1
|
Long Y, Zhao Z, Xie W, Shi J, Yang F, Zhu D, Jiang P, Tang Q, Ti Z, Jiang B, Yang X, Gao G, Qi W. Kallistatin leads to cognition impairment via downregulating glutamine synthetase. Pharmacol Res 2024; 202:107145. [PMID: 38492829 DOI: 10.1016/j.phrs.2024.107145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
In many neurodegenerative disorders, such as Alzheimer's disease (AD), glutamate-mediated neuronal excitotoxicity is considered the basis for cognitive impairment. The mRNA and protein expression of SERPINA4(Kallistatin) are higher in patients with AD. However, whether Kallistatin plays a regulatory role in glutamate-glutamine cycle homeostasis remains unclear. In this study, we identified impaired cognitive function in Kallistatin transgenic (KAL-TG) mice. Baseline glutamate levels were elevated and miniature excitatory postsynaptic current (mEPSC) frequency was increased in the hippocampus, suggesting the impairment of glutamate homeostasis in KAL-TG mice. Mechanistically, we demonstrated that Kallistatin promoted lysine acetylation and ubiquitination of glutamine synthetase (GS) and facilitated its degradation via the proteasome pathway, thereby downregulating GS. Fenofibrate improved cognitive memory in KAL-TG mice by downregulating serum Kallistatin. Collectively, our study findings provide insights the mechanism by which Kallistatin regulates cognitive impairment, and suggest the potential of fenofibrate to prevente and treat of AD patients with high levels of Kallistatin.
Collapse
Affiliation(s)
- Yanlan Long
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhen Zhao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wanting Xie
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jinhui Shi
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fengyu Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Dan Zhu
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ping Jiang
- Department of Clinical Medical Laboratory, Guangzhou First People Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Qilong Tang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhou Ti
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bin Jiang
- Guangdong Province Key Laboratory of Brain Function and Disease, School of Medicine, Sun Yat-sen University, Shenzhen, China.
| | - Xia Yang
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Guoquan Gao
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; China Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Guangdong Provincial Key Laboratory of Diabetology, Guangzhou, Guangdong, China.
| | - Weiwei Qi
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products (Sun Yat-sen University), Guangzhou, China; Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, China.
| |
Collapse
|
2
|
Marin AM, Batista M, Korte de Azevedo AL, Bombardelli Gomig TH, Soares Caldeira Brant R, Chammas R, Uno M, Dias Araújo D, Zanette DL, Nóbrega Aoki M. Screening of Exosome-Derived Proteins and Their Potential as Biomarkers in Diagnostic and Prognostic for Pancreatic Cancer. Int J Mol Sci 2023; 24:12604. [PMID: 37628784 PMCID: PMC10454563 DOI: 10.3390/ijms241612604] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
In the oncological area, pancreatic cancer is one of the most lethal diseases, with 5-year survival rising just 10% in high-development countries. This disease is genetically characterized by KRAS as a driven mutation followed by SMAD4, CDKN2, and TP53-associated mutations. In clinical aspects, pancreatic cancer presents unspecific clinical symptoms with the absence of screening and early plasmatic biomarker, being that CA19-9 is the unique plasmatic biomarker having specificity and sensitivity limitations. We analyzed the plasmatic exosome proteomic profile of 23 patients with pancreatic cancer and 10 healthy controls by using Nanoscale liquid chromatography coupled to tandem mass spectrometry (NanoLC-MS/MS). The pancreatic cancer patients were subdivided into IPMN and PDAC. Our findings show 33, 34, and 7 differentially expressed proteins when comparing the IPMN vs. control, PDAC-No treatment vs. control, and PDAC-No treatment vs. IPMN groups, highlighting proteins of the complement system and coagulation, such as C3, APOB, and SERPINA. Additionally, PDAC with no treatment showed 11 differentially expressed proteins when compared to Folfirinox neoadjuvant therapy or Gemcitabine adjuvant therapy. So here, we found plasmatic exosome-derived differentially expressed proteins among cancer patients (IPMN, PDAC) when comparing with healthy controls, which could represent alternative biomarkers for diagnostic and prognostic evaluation, supporting further scientific and clinical studies on pancreatic cancer.
Collapse
Affiliation(s)
- Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil; (A.M.M.); (M.B.); (D.L.Z.)
| | - Michel Batista
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil; (A.M.M.); (M.B.); (D.L.Z.)
- Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil
| | - Alexandre Luiz Korte de Azevedo
- Laboratory of Human Cytogenetics and Oncogenetics, Genetic Department, University of Parana State (UFPR), Curitiba 80060-000, Brazil; (A.L.K.d.A.); (T.H.B.G.)
| | - Talita Helen Bombardelli Gomig
- Laboratory of Human Cytogenetics and Oncogenetics, Genetic Department, University of Parana State (UFPR), Curitiba 80060-000, Brazil; (A.L.K.d.A.); (T.H.B.G.)
| | - Rodrigo Soares Caldeira Brant
- Mass Spectrometry Facility RPT02H, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Comprehensive Center for Precision Oncology (C2PO), Universidade de São Paulo, São Paulo 05508-220, Brazil; (R.C.); (M.U.); (D.D.A.)
| | - Miyuki Uno
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Comprehensive Center for Precision Oncology (C2PO), Universidade de São Paulo, São Paulo 05508-220, Brazil; (R.C.); (M.U.); (D.D.A.)
| | - Diogo Dias Araújo
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), Comprehensive Center for Precision Oncology (C2PO), Universidade de São Paulo, São Paulo 05508-220, Brazil; (R.C.); (M.U.); (D.D.A.)
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil; (A.M.M.); (M.B.); (D.L.Z.)
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Curitiba 81350-010, Brazil; (A.M.M.); (M.B.); (D.L.Z.)
| |
Collapse
|
3
|
Huang J, Mao Y, Li Q, Hong H, Tang N, Kang X, Huang Y, Liu J, Gong Q, Yao Y, Li L. Kallistatin prevents ovarian hyperstimulation syndrome by regulating vascular leakage. J Cell Mol Med 2022; 26:4613-4623. [PMID: 35866203 PMCID: PMC9357611 DOI: 10.1111/jcmm.17491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/12/2022] [Accepted: 06/28/2022] [Indexed: 11/30/2022] Open
Abstract
Angiogenesis and increased permeability are essential pathological basis for the development of ovarian hyperstimulation syndrome (OHSS). Kallistatin (KS) is an endogenous anti-inflammatory and anti-angiogenic factor that participates in a variety of diseases, but its role in OHSS remains unknown. In this study, treating a human ovarian granulosa-like tumour cell line KGN and human primary granulosa cells (PGCs) with human chorionic gonadotropin (hCG) reduced the expression of KS, but increased the expression of VEGF. Furthermore, we found that KS could attenuate the protein level of VEGF in both KGN cells and human PGCs. More interestingly, we observed that exogenous supplementation of KS significantly inhibited a series of signs of OHSS in mice, including weight gain, ovarian enlargement, increased vascular permeability and up-regulation of VEGF expression. In addition, KS was proved to be safe on mice ovulation, progression of normal pregnancy and fetus development. Collectively, these findings demonstrated that KS treatment prevented OHSS, at least partially, through down-regulating VEGF expression. For the first time, these results highlight the potential preventive value of KS in OHSS.
Collapse
Affiliation(s)
- Jianfang Huang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Reproductive Medicine, Ganzhou People's Hospital, Ganzhou, Jiangxi, China
| | - Yuling Mao
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Quanxin Li
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ni Tang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiangjin Kang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuling Huang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianqiao Liu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Gong
- Department of Biochemistry and Molecular Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yachao Yao
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Lei Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Department of Obstetrics and Gynecology, Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Key Laboratory for Reproductive Medicine of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Wu H, Li R, Zhang Z, Jiang H, Ma H, Yuan C, Sun C, Li Y, Kong B. Kallistatin inhibits tumour progression and platinum resistance in high-grade serous ovarian cancer. J Ovarian Res 2019; 12:125. [PMID: 31884974 PMCID: PMC6935502 DOI: 10.1186/s13048-019-0601-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/10/2019] [Indexed: 11/10/2022] Open
Abstract
Ovarian cancer is the most lethal gynaecologic malignancy. Although there are various subtypes of ovarian cancer, high-grade serous ovarian cancer (HGSOC) accounts for 70% of ovarian cancer deaths. Chemoresistance is the primary reason for the unfavourable prognosis of HGSOC. Kallistatin (KAL), also known as SERPINA4, is part of the serpin family. Kallistatin has been discovered to exert multiple effects on angiogenesis, inflammation and tumour progression. However, the roles and clinical significance of kallistatin in HGSOC remain unclear. Here, we showed that kallistatin was significantly downregulated in HGSOC compared to normal fallopian tube (FT) tissues. Low expression of kallistatin was associated with unfavourable prognosis and platinum resistance in HGSOC. Overexpression of kallistatin significantly inhibited proliferation and metastasis, and enhanced platinum sensitivity and apoptosis in ovarian cancer cells. Collectively, these findings demonstrate that kallistatin serves as a prognostic predictor and provide a potential therapeutic target for HGSOC.
Collapse
Affiliation(s)
- Huan Wu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Rongrong Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Zhiwei Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Huiyang Jiang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Chenggong Sun
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China.,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Ji'nan, Shandong, 250012, People's Republic of China. .,Shandong Key Laboratory of Gynecologic Oncology, Qilu Hospital of Shandong University, Ji'nan, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Ma C, Luo C, Yin H, Zhang Y, Xiong W, Zhang T, Gao T, Wang X, Che D, Fang Z, Li L, Xie J, Huang M, Zhu L, Jiang P, Qi W, Zhou T, Yang Z, Wang W, Ma J, Gao G, Yang X. Kallistatin inhibits lymphangiogenesis and lymphatic metastasis of gastric cancer by downregulating VEGF-C expression and secretion. Gastric Cancer 2018; 21:617-631. [PMID: 29243194 DOI: 10.1007/s10120-017-0787-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/04/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Tumor-induced lymphangiogenesis and lymphatic metastasis are predominant during the metastasis of many types of cancers. However, the endogenous inhibitors that counterbalance the lymphangiogenesis and lymphatic metastasis of tumors have not been well evaluated. Kallistatin has been recognized as an endogenous angiogenesis inhibitor. METHODS AND RESULTS Our recent study showed for the first time that the lymphatic vessel density (LVD) was reduced in lung and stomach sections from kallistatin-overexpressing transgenic mice. Kallistatin expresses anti-lymphangiogenic activity by inhibiting the proliferation, migration, and tube formation of human lymphatic endothelial cells (hLECs). Therefore, the present study focuses on the relationships of changes in kallistatin expression with the lymphangiogenesis and lymphatic metastasis of gastric cancer and its underlying mechanisms. Our results revealed that the expression of kallistatin in cancer tissues, metastatic lymph nodes, and plasma of gastric cancer patients was significantly downregulated and that the plasma level of kallistatin was negatively associated with the phase of lymph node metastasis. Furthermore, treatment with kallistatin recombinant protein decreased LVD and lymph node metastases in the implanted gastric xenograft tumors of nude mice. Mechanically, kallistatin suppressed the lymphangiogenesis and lymphatic metastasis by downregulating VEGF-C expression and secretion through the LRP6/IKK/IҡB/NF-ҡB signaling pathway in gastric cancer cells. CONCLUSIONS These findings demonstrated that kallistatin functions as an endogenous lymphangiogenesis inhibitor and has an important part in the lymphatic metastasis of gastric cancer.
Collapse
Affiliation(s)
- Caiqi Ma
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chuanghua Luo
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haofan Yin
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenjun Xiong
- Department of Gastrointestinal Surgery, Traditional Chinese Medicine Hospital of Guangdong Province, Guangzhou, China
| | - Ting Zhang
- Department of Clinical Laboratory, Guangzhou First People's Hospital, Guangzhou, China
| | - Tianxiao Gao
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510080, China
| | - Xi Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Di Che
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhenzhen Fang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lei Li
- Reproductive Medicine Center, the Third Hospital Affiliated to Guangzhou Medical University, Guangzhou, China
| | - Jinye Xie
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mao Huang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liuqing Zhu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ping Jiang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhonghan Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wei Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jianxing Ma
- Department of Physiology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Guoquan Gao
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,China Key Laboratory of Tropical Disease Control, Sun Yat-sen University, Ministry of Education, Guangzhou, 510080, China. .,Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| | - Xia Yang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular Products, Sun Yat-sen University, Guangzhou, 510080, China. .,Department of Biochemistry, Zhongshan Medical School, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, 510080, China.
| |
Collapse
|
6
|
Adamopoulos PG, Tsiakanikas P, Scorilas A. Kallikrein-related peptidases and associated microRNAs as promising prognostic biomarkers in gastrointestinal malignancies. Biol Chem 2018; 399:821-836. [DOI: 10.1515/hsz-2017-0342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
Abstract
Abstract
Gastrointestinal (GI) malignancies represent a wide spectrum of diseases of the GI tract and its accessory digestive organs, including esophageal (EC), gastric (GC), hepatocellular, pancreatic (PC) and colorectal cancers (CRC). Malignancies of the GI system are responsible for nearly 30% of cancer-related morbidity and approximately 40% of cancer-related mortality, worldwide. For this reason, the discovery of novel prognostic biomarkers that can efficiently provide a better prognosis, risk assessment and prediction of treatment response is an imperative need. Human kallikrein-related peptidases (KLKs) are a subgroup of trypsin and chymotrypsin-like serine peptidases that have emerged as promising prognosticators for many human types of cancer, being aberrantly expressed in cancerous tissues. The aberrant expression of KLKs in human malignancies is often regulated by KLK/microRNAs (miRNAs) interactions, as many miRNAs have been found to target KLKs and therefore alter their expression levels. The biomarker utility of KLKs has been elucidated not only in endocrine-related human malignancies, including those of the prostate and breast, but also in GI malignancies. The main purpose of this review is to summarize the existing information regarding the prognostic significance of KLKs in major types of GI malignancies and highlight the regulatory role of miRNAs on the expression levels of KLKs in these types of cancer.
Collapse
Affiliation(s)
- Panagiotis G. Adamopoulos
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology , National and Kapodistrian University of Athens, Panepistimiopolis , Athens GR-15701 , Greece
| |
Collapse
|
7
|
Chao J, Li P, Chao L. Kallistatin: double-edged role in angiogenesis, apoptosis and oxidative stress. Biol Chem 2017; 398:1309-1317. [DOI: 10.1515/hsz-2017-0180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 07/18/2017] [Indexed: 01/25/2023]
Abstract
AbstractKallistatin, via its two structural elements – an active site and a heparin-binding domain – displays a double-edged function in angiogenesis, apoptosis and oxidative stress. First, kallistatin has both anti-angiogenic and pro-angiogenic effects. Kallistatin treatment attenuates angiogenesis and tumor growth in cancer-bearing mice. Kallistatin via its heparin-binding site inhibits angiogenesis by blocking vascular endothelial growth factor (VEGF)-induced growth, migration and adhesion of endothelial cells. Conversely, kallistatin via the active site promotes neovascularization by stimulating VEGF levels in endothelial progenitor cells. Second, kallistatin inhibits or induces apoptosis depending on cell types. Kallistatin attenuates organ injury and apoptosis in animal models, and its heparin-binding site is essential for blocking tumor necrosis factor (TNF)-α-induced apoptosis in endothelial cells. However, kallistatin via its active site induces apoptosis in breast cancer cells by up-regulating miR-34a and down-regulating miR-21 and miR-203 synthesis. Third, kallistatin can act as an antioxidant or pro-oxidant. Kallistatin treatment inhibits oxidative stress and tissue damage in animal models and cultured cells. Kallistatin via the heparin-binding domain antagonizes TNF-α-induced oxidative stress, whereas its active site is crucial for stimulating antioxidant enzyme expression. In contrast, kallistatin provokes oxidant formation, leading to blood pressure reduction and bacterial killing. Kallistatin-mediated vasodilation is partly mediated by H2O2, as the effect is abolished by the antioxidant enzyme catalase. Moreover, kallistatin exerts a bactericidal effect by stimulating superoxide production in neutrophils of mice with microbial infection as well as in cultured immune cells. Thus, kallistatin’s dual roles in angiogenesis, apoptosis and oxidative stress contribute to its beneficial effects in various diseases.
Collapse
|
8
|
Role of Kallistatin Treatment in Aging and Cancer by Modulating miR-34a and miR-21 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5025610. [PMID: 28744338 PMCID: PMC5506461 DOI: 10.1155/2017/5025610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022]
Abstract
Kallistatin is an endogenous protein that regulates differential signaling pathways and a wide spectrum of biological activities via its two structural elements: an active site and a heparin-binding domain. Kallistatin via its heparin-binding site inhibits vascular inflammation and oxidative stress by antagonizing TNF-α-induced NADPH oxidase activity, NF-κB activation, and inflammatory gene expression in endothelial cells. Moreover, kallistatin via its active site inhibits microRNA-34a (miR-34a) synthesis and stimulates eNOS and SIRT1 expression in endothelial progenitor cells, whereas its heparin-binding site is crucial for blocking TNF-α-induced miR-21 expression and oxidative stress, thus reducing cellular senescence. By downregulating miR-34a and miR-21 expression, kallistatin treatment attenuates oxidative damage and aortic senescence in streptozotocin-induced diabetic mice and extends Caenorhabditis elegans lifespan under stress conditions. Likewise, kallistatin through the heparin-binding site inhibits TGF-β-induced miR-21 synthesis and oxidative stress in endothelial cells, resulting in inhibition of endothelial-mesenchymal transition, a process contributing to fibrosis and cancer. Furthermore, kallistatin's active site is essential for stimulating miR-34a and p53 expression and inhibiting the miR-21-Akt-Bcl-2 signaling pathway, thus inducing apoptosis in breast cancer cells. These findings reveal novel mechanisms of kallistatin in protection against senescence, aging, and cancer development by modulating miR-34a and miR-21 levels and inhibiting oxidative stress.
Collapse
|
9
|
Chao J, Li P, Chao L. Kallistatin suppresses cancer development by multi-factorial actions. Crit Rev Oncol Hematol 2017; 113:71-78. [PMID: 28427524 PMCID: PMC5441310 DOI: 10.1016/j.critrevonc.2017.03.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/17/2017] [Accepted: 03/11/2017] [Indexed: 01/07/2023] Open
Abstract
Kallistatin was first identified in human plasma as a tissue kallikrein-binding protein and a serine proteinase inhibitor. Kallistatin via its two structural elements regulates differential signaling cascades, and thus a wide spectrum of biological functions. Kallistatin's active site is essential for: inhibiting tissue kallikrein's activity; stimulating endothelial nitric oxide synthase and sirtuin 1 expression and activation; and modulating the synthesis of the microRNAs, miR-34a, miR-21 and miR-203. Kallistatin's heparin-binding site is crucial for antagonizing the signaling pathways of vascular endothelial growth factor, tumor necrosis factor-α, Wnt, transforming growth factor-β and epidermal growth factor. Circulating kallistatin levels are markedly reduced in patients with prostate and colon cancer. Kallistatin administration attenuates angiogenesis, inflammation, tumor growth and invasion in animal models and cultured cells. Therefore, tumor progression may be substantially suppressed by kallistatin's pleiotropic activities. In this review, we will discuss the role and mechanisms of kallistatin in the regulation of cancer development.
Collapse
Affiliation(s)
- Julie Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| | - Pengfei Li
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Lee Chao
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
10
|
Ma C, Yin H, Zhong J, Zhang Y, Luo C, Che D, Fang Z, Li L, Qin S, Liang J, Qi W, Yang Z, Zhou T, Ma J, Yang X, Gao G. Kallistatin exerts anti-lymphangiogenic effects by inhibiting lymphatic endothelial cell proliferation, migration and tube formation. Int J Oncol 2017; 50:2000-2010. [PMID: 28440474 PMCID: PMC5435323 DOI: 10.3892/ijo.2017.3972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/10/2017] [Indexed: 12/24/2022] Open
Abstract
Kallistatin has been recognized as an endogenous angiogenic inhibitor. However, its effects on lymphatic endothelial cells and lymphangiogenesis remain poorly understood. Lymphangiogenesis is involved in tumor metastasis via the lymphatic vasculature in various types of tumors. The aim of this study was to investigate the effects of kallistatin on lymphangiogenesis and the mechanism of action involved. Treatment with kallistatin recombinant protein or overexpression of kallistatin inhibited the proliferation, migration and tube formation of human lymphatic endothelial cells (hLECs), and induced apoptosis of hLECs. Furthermore, our results showed that the lymphatic vessel density (LVD) was reduced in lung and stomach sections from kallistatin-overexpressing transgenic mice. Treatment with kallistatin recombinant protein decreased the LVD in the implanted gastric xenograft tumors of nude mice. To the best of our knowledge, the present study is the first to demonstrate that kallistatin possesses anti-lymphangiogenic activity in vitro and in vivo. Moreover, kallistatin inhibited proliferation and migration of hLECs by reducing the phosphorylation of ERK and Akt, respectively. These findings suggested that kallistatin may be a promising agent that could be used to suppress cancer metastasis by inhibiting both angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Caiqi Ma
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Haofan Yin
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jun Zhong
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yang Zhang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chuanghua Luo
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Di Che
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhenzhen Fang
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lei Li
- Reproductive Center, The Third Hospital Affiliated to Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Shuxing Qin
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jieying Liang
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Weiwei Qi
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Zhonghan Yang
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Ti Zhou
- Department of Biochemistry, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Jianxing Ma
- Department of Physiology, University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Xia Yang
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Guoquan Gao
- Program of Molecular Medicine, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
11
|
Wang T, Shi F, Wang J, Liu Z, Su J. Kallistatin Suppresses Cell Proliferation and Invasion and Promotes Apoptosis in Cervical Cancer Through Blocking NF-κB Signaling. Oncol Res 2016; 25:809-817. [PMID: 27983915 PMCID: PMC7841074 DOI: 10.3727/096504016x14799180778233] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Kallistatin has been recognized as an endogenous angiogenesis inhibitor and exerts pleiotropic effects in inhibiting tumor growth, migration, apoptosis, and inflammation. The purpose of the present study was to investigate the potential role and mechanisms of kallistatin in cervical cancer. We demonstrated that kallistatin effectively inhibited cell proliferation and enhanced apoptosis in a dose-dependent manner. Additionally, kallistatin suppressed migration and invasion activities and markedly reduced the expression of matrix-degrading metalloproteinases, progelatinase (MMP-2), MMP-9, and urokinase-type PA (uPA). Kallistatin reversed the epithelial-mesenchymal transition (EMT) and caused the upregulation of epithelial markers such as E-cadherin and inhibited mesenchymal markers such as N-cadherin and vimentin. Moreover, kallistatin led to a marked decrease in the expression of vascular endothelial growth factor (VEGF) and HIF-1α. In a xenograft mouse model, kallistatin treatment reduced tumor growth. Importantly, kallistatin strikingly impeded NF-κB activation by suppressing IκBα degradation and the level of phosphorylation of p65. Interestingly, similar to kallistatin, treatment with PDTC (an inhibitor of NF-κB) also attenuated cell invasion and migration. Taken together, these findings suggest that kallistatin suppresses cervical cancer cell proliferation, migration, and EMT and promotes cell apoptosis by blocking the NF-κB signaling pathway, suggesting that kallistatin may be a novel therapeutic target for cervical cancer treatment.
Collapse
|
12
|
Affiliation(s)
- Julie Chao
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston (J.C., L.C.); and Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City (G.B.).
| | - Grant Bledsoe
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston (J.C., L.C.); and Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City (G.B.)
| | - Lee Chao
- From the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston (J.C., L.C.); and Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City (G.B.)
| |
Collapse
|
13
|
Meta-markers for the differential diagnosis of lung cancer and lung disease. J Proteomics 2016; 148:36-43. [PMID: 27168012 DOI: 10.1016/j.jprot.2016.04.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/07/2016] [Accepted: 04/28/2016] [Indexed: 11/22/2022]
Abstract
UNLABELLED Misdiagnosis of lung cancer remains a serious problem due to the difficulty of distinguishing lung cancer from other respiratory lung diseases. As a result, the development of serum-based differential diagnostic biomarkers is in high demand. In this study, 198 clinical serum samples from non-cancer lung disease and lung cancer patients were analyzed using nLC-MRM-MS for the levels of seven lung cancer biomarker candidates. When the candidates were assessed individually, only SERPINEA4 showed statistically significant changes in the serum levels. The MRM results and clinical information were analyzed using a logistic regression analysis to select model for the best 'meta-marker', or combination of biomarkers for differential diagnosis. Also, under consideration of statistical interaction, variables having low significance as a single factor but statistically influencing on meta-marker model were selected. Using this probabilistic classification, the best meta-marker was determined to be made up of two proteins SERPINA4 and PON1 with age factor. This meta-marker showed an enhanced differential diagnostic capability (AUC=0.915) for distinguishing the two patient groups. Our results suggest that a statistical model can determine optimal meta-markers, which may have better specificity and sensitivity than a single biomarker and thus improve the differential diagnosis of lung cancer and lung disease patients. BIOLOGICAL SIGNIFICANCE Diagnosing lung cancer commonly involves the use of radiographic methods. However, an imaging-based diagnosis may fail to differentiate lung cancer from non-cancerous lung disease. In this study, we examined several serum proteins in the sera of 198 lung cancer and non-cancerous lung disease patients by multiple-reaction monitoring. We then used a combination of variables to generate a meta-marker model that is useful as a differential diagnostic biomarker.
Collapse
|
14
|
Filippou PS, Karagiannis GS, Musrap N, Diamandis EP. Kallikrein-related peptidases (KLKs) and the hallmarks of cancer. Crit Rev Clin Lab Sci 2016; 53:277-91. [PMID: 26886390 DOI: 10.3109/10408363.2016.1154643] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The kallikrein-related peptidases (KLKs) represent the largest family of serine proteases within the human genome and are expressed in various tissues. Although they regulate several important physiological functions, KLKs have also been implicated in numerous pathophysiological processes, including cancer. Growing evidence describing the deregulation of KLK expression and secretion, as well as activation in various malignancies, has uncovered their potential as mediators of cancer progression, biomarkers of disease and as candidate therapeutic targets. The diversity of signalling pathways and proteolytic cascades involving KLKs and their downstream targets appears to affect cancer biology through multiple mechanisms, including those related to the hallmarks of cancer. The aim of this review is to provide an update on the importance of KLK-driven molecular pathways in relation to cancer cell traits associated with the hallmarks of cancer and to highlight their potential in personalized therapeutics.
Collapse
Affiliation(s)
- Panagiota S Filippou
- a Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , ON , Canada
| | - George S Karagiannis
- b Department of Anatomy & Structural Biology , Albert Einstein College of Medicine, Yeshiva University Bronx , New York , NY , USA
| | - Natasha Musrap
- a Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , ON , Canada
| | - Eleftherios P Diamandis
- a Department of Pathology and Laboratory Medicine , Mount Sinai Hospital , Toronto , ON , Canada .,c Department of Clinical Biochemistry , University Health Network , Toronto , ON , Canada , and.,d Department of Laboratory Medicine and Pathobiology , University of Toronto , Toronto , ON , Canada
| |
Collapse
|
15
|
Godugu C, Doddapaneni R, Patel AR, Singh R, Mercer R, Singh M. Novel Gefitinib Formulation with Improved Oral Bioavailability in Treatment of A431 Skin Carcinoma. Pharm Res 2016; 33:137-54. [PMID: 26286185 PMCID: PMC4774891 DOI: 10.1007/s11095-015-1771-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE Oral administration of anticancer agents presents a series of advantages for patients. However, most of the anticancer drugs have poor water solubility leading to low bioavailability. METHODS Controlled released spray dried matrix system of Gefitinib with hydroxypropyl β-cyclodextrin, chitosan, hydroxy propyl methyl cellulose, vitamin E TPGS, succinic acid were used for the design of formulations to improve the oral absorption of Gefitinib. Spray drying with a customized spray gun which allows simultaneous/pulsatile flow of two different liquid systems through single nozzle was used to prepare Gefitinib spray dried formulations (Gef-SD). Formulation was characterized by in vitro drug release and Caco-2 permeability studies. Pharmacokinetic studies were performed in Sprague Dawley rats. Efficacy of Gef-SD was carried out in A431 xenografts models in nude mice. RESULTS In Gef-SD group 9.14-fold increase in the AUC was observed compared to free Gef. Improved pharmacokinetic profile of Gef-SD translated into increase (1.75 fold compared to Gef free drug) in anticancer effects. Animal survival was significantly increased in Gef formulation treated groups, with superior reduction in the tumor size (1.48-fold) and volumes (1.75-fold) and also increase in the anticancer effects (TUNEL positive apoptotic cells) was observed in Gef-SD treated groups. Further, western blot, immunohistochemical and proteomics analysis demonstrated the increased pharmacodynamic effects of Gef-SD formulations in A431 xenograft tumor models. CONCLUSION Our studies suggested that Gefitinib can be successfully incorporated into control release microparticles based oral formulation with enhanced pharmacokinetic and pharmacodynamic activity. This study demonstrates the novel application of Gef in A431 tumor models.
Collapse
Affiliation(s)
- Chandraiah Godugu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, (NIPER), Hyderabad, Telangana, India
| | - Ravi Doddapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Apurva R Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA
| | - Rakesh Singh
- Translational Science Laboratory, Florida State University, College of Medicine, Tallahassee, Florida, 32306, USA
| | - Roger Mercer
- Translational Science Laboratory, Florida State University, College of Medicine, Tallahassee, Florida, 32306, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, USA.
| |
Collapse
|
16
|
Singh V, Singh LC, Vasudevan M, Chattopadhyay I, Borthakar BB, Rai AK, Phukan RK, Sharma J, Mahanta J, Kataki AC, Kapur S, Saxena S. Esophageal Cancer Epigenomics and Integrome Analysis of Genome-Wide Methylation and Expression in High Risk Northeast Indian Population. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:688-99. [DOI: 10.1089/omi.2015.0121] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Virendra Singh
- National Institute of Pathology (ICMR), New Delhi, India
| | | | | | | | | | | | - Rup Kumar Phukan
- Regional Medical Research Centre (RMRC), Dibrugadh, Assam, India
| | | | - Jagadish Mahanta
- Regional Medical Research Centre (RMRC), Dibrugadh, Assam, India
| | | | - Sujala Kapur
- National Institute of Pathology (ICMR), New Delhi, India
| | - Sunita Saxena
- National Institute of Pathology (ICMR), New Delhi, India
| |
Collapse
|
17
|
Abstract
The prevalence of diabetes mellitus and obesity continues to increase globally. Diabetic vascular complications are the main chronic diabetic complications and associated with mortality and disability. Angiogenesis is a key pathological characteristic of diabetic microvascular complications. However, there are two tissue-specific paradoxical changes in the angiogenesis in diabetic microvascular complications: an excessive uncontrolled formation of premature blood vessels in some tissues, such as the retina, and a deficiency in the formation of small blood vessels in peripheral tissues, such as the skin. This review will discuss the paradoxical phenomena of angiogenesis and its underlying mechanism in obesity, diabetes and diabetic complications.
Collapse
Affiliation(s)
| | - Jian-xing Ma
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
18
|
Huang KF, Yang HY, Xing YM, Lin JS, Diao Y. Recombinant human kallistatin inhibits angiogenesis by blocking VEGF signaling pathway. J Cell Biochem 2014; 115:575-84. [PMID: 24129914 DOI: 10.1002/jcb.24693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 10/10/2013] [Indexed: 12/24/2022]
Abstract
Kallistatin has been recognized as an endogenous angiogenic inhibitor. However, the underlying molecular mechanism remains poorly understood. Taking it into account that vascular endothelial growth factor (VEGF) has been implicated in all aspects of normal and pathological vasculogenesis and angiogenesis. In this study, we investigated whether VEGF signaling pathway was impacted by the anti-angiogenic effect of recombinant human kallistatin (rhKal). We found that the rhKal inhibited proliferation as well as induced apoptosis of cultured human umbilical vein endothelial cells (HUVECs) in both concentration- and time-dependent manners. The rhKal also suppressed the VEGF-induced migration and tube formation of HUVECs. Furthermore, our data revealed that the rhKal suppressed the VEGF165-stimulated tyrosine phosphorylation of VEGFR-2 as well as its downstream signal molecular activation. The inhibition of receptor phosphorylation was correlated with a decrease in VEGF-triggered phosphorylation of angiogenesis signal molecules AKT and ERK, but not stress-related JNK. Taken together, these findings added the knowledge for us to understand the anti-angiogenic mechanism of kallistatin, which suggested that the rhKal could be worth as a candidate compound for further development for the purpose of anti-angiogenic therapies.
Collapse
Affiliation(s)
- K F Huang
- Institute of Molecular Medicine, Huaqiao University, Quanzhou, 362021, China; Xiamen Medicine Research Institute, Xiamen, 361003, China
| | | | | | | | | |
Collapse
|
19
|
Huang K, Huang X, Xiao G, Yang H, Lin J, Diao Y. Kallistatin, a novel anti-angiogenesis agent, inhibits angiogenesis via inhibition of the NF-κB signaling pathway. Biomed Pharmacother 2014; 68:455-61. [DOI: 10.1016/j.biopha.2014.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022] Open
|
20
|
Ahn JM, Sung HJ, Yoon YH, Kim BG, Yang WS, Lee C, Park HM, Kim BJ, Kim BG, Lee SY, An HJ, Cho JY. Integrated glycoproteomics demonstrates fucosylated serum paraoxonase 1 alterations in small cell lung cancer. Mol Cell Proteomics 2014; 13:30-48. [PMID: 24085812 PMCID: PMC3879622 DOI: 10.1074/mcp.m113.028621] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 09/05/2013] [Indexed: 01/16/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive type of lung cancer, and the detection of SCLCs at an early stage is necessary for successful therapy and for improving cancer survival rates. Fucosylation is one of the most common glycosylation-based modifications. Increased levels of fucosylation have been reported in a number of pathological conditions, including cancers. In this study, we aimed to identify and validate the aberrant and selective fucosylated glycoproteins in the sera of patients with SCLC. Fucosylated glycoproteins were enriched by the Aleuria aurantia lectin column after serum albumin and IgG depletion. In a narrowed down and comparative data analysis of both label-free proteomics and isobaric peptide-tagging chemistry iTRAQ approaches, the fucosylated glycoproteins were identified as up- or down-regulated in the sera of limited disease and extensive disease stage patients with SCLC. Verification was performed by multiple reaction monitoring-mass spectrometry to select reliable markers. Four fucosylated proteins, APCS, C9, SERPINA4, and PON1, were selected and subsequently validated by hybrid A. aurantia lectin ELISA (HLE) and Western blotting. Compared with Western blotting, the HLE analysis of these four proteins produced more optimal diagnostic values for SCLC. The PON1 protein levels were significantly reduced in the sera of patients with SCLC, whereas the fucosylation levels of PON1 were significantly increased. Fucosylated PON1 exhibited an area under curve of 0.91 for the extensive disease stage by HLE, whereas the PON1 protein levels produced an area under curve of 0.82 by Western blot. The glycan structural analysis of PON1 by MS/MS identified a biantennary fucosylated glycan modification consisting of a core + 2HexNAc + 1Fuc at increased levels in the sera of patients with SCLC. In addition, the PON1 levels were decreased in the sera of the Lewis lung carcinoma lung cancer mouse model that we examined. Our data suggest that fucosylated protein biomarkers, such as PON1, and their fucosylation levels and patterns can serve as diagnostic and prognostic serological markers for SCLC.
Collapse
Affiliation(s)
- Jung-Mo Ahn
- From the ‡Department of Biochemistry, BK21 and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul
| | - Hye-Jin Sung
- From the ‡Department of Biochemistry, BK21 and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul
| | - Yeon-Hee Yoon
- From the ‡Department of Biochemistry, BK21 and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul
| | - Byung-Gyu Kim
- §Medicinal Bioconvergence Research Center, Seoul National University, Suwon
| | - Won Suk Yang
- ¶Functional Proteomic Center, Korean Institute of Science and Technology, Seoul
| | - Cheolju Lee
- ¶Functional Proteomic Center, Korean Institute of Science and Technology, Seoul
| | - Hae-Min Park
- the ‖School of Chemical and Biological Engineering in College of Engineering, Seoul National University, Seoul
| | - Bum-Jin Kim
- **Graduate School of Analytical Science and Technology and Cancer Research Institute, ChungNam National University, Daejeon
| | - Byung-Gee Kim
- the ‖School of Chemical and Biological Engineering in College of Engineering, Seoul National University, Seoul
| | - Soo-Youn Lee
- ‡‡Department of Laboratory and Genetics, Samsung Medical Center, Sungkyunkwan University of Medicine, Seoul, Korea
| | - Hyun-Joo An
- **Graduate School of Analytical Science and Technology and Cancer Research Institute, ChungNam National University, Daejeon
| | - Je-Yoel Cho
- From the ‡Department of Biochemistry, BK21 and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul
| |
Collapse
|
21
|
Yao Y, Li L, Huang X, Gu X, Xu Z, Zhang Y, Huang L, Li S, Dai Z, Li C, Zhou T, Cai W, Yang Z, Gao G, Yang X. SERPINA3K induces apoptosis in human colorectal cancer cells via activating the Fas/FasL/caspase-8 signaling pathway. FEBS J 2013; 280:3244-55. [PMID: 23615374 DOI: 10.1111/febs.12303] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 01/03/2023]
Abstract
SERPINA3K, also known as kallikrein-binding protein (KBP), is a serine proteinase inhibitor with anti-inflammatory and anti-angiogenic activities. Our previous studies showed that SERPINA3K inhibited proliferation in a dose-dependent manner and induced apoptosis of endothelial cells but had no influence on SGC-7901 gastric carcinoma cells or HepG2 hepatocarcinoma cells. However, it is unknown whether SERPINA3K has a direct impact on other carcinoma cells and which mechanisms are involved. In this study, we report for the first time that SERPINA3K not only decreased cell viability but also induced apoptosis in the colorectal carcinoma cell lines SW480 and HT-29. SERPINA3K-induced apoptosis of SW480 and HT-29 was rescued by interference with Fas ligand (FasL) small hairpin RNA. Moreover, SERPINA3K increased the expression of FasL and activated caspase-8. Peroxisome proliferator-activated receptor γ (PPARγ), a transcription factor of FasL, was also upregulated by SERPINA3K in a dose-dependent manner. The upregulation effect of FasL induced by SERPINA3K was reversed after interference with PPARγ small interfering RNA. These results demonstrated that SERPINA3K-induced SW480 and HT-29 cell apoptosis was mediated by the PPARγ/Fas/FasL signaling pathway. Therefore, our study provides additional insight into the direct anti-tumor function by inducing tumor cell apoptosis of SERPINA3K in colorectal tumors.
Collapse
Affiliation(s)
- Yachao Yao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Dai Z, Lu L, Yang Z, Mao Y, Lu J, Li C, Qi W, Chen Y, Yao Y, Li L, Chen S, Zhang Y, Cai W, Yang X, Gao G. Kallikrein-binding protein inhibits LPS-induced TNF-α by upregulating SOCS3 expression. J Cell Biochem 2013; 114:1020-8. [DOI: 10.1002/jcb.24441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 10/24/2012] [Indexed: 12/21/2022]
|
23
|
Kontos CK, Mavridis K, Talieri M, Scorilas A. Kallikrein-related peptidases (KLKs) in gastrointestinal cancer: mechanistic and clinical aspects. Thromb Haemost 2013; 110:450-7. [PMID: 23446315 DOI: 10.1160/th12-11-0791] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/31/2013] [Indexed: 01/20/2023]
Abstract
The human tissue kallikrein (KLK1) and kallikrein-related peptidases (KLKs) are secreted serine proteases with diverse expression patterns and physiological roles in different systems, including the digestive system. The aberrant expression of KLKs in gastrointestinal malignancies as well as their implication in carcinogenesis including cell growth regulation, angiogenesis, invasion, and metastasis, has prompted scientists to investigate their potential as cancer biomarkers. Expression of distinct KLKs is associated with various clinic-pathological parameters of patients with gastric, colorectal, pancreatic, hepatic, and esophageal cancer. Moreover, several KLKs possess significant favourable or unfavourable prognostic value in these human malignancies. Identification of novel diagnostic, prognostic and predictive biomarkers will contribute utmost to clinical decision-making, since early diagnosis of gastrointestinal cancer and early detection of recurrence following surgery are critical for the effective treatment of patients and for a positive clinical outcome. The current review provides a brief overview of the functional role of KLKs in gastric, colorectal, pancreatic, hepatic, and esophageal cancer, and describes the current status of KLKs as potential tumour biomarkers in these human malignancies.
Collapse
Affiliation(s)
- C K Kontos
- Assoc. Professor Andreas Scorilas, Department of Biochemistry and Molecular Biology, University of Athens, Panepistimiopolis, Athens 15701, Greece, Tel.: +30 210 727 4306, Fax: +30 210 727 4158, E-mail:
| | | | | | | |
Collapse
|
24
|
Cai WB, Zhang Y, Cheng R, Wang Z, Fang SH, Xu ZM, Yang X, Yang ZH, Ma JX, Shao CK, Gao GQ. Dual inhibition of plasminogen kringle 5 on angiogenesis and chemotaxis suppresses tumor metastasis by targeting HIF-1α pathway. PLoS One 2012; 7:e53152. [PMID: 23300882 PMCID: PMC3534244 DOI: 10.1371/journal.pone.0053152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 11/26/2012] [Indexed: 11/26/2022] Open
Abstract
We had demonstrated that plasminogen kringle 5 (K5), a potent angiogenic inhibitor, inhibited retinal neovascularization and hepatocellular carcinoma growth by anti-angiogenesis. The current study investigated the effects and the underlying mechanisms of K5 on both tumor growth and spontaneous pulmonary metastasis in Lewis lung carcinoma (LLC) implanted mouse model. Similarly, K5 could decrease expression of VEGF in LLC cells and grafted tissues and suppress tumor angiogenesis and growth. K5 had no direct effect on proliferation and apoptosis of LLC. However, K5 could significantly inhibit SDF-1α-induced chemotaxis movement of LLC cells and resulted in a great reduction of surface metastatic nodules and micrometastases in the lungs of LLC tumor-bearing mice. K5 also decreased expression of chemokine (C-X-C motif) receptor 4 (CXCR4) in LLC cells and grafted tissues. Furthermore, K5 down-regulated SDF-1α expression in metastatic lung tissues of LLC-bearing mice. Therefore, K5 may suppress tumor pulmonary metastasis through inhibiting SDF-1α-CXCR4 chemotaxis movement and down-regulation of VEGF. Moreover, the role of hypoxia inducible factor-1α (HIF-1α), a crucial transcriptional factor for both VEGF and CXCR4 expression, was evaluated. The siRNA of HIF-1α attenuated expression of VEGF and CXCR4 and inhibited LLC migration. K5 decreased HIF-1α protein level and impaired nuclear HIF-1α accumulation. These results showed for the first time that K5 inhibits LLC growth and metastasis via the dual effects of anti-angiogenesis and suppression of tumor cell motility by targeting the pivotal molecule, HIF-1α.
Collapse
Affiliation(s)
- Wei-Bin Cai
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yang Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Rui Cheng
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zheng Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shu-Huan Fang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- DME Center, Clinical Pharmacology Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zu-Min Xu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xia Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Key Laboratory of Functional Molecules from Marine Microorganisms (Sun Yat-sen University), Department of Education of Guangdong Province, Guangzhou, China
| | - Zhong-Han Yang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Chun-Kui Shao
- Department of Pathology, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- * E-mail: (GQG); (CKS)
| | - Guo-Quan Gao
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- China Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- * E-mail: (GQG); (CKS)
| |
Collapse
|
25
|
Zhang J, Zhu JS, Zhou Z, Chen WX, Chen NW. Therapeutic Effects of Ethyl Pyruvate on Tumor Growth and Metastasis in a Severe Combined Immunodeficiency Mouse Orthotopic Implantation Model. EUR J INFLAMM 2012. [DOI: 10.1177/1721727x1201000103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Ethyl pyruvate (EP) has been shown to have significant anti-inflammatory activities. Here, we explore the therapeutic effects of EP administration on tumor growth and metastasis in orthotopic implantation human gastric cancer models in severe combined immunodeficiency (SCID) mice. After SCID mice were treated with EP, the tumor growth and liver metastasis from gastric cancer were investigated and its possible molecular mechanisms were further studied. As a result, it was found that EP could inhibit tumor growth and liver metastasis of gastric cancer, and reduce tumor lymphangiogenesis indicated by lymphatic microvessel density (LVD) in gastric cancer and metastatic liver tumor. Also, EP decreased the expression of high mobility group box-B1 (HMGB1), receptor for advanced glycation endproducts (RAGE), vascular endothelial growth factor (VEGF) and membrane type-1 matrix metalloprotease (MT1-MMP) in gastric cancer and metastatic liver tumor, but it exerted no effect on expression of nuclear factor-kappa B (NF-κB). Taken together, we suggest that the new application of EP could be a therapeutic option in the treatment of gastric cancer and metastatic liver tumor.
Collapse
Affiliation(s)
- J. Zhang
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - J-S. Zhu
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - Z. Zhou
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - W-X. Chen
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| | - N-W. Chen
- Department of Gastroenterology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
26
|
Abstract
BACKGROUND Human tissue kallikrein (hK1) generates vasodilator kinins from kininogen and promotes angiogenesis by kinin-dependent and kinin-independent mechanisms. Here, we investigate the expression and functional relevance of hK1 in human gastrointestinal stromal tumour (GIST). METHODS Vascularisation and hK1 expression of GIST samples were assessed by immunohistochemistry. In two GIST cell lines, hK1 expression was assessed by PCR, and hK1 protein levels and activity were measured by ELISA and an amidolytic assay, respectively. The effect of hK1 silencing, inhibition or overexpression on GIST cell proliferation, migration and paracrine induction of angiogenesis was studied. Finally, local and systemic levels of hK1 were assessed in mice injected with GIST cells. RESULTS Human tissue kallikrein was detected in 19 out of 22 human GIST samples. Moreover, GIST cells express and secrete active hK1. Titration of hK1 demonstrated its involvement in GIST invasive behaviour, but not proliferation. Furthermore, hK1 released by GIST cells promoted endothelial cell migration and network formation through kinin-dependent mechanisms. Gastrointestinal stromal tumour implantation in nude mice resulted in local and systemic hK1 expression proportional to tumour dimension. CONCLUSIONS Human tissue kallikrein is produced and released by GIST and participates in tumour invasion. Further studies are needed to validate hK1 as a diagnostic biomarker and therapeutic target in GIST.
Collapse
|
27
|
Shiau AL, Teo ML, Chen SY, Wang CR, Hsieh JL, Chang MY, Chang CJ, Chao J, Chao L, Wu CL, Lee CH. Inhibition of experimental lung metastasis by systemic lentiviral delivery of kallistatin. BMC Cancer 2010; 10:245. [PMID: 20509975 PMCID: PMC2893111 DOI: 10.1186/1471-2407-10-245] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 05/31/2010] [Indexed: 12/03/2022] Open
Abstract
Background Angiogenesis plays an important role in the development and progression of tumors. Kallistatin exerts anti-angiogenic and anti-inflammatory activities that may be effective in inhibiting tumor metastasis. We investigated the antitumor effect of lentivirus-mediated kallistatin gene transfer in a syngeneic murine tumor model. Methods Lentiviral vector encoding kallistatin (LV-Kallistatin) was constructed. The expression of kallistatin was verified by enzyme-linked immunosorbent assay (ELISA), and the bioactivity of kallistatin was determined by using cell proliferation, migration, and invasion assays. In addition, antitumor effects of LV-Kallistatin were evaluated by the intravenous injection of virus into tumor-bearing mice. Results The conditioned medium from LV-Kallistatin-treated cells inhibited the migration and proliferation of endothelial cells. Meanwhile, it also reduced the migration and invasion of tumor cells. In the experimental lung metastatic model, tumor-bearing mice receiving LV-Kallistatin had lower tumor nodules and longer survival than those receiving control virus or saline. Moreover, the microvessel densities, the levels of vascular endothelial growth factor (VEGF), tumor necrosis factor (TNF)-α, and nuclear factor κB (NF-κB) transcriptional activity were reduced in the LV-Kallistatin-treated mice. Conclusion Results of this study showed that systemic administration of lentiviral vectors encoding kallistatin inhibited the growth of metastatic tumor and prolonged the survival of tumor-bearing mice. These results suggest that gene therapy using lentiviruses carrying the kallistatin gene, which exerts anti-angiogenic and anti-inflammatory activities, represents a promising strategy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Ai-Li Shiau
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yang H, Cheng R, Liu G, Zhong Q, Li C, Cai W, Yang Z, Ma J, Yang X, Gao G. PEDF inhibits growth of retinoblastoma by anti-angiogenic activity. Cancer Sci 2009; 100:2419-25. [PMID: 19832843 PMCID: PMC11158178 DOI: 10.1111/j.1349-7006.2009.01332.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pigment epithelium-derived factor (PEDF), an angiogenesis inhibitor with multiple other functions, balances angiogenesis in the eye and blocks tumor progression. Retinoblastoma, an angiogenesis-dependent tumor, is the most common ocular cancer in children without effective treatment. It has been reported that PEDF can induce neuronal differentiation of retinoblastoma cells; however, its anti-angiogenic potential for inhibition of retinoblastoma growth in vivo has not been elucidated. The present study was designed to investigate the effect of PEDF on growth of retinoblastoma and the possible molecular mechanism. Soluble and non-fusion recombinant PEDF were generated in E. coli. Recombinant PEDF dose-dependently inhibited proliferation and induced apoptosis of endothelial cells. PEDF had no effects on the proliferation and apoptosis of retinoblastoma cell line SO-Rb50. Intraperitoneal injection of PEDF resulted in growth inhibition of heterotopic retinoblastoma xenografts at 68.78%. MVD in tumor tissues treated with PEDF was significantly decreased. These results suggested that PEDF suppressed tumor growth by blocking angiogenesis instead of a direct cytotoxic effect on tumor cells. Vascular endothelial growth factor (VEGF), a major angiogenic stimulator, was down-regulated by PEDF in both SO-Rb50 cells and retinoblastoma xenografts. Hypoxia-inducible factor (HIF)-1alpha, a crucial transcriptional factor for VEGF expression, was also down-regulated by PEDF both in vitro and in vivo. PEDF reduced HIF-1alpha nuclear translocation, which may be responsible for the down-regulation of VEGF. Down-regulation of VEGF expression in tumor cells through inhibiting HIF-1alpha, thus attenuating the paracrine effect of VEGF on endothelial cell proliferation and vascular permeability in tumor tissues, may represent a mechanism for the anti-angiogenic activity of PEDF.
Collapse
Affiliation(s)
- Huasheng Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jiang X, Li H, Qiao H, Jiang H, Xu R, Sun X. Combining kallistatin gene therapy and meloxicam to treat hepatocellular carcinoma in mice. Cancer Sci 2009; 100:2226-2233. [PMID: 19709125 PMCID: PMC11159929 DOI: 10.1111/j.1349-7006.2009.01306.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Revised: 07/27/2009] [Accepted: 07/31/2009] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancer-related causes of death, and conventional treatments offer unsatisfactory response. We have previously reported that kallistatin gene therapy suppressed the growth of HCC tumors by its anti-angiogenic activity, and meloxicam, a selective COX-2 inhibitor, inhibited proliferation and induced apoptosis of human HCC cells in vitro. The aim of this study was to determine whether combining kallistatin gene therapy and meloxicam could offer a better therapeutic effect to combat HCC in mice. A kallistatin expression plasmid was constructed and its expression was detected after intratumoral gene transfer. Both kallistatin gene therapy and meloxicam suppressed the growth of subcutaneous human HepG2 tumors established in BALB/c nude mice, and the combinational therapy showed a stronger effect in suppressing tumor growth, tumor angiogenesis and cell proliferation, and increasing cell apoptosis, than the respective monotherapies. Gene transfer of kallistatin inhibited tumor angiogenesis, and slightly inhibited cell proliferation and increased cell apoptosis in situ, but had no effect on expression of vascular endothelial growth factor, basic fibroblast growth factor, proliferating cell nuclear antigen, Bcl-2, Bax, or activation of caspase-3. Meloxicam therapy inhibited cell proliferation, induced cell apoptosis, reduced expression of proliferating cell nuclear antigen, increased activation of caspase-3, and upregulated Bax. Meloxicam also slightly inhibited tumor angiogenesis with no effect on the expression of vascular endothelial growth factor or basic fibroblast growth factor. Combining two novel anticancer agents, kallistatin targeting tumoral vascularization and meloxicam targeting cell proliferation and apoptosis, warrants investigation as a therapeutic strategy to combat HCC.
Collapse
Affiliation(s)
- Xian Jiang
- Hepatosplenic Surgery Center, Department of General Surgery, First Affiliated Hospital School of Harbin Medical University, Harbin, China
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
AIM The aim was to study the anti-tumor activities and mechanisms of two synthetic peptide fragments of tumstatin (alpha3 (IV) NC1 domain) in human gastric carcinoma cells in vitro and in vivo. METHODS MTT assay and cell cycle assay were used to study the anti-tumor and anti-angiogenic activities of two peptide fragments in vitro. Apoptosis induced by the two peptide fragments was demonstrated by TUNEL assay and morphological observation. The orthotopic tumor model was established to investigate the activities of two peptide fragments in vivo. Intratumor vascularization and the expressions of VEGF, bFGF, Fas, FasL, Bax, Bcl-2, and caspase 3 were determined using immunohistochemistry and Western blot analysis. RESULTS Peptide 19 inhibited SGC-7901 proliferation and induced apoptosis both in vitro and in vivo. Notably, peptide 21 suppressed the proliferation of HUVEC-12 cells in vitro. Each peptide arrested both cell lines at the G(0)/G(1) phase of the cell cycle, and they also synergistically suppressed in vitro and in vivo tumor growth. Immunohistochemistry and Western blot analysis revealed the strong expression of Fas, FasL and caspase 3 in orthotopic tumor tissues treated with peptide 19 alone or in combination with peptide 21. Decreased expressions of VEGF and bFGF and decreased microvessel density (MVD) in orthotopic tumor tissues were seen in mice treated with peptide 21 alone or in combination with peptide 19. CONCLUSION Two tumstatin peptide fragments facilitate two unique antitumor activities. Thus, they are drug candidates in the treatment of gastric carcinoma.
Collapse
|
31
|
Rasheed S, Harris AL, Tekkis PP, Turley H, Silver A, McDonald PJ, Talbot IC, Glynne-Jones R, Northover JMA, Guenther T. Hypoxia-inducible factor-1alpha and -2alpha are expressed in most rectal cancers but only hypoxia-inducible factor-1alpha is associated with prognosis. Br J Cancer 2009; 100:1666-73. [PMID: 19436307 PMCID: PMC2696753 DOI: 10.1038/sj.bjc.6605026] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The hypoxia-mediated response of tumours is a major determining factor in growth and metastasis. Understanding tumour biology under hypoxic conditions is crucial for the development of antiangiogenic therapy. Using one of the largest cohorts of rectal adenocarcinomas to date, this study investigated hypoxia-inducible factor-1α (HIF-1α) and HIF-2α protein expression in relation to rectal cancer recurrence and cancer-specific survival. Patients (n=90) who had undergone surgery for rectal adenocarcinoma, with no prior neoadjuvant therapy or metastatic disease, and for whom adequate follow-up data were available were selected. Microvessel density (MVD), HIF-1α and HIF-2α expressions were assessed immunohistologically with the CD34 antibody for vessel identification and the NB100-131B and NB100-132D3 antibodies for HIF-1α and HIF-2α, respectively. In a multifactorial analysis, results were correlated with tumour stage, recurrence rate and long-term survival. Microvessel density was higher across T and N stages (P<0.001) and associated with poor survival (hazard ratio (HR)=8.7, P<0.005) and decreased disease-free survival (HR=4.7, P<0.005). hypoxia-inducible factor-1α and -2α were expressed in >50% of rectal cancers (HIF-1α, 54%, 48/90; HIF-2α, 64%, 58/90). HIF-1α positivity was associated with both TNM stage (P<0.05) and vascular invasion (P<0.005). In contrast, no associations were shown between HIF-2α expression and any pathological features, and HIF-1α positivity had no effect on outcome. The study showed an independent association between HIF-1α expression and advanced TNM stage with poor outcome. Our results indicate that HIF-1α, but not HIF-2α, might be used as a marker of prognosis, in addition to methods currently used, to enhance patient management.
Collapse
Affiliation(s)
- S Rasheed
- Department of Surgery, St Mark's Hospital, Harrow, Middlesex, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|