1
|
Sweeney A, Langley A, Xavierselvan M, Shethia RT, Solomon P, Arora A, Mallidi S. Vascular regional analysis unveils differential responses to anti-angiogenic therapy in pancreatic xenografts through macroscopic photoacoustic imaging. Theranostics 2025; 15:2649-2671. [PMID: 39990229 PMCID: PMC11840746 DOI: 10.7150/thno.99361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/17/2024] [Indexed: 02/25/2025] Open
Abstract
Background: Amongst the various imaging techniques that provide surrogate tumor radiographic indications to aid in planning, monitoring, and predicting outcomes of therapy, ultrasound-guided photoacoustic imaging (US-PAI) is a promising non-ionizing modality based on endogenous blood (hemoglobin) and blood oxygen saturation (StO₂) contrast. Adaptation of US-PAI to the clinical realm requires macroscopic system configurations for adequate depth visualization. Methods: Here we present a vascular regional analysis (VRA) methodology of obtaining areas of low and high vessel density regions within the tumor (LVD and HVD respectively) by frequency domain filtering of macroscopic PA images. In this work, we evaluated the various vascular and oxygenation profiles of different murine xenografts of pancreatic cancer (AsPC-1, MIA PaCa-2, and BxPC-3) that have varying levels of angiogenic potentials and investigated the effects of receptor tyrosine kinase inhibitor (sunitinib) on the tumor microvessel density and StO₂. Results: The administration of sunitinib resulted in transient deoxygenation and reduction in vessel density within 72 h in two (AsPC-1 and MIA PaCa-2) of the three tumor types. Utilizing VRA, the regional change in StO2 (∆StO2) revealed the preferential targeting of sunitinib in LVD regions in only the AsPC-1 tumors. We also identified the presence of vascular normalization (validated through immunohistochemistry) in the sunitinib treated AsPC-1 tumors at day 8 post-treatment where a significant increases in HVD ∆StO2 (~20%) were seen following the 72-hour time point, indicative of improved vessel flow and functionality. Treated AsPC-1 vasculature displayed increased maturity and functionality compared to non-treated tumors on day 8, while these same metrics showed no conclusive evidence of vascular normalization in MIA PaCa-2 or BxPC-3 tumors. Conclusion: Overall, VRA as a tool to monitor treatment response allowed us to identify time points of vascular remodeling, highlighting its ability to provide insights into the tumor microenvironment for sunitinib treatment and other anti-angiogenic therapies.
Collapse
Affiliation(s)
- Allison Sweeney
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Andrew Langley
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Marvin Xavierselvan
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Ronak T. Shethia
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Patrick Solomon
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Aayush Arora
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
2
|
Sweeney A, Xavierselvan M, Langley A, Solomon P, Arora A, Mallidi S. Vascular regional analysis unveils differential responses to anti-angiogenic therapy in pancreatic xenografts through macroscopic photoacoustic imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.595784. [PMID: 38854042 PMCID: PMC11160648 DOI: 10.1101/2024.05.27.595784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy and the third leading cause of cancer deaths in the U.S. Despite major innovations in imaging technologies, there are limited surrogate radiographic indicators to aid in therapy planning and monitoring. Amongst the various imaging techniques Ultrasound-guided photoacoustic imaging (US-PAI) is a promising modality based on endogenous blood (hemoglobin) and blood oxygen saturation (StO 2 ) contrast to monitor response to anti-angiogenic therapies. Adaptation of US-PAI to the clinical realm requires macroscopic configurations for adequate depth visualization, illuminating the need for surrogate radiographic markers, including the tumoral microvessel density (MVD). In this work, subcutaneous xenografts with PC cell lines AsPC-1 and MIA-PaCa-2 were used to investigate the effects of receptor tyrosine kinase inhibitor (sunitinib) treatment on MVD and StO 2 . Through histological correlation, we have shown that regions of high and low vascular density (HVD and LVD) can be identified through frequency domain filtering of macroscopic PA images which could not be garnered from purely global analysis. We utilized vascular regional analysis (VRA) of treatment-induced StO 2 and total hemoglobin (HbT) changes. VRA as a tool to monitor treatment response allowed us to identify potential timepoints of vascular remodeling, highlighting its ability to provide insights into the TME not only for sunitinib treatment but also other anti-angiogenic therapies.
Collapse
|
3
|
Pramanik N, Gupta A, Ghanwatkar Y, Mahato RI. Recent advances in drug delivery and targeting for the treatment of pancreatic cancer. J Control Release 2024; 366:231-260. [PMID: 38171473 PMCID: PMC10922996 DOI: 10.1016/j.jconrel.2023.12.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/24/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
Despite significant treatment efforts, pancreatic ductal adenocarcinoma (PDAC), the deadliest solid tumor, is still incurable in the preclinical stages due to multifacet stroma, dense desmoplasia, and immune regression. Additionally, tumor heterogeneity and metabolic changes are linked to low grade clinical translational outcomes, which has prompted the investigation of the mechanisms underlying chemoresistance and the creation of effective treatment approaches by selectively targeting genetic pathways. Since targeting upstream molecules in first-line oncogenic signaling pathways typically has little clinical impact, downstream signaling pathways have instead been targeted in both preclinical and clinical studies. In this review, we discuss how the complexity of various tumor microenvironment (TME) components and the oncogenic signaling pathways that they are connected to actively contribute to the development and spread of PDAC, as well as the ways that recent therapeutic approaches have been targeted to restore it. We also illustrate how many endogenous stimuli-responsive linker-based nanocarriers have recently been developed for the specific targeting of distinct oncogenes and their downstream signaling cascades as well as their ongoing clinical trials. We also discuss the present challenges, prospects, and difficulties in the development of first-line oncogene-targeting medicines for the treatment of pancreatic cancer patients.
Collapse
Affiliation(s)
- Nilkamal Pramanik
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Aditya Gupta
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Yashwardhan Ghanwatkar
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ram I Mahato
- Department of Pharmaceutical Sciences, the University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
4
|
Crawford K, Bontrager E, Schwarz MA, Chaturvedi A, Lee DD, Md Sazzad H, von Holzen U, Zhang C, Schwarz RE, Awasthi N. Targeted FGFR/VEGFR/PDGFR inhibition with dovitinib enhances the effects of nab-paclitaxel in preclinical gastric cancer models. Cancer Biol Ther 2021; 22:619-629. [PMID: 34882068 DOI: 10.1080/15384047.2021.2011642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Standard chemotherapy regimens for gastric adenocarcinoma (GAC) have limited efficacy and considerable toxicity profiles. Nab-paclitaxel has shown promising antitumor benefits in previous GAC preclinical studies. Dovitinib inhibits members of the receptor tyrosine kinase family including FGFR, VEGFR and PDGFR, and has exhibited antitumor effects in many solid tumors including GAC. Based on the antimitotic, antistromal and EPR effects of nab-paclitaxel, we investigated augmentation of nab-paclitaxel response by dovitinib in multiple GAC preclinical models. In MKN-45 subcutaneous xenografts, inhibition in tumor growth by nab-paclitaxel and dovitinib was 75% and 76%, respectively. Dovitinib plus nab-paclitaxel had an additive effect on tumor growth inhibition and resulted in tumor regression (85% of its original value). Dovitinib monotherapy resulted in minimal improvement in animal survival (25 days) compared to control (23 days), while nab-paclitaxel monotherapy or dovitinib plus nab-paclitaxel combination therapy led to a clinically significant lifespan extension of 83% (42 days) and 187% (66 days), respectively. IHC analysis of subcutaneous tumors exhibited reduced tumor cell proliferation and tumor vasculature by dovitinib. In vitro studies demonstrated that dovitinib and nab-paclitaxel individually reduced tumor cell proliferation, with an additive effect from combination therapy. Immunoblot analyses of MKN-45 and KATO-III cells revealed that dovitinib decreased phospho-FGFR, phospho-AKT, phospho-ERK, phospho-p70S6K, phospho-4EBP1, Bcl-2 and increased cleaved PARP-1, cleaved-caspase-3, p27, Bax, Bim, with an additive effect from combination therapy. These results demonstrate that the FGFR/VEGFR/PDGFR inhibitor, dovitinib, has the potential to augment the antitumor effects of nab-paclitaxel, with implications for use in the advancement of clinical GAC therapy.
Collapse
Affiliation(s)
- Kate Crawford
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA
| | - Erin Bontrager
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA
| | - Margaret A Schwarz
- Department of Pediatrics, Indiana University School of Medicine, South Bend, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Apurva Chaturvedi
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA
| | - Daniel D Lee
- Department of Pediatrics, Indiana University School of Medicine, South Bend, IN, USA
| | - Hassan Md Sazzad
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | | | - Changhua Zhang
- Department of Gastrointestinal Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Roderich E Schwarz
- University at Buffalo, Buffalo, Ny, USA.,Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Niranjan Awasthi
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
5
|
Grojean M, Schwarz MA, Schwarz JR, Hassan S, von Holzen U, Zhang C, Schwarz RE, Awasthi N. Targeted dual inhibition of c-Met/VEGFR2 signalling by foretinib improves antitumour effects of nanoparticle paclitaxel in gastric cancer models. J Cell Mol Med 2021; 25:4950-4961. [PMID: 33939252 PMCID: PMC8178268 DOI: 10.1111/jcmm.16362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/16/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
Elevated expression of multiple growth factors and receptors including c‐Met and VEGFR has been reported in gastric adenocarcinoma (GAC) and thus provides a potentially useful therapeutic target. The therapeutic efficacy of foretinib, a c‐Met/VEGFR2 inhibitor, was determined in combination with nanoparticle paclitaxel (NPT) in GAC. Animal studies were conducted in NOD/SCID mice in subcutaneous and peritoneal dissemination xenografts. The mechanism of action was assessed by Immunohistochemical and Immunoblot analyses. In c‐Met overexpressing MKN‐45 cell‐derived xenografts, NPT and foretinib demonstrated inhibition in tumour growth, while NPT plus foretinib showed additive effects. In c‐Met low‐expressing SNU‐1 or patient‐derived xenografts, the foretinib effect was smaller, while NPT had a similar effect compared with MKN‐45, as NPT plus foretinib still exhibited an additive response. Median mice survival was markedly improved by NPT (83%), foretinib (100%) and NPT plus foretinib (230%) in peritoneal dissemination xenografts. Subcutaneous tumour analyses exhibited that foretinib increased cancer cell death and decreased cancer cell proliferation and tumour vasculature. NPT and foretinib suppressed the proliferation of GAC cells in vitro and had additive effects in combination. Further, foretinib caused a dramatic decrease in phosphorylated forms of c‐Met, ERK, AKT and p38. Foretinib led to a decrease in Bcl‐2, and an increase in p27, Bax, Bim, cleaved PARP‐1 and cleaved caspase‐3. Thus, these findings highlight the antitumour impact of simultaneous suppression of c‐Met and VEGFR2 signalling in GAC and its potential to enhance nanoparticle paclitaxel response. This therapeutic approach might lead to a clinically beneficial combination to increase GAC patients’ survival.
Collapse
Affiliation(s)
- Meghan Grojean
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA
| | - Margaret A Schwarz
- Department of Pediatrics, Indiana University School of Medicine, South Bend, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| | - Johann R Schwarz
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA
| | - Sazzad Hassan
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| | - Urs von Holzen
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA.,Goshen Center for Cancer Care, Goshen, IN, USA.,University of Basel, Basel, Switzerland
| | - Changhua Zhang
- Department of Gastrointestinal Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Roderich E Schwarz
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA.,Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,University of Buffalo, Buffalo, NY, USA
| | - Niranjan Awasthi
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA.,Harper Cancer Research Institute, University of Notre Dame, South Bend, IN, USA
| |
Collapse
|
6
|
Dual inhibition of the PI3K and MAPK pathways enhances nab-paclitaxel/gemcitabine chemotherapy response in preclinical models of pancreatic cancer. Cancer Lett 2019; 459:41-49. [DOI: 10.1016/j.canlet.2019.05.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/02/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
|
7
|
Awasthi N, Mikels-Vigdal AJ, Stefanutti E, Schwarz MA, Monahan S, Smith V, Schwarz RE. Therapeutic efficacy of anti-MMP9 antibody in combination with nab-paclitaxel-based chemotherapy in pre-clinical models of pancreatic cancer. J Cell Mol Med 2019; 23:3878-3887. [PMID: 30941918 PMCID: PMC6533474 DOI: 10.1111/jcmm.14242] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/01/2019] [Indexed: 12/22/2022] Open
Abstract
Matrix metalloproteinase 9 (MMP9) is involved in the proteolysis of extracellular proteins and plays a critical role in pancreatic ductal adenocarcinoma (PDAC) progression, invasion and metastasis. The therapeutic potential of an anti‐MMP9 antibody (αMMP9) was evaluated in combination with nab‐paclitaxel (NPT)‐based standard cytotoxic therapy in pre‐clinical models of PDAC. Tumour progression and survival studies were performed in NOD/SCID mice. The mechanistic evaluation involved RNA‐Seq, Luminex, IHC and Immunoblot analyses of tumour samples. Median animal survival compared to controls was significantly increased after 2‐week therapy with NPT (59%), Gem (29%) and NPT+Gem (76%). Addition of αMMP9 antibody exhibited further extension in survival: NPT+αMMP9 (76%), Gem+αMMP9 (47%) and NPT+Gem+αMMP9 (94%). Six‐week maintenance therapy revealed that median animal survival was significantly increased after NPT+Gem (186%) and further improved by the addition of αMMP9 antibody (218%). Qualitative assessment of mice exhibited that αMMP9 therapy led to a reduction in jaundice, bloody ascites and metastatic burden. Anti‐MMP9 antibody increased the levels of tumour‐associated IL‐28 (1.5‐fold) and decreased stromal markers (collagen I, αSMA) and the EMT marker vimentin. Subcutaneous tumours revealed low but detectable levels of MMP9 in all therapy groups but no difference in MMP9 expression. Anti‐MMP9 antibody monotherapy resulted in more gene expression changes in the mouse stroma compared to the human tumour compartment. These findings suggest that anti‐MMP9 antibody can exert specific stroma‐directed effects that could be exploited in combination with currently used cytotoxics to improve clinical PDAC therapy.
Collapse
Affiliation(s)
- Niranjan Awasthi
- Department of Surgery, Indiana University School of Medicine, South Bend, Indiana.,Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana
| | | | | | - Margaret A Schwarz
- Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Sheena Monahan
- Department of Surgery, Indiana University School of Medicine, South Bend, Indiana
| | | | - Roderich E Schwarz
- Department of Surgery, Indiana University School of Medicine, South Bend, Indiana.,Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana
| |
Collapse
|
8
|
Angiogenesis in Pancreatic Cancer: Pre-Clinical and Clinical Studies. Cancers (Basel) 2019; 11:cancers11030381. [PMID: 30889903 PMCID: PMC6468440 DOI: 10.3390/cancers11030381] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
Angiogenesis is a crucial event in tumor development and progression, occurring by different mechanisms and it is driven by pro- and anti-angiogenic molecules. Pancreatic cancer vascularization is characterized by a high microvascular density, impaired microvessel integrity and poor perfused vessels with heterogeneous distribution. In this review article, after a brief introduction on pancreatic cancer classification and on angiogenesis mechanisms involved in its progression, the pre-clinical and clinical trials conducted in pancreatic cancer treatment using anti-angiogenic inhibitors will be described. Finally, we will discuss the anti-angiogenic therapy paradox between the advantage to abolish vessel supply to block tumor growth and the disadvantage due to reduction of drug delivery at the same time. The purpose is to identify new anti-angiogenic molecules that may enhance treatment regimen.
Collapse
|
9
|
Chen J, Hu P, Wu G, Zhou H. Antipancreatic cancer effect of DNT cells and the underlying mechanism. Pancreatology 2019; 19:105-113. [PMID: 30579733 DOI: 10.1016/j.pan.2018.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 12/03/2018] [Accepted: 12/14/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES This study aimed to explore double-negative T (DNT) cell cytotoxicity to pancreatic cancer and the effect of the Fas (CD95, APO-1)/FasL (CD178) signaling pathway on this process. METHODS DNT cells from the peripheral blood of healthy volunteers were expanded in vitro. The inhibitory effect of DNT cells on pancreatic cancer cells was investigated using a CCK-8 assay and nude mouse tumor model. A mechanistic study was performed using pathway blocking assays. RESULTS DNT cells were amplified in vitro with >90% purity, and the growth of pancreatic cancer in vitro was significantly inhibited by DNT cells. After coculture with DNT cells, Fas, caspase-8 and cleaved caspase-8 showed increased expression in pancreatic cancer cells. When blocking agent decoy receptor 3 (DcR3) was added, the antitumor effect of DNT cells and the expression of Fas, caspase-8 and cleaved caspase-8 were reduced in pancreatic cancer cells. In the nude mouse tumor model, the tumor volume and weight were lower in the DNT cell group and gemcitabine group than in the blank control group. Additionally, the expression of Fas, caspase-8 and cleaved caspase-8 was higher in the DNT cell group than in the blank control group. Moreover, DNT cells promoted apoptosis in cancer cells and animal model tissues. CONCLUSION DNT cells inhibited the growth of pancreatic cancer, and the Fas/FasL signaling pathway was involved in this process.
Collapse
Affiliation(s)
- Jiong Chen
- Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, 230001, Anhui Province, PR China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, PR China.
| | - Pibo Hu
- Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, 230001, Anhui Province, PR China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, PR China
| | - Gaohua Wu
- Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, 230001, Anhui Province, PR China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, PR China
| | - Haibo Zhou
- Department of General Surgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, 17 Lujiang Road, Hefei, 230001, Anhui Province, PR China; Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, 230001, PR China
| |
Collapse
|
10
|
Kuc N, Doermann A, Shirey C, Lee DD, Lowe CW, Awasthi N, Schwarz RE, Stahelin RV, Schwarz MA. Pancreatic ductal adenocarcinoma cell secreted extracellular vesicles containing ceramide-1-phosphate promote pancreatic cancer stem cell motility. Biochem Pharmacol 2018; 156:458-466. [PMID: 30222969 DOI: 10.1016/j.bcp.2018.09.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023]
Abstract
The high mortality rate associated with pancreatic ductal adenocarcinoma (PDAC) is in part due to lack of effective therapy for this highly chemoresistant tumor. Cancer stem cells, a subset of cancer cells responsible for tumor initiation and metastasis, are not targeted by conventional cytotoxic agents, which renders the identification of factors that facilitate cancer stem cell activation useful in defining targetable mechanisms. We determined that bioactive sphingolipid induced migration of pancreatic cancer stem cells (PCSC) and signaling was specific to ceramide-1-phosphate (C1P). Furthermore, PDAC cells were identified as a rich source of C1P. Importantly, PDAC cells express the C1P converting enzyme ceramide kinase (CerK), secrete C1P-containing extracellular vesicles that mediate PCSC migration, and when co-injected with PCSC reduce animal survival in a PDAC peritoneal dissemination model. Our findings suggest that PDAC secrete C1P-containing extracellular vesicles as a means of recruiting PCSC to sustain tumor growth therefore making C1P release a mechanism that could facilitate tumor progression.
Collapse
Affiliation(s)
- Norbert Kuc
- Department of Biological Sciences, University of Notre Dame, United States
| | - Allison Doermann
- Department of Biological Sciences, University of Notre Dame, United States
| | - Carolyn Shirey
- Department of Chemistry and Biochemistry, University of Notre Dame, United States
| | - Daniel D Lee
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, United States; Department of Pediatrics, Indiana University School of Medicine, United States
| | - Chinn-Woan Lowe
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, United States
| | - Niranjan Awasthi
- Department of Surgery, Indiana University School of Medicine, United States
| | - Roderich E Schwarz
- Department of Surgery, Indiana University School of Medicine, United States; Department of Goshen Center for Cancer Care, Goshen, IN, United States
| | - Robert V Stahelin
- Department of Chemistry and Biochemistry, University of Notre Dame, United States; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, United States
| | - Margaret A Schwarz
- Department of Chemistry and Biochemistry, University of Notre Dame, United States; Department of Cellular and Integrative Physiology, Indiana University School of Medicine, United States; Department of Pediatrics, Indiana University School of Medicine, United States.
| |
Collapse
|
11
|
Awasthi N, Schwarz MA, Zhang C, Schwarz RE. Augmentation of Nab-Paclitaxel Chemotherapy Response by Mechanistically Diverse Antiangiogenic Agents in Preclinical Gastric Cancer Models. Mol Cancer Ther 2018; 17:2353-2364. [PMID: 30166402 DOI: 10.1158/1535-7163.mct-18-0489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/07/2018] [Accepted: 08/22/2018] [Indexed: 12/29/2022]
Abstract
Gastric adenocarcinoma (GAC) remains the third most common cause of cancer-related deaths worldwide. Systemic chemotherapy is commonly recommended as a fundamental treatment for metastatic GAC; however, standard treatment has not been established yet. Angiogenesis plays a crucial role in the progression and metastasis of GAC. We evaluated therapeutic benefits of mechanistically diverse antiangiogenic agents in combination with nab-paclitaxel, a next-generation taxane, in preclinical models of GAC. Murine survival studies were performed in peritoneal dissemination models, whereas tumor growth studies were performed in subcutaneous GAC cell-derived or patient-derived xenografts. The mechanistic evaluation involved IHC and Immunoblot analysis in tumor samples. Nab-paclitaxel increased animal survival that was further improved by the addition of antiangiogenic agents ramucirumab (or its murine version DC101), cabozantinib and nintedanib. Nab-paclitaxel combination with nintedanib was most effective in improving animal survival, always greater than 300% over control. In cell-derived subcutaneous xenografts, nab-paclitaxel reduced tumor growth while all three antiangiogenic agents enhanced this effect, with nintedanib demonstrating the greatest inhibition. Furthermore, in GAC patient-derived xenografts the combination of nab-paclitaxel and nintedanib reduced tumor growth over single agents alone. Tumor tissue analysis revealed that ramucirumab and cabozantinib only reduced tumor vasculature, whereas nintedanib in addition significantly reduced tumor cell proliferation and increased apoptosis. Effects of nab-paclitaxel, a promising chemotherapeutic agent for GAC, can be enhanced by new-generation antiangiogenic agents, especially nintedanib. The data suggest that nab-paclitaxel combinations with multitargeted antiangiogenic agents carry promising potential for improving clinical GAC therapy. Mol Cancer Ther; 17(11); 2353-64. ©2018 AACR.
Collapse
Affiliation(s)
- Niranjan Awasthi
- Department of Surgery, Indiana University School of Medicine, South Bend, Indiana. .,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana
| | - Margaret A Schwarz
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana.,Department of Pediatrics, Indiana University School of Medicine, South Bend, Indiana
| | - Changhua Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Roderich E Schwarz
- Department of Surgery, Indiana University School of Medicine, South Bend, Indiana.,Goshen Center for Cancer Care, Goshen, Indiana
| |
Collapse
|
12
|
Martínez-Bosch N, Guerrero PE, Moreno M, José A, Iglesias M, Munné-Collado J, Anta H, Gibert J, Orozco CA, Vinaixa J, Fillat C, Viñals F, Navarro P. The pancreatic niche inhibits the effectiveness of sunitinib treatment of pancreatic cancer. Oncotarget 2018; 7:48265-48279. [PMID: 27374084 PMCID: PMC5217016 DOI: 10.18632/oncotarget.10199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022] Open
Abstract
Current treatments for pancreatic ductal adenocarcinoma (PDA) are ineffective, making this the 4th leading cause of cancer deaths. Sunitinib is a broad-spectrum inhibitor of tyrosine kinase receptors mostly known for its anti-angiogenic effects. We tested the therapeutic effects of sunitinib in pancreatic cancer using the Ela-myc transgenic mouse model. We showed that Ela-myc pancreatic tumors express PDGFR and VEGFR in blood vessels and epithelial cells, rendering these tumors sensitive to sunitinib by more than only its anti-angiogenic activity. However, sunitinib treatment of Ela-myc mice with either early or advanced tumor progression had no impact on either survival or tumor burden. Further histopathological characterization of these tumors did not reveal differences in necrosis, cell differentiation, angiogenesis, apoptosis or proliferation. In stark contrast, in vitro sunitinib treatment of Ela-myc– derived cell lines showed high sensitivity to the drug, with increased apoptosis and reduced proliferation. Correspondingly, subcutaneous tumors generated from these cell lines completely regressed in vivo after sunitinib treatments. These data point at the pancreatic tumor microenvironment as the most likely barrier preventing sunitinib treatment efficiency in vivo. Combined treatments with drugs that disrupt tumor fibrosis may enhance sunitinib therapeutic effectiveness in pancreatic cancer treatment.
Collapse
Affiliation(s)
| | | | - Mireia Moreno
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Anabel José
- Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Mar Iglesias
- Pathology Service, Hospital del Mar, Barcelona, Spain
| | | | - Héctor Anta
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Joan Gibert
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | | | - Judith Vinaixa
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Cristina Fillat
- Biomedical Research Institute August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Francesc Viñals
- Catalan Institute of Oncology-IDIBELL, Barcelona University, Barcelona, Spain
| | - Pilar Navarro
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| |
Collapse
|
13
|
Zhang D, Xu XL, Li F, Sun HC, Cui YQ, Liu S, Xu PY. Upregulation of the checkpoint protein CHFR is associated with tumor suppression in pancreatic cancers. Oncol Lett 2018; 14:8042-8050. [PMID: 29344247 PMCID: PMC5755226 DOI: 10.3892/ol.2017.7239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/27/2017] [Indexed: 12/24/2022] Open
Abstract
The checkpoint with forkhead-associated (FHA) domain and RING-finger (CHFR) protein was identified as a cell cycle checkpoint protein and E3 ubiquitin ligase. In the present study, the potential functions of CHFR in pancreatic cancer were investigated. CHFR expression was measured in five pancreatic cancer cell lines by reverse transcription- quantitative polymerase chain reaction and western blotting. Capan-1 cells stably expressing CHFR were established by lentiviral vector transfection. Cell proliferation was assessed using Cell Counting Kit-8, and cell migration/invasion assay was determined using Transwell assays. Cell cycle and apoptosis induced by gemcitabine or docetaxel were evaluated using flow cytometry. CHFR expression levels were also evaluated in pancreatic ductal adenocarcinoma (PDAC) tumor samples as well as adjacent non-tumor tissues by immunohistochemistry. The significance of CHFR expression was determined, with respect to clinicopathological features and overall survival. Overexpression of CHFR in Capan-1 cells led to a decreased proliferative rate and reduced cell migration and invasion abilities. Results also indicated an increase in G1 phase cells in Capan-1 cells overexpressing CHFR. Docetaxel-induced apoptosis was inhibited in Capan-1 cells with CHFR-overexpression. A reduction in CHFR expression was detected in 51.9% of patients with PDAC, which significantly correlated with later T-stage. The results show CHFR functions as a tumor suppressor in pancreatic cancer, suggests its potential role in controlling the cell cycle of pancreatic cancer cells; however, CHFR overexpression is not a favorable factor in apoptosis induced by docetaxel.
Collapse
Affiliation(s)
- Di Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Xiao-Lan Xu
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Hai-Chen Sun
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Ye-Qing Cui
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Shuang Liu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Ping-Yong Xu
- National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|
14
|
Bhavsar C, Momin M, Khan T, Omri A. Targeting tumor microenvironment to curb chemoresistance via novel drug delivery strategies. Expert Opin Drug Deliv 2018; 15:641-663. [PMID: 29301448 DOI: 10.1080/17425247.2018.1424825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Tumor is a heterogeneous mass of malignant cells co-existing with non-malignant cells. This co-existence evolves from the initial developmental stages of the tumor and is one of the hallmarks of cancer providing a protumorigenic niche known as tumor microenvironment (TME). Proliferation, invasiveness, metastatic potential and maintenance of stemness through cross-talk between tumors and its stroma forms the basis of TME. AREAS COVERED The article highlights the developmental phases of a tumor from dysplasia to the formation of clinically detectable tumors. The authors discuss the mechanistic stages involved in the formation of TME and its contribution in tumor outgrowth and chemoresistance. The authors have reviewed various approaches for targeting TME and its hallmarks along with their advantages and pitfalls. The authors also highlight cancer stem cells (CSCs) that are resistant to chemotherapeutics and thus a primary reason for tumor recurrence thereby, posing a challenge for the oncologists. EXPERT OPINION Recent understanding of the cellular and molecular mechanisms involved in acquired chemoresistance has enabled scientists to target the tumor niche and TME and modulate and/or disrupt this communication leading to the transformation from a tumor-supportive niche environment to a tumor-non-supporting environment and give synergistic results towards an effective management of cancer.
Collapse
Affiliation(s)
- Chintan Bhavsar
- a Department of Pharmaceutics, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Munira Momin
- a Department of Pharmaceutics, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Tabassum Khan
- b Department of Quality Assurance and Pharmaceutical Chemistry, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Abdelwahab Omri
- c The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry , Laurentian University , Sudbury , ON , Canada
| |
Collapse
|
15
|
Awasthi N, Monahan S, Stefaniak A, Schwarz MA, Schwarz RE. Inhibition of the MEK/ERK pathway augments nab-paclitaxel-based chemotherapy effects in preclinical models of pancreatic cancer. Oncotarget 2017; 9:5274-5286. [PMID: 29435178 PMCID: PMC5797049 DOI: 10.18632/oncotarget.23684] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023] Open
Abstract
Nab-paclitaxel (NPT) combination with gemcitabine (Gem) represents the standard chemotherapy for pancreatic ductal adenocarcinoma (PDAC). Genetic alterations of the RAS/RAF/MEK/ERK (MAPK) signaling pathway yielding constitutive activation of the ERK cascade have been implicated as drivers of PDAC. Inhibition of downstream targets in the RAS-MAPK cascade such as MEK remains a promising therapeutic strategy. The efficacy of trametinib (Tra), a small molecule inhibitor of MEK1/2 kinase activity, in combination with nab-paclitaxel-based chemotherapy was evaluated in preclinical models of PDAC. The addition of trametinib to chemotherapy regimens showed a trend for an additive effect on tumor growth inhibition in subcutaneous AsPC-1 and Panc-1 PDAC xenografts. In a peritoneal dissemination model, median animal survival compared to controls (20 days) was increased after therapy with NPT (33 days, a 65% increase), Tra (31 days, a 55% increase), NPT+Tra (37 days, a 85% increase), NPT+Gem (39 days, a 95% increase) and NPT+Gem+Tra (49 days, a 145% increase). Effects of therapy on intratumoral proliferation and apoptosis corresponded with tumor growth inhibition. Trametinib effects were specifically accompanied by a decrease in phospho-ERK and an increase in cleaved caspase-3 and cleaved PARP-1 proteins. These findings suggest that the effects of nab-paclitaxel-based chemotherapy can be enhanced through specific inhibition of MEK1/2 kinase activity, and supports the clinical application of trametinib in combination with standard nab-paclitaxel-based chemotherapy in PDAC patients.
Collapse
Affiliation(s)
- Niranjan Awasthi
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA
| | - Sheena Monahan
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Alexis Stefaniak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46617, USA
| | - Margaret A Schwarz
- Department of Pediatrics, Indiana University School of Medicine, South Bend, IN 46617, USA.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46617, USA
| | - Roderich E Schwarz
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617, USA.,Goshen Center for Cancer Care, Goshen, IN 46526, USA
| |
Collapse
|
16
|
Awasthi N, Scire E, Monahan S, Grojean M, Zhang E, Schwarz MA, Schwarz RE. Augmentation of response to nab-paclitaxel by inhibition of insulin-like growth factor (IGF) signaling in preclinical pancreatic cancer models. Oncotarget 2016; 7:46988-47001. [PMID: 27127884 PMCID: PMC5216918 DOI: 10.18632/oncotarget.9029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/16/2016] [Indexed: 12/21/2022] Open
Abstract
Nab-paclitaxel has recently shown greater efficacy in pancreatic ductal adenocarcinoma (PDAC). Insulin like growth factor (IGF) signaling proteins are frequently overexpressed in PDAC and correlate with aggressive tumor phenotype and poor prognosis. We evaluated the improvement in nab-paclitaxel response by addition of BMS-754807, a small molecule inhibitor of IGF-1R/IR signaling, in preclinical PDAC models. In subcutaneous xenografts using AsPC-1 cells, average net tumor growth in different therapy groups was 248.3 mm3 in controls, 42.4 mm3 after nab-paclitaxel (p = 0.002), 93.3 mm3 after BMS-754807 (p = 0.01) and 1.9 mm3 after nab-paclitaxel plus BMS-754807 (p = 0.0002). In subcutaneous xenografts using Panc-1 cells, average net tumor growth in different therapy groups was: 294.3 mm3 in controls, 23.1 mm3 after nab-paclitaxel (p = 0.002), 118.2 mm3 after BMS-754807 (p = 0.02) and -87.4 mm3 (tumor regression) after nab-paclitaxel plus BMS-754807 (p = 0.0001). In peritoneal dissemination model using AsPC-1 cells, median animal survival was increased compared to controls (21 days) after therapy with nab-paclitaxel (40 days, a 90% increase, p = 0.002), BMS-754807 (27 days, a 29% increase, p = 0.01) and nab-paclitaxel plus BMS-754807 (47 days, a 124% increase, p = 0.005), respectively. Decrease in proliferation and increase in apoptosis by nab-paclitaxel and BMS-754807 therapy correlated with their in vivo antitumor activity. In vitro analysis revealed that the addition of IC25 dose of BMS-754807 decreased the nab-paclitaxel IC50 of PDAC cell lines. BMS-754807 therapy decreased phospho-IGF-1R/IR and phospho-AKT expression, and increased cleavage of caspase-3 and PARP-1. These results support the potential of BMS-754807 in combination with nab-paclitaxel as an effective targeting option for pancreatic cancer therapy.
Collapse
Affiliation(s)
- Niranjan Awasthi
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Emily Scire
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA
| | - Sheena Monahan
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA
| | - Meghan Grojean
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| | - Eric Zhang
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA
| | - Margaret A. Schwarz
- Department of Pediatrics, Indiana University School of Medicine, South Bend, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Roderich E. Schwarz
- Department of Surgery, Indiana University School of Medicine, South Bend, IN, USA
- Indiana University Health Goshen Center for Cancer Care, Goshen, IN, USA
| |
Collapse
|
17
|
Jureidini R, da Cunha JEM, Takeda F, Namur GN, Ribeiro TC, Patzina R, Figueira ERR, Ribeiro U, Bacchella T, Cecconello I. Evaluation of microvessel density and p53 expression in pancreatic adenocarcinoma. Clinics (Sao Paulo) 2016; 71:315-9. [PMID: 27438564 PMCID: PMC4930662 DOI: 10.6061/clinics/2016(06)05] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 03/21/2016] [Indexed: 01/28/2023] Open
Abstract
OBJECTIVE To evaluate the prognostic significance of microvessel density and p53 expression in pancreatic cancer. METHODS Between 2008 and 2012, 49 patients with pancreatic adenocarcinoma underwent resection with curative intention. The resected specimens were immunohistochemically stained with anti-p53 and anti-CD34 antibodies. Microvessel density was assessed by counting vessels within ten areas of each tumoral section a highpower microscope. RESULTS The microvessel density ranged from 21.2 to 54.2 vessels/mm2. Positive nuclear staining for p53 was found in 20 patients (40.6%). The overall median survival rate after resection was 24.1 months and there were no differences in survival rates related to microvessel density or p53 positivity. Microvessel density was associated with tumor diameter greater than 3.0 cm and with R0 resection failure. CONCLUSIONS Microvessel density was associated with R1 resection and with larger tumors. p53 expression was not correlated with intratumoral microvessel density in pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Ricardo Jureidini
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia
- E-mail:
| | | | - Flavio Takeda
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia
| | | | - Thiago Costa Ribeiro
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia
| | | | - Estela RR Figueira
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia
| | - Ulysses Ribeiro
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia
| | - Telesforo Bacchella
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia
| | - Ivan Cecconello
- Faculdade de Medicina da Universidade de São Paulo, Departamento de Gastroenterologia
| |
Collapse
|
18
|
Gifford JB, Huang W, Zeleniak AE, Hindoyan A, Wu H, Donahue TR, Hill R. Expression of GRP78, Master Regulator of the Unfolded Protein Response, Increases Chemoresistance in Pancreatic Ductal Adenocarcinoma. Mol Cancer Ther 2016; 15:1043-52. [PMID: 26939701 DOI: 10.1158/1535-7163.mct-15-0774] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/04/2016] [Indexed: 11/16/2022]
Abstract
The prognosis for patients with pancreatic ductal adenocarcinoma (PDAC) is dismal. Although gemcitabine (GEM) is the standard chemotherapeutic agent for adjuvant therapy of resectable PDAC, recurrent disease is observed in an alarming number of GEM-treated patients. Regardless of the adjuvant therapy, the vast majority of patients treated with chemotherapy after surgical resection show tumor recurrence. A better understanding of the molecular mechanisms that contribute to chemoresistance would aid the development of more effective treatment strategies. GRP78 is an endoplasmic reticulum (ER) chaperone protein that primarily resides in the lumen of the ER and is the master regulator of the unfolded protein response (UPR). Here, we report that expression of GRP78 is significantly higher in GEM-resistant PDAC compared to GEM-sensitive PDAC patient samples. We show that GRP78 induces chemoresistance in PDAC cells. Our results also show that knockdown of GRP78 reduces chemoresistance in PDAC. Finally, we found that IT-139, a ruthenium-based anticancer drug, can overcome GRP78-mediated chemoresistance. In vitro, IT-139 restores sensitivity to cytotoxic drugs in drug-resistant PDAC cells and induces twice as much cell death in combination treatment compared with GEM alone. In vivo, a single weekly IT-139 treatment in combination with GEM caused a 35% increase in median survival and a 25% increase in overall survival compared to GEM alone. Collectively, our data show that GRP78 expression promotes chemoresistance in PDAC and therapeutic strategies, blocking the activity of GRP78 increases the efficacy of currently available therapies. Mol Cancer Ther; 15(5); 1043-52. ©2016 AACR.
Collapse
Affiliation(s)
- Jenifer B Gifford
- Department of Biological Sciences, University of Notre Dame, South Bend, Indiana. Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana
| | - Wei Huang
- Department of Biological Sciences, University of Notre Dame, South Bend, Indiana. Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana
| | - Ann E Zeleniak
- Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana. Integrated Biomedical Sciences Program, University of Notre Dame, South Bend, Indiana
| | - Antreas Hindoyan
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles California
| | - Hong Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles California. School of Life Sciences, Peking University, Beijing, China
| | - Timothy R Donahue
- Department of Surgery, University of California, Los Angeles, Los Angeles, California
| | - Reginald Hill
- Department of Biological Sciences, University of Notre Dame, South Bend, Indiana. Harper Cancer Research Institute, University of Notre Dame, South Bend, Indiana.
| |
Collapse
|
19
|
Tonissi F, Lattanzio L, Merlano MC, Infante L, Lo Nigro C, Garrone O. The effect of paclitaxel and nab-paclitaxel in combination with anti-angiogenic therapy in breast cancer cell lines. Invest New Drugs 2015; 33:801-9. [PMID: 25947567 DOI: 10.1007/s10637-015-0249-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/30/2015] [Indexed: 02/03/2023]
Abstract
Taxanes represent a treatment of choice for metastatic breast cancer. Their combination with bevacizumab improved response rate and progression-free survival. We studied in vitro the effect on cell survival of the combination of either paclitaxel or nab-paclitaxel with bevacizumab and we investigated the biological factors involved in the response to treatments. We used two breast cancer cell lines, MCF7 (ER+/HER2-) and MDA-MB-231 (ER-/HER2-), co-cultured with or without HUVEC cells. We analysed cell survival by MTT test, VEGF secretion by ELISA and VEGFR, SPARC, MDR1 expression by western blot. Doses of both taxanes causing a 50 % growth inhibition were higher in MCF7 than MDA-MB-231, suggesting that taxanes are more effective in ER- cell lines. When both cell lines were grown as single culture, the combination bevacizumab+paclitaxel showed a similar anti-proliferative effect compared to paclitaxel alone. The association bevacizumab+nab-paclitaxel was more effective than nab-paclitaxel alone. An increased anti-proliferative effect of bevacizumab+paclitaxel was observed when MDA-MB-231 cells were cultured with HUVEC. We detected an induction of VEGF secretion when MDA-MB-231 cells were treated with either taxanes. Paclitaxel caused a reduction of VEGF in MCF7. SPARC resulted up-regulated in both cell lines treated with bevacizumab+nab-paclitaxel. Nab-paclitaxel seems to play an important role in inhibiting tumor proliferation through albumin-SPARC bound in association with bevacizumab compared to taxanes alone in both breast cancer cells. The addition of bevacizumab to paclitaxel increased its activity only in ER- cells. This difference might be due to their ER status.
Collapse
Affiliation(s)
- Federica Tonissi
- Laboratory of Cancer Genetics and Translational Oncology, Oncology Department, S. Croce & Carle Teaching Hospital, via Carle 25, 12100, Cuneo, Italy,
| | | | | | | | | | | |
Collapse
|
20
|
Awasthi N, Hinz S, Brekken RA, Schwarz MA, Schwarz RE. Nintedanib, a triple angiokinase inhibitor, enhances cytotoxic therapy response in pancreatic cancer. Cancer Lett 2014; 358:59-66. [PMID: 25527450 DOI: 10.1016/j.canlet.2014.12.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 02/06/2023]
Abstract
Angiogenesis remains a sensible target for pancreatic ductal adenocarcinoma (PDAC) therapy. VEGF, PDGF, FGF and their receptors are expressed at high levels and correlate with poor prognosis in human PDAC. Nintedanib is a triple angiokinase inhibitor that targets VEGFR1/2/3, FGFR1/2/3 and PDGFRα/β signaling. We investigated the antitumor activity of nintedanib alone or in combination with the cytotoxic agent gemcitabine in experimental PDAC. Nintedanib inhibited proliferation of cells from multiple lineages found in PDAC, with gemcitabine enhancing inhibitory effects. Nintedanib blocked PI3K/MAPK activity and induced apoptosis in vitro and in vivo. In a heterotopic model, net local tumor growth compared to controls (100%) was 60.8 ± 10.5% in the gemcitabine group, -2.1 ± 9.9% after nintedanib therapy and -12.4 ± 16% after gemcitabine plus nintedanib therapy. Effects of therapy on intratumoral proliferation, microvessel density and apoptosis corresponded with tumor growth inhibition data. In a PDAC survival model, median animal survival after gemcitabine, nintedanib and gemcitabine plus nintedanib was 25, 31 and 38 days, respectively, compared to 16 days in controls. The strong antitumor activity of nintedanib in experimental PDAC supports the potential of nintedanib-controlled mechanisms as targets for improved clinical PDAC therapy.
Collapse
Affiliation(s)
- Niranjan Awasthi
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617; Division of Surgical Oncology, Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390.
| | - Stefan Hinz
- Division of Surgical Oncology, Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Rolf A Brekken
- Division of Surgical Oncology, Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Margaret A Schwarz
- Department of Pediatrics, Indiana University School of Medicine, South Bend, IN 46617
| | - Roderich E Schwarz
- Department of Surgery, Indiana University School of Medicine, South Bend, IN 46617; Division of Surgical Oncology, Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390; Indiana University Health Goshen Center for Cancer Care, Indiana University School of Medicine, South Bend, IN 46617
| |
Collapse
|