1
|
Gambles MT, Li J, Wang J, Sborov D, Yang J, Kopeček J. Crosslinking of CD38 Receptors Triggers Apoptosis of Malignant B Cells. Molecules 2021; 26:molecules26154658. [PMID: 34361811 PMCID: PMC8348492 DOI: 10.3390/molecules26154658] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 01/16/2023] Open
Abstract
Recently, we designed an inventive paradigm in nanomedicine—drug-free macromolecular therapeutics (DFMT). The ability of DFMT to induce apoptosis is based on biorecognition at cell surface, and crosslinking of receptors without the participation of low molecular weight drugs. The system is composed of two nanoconjugates: a bispecific engager, antibody or Fab’ fragment—morpholino oligonucleotide (MORF1) conjugate; the second nanoconjugate is a multivalent effector, human serum albumin (HSA) decorated with multiple copies of complementary MORF2. Here, we intend to demonstrate that DFMT is a platform that will be effective on other receptors than previously validated CD20. We appraised the impact of daratumumab (DARA)- and isatuximab (ISA)-based DFMT to crosslink CD38 receptors on CD38+ lymphoma (Raji, Daudi) and multiple myeloma cells (RPMI 8226, ANBL-6). The biological properties of DFMTs were determined by flow cytometry, confocal fluorescence microscopy, reactive oxygen species determination, lysosomal enlargement, homotypic cell adhesion, and the hybridization of nanoconjugates. The data revealed that the level of apoptosis induction correlated with CD38 expression, the nanoconjugates meet at the cell surface, mitochondrial signaling pathway is strongly involved, insertion of a flexible spacer in the structure of the macromolecular effector enhances apoptosis, and simultaneous crosslinking of CD38 and CD20 receptors increases apoptosis.
Collapse
Affiliation(s)
- M. Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; (M.T.G.); (J.L.); (J.W.)
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiahui Li
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; (M.T.G.); (J.L.); (J.W.)
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiawei Wang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; (M.T.G.); (J.L.); (J.W.)
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Douglas Sborov
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA;
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; (M.T.G.); (J.L.); (J.W.)
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
- Correspondence: (J.Y.); (J.K.)
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; (M.T.G.); (J.L.); (J.W.)
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA
- Correspondence: (J.Y.); (J.K.)
| |
Collapse
|
2
|
Liu G. A Revisit to the Pretargeting Concept-A Target Conversion. Front Pharmacol 2018; 9:1476. [PMID: 30618765 PMCID: PMC6304396 DOI: 10.3389/fphar.2018.01476] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/03/2018] [Indexed: 01/22/2023] Open
Abstract
Pretargeting is often used as a tumor targeting strategy that provides much higher tumor to non-tumor ratios than direct-targeting using radiolabeled antibody. Due to the multiple injections, pretargeting is investigated less than direct targeting, but the high T/NT ratios have rendered it more useful for therapy. While the progress in using this strategy for tumor therapy has been regularly reviewed in the literature, this review focuses on the nature and quantitative understanding of the pretargeting concept. By doing so, it is the goal of this review to accelerate pretargeting development and translation to the clinic and to prepare the researchers who are not familiar with the pretargeting concept but are interested in applying it. The quantitative understanding is presented in a way understandable to the average researchers in the areas of drug development and clinical translation who have the basic concept of calculus and general chemistry.
Collapse
Affiliation(s)
- Guozheng Liu
- Department of Radiology, University of Massachusetts Medical School Worcester, MA, United States
| |
Collapse
|
3
|
Stéen EJL, Edem PE, Nørregaard K, Jørgensen JT, Shalgunov V, Kjaer A, Herth MM. Pretargeting in nuclear imaging and radionuclide therapy: Improving efficacy of theranostics and nanomedicines. Biomaterials 2018; 179:209-245. [PMID: 30007471 DOI: 10.1016/j.biomaterials.2018.06.021] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/13/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
Pretargeted nuclear imaging and radiotherapy have recently attracted increasing attention for diagnosis and treatment of cancer with nanomedicines. This is because it conceptually offers better imaging contrast and therapeutic efficiency while reducing the dose to radiosensitive tissues compared to conventional strategies. In conventional imaging and radiotherapy, a directly radiolabeled nano-sized vector is administered and allowed to accumulate in the tumor, typically on a timescale of several days. In contrast, pretargeting is based on a two-step approach. First, a tumor-accumulating vector carrying a tag is administered followed by injection of a fast clearing radiolabeled agent that rapidly recognizes the tag of the tumor-bound vector in vivo. Therefore, pretargeting circumvents the use of long-lived radionuclides that is a necessity for sufficient tumor accumulation and target-to-background ratios using conventional approaches. In this review, we give an overview of recent advances in pretargeted imaging strategies. We will critically reflect on the advantages and disadvantages of current state-of-the-art conventional imaging approaches and compare them to pretargeted strategies. We will discuss the pretargeted imaging concept and the involved chemistry. Finally, we will discuss the steps forward in respect to clinical translation, and how pretargeted strategies could be applied to improve state-of-the-art radiotherapeutic approaches.
Collapse
Affiliation(s)
- E Johanna L Stéen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Patricia E Edem
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Kamilla Nørregaard
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Jesper T Jørgensen
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark; Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2100 Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
4
|
Abstract
Differing from the conventional direct-targeting strategy in which a probe or payload is directly loaded onto a targeting molecule that binds to the native target, pretargeting is an improved targeting strategy. It converts the native target to an artificial target specific for a secondary targeting molecule loaded with the probe or payload (effector). The effector is small and does not accumulate in normal tissues, which accelerates the targeting process and generates high target to nontarget ratios. DNA/cDNA analogs can serve as the recognition pair, i.e., the artificial target and the secondary targeting effector. Morpholino oligomers are so far the most investigated and the most successful DNA/cDNA analog recognition pairs for pretargeting. Herein, we describe the pretargeting principles, the pretargeting strategy using Morpholino oligomers, and the preclinical success so far achieved.
Collapse
Affiliation(s)
- Guozheng Liu
- Department of Radiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01655, USA.
| |
Collapse
|
5
|
Knight JC, Cornelissen B. Bioorthogonal chemistry: implications for pretargeted nuclear (PET/SPECT) imaging and therapy. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2014; 4:96-113. [PMID: 24753979 PMCID: PMC3992206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
Due to their rapid and highly selective nature, bioorthogonal chemistry reactions are attracting a significant amount of recent interest in the radiopharmaceutical community. Over the last few years, reactions of this type have found tremendous utility in the construction of new radiopharmaceuticals and as a method of bioconjugation. Furthermore, reports are beginning to emerge in which these reactions are also being applied in vivo to facilitate a novel pretargeting strategy for the imaging and therapy of cancer. The successful implementation of such an approach could lead to dramatic improvements in image quality, therapeutic index, and reduced radiation dose to non-target organs and tissues. This review will focus on the potential of various bioorthogonal chemistry reactions to be used successfully in such an approach.
Collapse
Affiliation(s)
- James C Knight
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of OxfordOxford, OX3 7LJ, United Kingdom
- Radiobiology Research Institute, Churchill HospitalOxford, OX3 7LJ, United Kingdom
| | - Bart Cornelissen
- CR-UK/MRC Gray Institute for Radiation Oncology and Biology, University of OxfordOxford, OX3 7LJ, United Kingdom
- Radiobiology Research Institute, Churchill HospitalOxford, OX3 7LJ, United Kingdom
| |
Collapse
|
6
|
Rules of thumb for maximum percent tumor accumulation. Nucl Med Biol 2013; 40:865-7. [PMID: 23786680 DOI: 10.1016/j.nucmedbio.2013.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/18/2013] [Accepted: 04/19/2013] [Indexed: 11/20/2022]
|
7
|
Goldenberg DM, Chang CH, Rossi EA, McBride WJ, Sharkey RM, Sharkey RM. Pretargeted molecular imaging and radioimmunotherapy. Am J Cancer Res 2012; 2:523-40. [PMID: 22737190 PMCID: PMC3364558 DOI: 10.7150/thno.3582] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 10/31/2011] [Indexed: 01/31/2023] Open
Abstract
Pretargeting is a multi-step process that first has an unlabeled bispecific antibody (bsMAb) localize within a tumor by virtue of its anti-tumor binding site(s) before administering a small, fast-clearing radiolabeled compound that then attaches to the other portion of the bsMAb. The compound's rapid clearance significantly reduces radiation exposure outside of the tumor and its small size permits speedy delivery to the tumor, creating excellent tumor/nontumor ratios in less than 1 hour. Haptens that bind to an anti-hapten antibody, biotin that binds to streptavidin, or an oligonucleotide binding to a complementary oligonucleotide sequence have all been radiolabeled for use by pretargeting. This review will focus on a highly flexible anti-hapten bsMAb platform that has been used to target a variety of radionuclides to image (SPECT and PET) as well as treat tumors.
Collapse
|
8
|
Liu G, Dou S, Chen X, Chen L, Liu X, Rusckowski M, Hnatowich DJ. Adding a clearing agent to pretargeting does not lower the tumor accumulation of the effector as predicted. Cancer Biother Radiopharm 2011; 25:757-62. [PMID: 21204772 DOI: 10.1089/cbr.2010.0800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Clearing agents are often used in pretargeting despite the potential for decreased tumor accumulation of the effector. However, according to the authors' semiempirical model, a clearing agent should not necessarily decrease tumor accumulation. In this study, the authors have added a clearing step to their model-morpholino phosphorodiamidate oligomer (MORF)/complement MORF (cMORF) pretargeting system-to confirm this prediction. The CC49 antibody was conjugated with both biotin and an 18 mer MORF. The influence of avidin on antibody clearance was first evaluated in normal mice in which each animal received 30 μg of MORF-CC49-biotin, 0-70 μg of avidin 1 day later, and 1.2 μg of ⁹⁹(m)Tc-cMORF 3 hours later, with sacrifice at 3 hours. Thereafter, a pretargeting study in mice bearing an LS174T tumor was performed at a 34 μg avidin dosage. In normal mice, the blood level of ⁹⁹(m)Tc-cMORF fell by 60% at an avidin dosage of 10 μg or higher. In tumored mice, avidin produced a similar reduction in blood but had no influence on tumor level, which remained at 6.30% ID/g as predicted. In conclusion, in addition to the expected reduced effector levels in blood and normal tissues, a reduction in tumor accumulation was avoided when adding a clearing agent as predicted.
Collapse
Affiliation(s)
- Guozheng Liu
- Department of Radiology, University of Massachusetts Medical School, Worcester, 01655-0243, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Liu G, Dou S, Baker S, Akalin A, Cheng D, Chen L, Rusckowski M, Hnatowich DJ. A preclinical 188Re tumor therapeutic investigation using MORF/cMORF pretargeting and an antiTAG-72 antibody CC49. Cancer Biol Ther 2010; 10:767-74. [PMID: 21099368 PMCID: PMC3093915 DOI: 10.4161/cbt.10.8.12879] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 06/29/2010] [Accepted: 07/01/2010] [Indexed: 11/19/2022] Open
Abstract
The utility of MORF/cMORF pretargeting for the radiotherapy of cancer requires further validation in tumored mice before clinical trials. We now report on a therapeutic study in mice pretargeted with MORF-CC49 (an anti-TAG-72 antibody CC49 conjugated with MORF, a phosphorodiamidate morpholino oligomer) and then targeted by 188Re-cMORF (a 188Re labeled complementary MORF). Before the dose-escalating therapeutic study, a pretargeting study in LS174T tumored mice was performed at tracer levels. By both necropsy and imaging, the tracer study showed that the whole body radioactivity was largely restricted to tumor in the mice pretargeted 48 h earlier with MORF-CC49 and the tumor radioactivity was retained over 90 h. After decay correction, a best-fit to the biodistribution provided the areas under the radioactivity curves (AUCs) used for the radiation dose estimates. The tumor to normal organ AUC ratios in all cases were greater than unity and ranged from 3 (kidneys) to 48 (muscle). Tumor growth was inhibited in the therapy study. At the highest 188Re dose of 1.40 mCi, a complete but temporary tumor remission was evident in 3 out of the 5 animals. Histological examination of tissues from these animals showed no evidence of cytotoxicity to normal tissues but obvious radiation damage to tumor. In conclusion, effective radiotherapy was achieved in a mouse model by MORF/cMORF pretargeting using 188Re as the therapeutic radionuclide and CC49 as the pretargeting antibody.
Collapse
Affiliation(s)
- Guozheng Liu
- Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
He J, Wang Y, Dou S, Liu X, Zhang S, Liu G, Hnatowich D. Affinity enhancement pretargeting: synthesis and testing of a 99mTc-labeled bivalent MORF. Mol Pharm 2010; 7:1118-24. [PMID: 20507096 PMCID: PMC2914689 DOI: 10.1021/mp9002909] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pretargeting with bivalent effectors capable of bridging antitumor antibodies (affinity enhancement pretargeting) has been reported to provide superior results by affinity enhancement. Phosphorodiamidate morpholinos (MORFs) and other DNA analogues used for pretargeting are ideally suited as bivalent effectors since they are easily synthesized and the distance between binding regions, a determinant of binding, may be adjusted simply by lengthening the chain. We have shown by surface plasmon resonance that bivalent MORFs will provide superior affinity enhancement provided that suitable spacing exists between the binding regions. The goals of this study were to synthesize a bivalent MORF with a MAG(3) group attached for technetium-99m ((99m)Tc) radiolabeling, investigate whether the bivalent MORF showed improved cell accumulation in culture compared to its corresponding monovalent MORF and compare biodistributions in normal mice and in pretargeted tumored mice. An excess of an amine derivatized 18 mer MORF with 6 nonbinding bases for spacing was reacted with Fmoc-l-beta-homoglutamic acid to form duplexes via their carboxylate groups and, after deprotection, conjugated with NHS-MAG(3) to attach the chelator. The anti-CEA antibody MN14 was conjugated with a 12 mer complementary MORF (i.e., cMORF). The binding behavior between radiolabeled monovalent and bivalent MORFs was compared in LS174T tumor cells at 4 degrees C pretargeted with MN14-cMORF. Biodistributions of radiolabeled monovalent and bivalent MORFs at 3 h postadministration were measured in normal mice and in tumor mice pretargeted with MN14-cMORF. In the pretargeted cells in culture, the accumulation of the bivalent MORF was significantly higher than the monovalent MORF (p = 0.002), thus providing strong evidence for affinity enhancement. In normal mice, whole body clearance of the bivalent and monovalent MORFs was equally rapid. In tumored mice, tumor accumulation of the radiolabeled bivalent MORF was significantly higher than that of the monovalent MORF. In conclusion, a bivalent MAG(3)-MORF was successfully synthesized and radiolabeled with (99m)Tc. While a pharmacokinetic effect for the higher tumor accumulations in pretargeted mice of the radiolabeled bivalent MORF cannot be excluded, the results may be best explained by affinity enhancement. Thus two monovalent MORFs were covalently conjugated into a bivalent MORF effector to improve tumor targeting by both pharmacokinetics and affinity enhancement influences.
Collapse
Affiliation(s)
- Jiang He
- Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655, USA.
| | | | | | | | | | | | | |
Collapse
|
11
|
Liu G, Dou S, Pretorius PH, Liu X, Chen L, Rusckowski M, Hnatowich DJ. Tumor pretargeting in mice using MORF conjugated CC49 antibody and radiolabeled complimentary cMORF effector. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2010; 54:333-40. [PMID: 20639818 PMCID: PMC2939249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
AIM Using the antiCEA antibody MN14, a LS174T mouse tumor model has been successfully targeted with (⁹⁹m)Tc for imaging and ¹⁸⁸Re for radiotherapy by phosphorodiamidate morpholino oligomers (MORF)/complementary MORF (cMORF) pretargeting strategy. This investigation evaluated the antiTAG-72 antibody CC49 as an alternative to MN14 for this application. METHODS Both CC49 and MN14 were labeled with ¹¹¹In via SCN-benzyl-DTPA and their biodistributions were compared to that of MN14 labeled via DTPA anhydride. Since the accessibility of the antibody to the effector is required for optimization of pretargeting, the internalization of both MORF-CC49 and MORF-MN14 antibodies in LS174T cells were evaluated in culture. In addition, the accessible concentration of MORF-CC49 antibody in tumor was determined in a series of pretargeting studies with escalating dosages of the [(⁹⁹m)Tc]cMORF effector. Finally, using these results and our semi-empirical model, an imaging study was performed under optimal pretargeting conditions. RESULTS The biodistribution of ¹¹¹In to trace the MN14 antibody depended significantly on the labeling method. Furthermore, both MORF-CC49 and MORF-MN14 antibodies showed rapid internalization in culture. Fortunately, the accessibility in tumor was found to be less seriously reduced in vivo. In a pretargeting study under optimal conditions, both by imaging and by necropsy, the [(⁹⁹m)Tc]cMORF effector accumulated predominantly in the tumor of pretargeted mice. Normal tissue accumulations were minimal except in kidneys, liver, and a segment of intestines. CONCLUSION MORF pretargeting with CC49 was equally successful in the LS174T tumor model to the MORF pretargeting with MN14. The MORF-CC49 antibody may therefore be considered for future investigations toward early clinical trials.
Collapse
Affiliation(s)
- G Liu
- Division of Nuclear Medicine, Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655-0243, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Liu G, Dou S, Liang M, Chen X, Rusckowski M, Hnatowich DJ. The ratio of maximum percent tumour accumulations of the pretargeting agent and the radiolabelled effector is independent of tumour size. Eur J Cancer 2009; 45:3098-103. [PMID: 19811906 DOI: 10.1016/j.ejca.2009.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 09/02/2009] [Accepted: 09/07/2009] [Indexed: 11/25/2022]
Abstract
Our previous studies have indicated that the optimal dosage ratio of pretargeting antibody to effector is proportional to their maximum percent tumour accumulations (MPTAs). This study quantitatively describes how both MPTAs and their ratio change with tumour size, to simplify pretargeting optimisation when tumour size varies. The CC49 antibody dosages below saturation of the tumour antigen level were first examined for the LS174T tumour mouse model. Then the MPTAs of the antibody in mice bearing tumours of different sizes were determined, always at antibody dosages below antigen saturation. Historical data from this laboratory were used to collect the MPTAs of the (99m)Tc-cMORF effector for different tumour sizes, always at effector dosages below that required to saturate the MORF in tumour. The MPTAs versus tumour sizes for both the antibody and the effector were fitted non-linearly. The best fit of the antibody MPTA (Y(antibody)) with tumour size (x) in grams was Y(antibody)=19.00 x(-0.65) while that for the effector was Y(effector)=4.51x(-0.66). Thus, even though the MPTAs of both vary with tumour size, the ratio (Y(antibody)/Y(effector)) is a constant at 4.21. In conclusion, the MPTA ratio of the antibody to the effector was found to be constant with tumour size, an observation that will simplify pretargeting optimisation because remeasurement of the optimum dosage ratio for different tumour sizes can be avoided. Theoretical considerations also suggest that this relationship may be universal for alternative antibody/effector pairs and for different target models, but this must be experimentally confirmed.
Collapse
Affiliation(s)
- Guozheng Liu
- Division of Nuclear Medicine, University of Massachusetts Medical School, Worcester, MA01655-0243, United States.
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
This article provides an overview of a semiempirical pretargeting model now under development. After a brief review of the pretargeting concept, the strategies available, and the complexities of optimizing the dosage and timing, a semiempirical model is described that is not only capable of optimizing dosage and timing but also capable of predicting the results of pretargeting as a function of most pretargeting variables. The model requires knowledge of the pharmacokinetics of both the pretargeting agent (usually an antibody) and the effector, the accessibility of the pretargeting antibody for the effector, and their quantitative relationships in vivo. Several misconceptions that often surround pretargeting are also clarified.
Collapse
Affiliation(s)
- Guozheng Liu
- Department of Radiology, Division of Nuclear Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|