1
|
Sandvig K, Bergan J, Kavaliauskiene S, Skotland T. Lipid requirements for entry of protein toxins into cells. Prog Lipid Res 2014; 54:1-13. [PMID: 24462587 DOI: 10.1016/j.plipres.2014.01.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/15/2014] [Accepted: 01/15/2014] [Indexed: 01/05/2023]
Abstract
The plant toxin ricin and the bacterial toxin Shiga toxin both belong to a group of protein toxins having one moiety that binds to the cell surface, and another, enzymatically active moiety, that enters the cytosol and inhibits protein synthesis by inactivating ribosomes. Both toxins travel all the way from the cell surface to endosomes, the Golgi apparatus and the ER before the ribosome-inactivating moiety enters the cytosol. Shiga toxin binds to the neutral glycosphingolipid Gb3 at the cell surface and is therefore dependent on this lipid for transport into the cells, whereas ricin binds both glycoproteins and glycolipids with terminal galactose. The different steps of transport used by these toxins have specific requirements for lipid species, and with the recent developments in mass spectrometry analysis of lipids and microscopical and biochemical dissection of transport in cells, we are starting to see the complexity of endocytosis and intracellular transport. In this article we describe lipid requirements and the consequences of lipid changes for the entry and intoxication with ricin and Shiga toxin. These toxins can be a threat to human health, but can also be exploited for diagnosis and therapy, and have proven valuable as tools to study intracellular transport.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Jonas Bergan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | - Simona Kavaliauskiene
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Tore Skotland
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Biochemistry, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
2
|
Sandvig K, Skotland T, van Deurs B, Klokk TI. Retrograde transport of protein toxins through the Golgi apparatus. Histochem Cell Biol 2013; 140:317-26. [PMID: 23765164 DOI: 10.1007/s00418-013-1111-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2013] [Indexed: 12/13/2022]
Abstract
A number of protein toxins from plants and bacteria take advantage of transport through the Golgi apparatus to gain entry into the cytosol where they exert their action. These toxins include the plant toxin ricin, the bacterial Shiga toxins, and cholera toxin. Such toxins bind to lipids or proteins at the cell surface, and they are endocytosed both by clathrin-dependent and clathrin-independent mechanisms. Sorting to the Golgi and retrograde transport to the endoplasmic reticulum (ER) are common to these toxins, but the exact mechanisms turn out to be toxin and cell-type dependent. In the ER, the enzymatically active part is released and then transported into the cytosol, exploiting components of the ER-associated degradation system. In this review, we will discuss transport of different protein toxins, but we will focus on factors involved in entry and sorting of ricin and Shiga toxin into and through the Golgi apparatus.
Collapse
Affiliation(s)
- Kirsten Sandvig
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.
| | | | | | | |
Collapse
|
3
|
Viewing Golgi structure and function from a different perspective--insights from electron tomography. Methods Cell Biol 2013; 118:259-79. [PMID: 24295312 DOI: 10.1016/b978-0-12-417164-0.00016-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Historically, ultrastructural investigations, which have focused on elucidating the biological idiosyncrasies of the Golgi apparatus, have tended towards oversimplified or fallacious hypotheses when postulating how the Golgi apparatus reorganizes itself both structurally and functionally to fulfill the plethora of cellular processes underpinned by this complex organelle. Key questions are still unanswered with regard to how changes in Golgi architecture correlate so reproducibly to changes in its functional priorities under different physiological conditions or experimental perturbations. This fact alone serves to highlight how the technical limitations associated with conventional two-dimensional imaging approaches employed in the past failed to adequately capture the extraordinary complexity of the Golgi's three-dimensional (3D) structure-now a hallmark of this challenging organelle. Consequently, this has hampered progress towards developing a clear understanding of how changes in its structure and function typically occur in parallel. In this chapter, we highlight but a few of the significant new insights regarding variations in the Golgi's structure-function relationships that have been afforded over recent years through advanced electron microscopic techniques for 3D image reconstruction, commonly referred to as electron tomography.
Collapse
|