1
|
Zhang J, Yang Z, Zhao Z, Zhang N. Structural and pharmacological insights into cordycepin for neoplasms and metabolic disorders. Front Pharmacol 2024; 15:1367820. [PMID: 38953102 PMCID: PMC11215060 DOI: 10.3389/fphar.2024.1367820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Cytotoxic adenosine analogues were among the earliest chemotherapeutic agents utilised in cancer treatment. Cordycepin, a natural derivative of adenosine discovered in the fungus Ophiocordyceps sinensis, directly inhibits tumours not only by impeding biosynthesis, inducing apoptosis or autophagy, regulating the cell cycle, and curtailing tumour invasion and metastasis but also modulates the immune response within the tumour microenvironment. Furthermore, extensive research highlights cordycepin's significant therapeutic potential in alleviating hyperlipidaemia and regulating glucose metabolism. This review comprehensively analyses the structure-activity relationship of cordycepin and its analogues, outlines its pharmacokinetic properties, and strategies to enhance its bioavailability. Delving into the molecular biology, it explores the pharmacological mechanisms of cordycepin in tumour suppression and metabolic disorder treatment, thereby underscoring its immense potential in drug development within these domains and laying the groundwork for innovative treatment strategies.
Collapse
Affiliation(s)
- Jinming Zhang
- Department of Gastroenterology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ziling Yang
- Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Zhuo Zhao
- Department of Gastroenterology, First Hospital of Jilin University, Jilin University, Changchun, China
| | - Nan Zhang
- Department of Gastroenterology, First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
2
|
Mendiola M, Saarela J, Escudero FJ, Heredia-Soto V, Potdar S, Rodriguez-Marrero S, Miguel M, Pozo-Kreilinger JJ, Berjon A, Ortiz-Cruz E, Feliu J, Redondo A. Characterisation of new in vitro models and identification of potentially active drugs in angiosarcoma. Biomed Pharmacother 2024; 173:116397. [PMID: 38479181 DOI: 10.1016/j.biopha.2024.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/27/2024] Open
Abstract
Angiosarcoma is a rare soft tissue sarcoma originating from endothelial cells. Given that current treatments for advanced disease have shown limited efficacy, alternative therapies need to be identified. In rare diseases, patient-derived cell models are crucial for screening anti-tumour activity. In this study, cell line models were characterised in 2D and 3D cultures. The cell lines' growth, migration and invasion capabilities were explored, confirming them as useful tools for preclinical angiosarcoma studies. By screening a drug library, we identified potentially effective compounds: 8-amino adenosine impacted cell growth and inhibited migration and invasion at considerably low concentrations as a single agent. No synergistic effect was detected when combining with paclitaxel, gemcitabine or doxorubicin. These results suggest that this compound could be a potentially useful drug in the treatment of AGS.
Collapse
Affiliation(s)
- Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital Institute for Health Research (IdiPAZ), Madrid, Spain; Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Institute of Health Carlos III, Madrid, Spain.
| | - Jani Saarela
- Institute for Molecular Medicine Finland (FIMM), Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
| | | | - Victoria Heredia-Soto
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Institute of Health Carlos III, Madrid, Spain; Translational Oncology Research Laboratory, IdiPAZ, Madrid, Spain
| | - Swapnil Potdar
- Institute for Molecular Medicine Finland (FIMM), Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland
| | | | - Maria Miguel
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Jose Juan Pozo-Kreilinger
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital Institute for Health Research (IdiPAZ), Madrid, Spain; Department of Pathology, La Paz University Hospital (HULP), Madrid, Spain
| | - Alberto Berjon
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital Institute for Health Research (IdiPAZ), Madrid, Spain; Department of Pathology, La Paz University Hospital (HULP), Madrid, Spain
| | | | - Jaime Feliu
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Institute of Health Carlos III, Madrid, Spain; Translational Oncology Research Laboratory, IdiPAZ, Madrid, Spain; Department of Medical Oncology, HULP, Madrid, Spain; Cátedra UAM-ANGEM, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Andres Redondo
- Translational Oncology Research Laboratory, IdiPAZ, Madrid, Spain; Department of Medical Oncology, HULP, Madrid, Spain; Cátedra UAM-ANGEM, School of Medicine, Autonomous University of Madrid, Madrid, Spain.
| |
Collapse
|
3
|
Canar J, Manandhar-Sasaki P, Bargonetti J. Mutant C. elegans p53 Together with Gain-of-Function GLP-1/Notch Decreases UVC-Damage-Induced Germline Cell Death but Increases PARP Inhibitor-Induced Germline Cell Death. Cancers (Basel) 2022; 14:4929. [PMID: 36230851 PMCID: PMC9563635 DOI: 10.3390/cancers14194929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
The TP53 gene is mutated in over 50% of human cancers, and the C. elegansp53-1(cep-1) gene encodes the ortholog CEP-1. CEP-1 is activated by ultraviolet type C (UVC)-induced DNA damage and activates genes that induce germline apoptosis. UVC treatment of gain-of-function glp-1(ar202gf)/Notch tumorous animals reduces germline stem cell numbers (and overall tumor size), while UVC treatment of double-mutant cep-1/p53(gk138);glp-1/Notch(ar202gf) increases DNA damage adducts and stem cell tumor volume. We compared UVC-induced mitotic stem cell death and animal lifespans for the two different C. elegans tumorous strains. C. elegans stem cell compartment death has never been observed, and we used engulfed small stem cells, notable by green fluorescent puncta, to count cell death events. We found UVC treatment of glp-1(ar202gf) animals increased stem cell death and increased lifespan. However, UVC treatment of double-mutant cep-1/p53(gk138);glp-1/Notch(ar202gf) animals decreased stem cell death, increased tumor volume, and decreased animal lifespan. There are pharmacological agents that induce p53-independent cell death of human cells in culture; and two notable protocols are the PARP-trapping agents of temozolomide plus talazoparib and the nucleoside analogue 8-amino-adenosine. It is important to determine ways to rapidly test for pharmacological agents able to induce p53-independent cell death. We tested feeding cep-1/p53(gk138);glp-1/Notch(ar202gf) nematodes with either 8-amino-adenosine or temozolomide plus talazoparib and found both were able to decrease tumor volume. This is the first comparison for p53-independent responses in cep-1/p53(gk138);glp-1/Notch(ar202gf) animals and showed UVC DNA damage increased tumor volume and decreased lifespan while PARP inhibition decreased tumor volume.
Collapse
Affiliation(s)
- Jorge Canar
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
| | - Prima Manandhar-Sasaki
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- Macaulay Honors College at Hunter College, City University of New York, New York, NY 10065, USA
| | - Jill Bargonetti
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065, USA
- The Graduate Center, Departments of Biology and Biochemistry, City University of New York, New York, NY 10016, USA
- Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
4
|
Man S, Lu Y, Yin L, Cheng X, Ma L. Potential and promising anticancer drugs from adenosine and its analogs. Drug Discov Today 2021; 26:1490-1500. [PMID: 33639248 DOI: 10.1016/j.drudis.2021.02.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/03/2021] [Accepted: 02/16/2021] [Indexed: 02/07/2023]
Abstract
In recent years, many studies have shown that adenosine has efficacy for treating cancer. More importantly, some adenosine analogs have been successfully marketed to fulfill anticancer purposes. In this review, we summarize the anticancer effects of adenosine and its analogs in clinical trials and preclinical studies, with focus on their anticancer mechanisms. In addition, we link the anticancer activities of adenosine analogs with their structures through structure-activity relationship (SAR) analysis, and highlight additional promising anticancer drug candidates. We hope that this review will be of help in understanding the importance of adenosine and its analogs with anticancer activities and directing future research and development of such compounds.
Collapse
Affiliation(s)
- Shuli Man
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingying Lu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinkuan Cheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, National and Local United Engineering Lab of Metabolic Control Fermentation Technology, China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
5
|
4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol}, 1 a novel resveratrol analog, differentially regulates estrogen receptors α and β in breast cancer cells. Toxicol Appl Pharmacol 2016; 301:1-13. [PMID: 26970359 DOI: 10.1016/j.taap.2016.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 02/27/2016] [Accepted: 03/08/2016] [Indexed: 01/18/2023]
Abstract
Breast cancer is a public health concern worldwide. Prolonged exposure to estrogens has been implicated in the development of breast neoplasms. Epidemiologic and experimental evidence suggest a chemopreventive role of phytoestrogens in breast cancers. Resveratrol, a naturally occurring phytoestrogen, has been shown to have potent anti-cancer properties. However, poor efficacy and bioavailability have prevented the use of resveratrol in clinics. In order to address these problems, we have synthesized a combinatorial library of azaresveratrol analogs and tested them for their ability to inhibit the proliferation of breast cancer cells. We have recently shown that 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD), has better anti-cancer properties than resveratrol and any other resveratrol analog we have synthesized so far. The objective of this study was to investigate the regulation of estrogen receptors (ERs) α and β by TIMBD in breast cancer cell lines. We demonstrate that TIMBD significantly induces the mRNA and protein expression levels of ERβ and inhibits that of ERα. TIMBD inhibits mRNA and protein expression levels of oncogene c-Myc, and cell cycle protein cyclin D1, which are important regulators of cellular proliferation. TIMBD significantly induces protein expression levels of tumor suppressor genes p53 and p21 in MCF-7 cells. TIMBD inhibits c-Myc in an ERβ-dependent fashion in MCF-10A and ERβ1-transfected MDA-MB-231 cells, suggesting regulation of ERs as an important upstream mechanism of this analog. ERβ plays a partial role in inhibition of proliferation by TIMBD while ERα overexpression does not significantly affect TIMBD's inhibition.
Collapse
|
6
|
Rosso M, Polotskaia A, Bargonetti J. Homozygous mdm2 SNP309 cancer cells with compromised transcriptional elongation at p53 target genes are sensitive to induction of p53-independent cell death. Oncotarget 2015; 6:34573-91. [PMID: 26416444 PMCID: PMC4741474 DOI: 10.18632/oncotarget.5312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/07/2015] [Indexed: 11/25/2022] Open
Abstract
A single nucleotide polymorphism (T to G) in the mdm2 P2 promoter, mdm2 SNP309, leads to MDM2 overexpression promoting chemotherapy resistant cancers. Two mdm2 G/G SNP309 cancer cell lines, MANCA and A875, have compromised wild-type p53 that co-localizes with MDM2 on chromatin. We hypothesized that MDM2 in these cells inhibited transcription initiation at the p53 target genes p21 and puma. Surprisingly, following etoposide treatment transcription initiation occurred at the compromised target genes in MANCA and A875 cells similar to the T/T ML-1 cell line. In all cell lines tested there was equally robust recruitment of total and initiated RNA polymerase II (Pol II). We found that knockdown of MDM2 in G/G cells moderately increased expression of subsets of p53 target genes without increasing p53 stability. Importantly, etoposide and actinomycin D treatments increased histone H3K36 trimethylation in T/T, but not G/G cells, suggesting a G/G correlated inhibition of transcription elongation. We therefore tested a chemotherapeutic agent (8-amino-adenosine) that induces p53-independent cell death for higher clinically relevant cytotoxicity. We demonstrated that T/T and G/G mdm2 SNP309 cells were equally sensitive to 8-amino-adenosine induced cell death. In conclusion for cancer cells overexpressing MDM2, targeting MDM2 may be less effective than inducing p53-independent cell death.
Collapse
Affiliation(s)
- Melissa Rosso
- The Department of Biological Sciences Hunter College at The Belfer Research Building and The Graduate Center Biology PhD Program, CUNY, New York, NY 10021, USA
| | - Alla Polotskaia
- The Department of Biological Sciences Hunter College at The Belfer Research Building and The Graduate Center Biology PhD Program, CUNY, New York, NY 10021, USA
| | - Jill Bargonetti
- The Department of Biological Sciences Hunter College at The Belfer Research Building and The Graduate Center Biology PhD Program, CUNY, New York, NY 10021, USA
| |
Collapse
|
7
|
Polotskaia A, Xiao G, Reynoso K, Martin C, Qiu WG, Hendrickson RC, Bargonetti J. Proteome-wide analysis of mutant p53 targets in breast cancer identifies new levels of gain-of-function that influence PARP, PCNA, and MCM4. Proc Natl Acad Sci U S A 2015; 112:E1220-9. [PMID: 25733866 PMCID: PMC4371979 DOI: 10.1073/pnas.1416318112] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The gain-of-function mutant p53 (mtp53) transcriptome has been studied, but, to date, no detailed analysis of the mtp53-associated proteome has been described. We coupled cell fractionation with stable isotope labeling with amino acids in cell culture (SILAC) and inducible knockdown of endogenous mtp53 to determine the mtp53-driven proteome. Our fractionation data highlight the underappreciated biology that missense mtp53 proteins R273H, R280K, and L194F are tightly associated with chromatin. Using SILAC coupled to tandem MS, we identified that R273H mtp53 expression in MDA-MB-468 breast cancer cells up- and down-regulated multiple proteins and metabolic pathways. Here we provide the data set obtained from sequencing 73,154 peptide pairs that then corresponded to 3,010 proteins detected under reciprocal labeling conditions. Importantly, the high impact regulated targets included the previously identified transcriptionally regulated mevalonate pathway proteins but also identified two new levels of mtp53 protein regulation for nontranscriptional targets. Interestingly, mtp53 depletion profoundly influenced poly(ADP ribose) polymerase 1 (PARP1) localization, with increased cytoplasmic and decreased chromatin-associated protein. An enzymatic PARP shift occurred with high mtp53 expression, resulting in increased poly-ADP-ribosylated proteins in the nucleus. Mtp53 increased the level of proliferating cell nuclear antigen (PCNA) and minichromosome maintenance 4 (MCM4) proteins without changing the amount of pcna and mcm4 transcripts. Pathway enrichment analysis ranked the DNA replication pathway above the cholesterol biosynthesis pathway as a R273H mtp53 activated proteomic target. Knowledge of the proteome diversity driven by mtp53 suggests that DNA replication and repair pathways are major targets of mtp53 and highlights consideration of combination chemotherapeutic strategies targeting cholesterol biosynthesis and PARP inhibition.
Collapse
Affiliation(s)
- Alla Polotskaia
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065; and
| | - Gu Xiao
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065; and
| | - Katherine Reynoso
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065; and
| | - Che Martin
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065; and
| | - Wei-Gang Qiu
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065; and
| | - Ronald C Hendrickson
- Proteomics Core Facility, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Jill Bargonetti
- Department of Biological Sciences, Hunter College, City University of New York, New York, NY 10065; and
| |
Collapse
|
8
|
Ronghe A, Chatterjee A, Singh B, Dandawate P, Murphy L, Bhat NK, Padhye S, Bhat HK. Differential regulation of estrogen receptors α and β by 4-(E)-{(4-hydroxyphenylimino)-methylbenzene,1,2-diol}, a novel resveratrol analog. J Steroid Biochem Mol Biol 2014; 144 Pt B:500-12. [PMID: 25242450 PMCID: PMC4195806 DOI: 10.1016/j.jsbmb.2014.09.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 09/12/2014] [Accepted: 09/16/2014] [Indexed: 01/05/2023]
Abstract
Breast cancer is the second leading cause of death among women in the United States. Estrogens have been implicated as major risk factors in the development of breast neoplasms. Recent epidemiologic studies have suggested a protective role of phytoestrogens in prevention of breast and other cancers. Resveratrol, a naturally occurring phytoestrogen found notably in red grapes, berries and peanuts, has been shown to possess potent anti-cancer properties. However, the poor efficacy of resveratrol has prevented its use in a clinical setting. In order to improve the efficacy of resveratrol, we have synthesized a small combinatorial library of azaresveratrol analogs and tested them for their ability to inhibit the growth of breast cancer cell lines. We have recently shown that one of the synthesized analogs, 4-(E)-{(4-hydroxyphenylimino)-methylbenzene,1,2-diol} (HPIMBD), has better anti-cancer properties than resveratrol. The objective of this study was to investigate the differential regulation of estrogen receptors (ERs) α and β as a potential mechanism of inhibition of breast cancer by HPIMBD. Estrogen receptors α and β have been shown to have opposing roles in cellular proliferation. Estrogen receptor α mediates the proliferative responses of estrogens while ERβ plays an anti-proliferative and pro-apoptotic role. We demonstrate that HPIMBD significantly induces the expression of ERβ and inhibits the expression of ERα. HPIMBD also inhibits the protein expression levels of oncogene c-Myc and cell cycle protein cyclin D1, genes downstream to ERα and important regulators of cell cycle, and cellular proliferation. HPIMBD significantly induces protein expression levels of tumor suppressors p53 and p21 in MCF-7 cells. Additionally, HPIMBD inhibits c-Myc in an ERβ-dependent fashion in MCF-10A and ERβ1-transfected MDA-MB-231 cells, suggesting regulation of ERs as an important upstream mechanism of this novel compound. Molecular docking studies confirm higher affinity for binding of HPIMBD in the ERβ cavity. Thus, HPIMBD, a novel azaresveratrol analog may inhibit the proliferation of breast cancer cells by differentially modulating the expressions of ERs α and β.
Collapse
Affiliation(s)
- Amruta Ronghe
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Anwesha Chatterjee
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Bhupendra Singh
- Department of Genetics, School of Medicine, University of AL at Birmingham, Birmingham, AL 35294, USA
| | - Prasad Dandawate
- ISTRA, Department of Chemistry, Abeda Inamdar Senior College, University of Pune, India
| | - Leigh Murphy
- Department of Biochemistry and Medical Genetics, Manitoba Institute of Cell Biology, University of Manitoba, Manitoba R3E0V9, Canada
| | - Nimee K Bhat
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Subhash Padhye
- ISTRA, Department of Chemistry, Abeda Inamdar Senior College, University of Pune, India
| | - Hari K Bhat
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
9
|
ATP directed agent, 8-chloro-adenosine, induces AMP activated protein kinase activity, leading to autophagic cell death in breast cancer cells. J Hematol Oncol 2014; 7:23. [PMID: 24628795 PMCID: PMC4007639 DOI: 10.1186/1756-8722-7-23] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 03/11/2014] [Indexed: 12/25/2022] Open
Abstract
Background 8-chloro-adenosine (8-Cl-Ado) is a unique ribonucleoside analog which is currently in a phase I clinical trial for hematological malignancies. Previously, we demonstrated in breast cancer cells that a 3-day treatment with 10 μM 8-Cl-Ado causes a 90% loss of clonogenic survival. In contrast, there was only a modest induction of apoptosis under these conditions, suggesting an alternative mechanism for the tumoricidal activity of 8-Cl-Ado. Methods Cellular metabolism, AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) pathway signaling, as well as autophagy induction was evaluated in breast cancer cell lines treated with 8-Cl-Ado. The effects of knocking down essential autophagy factors with small interfering RNA on 8-Cl-Ado-inhibited cell survival was assessed in breast cancer cells by examining apoptosis induction and clonogenic survival. In vivo efficacy of 8-Cl-Ado was measured in two breast cancer orthotopic model systems. Results We demonstrate that in breast cancer cell lines, the metabolism of 8-Cl-Ado results in depletion of endogenous ATP that subsequently induces the phosphorylation and activation of the energy sensor, AMPK. This was associated with an attenuation of mTOR signaling and an induction of the phosphorylation of the autophagy factor, Unc51-like kinase 1 on Ser555. 8-Cl-Ado-mediated induction of autophagy was evident by increased aggregates of microtubule-associated protein 1 light chain 3B (LC3B) which was associated with its conversion to its lipidated form, LC3B-II, p62 degradative flux, and increased formation of acidic vesicular organelles. Additionally, transfection of MCF-7 cells with siRNA to ATG7 or beclin 1 provided partial protection of the cells to 8-Cl-Ado cytotoxicity as measured by clonogenicity. In vivo, 8-Cl-Ado inhibited growth of both MCF-7 and BT-474 xenograft tumors. Moreover, in 9 of 22 BT-474 tumors treated with 100 mg/kg/day 3 times a week, there was an absence of macroscopically detectable tumor after 3 weeks of treatment. Conclusions Our data demonstrates that 8-Cl-Ado treatment activates the AMPK pathway leading to autophagy induction of in breast cancer cells, eliciting, in part, its tumoricidal effects. Additionally, 8-Cl-Ado effectively inhibited in vivo tumor growth in mice. Based on this biological activity, we are planning to test 8-Cl-Ado in the clinic for patients with breast cancer.
Collapse
|