1
|
Adomako-Bonsu AG, Jacobsen J, Maser E. Metabolic activation of 2,4,6-trinitrotoluene; a case for ROS-induced cell damage. Redox Biol 2024; 72:103082. [PMID: 38527399 PMCID: PMC10979124 DOI: 10.1016/j.redox.2024.103082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/27/2024] Open
Abstract
The explosive compound 2,4,6-trinitrotoluene (TNT) is well known as a major component of munitions. In addition to its potential carcinogenicity and mutagenicity in humans, recent reports have highlighted TNT toxicities in diverse organisms due to its occurrence in the environment. These toxic effects have been linked to the intracellular metabolism of TNT, which is generally characterised by redox cycling and the generation of noxious reactive molecules. The reactive intermediates formed, such as nitroso and hydroxylamine compounds, also interact with oxygen molecules and cellular components to cause macromolecular damage and oxidative stress. The current review aims to highlight the crucial role of TNT metabolism in mediating TNT toxicity, via increased generation of reactive oxygen species. Cellular proliferation of reactive species results in depletion of cellular antioxidant enzymes, DNA and protein adduct formation, and oxidative stress. While TNT toxicity is well known, its ability to induce oxidative stress, resulting from its reductive activation, suggests that some of its toxic effects may be caused by its reactive metabolites. Hence, further research on TNT metabolism is imperative to elucidate TNT-induced toxicities.
Collapse
Affiliation(s)
- Amma Gyapomah Adomako-Bonsu
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Jana Jacobsen
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany.
| |
Collapse
|
2
|
Nitroaromatic Hypoxia-Activated Prodrugs for Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:ph15020187. [PMID: 35215299 PMCID: PMC8878295 DOI: 10.3390/ph15020187] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 02/04/2023] Open
Abstract
The presence of “hypoxic” tissue (with O2 levels of <0.1 mmHg) in solid tumours, resulting in quiescent tumour cells distant from blood vessels, but capable of being reactivated by reoxygenation following conventional therapy (radiation or drugs), have long been known as a limitation to successful cancer chemotherapy. This has resulted in a sustained effort to develop nitroaromatic “hypoxia-activated prodrugs” designed to undergo enzyme-based nitro group reduction selectively in these hypoxic regions, to generate active drugs. Such nitro-based prodrugs can be classified into two major groups; those activated either by electron redistribution or by fragmentation following nitro group reduction, relying on the extraordinary difference in electron demand between an aromatic nitro group and its reduction products. The vast majority of hypoxia-activated fall into the latter category and are discussed here classed by the nature of their nitroaromatic trigger units.
Collapse
|
3
|
Čėnas N, Nemeikaitė-Čėnienė A, Kosychova L. Single- and Two-Electron Reduction of Nitroaromatic Compounds by Flavoenzymes: Mechanisms and Implications for Cytotoxicity. Int J Mol Sci 2021; 22:ijms22168534. [PMID: 34445240 PMCID: PMC8395237 DOI: 10.3390/ijms22168534] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Nitroaromatic compounds (ArNO2) maintain their importance in relation to industrial processes, environmental pollution, and pharmaceutical application. The manifestation of toxicity/therapeutic action of nitroaromatics may involve their single- or two-electron reduction performed by various flavoenzymes and/or their physiological redox partners, metalloproteins. The pivotal and still incompletely resolved questions in this area are the identification and characterization of the specific enzymes that are involved in the bioreduction of ArNO2 and the establishment of their contribution to cytotoxic/therapeutic action of nitroaromatics. This review addresses the following topics: (i) the intrinsic redox properties of ArNO2, in particular, the energetics of their single- and two-electron reduction in aqueous medium; (ii) the mechanisms and structure-activity relationships of reduction in ArNO2 by flavoenzymes of different groups, dehydrogenases-electrontransferases (NADPH:cytochrome P-450 reductase, ferredoxin:NADP(H) oxidoreductase and their analogs), mammalian NAD(P)H:quinone oxidoreductase, bacterial nitroreductases, and disulfide reductases of different origin (glutathione, trypanothione, and thioredoxin reductases, lipoamide dehydrogenase), and (iii) the relationships between the enzymatic reactivity of compounds and their activity in mammalian cells, bacteria, and parasites.
Collapse
Affiliation(s)
- Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
- Correspondence: ; Tel.: +370-5-223-4392
| | - Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania;
| | - Lidija Kosychova
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
4
|
Spatially-resolved pharmacokinetic/pharmacodynamic modelling of bystander effects of a nitrochloromethylbenzindoline hypoxia-activated prodrug. Cancer Chemother Pharmacol 2021; 88:673-687. [PMID: 34245333 DOI: 10.1007/s00280-021-04320-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Hypoxia-activated prodrugs (HAPs) have the potential for eliminating chemo- and radiation-resistant hypoxic tumour cells, but their activity is often compromised by limited penetration into hypoxic zones. Nitrochloromethylbenzindoline (nitroCBI) HAPs are reduced in hypoxic cells to highly cytotoxic DNA minor groove alkylating aminoCBI metabolites. In this study, we investigate whether a lead nitroCBI, SN30548, generates a significant bystander effect through the diffusion of its aminoCBI metabolite and whether this compensates for any diffusion limitations of the prodrug in tumour tissue. METHODS Metabolism and uptake of the nitroCBI in oxic and anoxic cells, and diffusion through multicellular layer cultures, was characterised by LC-MS/MS. To quantify bystander effects, clonogenic cell killing of HCT116 cells was assessed in multicellular spheroid co-cultures comprising cells transfected with cytochrome P450 oxidoreductase (POR) or E. coli nitroreductase NfsA. Spatially-resolved pharmacokinetic/pharmacodynamic (PK/PD) models, parameterised by the above measurements, were developed for spheroids and tumours using agent-based and Green's function modelling, respectively. RESULTS NitroCBI was reduced to aminoCBI by POR under anoxia and by NfsA under oxia, and was the only significant cytotoxic metabolite in both cases. In spheroid co-cultures comprising 30% NfsA-expressing cells, non-metabolising cells were as sensitive as the NfsA cells, demonstrating a marked bystander effect. Agent-based PK/PD models provided good prediction of cytotoxicity in spheroids, while use of the same parameters in a Green's function model for a tumour microregion demonstrated that local diffusion of aminoCBI overcomes the penetration limitation of the prodrug. CONCLUSIONS The nitroCBI HAP SN30548 generates a highly efficient bystander effect through local diffusion of its active metabolite in tumour tissue.
Collapse
|
5
|
Sharrock AV, McManaway SP, Rich MH, Mumm JS, Hermans IF, Tercel M, Pruijn FB, Ackerley DF. Engineering the Escherichia coli Nitroreductase NfsA to Create a Flexible Enzyme-Prodrug Activation System. Front Pharmacol 2021; 12:701456. [PMID: 34163368 PMCID: PMC8215503 DOI: 10.3389/fphar.2021.701456] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/24/2021] [Indexed: 11/13/2022] Open
Abstract
Bacterial nitroreductase enzymes that can efficiently convert nitroaromatic prodrugs to a cytotoxic form have numerous applications in targeted cellular ablation. For example, the generation of cytotoxic metabolites that have low bystander potential (i.e., are largely confined to the activating cell) has been exploited for precise ablation of specific cell types in animal and cell-culture models; while enzyme-prodrug combinations that generate high levels of bystander cell killing are useful for anti-cancer strategies such as gene-directed enzyme-prodrug therapy (GDEPT). Despite receiving substantial attention for such applications, the canonical nitroreductase NfsB from Escherichia coli has flaws that limit its utility, in particular a low efficiency of conversion of most prodrugs. Here, we sought to engineer a superior broad-range nitroreductase, E. coli NfsA, for improved activity with three therapeutically-relevant prodrugs: the duocarmycin analogue nitro-CBI-DEI, the dinitrobenzamide aziridine CB1954 and the 5-nitroimidazole metronidazole. The former two prodrugs have applications in GDEPT, while the latter has been employed for targeted ablation experiments and as a precise 'off-switch' in GDEPT models to eliminate nitroreductase-expressing cells. Our lead engineered NfsA (variant 11_78, with the residue substitutions S41Y, L103M, K222E and R225A) generated reduced metabolites of CB1954 and nitro-CBI-DEI that exhibited high bystander efficiencies in both bacterial and 2D HEK-293 cell culture models, while no cell-to-cell transfer was evident for the reduced metronidazole metabolite. We showed that the high bystander efficiency for CB1954 could be attributed to near-exclusive generation of the 2-hydroxylamine reduction product, which has been shown in 3D cell culture to cause significantly greater bystander killing than the 4-hydroxylamine species that is also produced by NfsB. We similarly observed a high bystander effect for nitro-CBI-DEI in HCT-116 tumor spheroids in which only a small proportion of cells were expressing variant 11_78. Collectively, our data identify variant 11_78 as a broadly improved prodrug-activating nitroreductase that offers advantages for both targeted cellular ablation and suicide gene therapy applications.
Collapse
Affiliation(s)
- Abigail V. Sharrock
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Sarah P. McManaway
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Michelle H. Rich
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Jeff S. Mumm
- The Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Ian F. Hermans
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Moana Tercel
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - Frederik B. Pruijn
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
- Auckland Cancer Society Research Centre, The University of Auckland, Auckland, New Zealand
| | - David F. Ackerley
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
- Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
6
|
Hay MP, Shin HN, Wong WW, Sahimi WW, Vaz ATD, Yadav P, Anderson RF, Hicks KO, Wilson WR. Benzotriazine Di-Oxide Prodrugs for Exploiting Hypoxia and Low Extracellular pH in Tumors. Molecules 2019; 24:E2524. [PMID: 31295864 PMCID: PMC6680510 DOI: 10.3390/molecules24142524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 12/31/2022] Open
Abstract
Extracellular acidification is an important feature of tumor microenvironments but has yet to be successfully exploited in cancer therapy. The reversal of the pH gradient across the plasma membrane in cells that regulate intracellular pH (pHi) has potential to drive the selective uptake of weak acids at low extracellular pH (pHe). Here, we investigate the dual targeting of low pHe and hypoxia, another key feature of tumor microenvironments. We prepared eight bioreductive prodrugs based on the benzotriazine di-oxide (BTO) nucleus by appending alkanoic or aminoalkanoic acid sidechains. The BTO acids showed modest selectivity for both low pHe (pH 6.5 versus 7.4, ratios 2 to 5-fold) and anoxia (ratios 2 to 8-fold) in SiHa and FaDu cell cultures. Related neutral BTOs were not selective for acidosis, but had greater cytotoxic potency and hypoxic selectivity than the BTO acids. Investigation of the uptake and metabolism of representative BTO acids confirmed enhanced uptake at low pHe, but lower intracellular concentrations than expected for passive diffusion. Further, the modulation of intracellular reductase activity and competition by the cell-excluded electron acceptor WST-1 suggests that the majority of metabolic reductions of BTO acids occur at the cell surface, compromising the engagement of the resulting free radicals with intracellular targets. Thus, the present study provides support for designing bioreductive prodrugs that exploit pH-dependent partitioning, suggesting, however, that that the approach should be applied to prodrugs with obligate intracellular activation.
Collapse
Affiliation(s)
- Michael P Hay
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Symonds St, Auckland 1142, New Zealand
| | - Hong Nam Shin
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Way Wua Wong
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Wan Wan Sahimi
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Aaron T D Vaz
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Pooja Yadav
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Robert F Anderson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Symonds St, Auckland 1142, New Zealand
- School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Kevin O Hicks
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Symonds St, Auckland 1142, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Symonds St, Auckland 1142, New Zealand.
| |
Collapse
|
7
|
Lee HH, Dickson BD, Stevenson RJ, Yang S, Tercel M. Optimised synthesis of a nitroCBI hypoxia-activated prodrug with substantial anticancer activity. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Sharma A, Arambula JF, Koo S, Kumar R, Singh H, Sessler JL, Kim JS. Hypoxia-targeted drug delivery. Chem Soc Rev 2019; 48:771-813. [PMID: 30575832 PMCID: PMC6361706 DOI: 10.1039/c8cs00304a] [Citation(s) in RCA: 341] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia is a state of low oxygen tension found in numerous solid tumours. It is typically associated with abnormal vasculature, which results in a reduced supply of oxygen and nutrients, as well as impaired delivery of drugs. The hypoxic nature of tumours often leads to the development of localized heterogeneous environments characterized by variable oxygen concentrations, relatively low pH, and increased levels of reactive oxygen species (ROS). The hypoxic heterogeneity promotes tumour invasiveness, metastasis, angiogenesis, and an increase in multidrug-resistant proteins. These factors decrease the therapeutic efficacy of anticancer drugs and can provide a barrier to advancing drug leads beyond the early stages of preclinical development. This review highlights various hypoxia-targeted and activated design strategies for the formulation of drugs or prodrugs and their mechanism of action for tumour diagnosis and treatment.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | | | | | | | | | | | | |
Collapse
|
9
|
Evaluating the abilities of diverse nitroaromatic prodrug metabolites to exit a model Gram negative vector for bacterial-directed enzyme-prodrug therapy. Biochem Pharmacol 2018; 158:192-200. [PMID: 30352235 DOI: 10.1016/j.bcp.2018.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/17/2018] [Indexed: 12/12/2022]
Abstract
Gene-directed enzyme-prodrug therapy (GDEPT) employs tumour-tropic vectors including viruses and bacteria to deliver a genetically-encoded prodrug-converting enzyme to the tumour environment, thereby sensitising the tumour to the prodrug. Nitroreductases, able to activate a range of promising nitroaromatic prodrugs to genotoxic metabolites, are of great interest for GDEPT. The bystander effect (cell-to-cell transfer of activated prodrug metabolites) has been quantified for some nitroaromatic prodrugs in mixed multilayer human cell cultures, however while these provide a good model for viral DEPT (VDEPT) they do not inform on the ability of these prodrug metabolites to exit bacterial vectors (relevant to bacterial-DEPT (BDEPT)). To investigate this we grew two Escherichia coli strains in co-culture; an activator strain expressing the nitroreductase E. coli NfsA and a recipient strain containing an SOS-GFP DNA damage responsive gene construct. In this system, induction of GFP by reduced prodrug metabolites can only occur following their transfer from the activator to the recipient cells. We used this to investigate five clinically relevant prodrugs: metronidazole, CB1954, nitro-CBI-DEI, and two dinitrobenzamide mustard prodrug analogues, PR-104A and SN27686. Consistent with the bystander efficiencies previously measured in human cell multilayers, reduced metronidazole exhibited little bacterial cell-to-cell transfer, whereas nitro-CBI-DEI was passed very efficiently from activator to recipient cells post-reduction. However, in contrast with observations in human cell multilayers, the nitrogen mustard prodrug metabolites were not effectively passed between the two bacterial strains, whereas reduced CB1954 was transferred efficiently. Using nitroreductase enzymes that exhibit different biases for the 2- versus 4-nitro substituents of CB1954, we further showed that the 2-nitro reduction products exhibit substantially higher levels of bacterial cell-to-cell transfer than the 4-nitro reduction products, consistent with their relative bystander efficiencies in human cell culture. Overall, our data suggest that prodrugs may differ in their suitability for VDEPT versus BDEPT applications and emphasise the importance of evaluating an enzyme-prodrug partnership in an appropriate context for the intended vector.
Collapse
|
10
|
Mild C(sp 3)-H functionalization of dihydrosanguinarine and dihydrochelerythrine for development of highly cytotoxic derivatives. Eur J Med Chem 2017. [PMID: 28641156 DOI: 10.1016/j.ejmech.2017.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A series of C(6)-substituted dihydrobenzo[c]phenanthridines were synthesized by mild copper-catalyzed C(sp3)-H functionalization of dihydrosanguinarine (2) and dihydrochelerythrine (3) with certain nucleophiles selected to enhance cytotoxicity against human breast, colorectal, and prostate cancer cell lines. We also investigated the cytotoxicity of our previously reported C(6)-functionalized N-methyl-5,6-dihydrobenzo[c]phenanthridines 1a-1e to perform structure-activity relationship (SAR) studies. Among the target compounds, five β-aminomalonates (1a, 1b, 2a, 2b, and 3b), one α-aminophosphonate (2c), and one nitroalkyl derivative (2h) exhibited half maximal inhibitory concentration (IC50) values in the range of 0.6-8.2 μM. Derivatives 1b, 2b and 2h showed the lowest IC50 values, with 2b being the most potent with values comparable to those of the positive control doxorubicin. On the basis of their IC50 values, derivatives 1a, 1b, 2a, 2b, 2h, and 3b were selected to evaluate the apoptotic PC-3 cell death at 10 μM by flow cytometry using propidium iodide and fluorescein isothiocyanate-conjugated Annexin V dual staining. The results indicated that the cytotoxic activity of the tested compounds in PC-3 cells is due to the induction of apoptosis, with 1a and 2h being the most active (55% of early apoptosis induction). Our preliminary SAR study showed that the incorporation of specific malonic esters, dialkyl phosphites and nitro alkanes on scaffolds 1-3 significantly enhanced their cytotoxic properties. Moreover, it appears that the electron donating 7,8-methylenedioxy group allowed derivatives of 2 to exhibit higher cytotoxicity than derivatives of 1 and 3. The present results suggest that derivatives 2b and 2h may be considered as potential lead compounds for the development of new anticancer agents.
Collapse
|
11
|
Tercel M, Lee HH, Mehta SY, Youte Tendoung JJ, Bai SY, Liyanage HDS, Pruijn FB. Influence of a Basic Side Chain on the Properties of Hypoxia-Selective Nitro Analogues of the Duocarmycins: Demonstration of Substantial Anticancer Activity in Combination with Irradiation or Chemotherapy. J Med Chem 2017. [PMID: 28644035 DOI: 10.1021/acs.jmedchem.7b00563] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A new series of nitro analogues of the duocarmycins was prepared and evaluated for hypoxia-selective anticancer activity. The compounds incorporate 13 different amine-containing side chains designed to bind in the minor groove of DNA while spanning a wide range of base strength from pKa 9.64 to 5.24. The most favorable in vitro properties were associated with strongly basic side chains, but the greatest in vivo antitumor activity was found for compounds containing a weakly basic morpholine. This applies to single-agent activity and for activity in combination with irradiation or chemotherapy (gemcitabine or docetaxel). In combination with a single dose of γ irradiation 50 at 42 μmol/kg eliminated detectable clonogens in some SiHa cervical carcinoma xenografts, and in combination with gemcitabine using a well-tolerated multidose schedule, the same compound caused regression of all treated A2780 ovarian tumor xenografts. In the latter experiment, three of seven animals receiving the combination treatment were completely tumor free at day 100.
Collapse
Affiliation(s)
- Moana Tercel
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Ho H Lee
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Sunali Y Mehta
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Jean-Jacques Youte Tendoung
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Sally Y Bai
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - H D Sarath Liyanage
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| | - Frederik B Pruijn
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
12
|
Abstract
INTRODUCTION Utilizing the prodrug approach as a method to overcome various pharmaceutical and pharmacokinetic barriers to drug delivery is significantly accelerating and achieving successes. In contrast to the older traditional prodrugs which suffer from decreased bioavailability and a high profile of side effects, due to activation at undesired sites, the targeted prodrug approach utilizes delivery systems to improve delivery for a wide range of therapeutics including anti-cancer, anti-bacterial and anti-inflammatory drugs. AREAS COVERED Recent updates in utilization of prodrugs in drug delivery between 2013 and 2015 are discussed. Targeted prodrugs against cancer, solid tumors, microbial infections, inflammation and other diseases using advanced delivery systems such as theranostic approaches, siRNA, DOX immunoconjugate, C 60-ser carrier vector, biotinylated prodrug, human serum albumin (HSA) carrier and others are presented. EXPERT OPINION Recent research efforts have been directed at developing targeted prodrugs to replace the classical prodrugs. The use of this approach has accelerated following the emergence of encouraging results from several studies on targeted prodrugs that have highlighted their higher efficiency and improved safety profiles. Targeted prodrug delivery is now considered more than a chemical modification method. It is an applicable and promising approach and, in the future, better knowledge and wide application of this approach may be attained which may pave the way for more forward-thinking and creative techniques.
Collapse
Affiliation(s)
- Wajd Amly
- a Pharmaceutical Sciences Department, Faculty of Pharmacy , Al-Quds University , Jerusalem , Palestine , Israel
| | - Rafik Karaman
- a Pharmaceutical Sciences Department, Faculty of Pharmacy , Al-Quds University , Jerusalem , Palestine , Israel.,b Department of Sciences , University of Basilicata , Potenza , Italy
| |
Collapse
|
13
|
Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility. Biochem J 2015; 471:131-53. [PMID: 26431849 DOI: 10.1042/bj20150650] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review examines the vast catalytic and therapeutic potential offered by type I (i.e. oxygen-insensitive) nitroreductase enzymes in partnership with nitroaromatic prodrugs, with particular focus on gene-directed enzyme prodrug therapy (GDEPT; a form of cancer gene therapy). Important first indications of this potential were demonstrated over 20 years ago, for the enzyme-prodrug pairing of Escherichia coli NfsB and CB1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide]. However, it has become apparent that both the enzyme and the prodrug in this prototypical pairing have limitations that have impeded their clinical progression. Recently, substantial advances have been made in the biodiscovery and engineering of superior nitroreductase variants, in particular development of elegant high-throughput screening capabilities to enable optimization of desirable activities via directed evolution. These advances in enzymology have been paralleled by advances in medicinal chemistry, leading to the development of second- and third-generation nitroaromatic prodrugs that offer substantial advantages over CB1954 for nitroreductase GDEPT, including greater dose-potency and enhanced ability of the activated metabolite(s) to exhibit a local bystander effect. In addition to forging substantial progress towards future clinical trials, this research is supporting other fields, most notably the development and improvement of targeted cellular ablation capabilities in small animal models, such as zebrafish, to enable cell-specific physiology or regeneration studies.
Collapse
|
14
|
Tercel M, Pruijn FB, O'Connor PD, Liyanage HDS, Atwell GJ, Alix SM. Mechanism of action of AminoCBIs: highly reactive but highly cytotoxic analogues of the duocarmycins. Chembiochem 2014; 15:1998-2006. [PMID: 25087870 DOI: 10.1002/cbic.201402256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Indexed: 11/09/2022]
Abstract
Duocarmycins are highly cytotoxic natural products that have potential for development into anticancer agents. Herein we describe proposed but previously unidentified NH analogues of the DNA-alkylating subunit and characterise these by solvolysis studies, NMR and computational modelling. These compounds are shown to be the exclusive intermediates in the solvolysis of their seco precursors and to possess very similar structural features to the widely studied O-based analogues, apart from an unusually high basicity. The measured pKa of 10.5 implies that the NH compounds are fully protonated under physiological conditions. Remarkably, their extremely high reactivity (calculated hydrolysis rate 10(8) times higher for protonated NH compared to the neutral O analogue) is still compatible with potent cytotoxicity, provided the active species is formed in the presence of cells. These surprising findings are of relevance to the design of duocarmycin-based tumour-selective therapies.
Collapse
Affiliation(s)
- Moana Tercel
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand).
| | | | | | | | | | | |
Collapse
|
15
|
Tercel M, McManaway SP, Liyanage HDS, Pruijn FB. Preparation and properties of clickable amino analogues of the duocarmycins: factors that affect the efficiency of their fluorescent labelling of DNA. ChemMedChem 2014; 9:2193-206. [PMID: 25044224 DOI: 10.1002/cmdc.201402169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Indexed: 12/31/2022]
Abstract
Herein we report the synthesis of three DNA-alkylating amino analogues of the duocarmycins that carry an alkyne functional group suitable for copper-catalysed click chemistry. The alkyne-containing substituents are connected via a side chain position which projects away from the minor groove, and have only a small effect on DNA alkylation and cytotoxicity. The efficiency of click reactions with fluorophore azides was studied using alkylated ctDNA by analysing the adenine adducts produced after thermal depurination. Click reactions "on DNA" were sensitive to steric effects (tether length to the alkyne) and, surprisingly, to the nature of the fluorophore azide. With the best combination of click partners and reagents, adducts could be detected in the nuclei of treated cells by microscopy or flow cytometry, provided that an appropriate detergent (Triton X-100 and not Tween 20) was used for permeabilisation. The method is sensitive enough to detect adducts at physiologically relevant concentrations, and could have application in the development of nitro analogues of the duocarmycins as hypoxia-activated anticancer prodrugs.
Collapse
Affiliation(s)
- Moana Tercel
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand), Fax: (+64) 9373-7502.
| | | | | | | |
Collapse
|
16
|
Hunter FW, Jaiswal JK, Hurley DG, Liyanage HDS, McManaway SP, Gu Y, Richter S, Wang J, Tercel M, Print CG, Wilson WR, Pruijn FB. The flavoprotein FOXRED2 reductively activates nitro-chloromethylbenzindolines and other hypoxia-targeting prodrugs. Biochem Pharmacol 2014; 89:224-35. [PMID: 24632291 DOI: 10.1016/j.bcp.2014.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/04/2014] [Accepted: 03/04/2014] [Indexed: 11/28/2022]
Abstract
The nitro-chloromethylbenzindoline prodrug SN29428 has been rationally designed to target tumour hypoxia. SN29428 is metabolised to a DNA minor groove alkylator via oxygen-sensitive reductive activation initiated by unknown one-electron reductases. The present study sought to identify reductases capable of activating SN29428 in tumours. Expression of candidate reductases in cell lines was modulated using forced expression and, for P450 (cytochrome) oxidoreductase (POR), by zinc finger nuclease-mediated gene knockout. Affymetrix microarray mRNA expression of flavoreductases was correlated with SN29428 activation in a panel of 23 cancer cell lines. Reductive activation and cytotoxicity of prodrugs were measured using mass spectrometry and antiproliferative assays, respectively. SN29428 activation under hypoxia was strongly attenuated by the pan-flavoprotein inhibitor diphenyliodonium, but less so by knockout of POR suggesting other flavoreductases contribute. Forced expression of 5-methyltetrahydrofolate-homocysteine methyltransferase reductase (MTRR), as well as POR, increased activation of SN29428 in hypoxic HCT 116 cells. SN29428 activation strongly correlated with expression of POR and also FAD-dependent oxidoreductase domain containing 2 (FOXRED2), in cancer cell lines. This association persisted after removing the effect of POR enzyme activity using first-order partial correlation. Forced expression of FOXRED2 increased SN29428 activation and cytotoxicity in hypoxic HEK293 cells and also increased activation of hypoxia-targeted prodrugs PR-104A, tirapazamine and SN30000, and increased cytotoxicity of the clinical-stage prodrug TH-302. Thus this study has identified three flavoreductases capable of enzymatically activating SN29428, one of which (FOXRED2) has not previously been implicated in xenobiotic metabolism. These results will inform future development of biomarkers predictive of SN29428 sensitivity.
Collapse
Affiliation(s)
- Francis W Hunter
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jagdish K Jaiswal
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Daniel G Hurley
- Department of Molecular Medicine and Pathology and Bioinformatics Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - H D Sarath Liyanage
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Sarah P McManaway
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yongchuan Gu
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Susan Richter
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jingli Wang
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Moana Tercel
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Cristin G Print
- Department of Molecular Medicine and Pathology and Bioinformatics Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William R Wilson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Frederik B Pruijn
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
17
|
The Flavin Reductase MsuE Is a Novel Nitroreductase that Can Efficiently Activate Two Promising Next-Generation Prodrugs for Gene-Directed Enzyme Prodrug Therapy. Cancers (Basel) 2013; 5:985-97. [PMID: 24202330 PMCID: PMC3795375 DOI: 10.3390/cancers5030985] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 11/20/2022] Open
Abstract
Bacterial nitroreductase enzymes that can efficiently catalyse the oxygen-independent reduction of prodrugs originally developed to target tumour hypoxia offer great potential for expanding the therapeutic range of these molecules to aerobic tumour regions, via the emerging cancer strategy of gene-directed enzyme prodrug therapy (GDEPT). Two promising hypoxia prodrugs for GDEPT are the dinitrobenzamide mustard PR-104A, and the nitrochloromethylbenzindoline prodrug nitro-CBI-DEI. We describe here use of a nitro-quenched fluorogenic probe to identify MsuE from Pseudomonas aeruginosa as a novel nitroreductase candidate for GDEPT. In SOS and bacteria-delivered enzyme prodrug cytotoxicity assays MsuE was less effective at activating CB1954 (a first-generation GDEPT prodrug) than the “gold standard” nitroreductases NfsA and NfsB from Escherichia coli. However, MsuE exhibited comparable levels of activity with PR-104A and nitro-CBI-DEI, and is the first nitroreductase outside of the NfsA and NfsB enzyme families to do so. These in vitro findings suggest that MsuE is worthy of further evaluation in in vivo models of GDEPT.
Collapse
|
18
|
Green LK, Syddall SP, Carlin KM, Bell GD, Guise CP, Mowday AM, Hay MP, Smaill JB, Patterson AV, Ackerley DF. Pseudomonas aeruginosa NfsB and nitro-CBI-DEI--a promising enzyme/prodrug combination for gene directed enzyme prodrug therapy. Mol Cancer 2013; 12:58. [PMID: 23758947 PMCID: PMC3695803 DOI: 10.1186/1476-4598-12-58] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nitro-chloromethylbenzindoline prodrug nitro-CBI-DEI appears a promising candidate for the anti-cancer strategy gene-directed enzyme prodrug therapy, based on its ability to be converted to a highly cytotoxic cell-permeable derivative by the nitroreductase NfsB from Escherichia coli. However, relative to some other nitroaromatic prodrugs, nitro-CBI-DEI is a poor substrate for E. coli NfsB. To address this limitation we evaluated other nitroreductase candidates from E. coli and Pseudomonas aeruginosa. FINDINGS Initial screens of candidate genes in the E. coli reporter strain SOS-R2 identified two additional nitroreductases, E. coli NfsA and P. aeruginosa NfsB, as being more effective activators of nitro-CBI-DEI than E. coli NfsB. In monolayer cytotoxicity assays, human colon carcinoma (HCT-116) cells transfected with P. aeruginosa NfsB were >4.5-fold more sensitive to nitro-CBI-DEI than cells expressing either E. coli enzyme, and 23.5-fold more sensitive than untransfected HCT-116. In three dimensional mixed cell cultures, not only were the P. aeruginosa NfsB expressing cells 540-fold more sensitive to nitro-CBI-DEI than pure cultures of untransfected HCT-116, the activated drug that they generated also displayed an unprecedented local bystander effect. CONCLUSION We posit that the discrepancy in the fold-sensitivity to nitro-CBI-DEI between the two and three dimensional cytotoxicity assays stems from loss of activated drug into the media in the monolayer cultures. This emphasises the importance of evaluating high-bystander GDEPT prodrugs in three dimensional models. The high cytotoxicity and bystander effect exhibited by the NfsB_Pa/nitro-CBI-DEI combination suggest that further preclinical development of this GDEPT pairing is warranted.
Collapse
Affiliation(s)
- Laura K Green
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tercel M, McManaway SP, Leung E, Liyanage HDS, Lu GL, Pruijn FB. The Cytotoxicity of Duocarmycin Analogues is Mediated through Alkylation of DNA, not Aldehyde Dehydrogenase 1: A Comment. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Tercel M, McManaway SP, Leung E, Liyanage HDS, Lu GL, Pruijn FB. The Cytotoxicity of Duocarmycin Analogues is Mediated through Alkylation of DNA, not Aldehyde Dehydrogenase 1: A Comment. Angew Chem Int Ed Engl 2013; 52:5442-6. [DOI: 10.1002/anie.201208373] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Indexed: 12/29/2022]
|
21
|
Stevenson RJ, Denny WA, Tercel M, Pruijn FB, Ashoorzadeh A. Nitro seco analogues of the duocarmycins containing sulfonate leaving groups as hypoxia-activated prodrugs for cancer therapy. J Med Chem 2012; 55:2780-802. [PMID: 22339090 DOI: 10.1021/jm201717y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The synthesis of 19 (5-nitro-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl sulfonate prodrugs containing sulfonate leaving groups and 7-substituted electron-withdrawing groups is reported. These were designed to undergo hypoxia-selective metabolism to form potent DNA minor groove-alkylating agents. Analogues 17 and 24, containing the benzyl sulfonate leaving group and a neutral DNA minor groove-binding side chain, displayed hypoxic cytotoxicity ratios (HCRs) of >1000 in HT29 human cancer cells in vitro in an antiproliferative assay. Four analogues maintained large HCRs across a panel of eight human cancer cell lines. In a clonogenic assay, 19 showed an HCR of 4090 in HT29 cells. Ten soluble phosphate preprodrugs were also prepared and evaluated in vivo, alone and in combination with radiation in SiHa human tumor xenografts at a nontoxic dose. Compounds 34 and 39 displayed hypoxic log(10) cell kills (LCKs) of 1.78 and 2.71, respectively, equivalent or superior activity to previously reported chloride or bromide analogues, thus showing outstanding promise as hypoxia-activated prodrugs.
Collapse
Affiliation(s)
- Ralph J Stevenson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | | | | | | | |
Collapse
|
22
|
Hunter FW, Wang J, Patel R, Hsu HL, Hickey AJR, Hay MP, Wilson WR. Homologous recombination repair-dependent cytotoxicity of the benzotriazine di-N-oxide CEN-209: comparison with other hypoxia-activated prodrugs. Biochem Pharmacol 2011; 83:574-85. [PMID: 22182429 DOI: 10.1016/j.bcp.2011.12.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/29/2011] [Accepted: 12/01/2011] [Indexed: 11/30/2022]
Abstract
CEN-209 (SN30000) is a second-generation benzotriazine di-N-oxide currently in advanced preclinical development as a hypoxia-activated prodrug (HAP). Herein we describe the DNA repair-, hypoxia- and one-electron reductase-dependence of CEN-209 cytotoxicity. We deployed mutant CHO cell lines to generate DNA repair profiles for CEN-209, and compared the profiles with those for other HAPs. Hypoxic selectivity of CEN-209 was significantly greater than PR-104A and the nitro-chloromethylbenzindoline (nCBI/SN29428) and comparable to tirapazamine and TH-302. CEN-209 was selective for homologous recombination (HR) repair-deficient cells (Rad51d⁻/⁻), but less so than nitrogen mustard prodrugs TH-302 and PR-104A. Further, DNA repair profiles for CEN-209 differed under oxic and hypoxic conditions, with oxic cytotoxicity more dependent on HR. This feature was conserved across all three members of the benzotriazine di-N-oxide class examined (tirapazamine, CEN-209 and CEN-309/SN29751). Enhancing one-electron reduction of CEN-209 by forced expression of a soluble form of NADPH:cytochrome P450 oxidoreductase (sPOR) increased CEN-209 cytotoxicity more markedly under oxic than hypoxic conditions. Comparison of oxygen consumption, H₂O₂ production and metabolism of CEN-209 to the corresponding 1-oxide and nor-oxide reduced metabolites suggested that enhanced oxic cytotoxicity in cells with high one-electron reductase activity is due to futile redox cycling. This study supports the hypothesis that both oxic and hypoxic cell killing by CEN-209 is mechanistically analogous to tirapazamine and is dependent on oxidative DNA damage repaired via multiple pathways. However, HAPs that generate DNA interstrand cross-links, such as TH-302 and PR-104, may be more suitable than benzotriazine di-N-oxides for exploiting reported HR repair defects in hypoxic tumour cells.
Collapse
Affiliation(s)
- Francis W Hunter
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
23
|
A new enantioselective approach to the core structure of hypoxia selective prodrugs related to the duocarmycins. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.10.105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
The effect of a bromide leaving group on the properties of nitro analogs of the duocarmycins as hypoxia-activated prodrugs and phosphate pre-prodrugs for antitumor therapy. Bioorg Med Chem 2011; 19:5989-98. [DOI: 10.1016/j.bmc.2011.08.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/17/2011] [Accepted: 08/20/2011] [Indexed: 11/20/2022]
|
25
|
Tercel M, Lee HH, Yang S, Liyanage HDS, Mehta SY, Boyd PDW, Jaiswal JK, Tan KL, Pruijn FB. Preparation and antitumour properties of the enantiomers of a hypoxia-selective nitro analogue of the duocarmycins. ChemMedChem 2011; 6:1860-71. [PMID: 21793220 DOI: 10.1002/cmdc.201100271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 07/07/2011] [Indexed: 11/10/2022]
Abstract
Racemic 2-{[1-(chloromethyl)-5-nitro-3-{5-[2-(dimethylamino)ethoxy]indol-2-carbonyl}-1,2-dihydro-3H-benzo[e]indol-7-yl]sulfonyl}aminoethyl dihydrogen phosphate, a synthetic nitro derivative of the duocarmycins, is a hypoxia-selective prodrug active against radiation-resistant tumour cells at nontoxic doses in mice. An intermediate in the synthesis of this prodrug was resolved by chiral HPLC and the absolute configuration assigned by X-ray crystallography. The intermediate was used to prepare the prodrug's enantiomers, and also the enantiomers of the active nitro and amino metabolites. In vitro analysis in the human cervical carcinoma cell line SiHa showed that both nitro enantiomers are hypoxia-selective cytotoxins, but the "natural" S enantiomer is at least 20-fold more potent. Examination of extracellular amino metabolite concentrations demonstrated no enantioselectivity in the hypoxia-selective reduction of nitro to amino. Low levels of amino derivative were also found in aerobic cell suspensions, sufficient to account for the observed oxic toxicity of the nitro form. At an equimolar dose in SiHa-tumour bearing animals, the (-)-R enantiomer of the prodrug was inactive, while the (+)-S enantiomer caused significantly more hypoxic tumour cell kill than the racemate. At this dose, the combination of (+)-S-prodrug and radiation eliminated detectable colony-forming cells in four out of five treated tumour-bearing animals.
Collapse
Affiliation(s)
- Moana Tercel
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ashoorzadeh A, Atwell GJ, Pruijn FB, Wilson WR, Tercel M, Denny WA, Stevenson RJ. The effect of sulfonate leaving groups on the hypoxia-selective toxicity of nitro analogs of the duocarmycins. Bioorg Med Chem 2011; 19:4851-60. [PMID: 21767954 DOI: 10.1016/j.bmc.2011.06.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 06/22/2011] [Accepted: 06/26/2011] [Indexed: 10/18/2022]
Abstract
A series of 3-substituted (5-nitro-2,3-dihydro-1H-benzo[e]indol-1-yl)methyl sulfonate (nitroCBI) prodrugs containing sulfonate leaving groups undergo hypoxia-selective metabolism to form potent DNA minor groove alkylating agents. They were evaluated (along with chloride leaving group analogs for comparison) for their cytotoxicity against cultures of SKOV3 and HT29 human tumor cell lines under both aerobic and hypoxic conditions. Sulfonates with neutral side chains (e.g., 5,6,7-trimethoxyindole; TMI) show consistently higher hypoxic cytotoxicity ratios (HCRs) (34-246) than the corresponding chloro analogs (2.8-3.1) in SKOV3 cells, but these trends do not hold for compounds with cationic or polar neutral side chains.
Collapse
Affiliation(s)
- Amir Ashoorzadeh
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | | | | | |
Collapse
|
27
|
Tercel M, Atwell GJ, Yang S, Ashoorzadeh A, Stevenson RJ, Botting KJ, Gu Y, Mehta SY, Denny WA, Wilson WR, Pruijn FB. Selective Treatment of Hypoxic Tumor Cells In Vivo: Phosphate Pre-Prodrugs of Nitro Analogues of the Duocarmycins. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201004456] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
28
|
Tercel M, Atwell GJ, Yang S, Ashoorzadeh A, Stevenson RJ, Botting KJ, Gu Y, Mehta SY, Denny WA, Wilson WR, Pruijn FB. Selective treatment of hypoxic tumor cells in vivo: phosphate pre-prodrugs of nitro analogues of the duocarmycins. Angew Chem Int Ed Engl 2011; 50:2606-9. [PMID: 21370347 DOI: 10.1002/anie.201004456] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 01/02/2011] [Indexed: 11/07/2022]
Affiliation(s)
- Moana Tercel
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hypoxic selectivity and solubility—investigating the properties of A-ring substituted nitro seco-1,2,9,9a-tetrahydrocyclopropa[c]benz[e]indol-4-ones (nitroCBIs) as hypoxia-activated prodrugs for antitumor therapy. Bioorg Med Chem 2010; 18:4997-5006. [DOI: 10.1016/j.bmc.2010.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 06/01/2010] [Accepted: 06/02/2010] [Indexed: 11/30/2022]
|
30
|
Tercel M, Atwell GJ, Yang S, Stevenson RJ, Botting KJ, Boyd M, Smith E, Anderson RF, Denny WA, Wilson WR, Pruijn FB. Hypoxia-Activated Prodrugs: Substituent Effects on the Properties of Nitro seco-1,2,9,9a-Tetrahydrocyclopropa[c]benz[e]indol-4-one (nitroCBI) Prodrugs of DNA Minor Groove Alkylating Agents. J Med Chem 2009; 52:7258-72. [DOI: 10.1021/jm901202b] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Moana Tercel
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Graham J. Atwell
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Shangjin Yang
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ralph J. Stevenson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - K. Jane Botting
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Maruta Boyd
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Eileen Smith
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Robert F. Anderson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Department of Chemistry, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William A. Denny
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - William R. Wilson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Frederik B. Pruijn
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|