1
|
Spirito F, Nocini R, Mori G, Albanese M, Georgakopoulou EA, Sivaramakrishnan G, Khalil B, Špiljak B, Surya V, Mishra D, Chaurasia A. The Potential of Oncolytic Virotherapy in the Treatment of Head and Neck Cancer: A Comprehensive Review. Int J Mol Sci 2024; 25:12990. [PMID: 39684701 DOI: 10.3390/ijms252312990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Head and neck cancer (HNC) represents a challenging oncological entity with significant morbidity and mortality rates. Despite advances in conventional therapies, including surgery, chemotherapy, and radiation therapy, the overall survival rates for advanced HNC remain suboptimal. In recent years, the emerging field of oncolytic virotherapy has gained attention as a promising therapeutic approach for various malignancies, including HNC. This review provides a comprehensive overview of the current understanding of oncolytic viruses (Ovs) in the context of HNC treatment, including their mechanisms of action, preclinical and clinical studies, challenges, and future directions. Future oncolytic virotherapy focuses on improving delivery and specificity through nanoparticle carriers and genetic modifications to enhance tumor targeting and immune response. Combining different OVs and integrating them with immunotherapies, such as checkpoint inhibitors, could overcome tumor resistance and improve outcomes. Personalized approaches and rigorous clinical trials are key to ensuring the safety and effectiveness of virotherapy in treating HNC.
Collapse
Affiliation(s)
- Francesca Spirito
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Riccardo Nocini
- Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, 37134 Verona, Italy
| | - Giorgio Mori
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Massimo Albanese
- Department of Surgical Sciences, Dentistry, Gynaecology and Paediatrics, University of Verona, 37134 Verona, Italy
| | - Eleni A Georgakopoulou
- Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Basel Khalil
- Department of Basic Sciences, Faculty of Dentistry, University of Damascus, Damascus 30621, Syria
| | - Bruno Špiljak
- Department of Oral Medicine, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Varun Surya
- Department of Oral Pathology and Microbiology, Centre for Dental Educationand Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Deepika Mishra
- Department of Oral Pathology and Microbiology, Centre for Dental Educationand Research, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, King George's Medical University, Lucknow 226003, India
| |
Collapse
|
2
|
Hashimoto M, Kuroda S, Kanaya N, Kadowaki D, Yoshida Y, Sakamoto M, Hamada Y, Sugimoto R, Yagi C, Ohtani T, Kumon K, Kakiuchi Y, Yasui K, Kikuchi S, Yoshida R, Tazawa H, Kagawa S, Yagi T, Urata Y, Fujiwara T. Long-term activation of anti-tumor immunity in pancreatic cancer by a p53-expressing telomerase-specific oncolytic adenovirus. Br J Cancer 2024; 130:1187-1195. [PMID: 38316993 PMCID: PMC10991504 DOI: 10.1038/s41416-024-02583-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND Pancreatic cancer is an aggressive, immunologically "cold" tumor. Oncolytic virotherapy is a promising treatment to overcome this problem. We developed a telomerase-specific oncolytic adenovirus armed with p53 gene (OBP-702). METHODS We investigated the efficacy of OBP-702 for pancreatic cancer, focusing on its long-term effects via long-lived memory CD8 + T cells including tissue-resident memory T cells (TRMs) and effector memory T cells (TEMs) differentiated from effector memory precursor cells (TEMps). RESULTS First, in vitro, OBP-702 significantly induced adenosine triphosphate (ATP), which is important for memory T cell establishment. Next, in vivo, OBP-702 local treatment to murine pancreatic PAN02 tumors increased TEMps via ATP induction from tumors and IL-15Rα induction from macrophages, leading to TRM and TEM induction. Activation of these memory T cells by OBP-702 was also maintained in combination with gemcitabine+nab-paclitaxel (GN) in a PAN02 bilateral tumor model, and GN + OBP-702 showed significant anti-tumor effects and increased TRMs in OBP-702-uninjected tumors. Finally, in a neoadjuvant model, in which PAN02 cells were re-inoculated after resection of treated-PAN02 tumors, GN + OBP-702 provided long-term anti-tumor effects even after tumor resection. CONCLUSION OBP-702 can be a long-term immunostimulant with sustained anti-tumor effects on immunologically cold pancreatic cancer.
Collapse
Affiliation(s)
- Masashi Hashimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan.
| | - Nobuhiko Kanaya
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Daisuke Kadowaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Masaki Sakamoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuki Hamada
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryoma Sugimoto
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Chiaki Yagi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomoko Ohtani
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kento Kumon
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshihiko Kakiuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Kazuya Yasui
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ryuichi Yoshida
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Clinical Cancer Center, Okayama University Hospital, Okayama, Japan
| | - Takahito Yagi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
3
|
Nia GE, Nikpayam E, Farrokhi M, Bolhassani A, Meuwissen R. Advances in cell-based delivery of oncolytic viruses as therapy for lung cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200788. [PMID: 38596310 PMCID: PMC10976516 DOI: 10.1016/j.omton.2024.200788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Lung cancer's intractability is enhanced by its frequent resistance to (chemo)therapy and often high relapse rates that make it the leading cause of cancer death worldwide. Improvement of therapy efficacy is a crucial issue that might lead to a significant advance in the treatment of lung cancer. Oncolytic viruses are desirable combination partners in the developing field of cancer immunotherapy due to their direct cytotoxic effects and ability to elicit an immune response. Systemic oncolytic virus administration through intravenous injection should ideally lead to the highest efficacy in oncolytic activity. However, this is often hampered by the prevalence of host-specific, anti-viral immune responses. One way to achieve more efficient systemic oncolytic virus delivery is through better protection against neutralization by several components of the host immune system. Carrier cells, which can even have innate tumor tropism, have shown their appropriateness as effective vehicles for systemic oncolytic virus infection through circumventing restrictive features of the immune system and can warrant oncolytic virus delivery to tumors. In this overview, we summarize promising results from studies in which carrier cells have shown their usefulness for improved systemic oncolytic virus delivery and better oncolytic virus therapy against lung cancer.
Collapse
Affiliation(s)
- Giti Esmail Nia
- Faculty of Allied Medicine, Cellular and Molecular Research Centre, Iran University of Medical Science, Tehran, Iran
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
| | - Elahe Nikpayam
- Department of Regenerative and Cancer Biology, Albany Medical College, Albany, NY, USA
| | | | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Ralph Meuwissen
- Department of Basic Oncology, Health Institute of Ege University, Izmir, Turkey
- Ege University Translational Pulmonary Research Center (EgeSAM), Ege University, Izmir, Turkey
| |
Collapse
|
4
|
Sakhi H, Arabi M, Ghaemi A, Movafagh A, Sheikhpour M. Oncolytic viruses in lung cancer treatment: a review article. Immunotherapy 2024; 16:75-97. [PMID: 38112057 DOI: 10.2217/imt-2023-0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023] Open
Abstract
Lung cancer has a high morbidity rate worldwide due to its resistance to therapy. So new treatment options are needed to improve the outcomes of lung cancer treatment. This study aimed to evaluate the effectiveness of oncolytic viruses (OVs) as a new type of cancer treatment. In this study, 158 articles from PubMed and Scopus from 1994 to 2022 were reviewed on the effectiveness of OVs in the treatment of lung cancer. The oncolytic properties of eight categories of OVs and their interactions with treatment options were investigated. OVs can be applied as a promising immunotherapy option, as they are reproduced selectively in different types of cancer cells, cause tumor cell lysis and trigger efficient immune responses.
Collapse
Affiliation(s)
- Hanie Sakhi
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mohadeseh Arabi
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Abolfazl Movafagh
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1983969411, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| |
Collapse
|
5
|
Rotem O, Zer A, Yosef L, Beery E, Goldvaser H, Gutkin A, Levin R, Dudnik E, Berger T, Feinmesser M, Levy-Barda A, Lahav M, Raanani P, Uziel O. Blood-Derived Exosomal hTERT mRNA in Patients with Lung Cancer: Characterization and Correlation with Response to Therapy. Biomedicines 2023; 11:1730. [PMID: 37371825 DOI: 10.3390/biomedicines11061730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Background: Telomerase (human telomerase reverse transcriptase (hTERT) is considered a hallmark of cancer, being active in cancer cells but repressed in human somatic cells. As such, it has the potential to serve as a valid cancer biomarker. Exosomal hTERT mRNA can be detected in the serum of patients with solid malignancies but not in healthy individuals. We sought to evaluate the feasibility of measuring serum exosomal hTERT transcripts levels in patients with lung cancer. Methods: A prospective analysis of exosomal hTERT mRNA levels was determined in serum-derived exosomes from 76 patients with stage III-IV lung cancer (11 SCLC and 65 NSCLC). An hTERT level above RQ = 1.2 was considered "detectable" according to a previous receiver operating characteristic curve (ROC) curve. Sequential measurements were obtained in 33 patients. Demographic and clinical data were collected retrospectively from patients' charts. Data on response to systemic therapy (chemotherapy, immunotherapy, and tyrosine kinase inhibitors) were collected by the treating physicians. Results: hTERT was detected in 53% (40/76) of patients with lung cancer (89% of SCLC and 46% of NSLCC). The mean hTERT levels were 3.7 in all 76 patients, 5.87 in SCLC patients, and 3.62 in NSCLC patients. In total, 25 of 43 patients with sequential measurements had detectable levels of hTERT. The sequential exosomal hTERT mRNA levels reflected the clinical course in 23 of them. Decreases in hTERT levels were detected in 17 and 5 patients with partial and complete response, respectively. Eleven patients with a progressive disease had an increase in the level of exosomal hTERT, and seven with stable disease presented increases in its exosomal levels. Another patient who progressed on the first line of treatment and had a partial response to the second line of treatment exhibited an increase in exosomal hTERT mRNA levels during the progression and a decrease during the response. Conclusions: Exosomal hTERT mRNA levels are elevated in over half of patients with lung cancer. The potential association between hTERT levels and response to therapy suggests its utility as a promising cancer biomarker for response to therapy. This issue should be further explored in future studies.
Collapse
Affiliation(s)
- Ofer Rotem
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Alona Zer
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva 49100, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lilach Yosef
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Einat Beery
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Hadar Goldvaser
- Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University, Rehovot 7612001, Israel
| | - Anna Gutkin
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Ron Levin
- Sheba Medical Center, Ramat Gan 5262000, Israel
| | - Elizabeth Dudnik
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Tamar Berger
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Institute of Hematology, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Meora Feinmesser
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Biobank, Department of Pathology, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Adva Levy-Barda
- Biobank, Department of Pathology, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Meir Lahav
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva 49100, Israel
- Institute of Hematology, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Pia Raanani
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva 49100, Israel
- Institute of Hematology, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Orit Uziel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva 49100, Israel
- Institute of Hematology, Rabin Medical Center, Petah Tikva 49100, Israel
| |
Collapse
|
6
|
Gohara S, Shinohara K, Yoshida R, Kariya R, Tazawa H, Hashimoto M, Inoue J, Kubo R, Nakashima H, Arita H, Kawaguchi S, Yamana K, Nagao Y, Iwamoto A, Sakata J, Matsuoka Y, Takeshita H, Hirayama M, Kawahara K, Nagata M, Hirosue A, Kuwahara Y, Fukumoto M, Okada S, Urata Y, Fujiwara T, Nakayama H. An oncolytic virus as a promising candidate for the treatment of radioresistant oral squamous cell carcinoma. Mol Ther Oncolytics 2022; 27:141-156. [PMID: 36381653 PMCID: PMC9619351 DOI: 10.1016/j.omto.2022.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 10/04/2022] [Indexed: 11/21/2022] Open
Abstract
We evaluated the usefulness of an oncolytic virus (Suratadenoturev; OBP-301) against radioresistant oral squamous cell carcinoma. We confirmed the expression of human telomerase reverse transcriptase and the coxsackievirus and adenovirus receptor in cell lines. Also, we examined the potential presence in a patient who has received existing therapy that is amenable to treatment with OBP-301. We evaluated: (1) the antitumor effects of OBP-301 alone and in combination with radiotherapy on radioresistant cell lines, (2) the molecular mechanism underlying the radiosensitizing effect and cell death increased by the combination therapy, and (3) the antitumor effect of the combination therapy in vivo using xenograft models (a radioresistant cell line-derived xenograft in mouse and a patient-derived xenograft). Human telomerase reverse transcriptase and the coxsackievirus and adenovirus receptor were expressed in all cell lines. OBP-301 decreased the proliferative activity of these cell lines in a concentration-dependent manner, and significantly enhanced the antitumor effect of irradiation. Phosphorylated STAT3 and its downstream molecules, which correlated with apoptosis and autophagy, showed significant changes in expression after treatment with OBP-301. The combination therapy exerted a significant antitumor effect versus radiotherapy alone in both xenograft models. Combination of OBP-301 with radiotherapy exerts a synergistic effect and may represent a promising treatment for radioresistant oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Shunsuke Gohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kosuke Shinohara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoji Yoshida
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | | | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Masashi Hashimoto
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Junki Inoue
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryuta Kubo
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hikaru Nakashima
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidetaka Arita
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Sho Kawaguchi
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keisuke Yamana
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuka Nagao
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Asuka Iwamoto
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Junki Sakata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuichiro Matsuoka
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hisashi Takeshita
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masatoshi Hirayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenta Kawahara
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masashi Nagata
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Akiyuki Hirosue
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshikazu Kuwahara
- Radiation Biology and Medicine, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Manabu Fukumoto
- Pathology Informatics Team, RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo, Japan
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yasuo Urata
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection and Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hideki Nakayama
- Department of Oral and Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
7
|
Oncolytic virus-mediated reducing of myeloid-derived suppressor cells enhances the efficacy of PD-L1 blockade in gemcitabine-resistant pancreatic cancer. Cancer Immunol Immunother 2022; 72:1285-1300. [PMID: 36436021 DOI: 10.1007/s00262-022-03334-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/18/2022] [Indexed: 11/28/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often refractory to treatment with gemcitabine (GEM) and immune checkpoint inhibitors including anti-programmed cell death ligand 1 (PD-L1) antibody. However, the precise relationship between GEM-resistant PDAC and development of an immunosuppressive tumor microenvironment (TME) remains unclear. In this study, we investigated the immunosuppressive TME in parental and GEM-resistant PDAC tumors and assessed the therapeutic potential of combination therapy with the telomerase-specific replication-competent oncolytic adenovirus OBP-702, which induces tumor suppressor p53 protein and PD-L1 blockade against GEM-resistant PDAC tumors. Mouse PDAC cells (PAN02) and human PDAC cells (MIA PaCa-2, BxPC-3) were used to establish GEM-resistant PDAC lines. PD-L1 expression and the immunosuppressive TME were analyzed using parental and GEM-resistant PDAC cells. A cytokine array was used to investigate the underlying mechanism of immunosuppressive TME induction by GEM-resistant PAN02 cells. The GEM-resistant PAN02 tumor model was used to evaluate the antitumor effect of combination therapy with OBP-702 and PD-L1 blockade. GEM-resistant PDAC cells exhibited higher PD-L1 expression and produced higher granulocyte-macrophage colony-stimulating factor (GM-CSF) levels compared with parental cells, inducing an immunosuppressive TME and the accumulation of myeloid-derived suppressor cells (MDSCs). OBP-702 significantly inhibited GEM-resistant PAN02 tumor growth by suppressing GM-CSF-mediated MDSC accumulation. Moreover, combination treatment with OBP-702 significantly enhanced the antitumor efficacy of PD-L1 blockade against GEM-resistant PAN02 tumors. The present results suggest that combination therapy involving OBP-702 and PD-L1 blockade is a promising antitumor strategy for treating GEM-resistant PDAC with GM-CSF-induced immunosuppressive TME formation.
Collapse
|
8
|
Li Z, Feiyue Z, Gaofeng L, Haifeng L. Lung cancer and oncolytic virotherapy--enemy's enemy. Transl Oncol 2022; 27:101563. [PMID: 36244134 PMCID: PMC9561464 DOI: 10.1016/j.tranon.2022.101563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Lung cancer is one of the malignant tumors that seriously threaten human health worldwide, while the covid-19 virus has become people's nightmare after the coronavirus pandemic. There are too many similarities between cancer cells and viruses, one of the most significant is that both of them are our enemies. The strategy to take the advantage of the virus to beat cancer cells is called Oncolytic virotherapy. When immunotherapy represented by immune checkpoint inhibitors has made remarkable breakthroughs in the clinical practice of lung cancer, the induction of antitumor immunity from immune cells gradually becomes a rapidly developing and promising strategy of cancer therapy. Oncolytic virotherapy is based on the same mechanisms that selectively kill tumor cells and induce systemic anti-tumor immunity, but still has a long way to go before it becomes a standard treatment for lung cancer. This article provides a comprehensive review of the latest progress in oncolytic virotherapy for lung cancer, including the specific mechanism of oncolytic virus therapy and the main types of oncolytic viruses, and the combination of oncolytic virotherapy and existing standard treatments. It aims to provide new insights and ideas on oncolytic virotherapy for lung cancer.
Collapse
Affiliation(s)
- Zhang Li
- Department of Oncology, Gejiu People's Hospital, The Fifth Affiliated Hospital of Kunming Medical University, China
| | - Zhang Feiyue
- Department of Oncology, Yuxi People's Hospital, The Sixth Affiliated Hospital of Kunming Medical University, China
| | - Li Gaofeng
- Department of Thoracic Surgery, Yunnan Cancer Center, The Third Affiliated Hospital of Kunming Medical University, China
| | - Liang Haifeng
- Department of Oncology, Gejiu People's Hospital, The Fifth Affiliated Hospital of Kunming Medical University, China,Corresponding author.
| |
Collapse
|
9
|
Ogawa T, Kikuchi S, Tabuchi M, Mitsui E, Une Y, Tazawa H, Kuroda S, Noma K, Ohara T, Kagawa S, Urata Y, Fujiwara T. Modulation of p53 expression in cancer-associated fibroblasts prevents peritoneal metastasis of gastric cancer. Mol Ther Oncolytics 2022; 25:249-261. [PMID: 35615263 PMCID: PMC9108396 DOI: 10.1016/j.omto.2022.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 04/21/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) in the tumor microenvironment are associated with the establishment and progression of peritoneal metastasis. This study investigated the efficacy of replicative oncolytic adenovirus-mediated p53 gene therapy (OBP-702) against CAFs and peritoneal metastasis of gastric cancer (GC). Higher CAF expression in the primary tumor was associated with poor prognosis of GC, and higher CAF expression was also observed with peritoneal metastasis in immunohistochemical analysis of clinical samples. And, we found transcriptional alteration of p53 in CAFs relative to normal gastric fibroblasts (NGFs). CAFs increased the secretion of cancer-promoting cytokines, including interleukin-6, and gained resistance to chemotherapy relative to NGFs. OBP-702 showed cytotoxicity to both GC cells and CAFs but not to NGFs. Overexpression of wild-type p53 by OBP-702 infection caused apoptosis and autophagy of CAFs and decreased the secretion of cancer-promoting cytokines by CAFs. Combination therapy using intraperitoneal administration of OBP-702 and paclitaxel synergistically inhibited the tumor growth of peritoneal metastases and decreased CAFs in peritoneal metastases. OBP-702, a replicative oncolytic adenovirus-mediated p53 gene therapy, offers a promising biological therapeutic strategy for peritoneal metastasis, modulating CAFs in addition to achieving tumor lysis.
Collapse
Affiliation(s)
- Toshihiro Ogawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
- Corresponding author Satoru Kikuchi, Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Motoyasu Tabuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Ema Mitsui
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yuta Une
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Toshiaki Ohara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | | | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
10
|
Ekeke CN, Russell KL, Joubert K, Bartlett DL, Luketich JD, Soloff AC, Guo ZS, Lotze MT, Dhupar R. Fighting Fire With Fire: Oncolytic Virotherapy for Thoracic Malignancies. Ann Surg Oncol 2021; 28:2715-2727. [PMID: 33575873 PMCID: PMC8043873 DOI: 10.1245/s10434-020-09477-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022]
Abstract
Thoracic malignancies are associated with high mortality rates. Conventional therapy for many of the patients with thoracic malignancies is obviated by a high incidence of locoregional recurrence and distant metastasis. Fortunately, developments in immunotherapy provide effective strategies for both local and systemic treatments that have rapidly advanced during the last decade. One promising approach to cancer immunotherapy is to use oncolytic viruses, which have the advantages of relatively high tumor specificity, selective replication-mediated oncolysis, enhanced antigen presentation, and potential for delivery of immunogenic payloads such as cytokines, with subsequent elicitation of effective antitumor immunity. Several oncolytic viruses including adenovirus, coxsackievirus B3, herpes virus, measles virus, reovirus, and vaccinia virus have been developed and applied to thoracic cancers in preclinical murine studies and clinical trials. This review discusses the current state of oncolytic virotherapy in lung cancer, esophageal cancer, and metastatic malignant pleural effusions and considers its potential as an emergent therapeutic for these patients.
Collapse
Affiliation(s)
- Chigozirim N Ekeke
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kira L Russell
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kyla Joubert
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James D Luketich
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Adam C Soloff
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zong Sheng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Departments of Immunology and Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Veterans Affairs Pittsburgh Healthcare System, Surgical Services Division, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Omori T, Tazawa H, Yamakawa Y, Osaki S, Hasei J, Sugiu K, Komatsubara T, Fujiwara T, Yoshida A, Kunisada T, Urata Y, Kagawa S, Ozaki T, Fujiwara T. Oncolytic virotherapy promotes radiosensitivity in soft tissue sarcoma by suppressing anti-apoptotic MCL1 expression. PLoS One 2021; 16:e0250643. [PMID: 33886686 PMCID: PMC8061981 DOI: 10.1371/journal.pone.0250643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/08/2021] [Indexed: 11/23/2022] Open
Abstract
Soft tissue sarcoma (STS) is a rare cancer that develops from soft tissues in any part of the body. Despite major advances in the treatment of STS, patients are often refractory to conventional radiotherapy, leading to poor prognosis. Enhancement of sensitivity to radiotherapy would therefore improve the clinical outcome of STS patients. We previously revealed that the tumor-specific, replication-competent oncolytic adenovirus OBP-301 kills human sarcoma cells. In this study, we investigated the radiosensitizing effect of OBP-301 in human STS cells. The in vitro antitumor effect of OBP-301 and ionizing radiation in monotherapy or combination therapy was assessed using highly radiosensitive (RD-ES and SK-ES-1) and moderately radiosensitive (HT1080 and NMS-2) STS cell lines. The expression of markers for apoptosis and DNA damage were evaluated in STS cells after treatment. The therapeutic potential of combination therapy was further analyzed using SK-ES-1 and HT1080 cells in subcutaneous xenograft tumor models. The combination of OBP-301 and ionizing radiation showed a synergistic antitumor effect in all human STS cell lines tested, including those that show different radiosensitivity. OBP-301 was found to enhance irradiation-induced apoptosis and DNA damage via suppression of anti-apoptotic myeloid cell leukemia 1 (MCL1), which was expressed at higher levels in moderately radiosensitive cell lines. The combination of OBP-301 and ionizing radiation showed a more profound antitumor effect compared to monotherapy in SK-ES-1 (highly radiosensitive) and HT1080 (moderately radiosensitive) subcutaneous xenograft tumors. OBP-301 is a promising antitumor reagent to improve the therapeutic potential of radiotherapy by increasing radiation-induced apoptosis in STS.
Collapse
Affiliation(s)
- Toshinori Omori
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
- * E-mail:
| | - Yasuaki Yamakawa
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuhei Osaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Joe Hasei
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhisa Sugiu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tadashi Komatsubara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomohiro Fujiwara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Aki Yoshida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyuki Kunisada
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
12
|
Mohamadi A, Pagès G, Hashemzadeh MS. The Important Role of Oncolytic Viruses in Common Cancer Treatments. CURRENT CANCER THERAPY REVIEWS 2020. [DOI: 10.2174/1573394716666200211120906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Oncolytic viruses (OV) are considered as promising tools in cancer treatment. In addition
to direct cytolysis, the stimulation of both innate and adaptive immune responses is the most
important mechanism in oncolytic virotherapy that finally leads to the long-standing tumor retardations
in the advanced melanoma clinical trials. The OVs have become a worthy method in cancer
treatment, due to their several biological advantages including (1) the selective replication in
cancer cells without affecting normal cells; (2) the lack of resistance to the treatment; (3) cancer
stem cell targeting; (4) the ability to be spread; and (5) the immune response induction against the
tumors. Numerous types of viruses; for example, Herpes simplex viruses, Adenoviruses, Reoviruses,
Poliovirus, and Newcastle disease virus have been studied as a possible cancer treatment
strategy. Although some viruses have a natural orientation or tropism to cancer cells, several others
need attenuation and genetic manipulation to increase the safety and tumor-specific replication activity.
Two important mechanisms are involved in OV antitumor responses, which include the tumor
cell death due to virus replication, and also induction of immunogenic cell death as a result of
the immune system responses against the tumor cells. Furthermore, the high efficiency of OV on
antitumor immune response stimulation can finally lead to a significant tumor shrinkage.
Collapse
Affiliation(s)
- Amir Mohamadi
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gilles Pagès
- Centre Antoine Lacassagne, University of Cote d’Azur, Nice, France
| | | |
Collapse
|
13
|
Mochizuki Y, Tazawa H, Demiya K, Kure M, Kondo H, Komatsubara T, Sugiu K, Hasei J, Yoshida A, Kunisada T, Urata Y, Kagawa S, Ozaki T, Fujiwara T. Telomerase-specific oncolytic immunotherapy for promoting efficacy of PD-1 blockade in osteosarcoma. Cancer Immunol Immunother 2020; 70:1405-1417. [PMID: 33151368 DOI: 10.1007/s00262-020-02774-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022]
Abstract
Immune checkpoint inhibitors including anti-programmed cell death 1 (PD-1) antibody have recently improved clinical outcome in certain cancer patients; however, osteosarcoma (OS) patients are refractory to PD-1 blockade. Oncolytic virotherapy has emerged as novel immunogenic therapy to augment antitumor immune response. We developed a telomerase-specific replication-competent oncolytic adenovirus OBP-502 that induces lytic cell death via binding to integrins. In this study, we assessed the combined effect of PD-1 blockade and OBP-502 in OS cells. The expression of coxsackie and adenovirus receptor (CAR), integrins αvβ3 and αvβ5, and programmed cell death ligand 1 (PD-L1) was analyzed in two murine OS cells (K7M2, NHOS). The cytopathic activity of OBP-502 in both cells was analyzed using the XTT assay. OBP-502-induced immunogenic cell death was assessed by analyzing the level of extracellular ATP and high-mobility group box protein B1 (HMGB1). Subcutaneous tumor models for K7M2 and NHOS cells were used to evaluate the antitumor effect and number of tumor-infiltrating CD8+ cells in combination therapy. K7M2 and NHOS cells showed high expression of integrins αvβ3 and αvβ5, but not CAR. OBP-502 significantly suppressed the viability of both cells, in which PD-L1 expression and the release of ATP and HMGB1 were significantly increased. Intratumoral injection of OBP-502 significantly augmented the efficacy of PD-1 blockade on subcutaneous K2M2 and NHOS tumor models via enhancement of tumor-infiltrating CD8+ T cells. Our results suggest that telomerase-specific oncolytic virotherapy is a promising antitumor strategy to promote the efficacy of PD-1 blockade in OS.
Collapse
Affiliation(s)
- Yusuke Mochizuki
- Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hiroshi Tazawa
- Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan. .,Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Koji Demiya
- Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Miho Kure
- Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hiroya Kondo
- Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Tadashi Komatsubara
- Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Kazuhisa Sugiu
- Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Joe Hasei
- Sports Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, 700-8558, Japan
| | - Aki Yoshida
- Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toshiyuki Kunisada
- Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yasuo Urata
- Oncolys BioPharma, Inc, Tokyo, 105-0001, Japan
| | - Shunsuke Kagawa
- Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.,Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, 700-8558, Japan
| | - Toshifumi Ozaki
- Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toshiyoshi Fujiwara
- Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| |
Collapse
|
14
|
Ishikawa W, Kikuchi S, Ogawa T, Tabuchi M, Tazawa H, Kuroda S, Noma K, Nishizaki M, Kagawa S, Urata Y, Fujiwara T. Boosting Replication and Penetration of Oncolytic Adenovirus by Paclitaxel Eradicate Peritoneal Metastasis of Gastric Cancer. MOLECULAR THERAPY-ONCOLYTICS 2020; 18:262-271. [PMID: 32728614 PMCID: PMC7378855 DOI: 10.1016/j.omto.2020.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Peritoneal metastasis is the most frequent form of distant metastasis and recurrence in gastric cancer, and the prognosis is extremely poor due to the resistance of systemic chemotherapy. Here, we demonstrate that intraperitoneal (i.p.) administration of a green fluorescence protein (GFP)-expressing attenuated adenovirus with oncolytic potency (OBP-401) synergistically suppressed the peritoneal metastasis of gastric cancer in combination with paclitaxel (PTX). OBP-401 synergistically suppressed the viability of human gastric cancer cells in combination with PTX. PTX enhanced the antitumor effect of OBP-401 due to enhanced viral replication in cancer cells. The combination therapy increased induction of mitotic catastrophe, resulting in accelerated autophagy and apoptosis. Peritoneally disseminated nodules were selectively visualized as GFP-positive spots by i.p. administration of OBP-401 in an orthotopic human gastric cancer peritoneal dissemination model. PTX enhanced the deep penetration of OBP-401 into the disseminated nodules. Moreover, a non-invasive in vivo imaging system demonstrated that the combination therapy of i.p. OBP-401 administration with PTX significantly inhibited growth of peritoneal metastatic tumors and the amount of malignant ascites. i.p. virotherapy with PTX may be a promising treatment strategy for the peritoneal metastasis of gastric cancer.
Collapse
Affiliation(s)
- Wataru Ishikawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Satoru Kikuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Corresponding author: Satoru Kikuchi, Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Toshihiro Ogawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Motoyasu Tabuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
- Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama 700-8558, Japan
| | - Kazuhiro Noma
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masahiko Nishizaki
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yasuo Urata
- Oncolys BioPharma, Inc., Tokyo 106-0032, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
15
|
Baker AT, Aguirre-Hernández C, Halldén G, Parker AL. Designer Oncolytic Adenovirus: Coming of Age. Cancers (Basel) 2018; 10:E201. [PMID: 29904022 PMCID: PMC6025169 DOI: 10.3390/cancers10060201] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
The licensing of talimogene laherparepvec (T-Vec) represented a landmark moment for oncolytic virotherapy, since it provided unequivocal evidence for the long-touted potential of genetically modified replicating viruses as anti-cancer agents. Whilst T-Vec is promising as a locally delivered virotherapy, especially in combination with immune-checkpoint inhibitors, the quest continues for a virus capable of specific tumour cell killing via systemic administration. One candidate is oncolytic adenovirus (Ad); it’s double stranded DNA genome is easily manipulated and a wide range of strategies and technologies have been employed to empower the vector with improved pharmacokinetics and tumour targeting ability. As well characterised clinical and experimental agents, we have detailed knowledge of adenoviruses’ mechanisms of pathogenicity, supported by detailed virological studies and in vivo interactions. In this review we highlight the strides made in the engineering of bespoke adenoviral vectors to specifically infect, replicate within, and destroy tumour cells. We discuss how mutations in genes regulating adenoviral replication after cell entry can be used to restrict replication to the tumour, and summarise how detailed knowledge of viral capsid interactions enable rational modification to eliminate native tropisms, and simultaneously promote active uptake by cancerous tissues. We argue that these designer-viruses, exploiting the viruses natural mechanisms and regulated at every level of replication, represent the ideal platforms for local overexpression of therapeutic transgenes such as immunomodulatory agents. Where T-Vec has paved the way, Ad-based vectors now follow. The era of designer oncolytic virotherapies looks decidedly as though it will soon become a reality.
Collapse
Affiliation(s)
- Alexander T Baker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - Carmen Aguirre-Hernández
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Alan L Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| |
Collapse
|
16
|
The E1B19K-deleted oncolytic adenovirus mutant AdΔ19K sensitizes pancreatic cancer cells to drug-induced DNA-damage by down-regulating Claspin and Mre11. Oncotarget 2017; 7:15703-24. [PMID: 26872382 PMCID: PMC4941271 DOI: 10.18632/oncotarget.7310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/27/2016] [Indexed: 11/25/2022] Open
Abstract
Adenovirus-mediated sensitization of cancer cells to cytotoxic drugs depends on simultaneous interactions of early viral genes with cell death and survival pathways. It is unclear what cellular factors mediate these interactions in the presence of DNA-damaging drugs. We found that adenovirus prevents Chk1-mediated checkpoint activation through inactivation of Mre11 and downregulation of the pChk1 adaptor-protein, Claspin, in cells with high levels of DNA-damage induced by the cytotoxic drugs gemcitabine and irinotecan. The mechanisms for Claspin downregulation involve decreased transcription and increased degradation, further attenuating pChk1-mediated signalling. Live cell imaging demonstrated that low doses of gemcitabine caused multiple mitotic aberrations including multipolar spindles, micro- and multi-nucleation and cytokinesis failure. A mutant virus with the anti-apoptotic E1B19K-gene deleted (AdΔ19K) further enhanced cell killing, Claspin downregulation, and potentiated drug-induced DNA damage and mitotic aberrations. Decreased Claspin expression and inactivation of Mre11 contributed to the enhanced cell killing in combination with DNA-damaging drugs. These results reveal novel mechanisms that are utilised by adenovirus to ensure completion of its life cycle in the presence of cellular DNA damage. Taken together, our findings reveal novel cellular targets that may be exploited when developing improved anti-cancer therapeutics.
Collapse
|
17
|
Yamakawa Y, Tazawa H, Hasei J, Osaki S, Omori T, Sugiu K, Komatsubara T, Uotani K, Fujiwara T, Yoshida A, Kunisada T, Urata Y, Kagawa S, Ozaki T, Fujiwara T. Role of zoledronic acid in oncolytic virotherapy: Promotion of antitumor effect and prevention of bone destruction. Cancer Sci 2017; 108:1870-1880. [PMID: 28685948 PMCID: PMC5581539 DOI: 10.1111/cas.13316] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/23/2017] [Accepted: 07/03/2017] [Indexed: 01/23/2023] Open
Abstract
Osteosarcoma is an aggressive malignant bone tumor that causes bone destruction. Although tumor‐specific replicating oncolytic adenovirus OBP‐301 induces an antitumor effect in an osteosarcoma tumor, it cannot prevent bone destruction. Zoledronic acid (ZOL) is a clinically available agent that inhibits bone destruction. In this study, we investigated the potential of combination therapy with OBP‐301 and ZOL against osteosarcomas with bone destruction. The antitumor activity of OBP‐301 and ZOL in monotherapy or combination therapy was assessed using three human osteosarcoma cell lines (143B, MNNG/HOS, SaOS‐2). The cytotoxic effect of OBP‐301 and/or ZOL was measured by assay of cell apoptosis. The effect of OBP‐301 and ZOL on osteoclast activation was investigated. The potential of combination therapy against tumor growth and bone destruction was analyzed using an orthotopic 143B osteosarcoma xenograft tumor model. OBP‐301 and ZOL decreased the viability of human osteosarcoma cells. Combination therapy with OBP‐301 and ZOL displayed a synergistic antitumor effect, in which OBP‐301 promoted apoptosis through suppression of anti‐apoptotic myeloid cell leukemia 1 (MCL1). Combination therapy significantly inhibited tumor‐mediated osteoclast activation, tumor growth and bone destruction compared to monotherapy. These results suggest that combination therapy of OBP‐301 and ZOL suppresses osteosarcoma progression via suppression of MCL1 and osteoclast activation.
Collapse
Affiliation(s)
- Yasuaki Yamakawa
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan
| | - Joe Hasei
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuhei Osaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshinori Omori
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazuhisa Sugiu
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tadashi Komatsubara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kouji Uotani
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomohiro Fujiwara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Aki Yoshida
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyuki Kunisada
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.,Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, Japan
| | - Toshifumi Ozaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
18
|
Eissa IR, Naoe Y, Bustos-Villalobos I, Ichinose T, Tanaka M, Zhiwen W, Mukoyama N, Morimoto T, Miyajima N, Hitoki H, Sumigama S, Aleksic B, Kodera Y, Kasuya H. Genomic Signature of the Natural Oncolytic Herpes Simplex Virus HF10 and Its Therapeutic Role in Preclinical and Clinical Trials. Front Oncol 2017; 7:149. [PMID: 28770166 PMCID: PMC5509757 DOI: 10.3389/fonc.2017.00149] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/26/2017] [Indexed: 12/19/2022] Open
Abstract
Oncolytic viruses (OVs) are opening new possibilities in cancer therapy with their unique mechanism of selective replication within tumor cells and triggering of antitumor immune responses. HF10 is an oncolytic herpes simplex virus-1 with a unique genomic structure that has non-engineered deletions and insertions accompanied by frame-shift mutations, in contrast to the majority of engineered OVs. At the genetic level, HF10 naturally lacks the expression of UL43, UL49.5, UL55, UL56, and latency-associated transcripts, and overexpresses UL53 and UL54. In preclinical studies, HF10 replicated efficiently within tumor cells with extensive cytolytic effects and induced increased numbers of activated CD4+ and CD8+ T cells and natural killer cells within the tumor, leading to a significant reduction in tumor growth and prolonged survival rates. Investigator-initiated clinical studies of HF10 have been completed in recurrent breast carcinoma, head and neck cancer, and unresectable pancreatic cancer in Japan. Phase I trials were subsequently completed in refractory superficial cancers and melanoma in the United States. HF10 has been demonstrated to have a high safety margin with low frequency of adverse effects in all treated patients. Interestingly, HF10 antigens were detected in pancreatic carcinoma over 300 days after treatment with infiltration of CD4+ and CD8+ T cells, which enhanced the immune response. To date, preliminary results from a Phase II trial have indicated that HF10 in combination with ipilimumab (anti-CTLA-4) is safe and well tolerated, with high antitumor efficacy. Improvement of the effect of ipilimumab was observed in patients with stage IIIb, IIIc, or IV unresectable or metastatic melanoma. This review provides a concise description of the genomic functional organization of HF10 compared with talimogene laherparepvec. Furthermore, this review focuses on HF10 in cancer treatment as monotherapy as well as in combination therapy through a concise description of all preclinical and clinical data. In addition, we will address approaches for future directions in HF10 studies as cancer therapy.
Collapse
Affiliation(s)
- Ibrahim Ragab Eissa
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Faculty of Science, Tanta University, Tanta, Egypt
| | - Yoshinori Naoe
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Itzel Bustos-Villalobos
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Toru Ichinose
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | - Wu Zhiwen
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Nobuaki Mukoyama
- Department of Otolaryngology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Taishi Morimoto
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Noriyuki Miyajima
- Department of Transplantation and Endocrine Surgery, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hasegawa Hitoki
- Office of International Affairs, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Seiji Sumigama
- Office of International Affairs, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Branko Aleksic
- Office of International Affairs, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Yasuhiro Kodera
- Department of Surgery II, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Hideki Kasuya
- Cancer Immune Therapy Research Center, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| |
Collapse
|
19
|
Ablation of MCL1 expression by virally induced microRNA-29 reverses chemoresistance in human osteosarcomas. Sci Rep 2016; 6:28953. [PMID: 27356624 PMCID: PMC4928055 DOI: 10.1038/srep28953] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/13/2016] [Indexed: 01/20/2023] Open
Abstract
Osteosarcoma is a rare disease diagnosed as malignant bone tumor. It is generally refractory to chemotherapy, which contributes to its poor prognosis. The reversal of chemoresistance is a major clinical challenge to improve the prognostic outcome of osteosarcoma patients. We developed a tumor-specific replication-competent oncolytic adenovirus, OBP-301 (telomelysin) and assessed its synergistic effects with chemotherapeutic agents (cisplatin and doxorubicin) using human osteosarcoma cell lines and a xenograft tumor model. The molecular mechanism underlying the chemosensitizing effect of OBP-301 was evaluated in aspects of apoptosis induction. OBP-301 inhibits anti-apoptotic myeloid cell leukemia 1 (MCL1) expression, which in turn leads to chemosensitization in human osteosarcoma cells. The siRNA-mediated knockdown of MCL1 expression sensitized human osteosarcoma cells to common chemotherapeutic agents. We also found that upregulation of microRNA-29 targeting MCL1 via virally induced transcriptional factor E2F-1 activation was critical for the enhancement of chemotherapy-induced apoptosis in osteosarcoma cells. Telomerase-specific oncolytic adenovirus synergistically suppressed the viability of human osteosarcoma cells in combination with chemotherapeutic agents. The combination treatment also significantly inhibited tumor growth, as compared to monotherapy, in an osteosarcoma xenograft tumor model. Our data suggest that replicative virus-mediated tumor-specific MCL1 ablation may be a promising strategy to attenuate chemoresistance in osteosarcoma patients.
Collapse
|
20
|
Simpson GR, Relph K, Harrington K, Melcher A, Pandha H. Cancer immunotherapy via combining oncolytic virotherapy with chemotherapy: recent advances. Oncolytic Virother 2016; 5:1-13. [PMID: 27579292 PMCID: PMC4996257 DOI: 10.2147/ov.s66083] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oncolytic viruses are multifunctional anticancer agents with huge clinical potential, and have recently passed the randomized Phase III clinical trial hurdle. Both wild-type and engineered viruses have been selected for targeting of specific cancers, to elicit cytotoxicity, and also to generate antitumor immunity. Single-agent oncolytic virotherapy treatments have resulted in modest effects in the clinic. There is increasing interest in their combination with cytotoxic agents, radiotherapy and immune-checkpoint inhibitors. Similarly to oncolytic viruses, the benefits of chemotherapeutic agents may be that they induce systemic antitumor immunity through the induction of immunogenic cell death of cancer cells. Combining these two treatment modalities has to date resulted in significant potential in vitro and in vivo synergies through various mechanisms without any apparent additional toxicities. Chemotherapy has been and will continue to be integral to the management of advanced cancers. This review therefore focuses on the potential for a number of common cytotoxic agents to be combined with clinically relevant oncolytic viruses. In many cases, this combined approach has already advanced to the clinical trial arena.
Collapse
Affiliation(s)
- Guy R Simpson
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| | - Kate Relph
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| | - Kevin Harrington
- Targeted Therapy, The Institute of Cancer Research/The Royal Marsden NIHR Biomedical Research Centre, London
| | - Alan Melcher
- Targeted and Biological Therapies, Oncology and Clinical Research, Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Hardev Pandha
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| |
Collapse
|
21
|
AduPARE1A and gemcitabine combined treatment trigger synergistic antitumor effects in pancreatic cancer through NF-κB mediated uPAR activation. Mol Cancer 2015; 14:146. [PMID: 26227809 PMCID: PMC4521493 DOI: 10.1186/s12943-015-0413-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 07/15/2015] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Combined treatment of oncolytic adenoviruses with chemotherapeutic agents is foreseen as a therapeutic option for cancer. Here we have investigated the potential to use gemcitabine in combination with the oncolytic adenovirus AduPARE1A to treat pancreatic cancer and evaluate the underlying mechanism. METHODS We treated pancreatic cancer cell lines BxPC-3 and PANC-1 with AduPARE1A and gemcitabine individually or in combination and analyzed cell viability, combination index, apoptosis and viral production. We also investigated the effects of the combination on tumor growth and mice survival in two xenograft models. Furthermore, we analyzed uPAR promoter activity from different uPAR-controlled adenovirus and studied NF-κB mediated effects. RESULTS Synergistic cell killing from the combination AduPARE1A/Gemcitabine was observed in BxPC-3 and PANC-1 cells. Moreover, the combination treatment produced therapeutic benefits over either individual modality in two mouse models bearing orthotopic tumors, showing reduced tumor progression and significant prolonged mouse survival. Mechanistic studies showed that the synergistic cell death was not due to an increase in viral replication but occurred through an enhancement of apoptotic cell death. Gemcitabine stimulation increased the transcription of uPAR-controlled transgenes through the induction of NF-κB acting on the uPAR promoter. Interestingly, NF-κB gemcitabine-mediated induction of AduPAR adenoviruses interfered with the activation of NF-κB regulated genes, probably as a result of an intracellular competition for NF-κB DNA binding. Consequently, AduPARE1A infection sensitized cells to gemcitabine-induced apoptosis in the combined treatment. CONCLUSIONS These data highlights the potential of the combination as a treatment modality for pancreatic cancer patients.
Collapse
|
22
|
Chen GX, Zhang S, He XH, Liu SY, Ma C, Zou XP. Clinical utility of recombinant adenoviral human p53 gene therapy: current perspectives. Onco Targets Ther 2014; 7:1901-9. [PMID: 25364261 PMCID: PMC4211860 DOI: 10.2147/ott.s50483] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Gene therapy has promised to be a highly effective antitumor treatment by introducing a tumor suppressor gene or the abrogation of an oncogene. Among the potential therapeutic transgenes, the tumor suppressor gene p53 serves as an attractive target. Restoration of wild-type p53 function in tumors can be achieved by introduction of an intact complementary deoxyribonucleic acid copy of the p53 gene using a suitable viral vector, in most cases an adenoviral vector (Adp53). Preclinical in vitro and in vivo studies have shown that Adp53 triggers a dramatic tumor regression response in various cancers. These viruses are engineered to lack certain early proteins and are thus replication defective, including Gendicine, SCH-58500, and Advexin. Several types of tumor-specific p53-expressing conditionally replicating adenovirus vectors (known as replication-competent CRAdp53 vectors) have been developed, such as ONYX 015, AdDelta24-p53, SG600-p53, OBP-702, and H101. Various clinical trials have been conducted to investigate the safety and efficiency of these adenoviral vectors. In this review we will talk about the biological mechanisms, clinical utility, and therapeutic potentials of the replication-deficient Adp53-based and replication-competent CRAdp53-based gene therapy.
Collapse
Affiliation(s)
- Guang-Xia Chen
- Department of Gastroenterology, First People's Hospital of Xuzhou, Xuzhou, Jiangsu Province, People's Republic of China
| | - Shu Zhang
- Department of Gastroenterology, Drum Tower Hospital, Nanjing, People's Republic of China ; Medical School of Nanjing University, Nanjing, People's Republic of China ; Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, People's Republic of China
| | - Xiao-Hua He
- Department of Gastroenterology, First People's Hospital of Xuzhou, Xuzhou, Jiangsu Province, People's Republic of China
| | - Shi-Yu Liu
- Department of Gastroenterology, First People's Hospital of Xuzhou, Xuzhou, Jiangsu Province, People's Republic of China
| | - Chao Ma
- Department of Gastroenterology, Drum Tower Hospital, Nanjing, People's Republic of China ; Medical School of Nanjing University, Nanjing, People's Republic of China ; Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, People's Republic of China
| | - Xiao-Ping Zou
- Department of Gastroenterology, Drum Tower Hospital, Nanjing, People's Republic of China ; Medical School of Nanjing University, Nanjing, People's Republic of China ; Jiangsu Clinical Medical Center of Digestive Disease, Nanjing, People's Republic of China
| |
Collapse
|
23
|
Forbes NE, Krishnan R, Diallo JS. Pharmacological modulation of anti-tumor immunity induced by oncolytic viruses. Front Oncol 2014; 4:191. [PMID: 25101247 PMCID: PMC4108035 DOI: 10.3389/fonc.2014.00191] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 07/07/2014] [Indexed: 01/05/2023] Open
Abstract
Oncolytic viruses (OVs) not only kill cancer cells by direct lysis but also generate a significant anti-tumor immune response that allows for prolonged cancer control and in some cases cures. How to best stimulate this effect is a subject of intense investigation in the OV field. While pharmacological manipulation of the cellular innate anti-viral immune response has been shown by several groups to improve viral oncolysis and spread, it is increasingly clear that pharmacological agents can also impact the anti-tumor immune response generated by OVs and related tumor vaccination strategies. This review covers recent progress in using pharmacological agents to improve the activity of OVs and their ability to generate robust anti-tumor immune responses.
Collapse
Affiliation(s)
- Nicole E Forbes
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Ramya Krishnan
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, ON , Canada ; Faculty of Medicine, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
24
|
Bressy C, Benihoud K. Association of oncolytic adenoviruses with chemotherapies: an overview and future directions. Biochem Pharmacol 2014; 90:97-106. [PMID: 24832861 DOI: 10.1016/j.bcp.2014.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/03/2014] [Accepted: 05/05/2014] [Indexed: 12/12/2022]
Abstract
Oncolytic adenoviruses have been used in different preclinical and clinical studies, showing their capacity to kill tumor cells without major adverse events. However, these studies also underline the limitations of this approach. The efficacy of oncolytic adenoviruses is hampered by their limited ability to transduce some tumor types, their lack of selectivity, and their poor dissemination within tumors. In addition, the host immune response may limit oncolytic adenovirus efficacy. Combining oncolytic adenoviruses with chemotherapeutics constitutes an appealing strategy to increase their potency. The first part of this review describes the molecular basis of oncolytic adenoviruses, their use in preclinical studies and clinical trials, their limitations, and strategies to circumvent these limitations. The second part will focus on studies combining oncolytic adenoviruses with chemotherapeutic drugs, including standard chemotherapeutic drugs, molecularly targeted drugs, and other drugs that have been combined with oncolytic adenoviruses. Finally, based on these studies, we describe future directions and general rules that could be followed to identify chemotherapeutic drugs displaying additive/synergistic effects when combined with oncolytic adenoviruses.
Collapse
Affiliation(s)
- Christian Bressy
- CNRS UMR 8203, Vectorologie et thérapeutiques anti-cancéreuses, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif Cedex, France; Univ Paris-Sud, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France
| | - Karim Benihoud
- CNRS UMR 8203, Vectorologie et thérapeutiques anti-cancéreuses, Gustave Roussy, 114 rue Edouard Vaillant, 94805 Villejuif Cedex, France; Univ Paris-Sud, 15 rue Georges Clémenceau, 91405 Orsay Cedex, France.
| |
Collapse
|
25
|
The additive damage model: a mathematical model for cellular responses to drug combinations. J Theor Biol 2014; 357:10-20. [PMID: 24799130 DOI: 10.1016/j.jtbi.2014.04.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 01/22/2014] [Accepted: 04/24/2014] [Indexed: 11/23/2022]
Abstract
Mathematical models to describe dose-dependent cellular responses to drug combinations are an essential component of computational simulations for predicting therapeutic responses. Here, a new model, the additive damage model, is introduced and tested in cases where varying concentrations of two drugs are applied with a fixed exposure schedule. In the model, cell survival is determined by whether cellular damage, which depends on the concentrations of the drugs, exceeds a lethal threshold, which varies randomly in the cell population with a prescribed statistical distribution. Cellular damage is assumed to be additive, and is expressed as a sum of separate terms for each drug. Each term has a saturable dependence on drug concentration. The model has appropriate behavior over the entire range of drug concentrations, and is predictive, given single-agent dose-response data for each drug. The proposed model is compared with several other models, by testing their ability to fit 24 data sets for platinum-taxane combinations and 21 data sets for various other combinations. The Akaike Information Criterion is used to assess goodness of fit, taking into account the number of unknown parameters in each model. Overall, the additive damage model provides a better fit to the data sets than any previous model. The proposed model provides a basis for computational simulations of therapeutic responses. It predicts responses to drug combinations based on data for each drug acting as a single agent, and can be used as an improved null reference model for assessing synergy in the action of drug combinations.
Collapse
|
26
|
Yano S, Tazawa H, Hashimoto Y, Shirakawa Y, Kuroda S, Nishizaki M, Kishimoto H, Uno F, Nagasaka T, Urata Y, Kagawa S, Hoffman RM, Fujiwara T. A genetically engineered oncolytic adenovirus decoys and lethally traps quiescent cancer stem-like cells in S/G2/M phases. Clin Cancer Res 2013; 19:6495-505. [PMID: 24081978 DOI: 10.1158/1078-0432.ccr-13-0742] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Because chemoradiotherapy selectively targets proliferating cancer cells, quiescent cancer stem-like cells are resistant. Mobilization of the cell cycle in quiescent leukemia stem cells sensitizes them to cell death signals. However, it is unclear that mobilization of the cell cycle can eliminate quiescent cancer stem-like cells in solid cancers. Thus, we explored the use of a genetically-engineered telomerase-specific oncolytic adenovirus, OBP-301, to mobilize the cell cycle and kill quiescent cancer stem-like cells. EXPERIMENTAL DESIGN We established CD133(+) cancer stem-like cells from human gastric cancer MKN45 and MKN7 cells. We investigated the efficacy of OBP-301 against quiescent cancer stem-like cells. We visualized the treatment dynamics of OBP-301 killing of quiescent cancer stem-like cells in dormant tumor spheres and xenografts using a fluorescent ubiquitination cell-cycle indicator (FUCCI). RESULTS CD133(+) gastric cancer cells had stemness properties. OBP-301 efficiently killed CD133(+) cancer stem-like cells resistant to chemoradiotherapy. OBP-301 induced cell-cycle mobilization from G0-G1 to S/G2/M phases and subsequent cell death in quiescent CD133(+) cancer stem-like cells by mobilizing cell-cycle-related proteins. FUCCI enabled visualization of quiescent CD133(+) cancer stem-like cells and proliferating CD133(-) non-cancer stem-like cells. Three-dimensional visualization of the cell-cycle behavior in tumor spheres showed that CD133(+) cancer stem-like cells maintained stemness by remaining in G0-G1 phase. We showed that OBP-301 mobilized quiescent cancer stem-like cells in tumor spheres and xenografts into S/G2/M phases where they lost viability and cancer stem-like cell properties and became chemosensitive. CONCLUSION Oncolytic adenoviral infection is an effective mechanism of cancer cell killing in solid cancer and can be a new therapeutic paradigm to eliminate quiescent cancer stem-like cells.
Collapse
Affiliation(s)
- Shuya Yano
- Authors' Affiliations: Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences; Center for innovative clinical medicine, Okayama University Hospital, Okayama; Oncolys BioPharma, Inc., Tokyo, Japan; Department of Surgery, University of California San Diego; and AntiCancer, Inc., San Diego, California
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kimura J, Ono HA, Kosaka T, Nagashima Y, Hirai S, Ohno S, Aoki K, Julia D, Yamamoto M, Kunisaki C, Endo I. Conditionally replicative adenoviral vectors for imaging the effect of chemotherapy on pancreatic cancer cells. Cancer Sci 2013; 104:1083-90. [PMID: 23679574 DOI: 10.1111/cas.12196] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 05/01/2013] [Accepted: 05/03/2013] [Indexed: 12/26/2022] Open
Abstract
Pancreatic cancer has a poor prognosis after complete macroscopic resection combined with chemotherapy. Even after neoadjuvant chemotherapy, R0 resection is often not possible. Moreover, current imaging techniques cannot reliably distinguish viable cancer cells from scar tissue at the resectional margin. We investigated the use of a conditionally replicative adenovirus (CRAd), Ad5/3Cox2CRAd-ΔE3ADP-Luc, for imaging the effects of chemotherapy. The CRAd infectivity of pancreatic cancer cells was enhanced by a chimeric Ad5/3 fiber, E1A expression was under the control of the Cox2 promoter, and the luciferase gene was inserted adjacent to the adenovirus death protein (ADP) gene. Subcutaneous xenografts of the pancreatic cancer cell line MiaPaCa-2 were established in 24 BALB/c nu/nu mice. When xenografts reached a diameter of 4-6 mm (day 1), the mice were injected i.p. with either PBS (group A; n = 12) or 1000 mg/kg gemcitabine (group B; n = 12), weekly. On days 19, 26, 33, and 40, CRAd were injected intratumorally into three mice in groups A and B. Bioluminescence was imaged 72 h after CRAd injection, and gross tumor volumes were measured then tumors were removed for ex vivo histopathology using H&E and Ki-67 staining. Correlations between gross tumor volume, pathological evaluation of the percentage of viable tumor area, and CRAd bioluminescence were analyzed. Bioluminescence correlated closely with the percentage of viable tumor area (R = 0.96), but not with gross tumor volume (R = 0.31). Therefore, CRAds might be reliable imaging tools for monitoring chemotherapy in pancreatic cancer, and could improve our ability to distinguish viable tumor cells from scar tissue.
Collapse
Affiliation(s)
- Jun Kimura
- Department of Gastroenterological Surgery, Graduate School of Medicine, Yokohama-city University, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Takahashi H, Hyakusoku H, Horii C, Takahashi M, Nishimura G, Taguchi T, Kondo N, Sakakibara A, Urata Y, Sano D. Telomerase-specific oncolytic adenovirus: antitumor effects on radiation-resistant head and neck squamous cell carcinoma cells. Head Neck 2013; 36:411-8. [PMID: 23728900 DOI: 10.1002/hed.23309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2013] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Radioresistance remains a critical issue in the use of radiotherapy for the treatment of head and neck squamous cell carcinoma (HNSCC). This study evaluated the efficacy of combination treatment with OBP-301, a telomerase-specific replication-selective adenovirus, and radiotherapy in overcoming radioresistance by examining its effect on radiation-resistant HNSCC cells. METHODS Radiation-resistant HNSCC cells were treated with OBP-301 and radiation in vitro and in an orthotopic nude mouse model in vivo and synergism was assessed. Apoptosis and expression of MRN complex, which plays a key role in DNA repair machinery, were also analyzed. RESULTS Infection with OBP-301 was found to enhance the antitumor efficacy of radiation both in vitro and in vivo by inhibiting MRN complex expression and increasing apoptosis induction. CONCLUSION Combined OBP-301 and radiation therapy seems to overcome radioresistance in HNSCC cells by inhibiting DNA repair machinery, and may thus be a novel therapeutic strategy for treating HNSCC.
Collapse
Affiliation(s)
- Hideaki Takahashi
- Department of Otorhinolaryngology and Head and Neck Surgery, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jiang G, Jiang AJ, Cheng Q, Tian H, Li LT, Zheng JN. A dual-regulated oncolytic adenovirus expressing interleukin-24 sensitizes melanoma cells to temozolomide via the induction of apoptosis. Tumour Biol 2013; 34:1263-71. [PMID: 23430584 DOI: 10.1007/s13277-013-0701-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 02/05/2013] [Indexed: 11/27/2022] Open
Abstract
Malignant melanoma is one of the most lethal and aggressive human malignancies. Suppressed apoptosis and extraordinary invasiveness are the distinctive features that contribute to malignant melanoma. The alkylating agent temozolomide (TMZ) is one of the most effective single chemotherapeutic agents for patients with malignant melanoma, but resistance develops quickly and with high frequency. We constructed a dual-regulated oncolytic adenovirus expressing interleukin 24 (IL-24) gene (Ki67-ZD55-IL-24) by utilizing the Ki67 promoter to replace the native viral promoter of E1A gene. We investigated whether a combination of Ki67-ZD55-IL-24-mediated gene virotherapy and chemotherapy using TMZ produces increased cytotoxicity against human melanoma cells via the induction of apoptosis. Our data indicate that this novel strategy thus holds promising potentials for further developing an effective approach to treat malignant melanoma.
Collapse
Affiliation(s)
- Guan Jiang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, 221002, China
| | | | | | | | | | | |
Collapse
|
30
|
You L, Wang Y, Jin Y, Qian W. Downregulation of Mcl-1 synergizes the apoptotic response to combined treatment with cisplatin and a novel fiber chimeric oncolytic adenovirus. Oncol Rep 2012; 27:971-8. [PMID: 22266706 PMCID: PMC3583558 DOI: 10.3892/or.2012.1636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/14/2011] [Indexed: 01/30/2023] Open
Abstract
The aim of this study was to examine the effects of SG511, a novel fiber chimeric oncolytic adenovirus with E1B 55-kDa deleted, combined with cisplatin on cancer cells and to identify their underlying mechanisms. The combined effect of SG511 and cisplatin on HeLa and HT-29 cells was assessed by a crystal violet assay and an MTT assay, followed by combination index analysis. Cell apoptosis was evaluated by DAPI staining and visualized by fluorescein-mediated signal detection. Mitochondrial membrane potential was detected by flow cytometric analysis of Rhodamine 123 accumulation. The activation of the caspase pathway and the expression of Bcl-2 family proteins were examined by western blotting. Results show that SG511 vector infected various human cancer cell lines and induced growth inhibition effectively. Of note, SG511 synergistically enhanced the anti-proliferative activity of cisplatin, a DNA-damaging agent, against HeLa and HT-29 cells in vitro, concomitantly with increased apoptosis and activation of the mitochondrial pathway. Furthermore, treatment with SG511 alone or in combination with cisplatin resulted in reduced expression the anti-apoptotic Bcl-2 family member Mcl-1 in HeLa and HT-29 cells. Importantly, this combination did not increase the growth inhibitory effects of cisplatin on human normal liver cells. Collectively, SG511, a novel fiber chimeric oncolytic adenovirus, sensitizes cancer cells to apoptosis by reducing anti-apoptotic Mcl-1 protein levels.
Collapse
Affiliation(s)
- Liangshun You
- Institute of Hematology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | | | | | | |
Collapse
|
31
|
Chougule MB, Patel A, Sachdeva P, Jackson T, Singh M. Enhanced anticancer activity of gemcitabine in combination with noscapine via antiangiogenic and apoptotic pathway against non-small cell lung cancer. PLoS One 2011; 6:e27394. [PMID: 22102891 PMCID: PMC3216931 DOI: 10.1371/journal.pone.0027394] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 10/16/2011] [Indexed: 11/28/2022] Open
Abstract
Background The aim of this investigation was to evaluate the anticancer activity of Noscapine (Nos) and Gemcitabine (Gem) combination (NGC) against non-small cell lung cancer (NSCLC) and to elucidate the underlying mechanism of action. Methods Isobolographic method was used to calculate combination index values from cytotoxicity data. In vitro antiangiogenic and apoptotic activity of Nos, Gem and NGC was evaluated. For in vivo studies, female athymic Nu/nu mice were xenografted with H460 tumors and the efficacy of Nos, Gem, or NGC was determined. Protein expressions by immunohistochemical staining were evaluated in harvested tumor tissues. Results The CI values (<0.59) were suggestive of synergistic behavior between Nos and Gem. NGC treatment showed significantly inhibited tube formation and increased percentage of apoptotic cells. NGC, Gem and Nos treatment reduced tumor volume by 82.9±4.5 percent, 39.4±5.8 percent and 34.2±5.7 percent respectively. Specifically, NGC treatment decreased expression cell survival proteins; VEGF, CD31 staining and microvessel density and enhanced DNA fragmentation and cleaved caspase 3 levels compared to single agent treated and control groups. Conclusion Nos potentiated the anticancer activity of Gem in an additive to synergistic manner against lung cancer via antiangiogenic and apoptotic pathways. These findings suggest potential benefit for use of NGC chemotherapy for treatment of lung cancer.
Collapse
Affiliation(s)
- Mahavir B. Chougule
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Hawaii, Hilo, Hawaii, United States of America
| | - Apurva Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, United States of America
| | - Pratik Sachdeva
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, United States of America
| | - Tanise Jackson
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, United States of America
| | - Mandip Singh
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
32
|
Fujiwara T, Shirakawa Y, Kagawa S. Telomerase-specific oncolytic virotherapy for human gastrointestinal cancer. Expert Rev Anticancer Ther 2011; 11:525-32. [PMID: 21504319 DOI: 10.1586/era.10.200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Replication-selective tumor-specific viruses present a novel approach for treatment of neoplastic disease. These vectors are designed to induce virus-mediated lysis of tumor cells after selective viral propagation within the tumor. Human telomerase is highly active in more than 85% of primary cancers, regardless of their tissue origins, and its activity correlates closely with human telomerase reverse transcriptase (hTERT) expression. We constructed an attenuated adenovirus 5 vector (OBP-301), in which the hTERT promoter element drives the expression of E1 genes. Since only tumor cells that express telomerase activity are able to activate this promoter, the hTERT proximal promoter allows for preferential expression of viral genes in tumor cells, leading to selective viral replication and oncolytic cell death. Lymphatic invasion is a major route for cancer cell dissemination, and adequate treatment of locoregional lymph nodes is required for curative treatment in patients with gastrointestinal tumors. In this article we show that intratumoral injection of OBP-301 mediates effective in vivo purging of metastatic tumor cells from regional lymph nodes, which may help optimize treatment of human gastrointestinal malignancies.
Collapse
Affiliation(s)
- Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.
| | | | | |
Collapse
|
33
|
Buseman CM, Wright WE, Shay JW. Is telomerase a viable target in cancer? Mutat Res 2011; 730:90-7. [PMID: 21802433 DOI: 10.1016/j.mrfmmm.2011.07.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 06/20/2011] [Accepted: 07/11/2011] [Indexed: 02/08/2023]
Abstract
The ideal cancer treatment would specifically target cancer cells yet have minimal or no adverse effects on normal somatic cells. Telomerase, the ribonucleoprotein reverse transcriptase that maintains the ends of human chromosome, is an attractive cancer therapeutic target for exactly this reason [1]. Telomerase is expressed in more than 85% of cancer cells, making it a nearly universal cancer marker, while the majority of normal somatic cells are telomerase negative. Telomerase activity confers limitless replicative potential to cancer cells, a hallmark of cancer which must be attained for the continued growth that characterizes almost all advanced neoplasms [2]. In this review we will summarize the role of telomeres and telomerase in cancer cells, and how properties of telomerase are being exploited to create targeted cancer therapies including telomerase inhibitors, telomerase-targeted immunotherapies and telomerase-driven virotherapies. A frank and balanced assessment of the current state of telomerase inhibitors with caveats and potential limitations will be included.
Collapse
Affiliation(s)
- C M Buseman
- The University of Texas Southwestern Medical Center, Department of Cell Biology, Dallas, TX 75390-9039, USA
| | | | | |
Collapse
|
34
|
Jiang G, Xin Y, Zheng JN, Liu YQ. Combining conditionally replicating adenovirus-mediated gene therapy with chemotherapy: a novel antitumor approach. Int J Cancer 2011; 129:263-74. [PMID: 21509783 DOI: 10.1002/ijc.25948] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 01/05/2011] [Indexed: 12/16/2022]
Abstract
Despite significant improvements in diagnosis and innovations in the therapy of specific cancers, effective treatment of neoplastic diseases still presents major challenges. Recent studies have shown that conditionally replicating adenoviruses (CRAds) not only have the ability to destroy cancer cells but may also be potential vectors for the expression of therapeutic genes. Several studies in animal models have demonstrated that the combination of CRAds-mediated gene therapy and chemotherapy has greater therapeutic benefit than either treatment modality alone. In this review, an overview of specifications for a novel antitumor approach combining CRAd-gene therapy and chemotherapy is provided and recent progress in this field is discussed.
Collapse
Affiliation(s)
- Guan Jiang
- Center for Disease Control and Prevention of Xuzhou City, Xuzhou 221006, China
| | | | | | | |
Collapse
|
35
|
Sasaki T, Tazawa H, Hasei J, Kunisada T, Yoshida A, Hashimoto Y, Yano S, Yoshida R, Uno F, Kagawa S, Morimoto Y, Urata Y, Ozaki T, Fujiwara T. Preclinical evaluation of telomerase-specific oncolytic virotherapy for human bone and soft tissue sarcomas. Clin Cancer Res 2011; 17:1828-38. [PMID: 21325287 DOI: 10.1158/1078-0432.ccr-10-2066] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumor-specific replication-selective oncolytic virotherapy is a promising antitumor therapy for induction of cell death in tumor cells but not of normal cells. We previously developed an oncolytic adenovirus, OBP-301, that kills human epithelial malignant cells in a telomerase-dependent manner. Recent evidence suggests that nonepithelial malignant cells, which have low telomerase activity, maintain telomere length through alternative lengthening of telomeres (ALT). However, it remains unclear whether OBP-301 is cytopathic for nonepithelial malignant cells. Here, we evaluated the antitumor effect of OBP-301 on human bone and soft tissue sarcoma cells. EXPERIMENTAL DESIGN The cytopathic activity of OBP-301, coxsackie and adenovirus receptor (CAR) expression, and telomerase activity were examined in 10 bone (OST, U2OS, HOS, HuO9, MNNG/HOS, SaOS-2, NOS-2, NOS-10, NDCS-1, and OUMS-27) and in 4 soft tissue (CCS, NMS-2, SYO-1, and NMFH-1) sarcoma cell lines. OBP-301 antitumor effects were assessed using orthotopic tumor xenograft models. The fiber-modified OBP-301 (termed OBP-405) was used to confirm an antitumor effect on OBP-301-resistant sarcomas. RESULTS OBP-301 was cytopathic for 12 sarcoma cell lines but not for the non-CAR-expressing OUMS-27 and NMFH-1 cells. Sensitivity to OBP-301 was dependent on CAR expression and not on telomerase activity. ALT-type sarcomas were also sensitive to OBP-301 because of upregulation of human telomerase reverse transcriptase (hTERT) mRNA following virus infection. Intratumoral injection of OBP-301 significantly suppressed the growth of OST and SYO-1 tumors. Furthermore, fiber-modified OBP-405 showed antitumor effects on OBP-301-resistant OUMS-27 and NMFH-1 cells. CONCLUSIONS A telomerase-specific oncolytic adenovirus is a promising antitumor reagent for the treatment of bone and soft tissue sarcomas.
Collapse
Affiliation(s)
- Tsuyoshi Sasaki
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Stewart DJ. Tumor and host factors that may limit efficacy of chemotherapy in non-small cell and small cell lung cancer. Crit Rev Oncol Hematol 2010; 75:173-234. [PMID: 20047843 PMCID: PMC2888634 DOI: 10.1016/j.critrevonc.2009.11.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/19/2009] [Accepted: 11/27/2009] [Indexed: 12/19/2022] Open
Abstract
While chemotherapy provides useful palliation, advanced lung cancer remains incurable since those tumors that are initially sensitive to therapy rapidly develop acquired resistance. Resistance may arise from impaired drug delivery, extracellular factors, decreased drug uptake into tumor cells, increased drug efflux, drug inactivation by detoxifying factors, decreased drug activation or binding to target, altered target, increased damage repair, tolerance of damage, decreased proapoptotic factors, increased antiapoptotic factors, or altered cell cycling or transcription factors. Factors for which there is now substantial clinical evidence of a link to small cell lung cancer (SCLC) resistance to chemotherapy include MRP (for platinum-based combination chemotherapy) and MDR1/P-gp (for non-platinum agents). SPECT MIBI and Tc-TF scanning appears to predict chemotherapy benefit in SCLC. In non-small cell lung cancer (NSCLC), the strongest clinical evidence is for taxane resistance with elevated expression or mutation of class III beta-tubulin (and possibly alpha tubulin), platinum resistance and expression of ERCC1 or BCRP, gemcitabine resistance and RRM1 expression, and resistance to several agents and COX-2 expression (although COX-2 inhibitors have had minimal impact on drug efficacy clinically). Tumors expressing high BRCA1 may have increased resistance to platinums but increased sensitivity to taxanes. Limited early clinical data suggest that chemotherapy resistance in NSCLC may also be increased with decreased expression of cyclin B1 or of Eg5, or with increased expression of ICAM, matrilysin, osteopontin, DDH, survivin, PCDGF, caveolin-1, p21WAF1/CIP1, or 14-3-3sigma, and that IGF-1R inhibitors may increase efficacy of chemotherapy, particularly in squamous cell carcinomas. Equivocal data (with some positive studies but other negative studies) suggest that NSCLC tumors with some EGFR mutations may have increased sensitivity to chemotherapy, while K-ras mutations and expression of GST-pi, RB or p27kip1 may possibly confer resistance. While limited clinical data suggest that p53 mutations are associated with resistance to platinum-based therapies in NSCLC, data on p53 IHC positivity are equivocal. To date, resistance-modulating strategies have generally not proven clinically useful in lung cancer, although small randomized trials suggest a modest benefit of verapamil and related agents in NSCLC.
Collapse
Affiliation(s)
- David J Stewart
- Department of Thoracic/Head & Neck Medical Oncology, MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
37
|
Pesonen S, Nokisalmi P, Escutenaire S, Särkioja M, Raki M, Cerullo V, Kangasniemi L, Laasonen L, Ribacka C, Guse K, Haavisto E, Oksanen M, Rajecki M, Helminen A, Ristimäki A, Karioja-Kallio A, Karli E, Kantola T, Bauerschmitz G, Kanerva A, Joensuu T, Hemminki A. Prolonged systemic circulation of chimeric oncolytic adenovirus Ad5/3-Cox2L-D24 in patients with metastatic and refractory solid tumors. Gene Ther 2010; 17:892-904. [PMID: 20237509 DOI: 10.1038/gt.2010.17] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Eighteen patients with refractory and progressive solid tumors were treated with a single round of triple modified oncolytic adenovirus (Ad5/3-Cox2L-D24). Ad5/3-Cox2L-D24 is the first non-Coxsackie-adenovirus receptor-binding oncolytic adenovirus used in humans. Grades 1-2 flu-like symptoms, fever, and fatigue were seen in most patients, whereas transaminitis or thrombocytopenia were seen in some. Non-hematological grades 3-5 side effects were seen in one patient with grade 3 ileus. Treatment resulted in high neutralizing antibody titers within 3 weeks. Virus appeared in serum 2-4 days after treatment in 83% of patients and persisted for up to 5 weeks. One out of five radiologically evaluable patients had partial response (PR), one had minor response (MR), and three had progressive disease (PD). Two patients scored as PD had a decrease in tumor density. Tumor reductions not measurable with Response Evaluation Criteria In Solid Tumors (RECIST) were seen in a further four patients. PR, MR, stable disease, and PD were seen in 12, 23.5, 35, and 29.5% of tumor markers analyzed, respectively (N=17). Ad5/3-Cox2L-D24 appears safe for treatment of cancer in humans and extended virus circulation results from a single treatment. Objective evidence of anti-tumor activity was seen in 11/18 (61%) of patients. Clinical trials are needed to extend these findings.
Collapse
Affiliation(s)
- S Pesonen
- Cancer Gene Therapy Group, Transplantation Laboratory, Haartman Institute and Finnish Institute of Molecular Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Onimaru M, Ohuchida K, Nagai E, Mizumoto K, Egami T, Cui L, Sato N, Uchino J, Takayama K, Hashizume M, Tanaka M. Combination with low-dose gemcitabine and hTERT-promoter-dependent conditionally replicative adenovirus enhances cytotoxicity through their crosstalk mechanisms in pancreatic cancer. Cancer Lett 2010; 294:178-86. [PMID: 20163915 DOI: 10.1016/j.canlet.2010.01.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/26/2010] [Accepted: 01/26/2010] [Indexed: 12/31/2022]
Abstract
To overcome the limited clinical efficacy of conditionally replicative adenoviruses (CRAds), we investigated the effects of combination therapy with gemcitabine (GEM) and the hTERT-promoter-dependent CRAd (hTERT-CRAd), Ad5/3hTERTE1. This combination therapy exhibited enhanced cytotoxic effects on pancreatic cancer both in vitro and in vivo. Furthermore, we revealed that this enhancement effect was due to the multiple bidirectional interactions between hTERT-CRAd and GEM. The GEM-sensitizing effect of E1 expression derived from hTERT-CRAd, and the enhancement effect by GEM on hTERT promoter activity which led to the increase of adenovirus E1 and viral infectivity. This combination therapy may be a promising therapeutic approach for pancreatic cancer.
Collapse
Affiliation(s)
- Manabu Onimaru
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|