s)
- John L Nitiss
- Molecular Pharmacology Department, St Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
40
|
Esselen M, Fritz J, Hutter M, Marko D. Delphinidin Modulates the DNA-Damaging Properties of Topoisomerase II Poisons. Chem Res Toxicol 2009; 22:554-64. [DOI: 10.1021/tx800293v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Melanie Esselen
- Section of Food Toxicology, Institute of Applied Biosciences, Universität Karlsruhe (TH), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Jessica Fritz
- Section of Food Toxicology, Institute of Applied Biosciences, Universität Karlsruhe (TH), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Melanie Hutter
- Section of Food Toxicology, Institute of Applied Biosciences, Universität Karlsruhe (TH), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Doris Marko
- Section of Food Toxicology, Institute of Applied Biosciences, Universität Karlsruhe (TH), Adenauerring 20a, 76131 Karlsruhe, Germany
| |
Collapse
|
41
|
Rogojina AT, Nitiss JL. Isolation and characterization of mAMSA-hypersensitive mutants. Cytotoxicity of Top2 covalent complexes containing DNA single strand breaks. J Biol Chem 2008; 283:29239-50. [PMID: 18723844 DOI: 10.1074/jbc.m804058200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Topoisomerase II (Top2) is the primary target for active anti-cancer agents. We developed an efficient approach for identifying hypersensitive Top2 mutants and isolated a panel of mutants in yeast Top2 conferring hypersensitivity to the intercalator N-[4-(9-acridinylamino)-3-methoxyphenyl]methanesulphonanilide (mAMSA). Some mutants conferred hypersensitivity to etoposide as well as mAMSA, whereas other mutants exhibited hypersensitivity only to mAMSA. Two mutants in Top2, changing Pro(473) to Leu and Gly(737) to Val, conferred extraordinary hypersensitivity to mAMSA and were chosen for further characterization. The mutant proteins were purified, and their biochemical activities were assessed. Both mutants encode enzymes that are hypersensitive to inhibition by mAMSA and other intercalating agents and exhibited elevated levels of mAMSA-induced Top2:DNA covalent complexes. While Gly(737) --> Val Top2p generated elevated levels of Top2-mediated double strand breaks in vitro, the Pro(473) --> Leu mutant protein showed only a modest increase in Top2-mediated double strand breaks but much higher levels of Top2-mediated single strand breaks. In addition, the Pro(473) --> Leu mutant protein also generated high levels of mAMSA-stabilized covalent complexes in the absence of ATP. We tested the role of single strand cleavage in cell killing with alleles of Top2 that could generate single strand breaks, but not double strand breaks. Expression in yeast of a Pro(473) --> Leu mutant that could only generate single strand breaks conferred hypersensitivity to mAMSA. These results indicate that generation of single strand breaks by Top2-targeting agents can be an important component of cell killing by Top2-targeting drugs.
Collapse
Affiliation(s)
- Anna T Rogojina
- Molecular Pharmacology Department, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | |
Collapse
|
42
|
Cellular processing pathways contribute to the activation of etoposide-induced DNA damage responses. DNA Repair (Amst) 2008; 7:452-63. [PMID: 18206427 DOI: 10.1016/j.dnarep.2007.12.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 11/19/2007] [Accepted: 12/01/2007] [Indexed: 11/23/2022]
Abstract
Cytotoxic action (tumor cell killing) and carcinogenic side effect (therapy-related secondary leukemia) of etoposide are closely related to its ability in stabilizing topoisomerase II cleavable complex (TOP2cc), a unique form of protein-linked DNA break. How cells process and detect TOP2-concealed DNA damage for the activation of downstream cellular responses remains unclear. Here, we showed proteasomal degradation of both TOP2 isozymes in a transcription-dependent manner upon etoposide treatment. Downregulation of TOP2 was preferentially associated with proteasomal removal of TOP2 in TOP2cc rather than proteolysis of free TOP2. Interestingly, blockage of TOP2 downregulation in TOP2cc also caused reduction in etoposide-induced activation of DNA damage molecules, an observation suggesting that the processing pathways of TOP2cc are involved in activation of etoposide-induced cellular responses. In this regard, we observed two TOP2cc processing pathways, replication- and transcription-initiated processing (RIP and TIP) with proteasome involved in the latter. Importantly, two processing pathways contributed to differential activation of various DNA damage signaling and downstream cellular responses. Etoposide-induced phosphorylation of p53 relied mainly on RIP, whereas activation of Chk1, Chk2 depended largely on TIP. Both RIP and TIP played roles in activating non-homologous end joining pathway, while only RIP modulated etoposide-induced cell killing in a p53-dependent manner. Collectively, our results are consistent with the notion that protein-linked DNA breakage (e.g., TOP2cc) requires processing pathways for initiating downstream DNA damage detection, repair as well as cell death programs.
Collapse
|
43
|
Friesen C, Uhl M, Pannicke U, Schwarz K, Miltner E, Debatin KM. DNA-ligase IV and DNA-protein kinase play a critical role in deficient caspases activation in apoptosis-resistant cancer cells by using doxorubicin. Mol Biol Cell 2008; 19:3283-9. [PMID: 18508926 DOI: 10.1091/mbc.e08-03-0306] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Resistance toward cytotoxic drugs is one of the primary causes for therapeutic failure in cancer therapy. DNA repair mechanisms as well as deficient caspases activation play a critical role in apoptosis resistance of tumor cells toward anticancer drug treatment. Here, we discovered that deficient caspases activation in apoptosis-resistant cancer cells depends on DNA-ligase IV and DNA-protein kinase (DNA-PK), playing crucial roles in the nonhomologous end joining (NHEJ) pathway, which is the predominant pathway for DNA double-strand break repair (DNA-DSB-repair) in mammalian cells. DNA-PK(+/+) as well as DNA-ligase IV (+/+) cancer cells were apoptosis resistant and deficient in activation of caspase-3, caspase-9, and caspase-8 and in cleavage of poly(ADP-ribose) polymerase after doxorubicin treatment. Inhibition of NHEJ by knocking out DNA-PK or DNA-ligase IV restored caspases activation and apoptosis sensitivity after doxorubicin treatment. In addition, inhibition of caspases activation prevented doxorubicin-induced apoptosis but could not prevent doxorubicin-induced DNA damage, indicating that induction of DNA damage is independent of caspases activation. However, caspases activation depends on induction of DNA damage left unrepaired by NHEJ-DNA-DSB-repair. We conclude that DNA damage left unrepaired by DNA-ligase IV or DNA-PK might be the initiator for caspases activation by doxorubicin in cancer cells. Failure in caspases activation using doxorubicin depends on loss of DNA damage and is due to higher rates of NHEJ-DNA-DBS-repair.
Collapse
Affiliation(s)
- Claudia Friesen
- Institute of Legal Medicine, University of Ulm, 89075 Ulm, Germany.
| | | | | | | | | | | |
Collapse
|
44
|
Smart DJ, Halicka HD, Schmuck G, Traganos F, Darzynkiewicz Z, Williams GM. Assessment of DNA double-strand breaks and gammaH2AX induced by the topoisomerase II poisons etoposide and mitoxantrone. Mutat Res 2008; 641:43-7. [PMID: 18423498 PMCID: PMC2581813 DOI: 10.1016/j.mrfmmm.2008.03.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/13/2008] [Accepted: 03/15/2008] [Indexed: 05/03/2023]
Abstract
Double-strand breaks (DSBs) are highly deleterious DNA lesions as they lead to chromosome aberrations and/or apoptosis. The formation of nuclear DSBs triggers phosphorylation of histone H2AX on Ser-139 (defined as gammaH2AX), which participates in the repair of such DNA damage. Our aim was to compare the induction of gammaH2AX in relation to DSBs induced by topoisomerase II (TOPO II) poisons, etoposide (ETOP) and mitoxantrone (MXT), in V79 cells. DSBs were measured by the neutral comet assay, while gammaH2AX was quantified using immunocytochemistry and flow cytometry. Stabilized cleavage complexes (SCCs), lesions thought to be responsible for TOPO II poison-induced genotoxicity, were measured using a complex of enzyme-DNA assay. In the case of ETOP, a no observed adverse effect level (NOAEL) and lowest observed effect level (LOEL) for genotoxicity was determined; gammaH2AX levels paralleled DSBs at all concentrations but significant DNA damage was not detected below 0.5 microg/ml. Furthermore, DNA damage was dependent on the formation of SCCs. In contrast, at low MXT concentrations (0.0001-0.001 microg/ml), induction of gammaH2AX was not accompanied by increases in DSBs. Rather, DSBs were only significantly increased when SCCs were detected. These findings suggest MXT-induced genotoxicity occurred via at least two mechanisms, possibly related to DNA intercalation and/or redox cycling as well as TOPO II inhibition. Our findings also indicate that gammaH2AX can be induced by DNA lesions other than DSBs. In conclusion, gammaH2AX, when measured using immunocytochemical and flow cytometric methods, is a sensitive indicator of DNA damage and may be a useful tool in genetic toxicology screens. ETOP data are consistent with the threshold concept for TOPO II poison-induced genotoxicity and this should be considered in the safety assessment of chemicals displaying an affinity for TOPO II and genotoxic/clastogenic effects.
Collapse
Affiliation(s)
- Daniel J Smart
- Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | |
Collapse
|
45
|
Evans JW, Chernikova SB, Kachnic LA, Banath JP, Sordet O, Delahoussaye YM, Treszezamsky A, Chon BH, Feng Z, Gu Y, Wilson WR, Pommier Y, Olive PL, Powell SN, Brown JM. Homologous recombination is the principal pathway for the repair of DNA damage induced by tirapazamine in mammalian cells. Cancer Res 2008; 68:257-65. [PMID: 18172318 DOI: 10.1158/0008-5472.can-06-4497] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tirapazamine (3-amino-1,2,4-benzotriazine-1,4-dioxide) is a promising hypoxia-selective cytotoxin that has shown significant activity in advanced clinical trials in combination with radiotherapy and cisplatin. The current study aimed to advance our understanding of tirapazamine-induced lesions and the pathways involved in their repair. We show that homologous recombination plays a critical role in repair of tirapazamine-induced damage because cells defective in homologous recombination proteins XRCC2, XRCC3, Rad51D, BRCA1, or BRCA2 are particularly sensitive to tirapazamine. Consistent with the involvement of homologous recombination repair, we observed extensive sister chromatid exchanges after treatment with tirapazamine. We also show that the nonhomologous end-joining pathway, which predominantly deals with frank double-strand breaks (DSB), is not involved in the repair of tirapazamine-induced DSBs. In addition, we show that tirapazamine preferentially kills mutants both with defects in XPF/ERCC1 (but not in other nucleotide excision repair factors) and with defects in base excision repair. Tirapazamine also induces DNA-protein cross-links, which include stable DNA-topoisomerase I cleavable complexes. We further show that gamma H2AX, an indicator of DNA DSBs, is induced preferentially in cells in the S phase of the cell cycle. These observations lead us to an overall model of tirapazamine damage in which DNA single-strand breaks, base damage, and DNA-protein cross-links (including topoisomerase I and II cleavable complexes) produce stalling and collapse of replication forks, the resolution of which results in DSB intermediates, requiring homologous recombination and XPF/ERCC1 for their repair.
Collapse
Affiliation(s)
- James W Evans
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University, Stanford, California 94305-5152, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Mandraju RK, Kannapiran P, Kondapi AK. Distinct roles of Topoisomerase II isoforms: DNA damage accelerating α, double strand break repair promoting β. Arch Biochem Biophys 2008; 470:27-34. [DOI: 10.1016/j.abb.2007.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 10/26/2007] [Accepted: 10/28/2007] [Indexed: 10/22/2022]
|
47
|
Kantidze OL, Razin SV. Chemotherapy-related secondary leukemias: A role for DNA repair by error-prone non-homologous end joining in topoisomerase II - Induced chromosomal rearrangements. Gene 2006; 391:76-9. [PMID: 17234368 DOI: 10.1016/j.gene.2006.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 12/08/2006] [Accepted: 12/08/2006] [Indexed: 11/22/2022]
Abstract
Chromosome rearrangements are believed to cause the secondary leukemias which constitute frequent complications of antitumor chemotherapy with topoisomerase II-specific drugs. Here we show that inhibition of DNA topoisomerase II in cultured cells stimulates association of components of the non-homologous end joining system with a known breakpoint cluster region of the human AML1 gene, suggesting that errors of DNA repair during NHEJ may be the cause of illegitimate recombination in cells treated with topoisomerase II poisons.
Collapse
Affiliation(s)
- Omar L Kantidze
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology RAS, 34/5 Vavilov Street, 119334 Moscow, Russia
| | | |
Collapse
|