1
|
Sanchez GJ, Liu Z, Hunter S, Xu Q, Westfall JTV, Wheeler GE, Toomey C, Taatjes D, Allen M, Dowell RD, Liu X. Histone Deacetylase Inhibitor Largazole Deactivates A Subset of Superenchancers and Causes Mitotic Chromosome Mis-alignment by Suppressing SP1 and BRD4. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635612. [PMID: 39975221 PMCID: PMC11838406 DOI: 10.1101/2025.01.29.635612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Histone deacetylase inhibitors have been investigated as potential therapeutic agents for cancer and other diseases. HDIs are known to promote histone acetylation, resulting in an open chromatin conformation and generally increased gene expression. In previous work, we reported that a subset of genes, particularly those regulated by superenhancers, can be suppressed by the HDAC inhibitor largazole. To elucidate the molecular mechanisms underlying gene repression by largazole, we conducted transposase-accessible chromatin sequencing, ChIP-seq, and RNA-seq studies. Our findings revealed that while largazole treatment generally enhances chromatin accessibility, it selectively decreases the accessibility of a subset of superenhancer regions. These genomic regions, showing the most significant changes in the presence of largazole, were enriched with transcription factor binding motifs for SP1, BRD4, CTCF, and YY1. ChIP-seq analysis confirmed reduced binding of BRD4 and SP1 at their respective sites on chromatin, particularly at superenhancers regulating genes such as ID1, c-Myc and MCMs. Largazole exerts its effects by inhibiting DNA replication, RNA processing, and cell cycle progression, partially through the suppression of SP1 expression. Depletion of SP1 by shRNA mimics several key biological effects of largazole and increases cellular sensitivity to the drug. Specific to cell cycle regulation, we demonstrated that largazole disrupts G/M transition by interfering with chromosome alignment during metaphase, a phenotype also observed with SP1 depletion. Our results suggest that largazole exerts its growth-inhibitory effect by suppressing BRD4 and SP1 at super-enhancers, leading to cytostatic responses and mitotic dysfunction.
Collapse
|
2
|
Wei L, Deng C, Zhang B, Wang G, Meng Y, Qin H. SP4 Facilitates Esophageal Squamous Cell Carcinoma Progression by Activating PHF14 Transcription and Wnt/Β-Catenin Signaling. Mol Cancer Res 2024; 22:55-69. [PMID: 37768180 PMCID: PMC10758695 DOI: 10.1158/1541-7786.mcr-22-0835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/13/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Specificity protein 4 transcription factor (SP4), a member of the Sp/Krüppel-like family (KLF), could bind to GT and GC box promoters, and plays an essential role in transcriptional activating. Despite SP4 having been detected to be highly expressed in a variety of human tumors, its biological effect and underlying molecular mechanism in esophageal squamous cell carcinoma (ESCC) remains unclear. Our research discovered that high SP4 expression is detected in primary ESCC specimens and cell lines and is strongly associated with the ESCC tumor grade and poor prognosis. In vitro, knockdown of SP4 suppressed cell proliferation and cell-cycle progression and promoted apoptosis, whereas overexpression of SP4 did the opposite. In vivo, inhibiting SP4 expression in ESCC cells suppresses tumor growth. Subsequently, we demonstrated that SP4 acts as the transcriptional upstream of PHF14, which binds to PHF14 promoter region, thus promoting PHF14 transcription. PHF14 was also significantly expressed in patient tissues and various ESCC cell lines and its expression promoted cell proliferation and inhibited apoptosis. Moreover, knockdown of SP4 inhibited the Wnt/β-catenin signaling pathway, whereas overexpression of PHF14 eliminated the effects of SP4 knockdown in ESCC cells. These results demonstrate that SP4 activates the Wnt/β-catenin signaling pathway by driving PHF14 transcription, thereby promoting ESCC progression, which indicates that SP4 might act as a prospective prognostic indicator or therapeutic target for patients with ESCC. IMPLICATIONS This study identified SP4/PH14 axis as a new mechanism to promote the progression of ESCC, which may serve as a novel therapeutic target for patients with ESCC.
Collapse
Affiliation(s)
- Li Wei
- Department of Surgery and Anesthesia, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Chaowei Deng
- Department of Cell Biology and Genetics/Institute of Genetics and Developmental Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Bo Zhang
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Guanghui Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yan Meng
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Hao Qin
- Department of Peripheral Vascular Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| |
Collapse
|
3
|
Liu Z, Jin D, Wei X, Gao Y, Gao X, Li X, Wang X, Wei P, Liu T. ZBTB34 is a hepatocellular carcinoma-associated protein with a monopartite nuclear localization signal. Aging (Albany NY) 2023; 15:8487-8500. [PMID: 37650557 PMCID: PMC10496988 DOI: 10.18632/aging.204987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/18/2023] [Indexed: 09/01/2023]
Abstract
ZBTB34 is a novel zinc finger protein with an unknown function. In this study, the gene expression and survival prognosis of ZBTB34 were analyzed across tumors based on the TCGA datasets. According to the bioinformatics analysis and qPCR results, liver hepatocellular carcinomas exhibit a high level of ZBTB34 expression. Additionally, the experiment supported the bioinformatics analysis findings that ZBTB34 expression was regulated by miR-125b-5p and that ZBTB34 affected ZBTB10, POLR1B, and AUH expression in HepG2 cells. Biological software analysis further revealed that ZBTB34 contains a monopartite nuclear localization signal (NLS). Arginine and lysine inside the putative NLS were substituted using the alanine-scanning mutagenesis method. The findings showed that the ability of ZBTB34 to enter the nucleus was abolished by the alanine substitution of the sequence 320RGGRARQKRA329 and the mutation of Lys327 and Arg328 residues. ZBTB34 was co-immunoprecipitated with importin α1, importin α3, importin α4, and importin β1, according to the results of the co-immunoprecipitation assay. In conclusion, ZBTB34 is a hepatocellular carcinoma-associated protein with a monopartite NLS. The nuclear import of ZBTB34 is mediated by importin α1, importin α3, importin α4, and importin β1. ZBTB34 performs its biological functions via a putative miR-125b-5p/ZBTB34/(ZBTB10, POLR1B, and AUH) signaling axis in HepG2 cells.
Collapse
Affiliation(s)
- Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, Guangxi, China
- Guihang Guiyang Hospital Affiliated to Zunyi Medical University, Guiyang 550027, Guizhou, China
| | - Di Jin
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Xinran Wei
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Yue Gao
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Xiaodie Gao
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Xia Li
- Clinical Laboratory, Hospital Affiliated to Guilin Medical University, Guilin 541001, Guangxi, China
| | - Xiujuan Wang
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Pingying Wei
- College of Medical Laboratory Science, Guilin Medical University, Guilin 541004, Guangxi, China
| | - Tao Liu
- Guihang Guiyang Hospital Affiliated to Zunyi Medical University, Guiyang 550027, Guizhou, China
| |
Collapse
|
4
|
Selim O, Song C, Kumar A, Phelan R, Singh A, Federman N. A review of the therapeutic potential of histone deacetylase inhibitors in rhabdomyosarcoma. Front Oncol 2023; 13:1244035. [PMID: 37664028 PMCID: PMC10471891 DOI: 10.3389/fonc.2023.1244035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
This review aims to summarize the putative role of histone deacetylases (HDACs) in rhabdomyosarcoma (RMS) and the effects of HDAC inhibitors (HDACi) on RMS by elucidating and highlighting known oncogenic pathways, mechanisms of resistance, and the synergistic potential of histone deacetylase inhibitors. We searched two databases (PubMed and Google Scholar) for the keywords "Rhabdomyosarcoma, histone deacetylase, histone deacetylase inhibitors." We excluded three publications that did not permit access to the full text to review and those that focus exclusively on pleiomorphic RMS in adults. Forty-seven papers met the inclusion criteria. This review highlights that HDACi induce cytotoxicity, cell-cycle arrest, and oxidative stress in RMS cells. Ultimately, HDACi have been shown to increase apoptosis and the cessation of embryonal and alveolar RMS proliferation in vivo and in vitro, both synergistically and on its own. HDACi contain potent therapeutic potential against RMS. This review discusses the significant findings and the biological mechanisms behind the anti-cancer effects of HDACi. Additionally, this review highlights important clinical trials assessing the efficacy of HDACi in sarcomas.
Collapse
Affiliation(s)
- Omar Selim
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
| | - Clara Song
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
| | - Amy Kumar
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
| | - Rebecca Phelan
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
| | - Arun Singh
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Noah Federman
- Clinical and Translational Science Institute, University of California, Los Angeles, CA, United States
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
5
|
Safe S. Specificity Proteins (Sp) and Cancer. Int J Mol Sci 2023; 24:5164. [PMID: 36982239 PMCID: PMC10048989 DOI: 10.3390/ijms24065164] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
The specificity protein (Sp) transcription factors (TFs) Sp1, Sp2, Sp3 and Sp4 exhibit structural and functional similarities in cancer cells and extensive studies of Sp1 show that it is a negative prognostic factor for patients with multiple tumor types. In this review, the role of Sp1, Sp3 and Sp4 in the development of cancer and their regulation of pro-oncogenic factors and pathways is reviewed. In addition, interactions with non-coding RNAs and the development of agents that target Sp transcription factors are also discussed. Studies on normal cell transformation into cancer cell lines show that this transformation process is accompanied by increased levels of Sp1 in most cell models, and in the transformation of muscle cells into rhabdomyosarcoma, both Sp1 and Sp3, but not Sp4, are increased. The pro-oncogenic functions of Sp1, Sp3 and Sp4 in cancer cell lines were studied in knockdown studies where silencing of each individual Sp TF decreased cancer growth, invasion and induced apoptosis. Silencing of an individual Sp TF was not compensated for by the other two and it was concluded that Sp1, Sp3 and Sp4 are examples of non-oncogene addicted genes. This conclusion was strengthened by the results of Sp TF interactions with non-coding microRNAs and long non-coding RNAs where Sp1 contributed to pro-oncogenic functions of Sp/non-coding RNAs. There are now many examples of anticancer agents and pharmaceuticals that induce downregulation/degradation of Sp1, Sp3 and Sp4, yet clinical applications of drugs specifically targeting Sp TFs are not being used. The application of agents targeting Sp TFs in combination therapies should be considered for their potential to enhance treatment efficacy and decrease toxic side effects.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Liu Z, Wei X, Gao Y, Gao X, Li X, Zhong Y, Wang X, Liu C, Shi T, Lv J, Liu T. Zbtb34 promotes embryonic stem cell proliferation by elongating telomere length. Aging (Albany NY) 2022; 14:7126-7136. [PMID: 36098743 PMCID: PMC9512507 DOI: 10.18632/aging.204285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
Zbtb34 is a novel zinc finger protein, which is revealed by biological software analysis to have 3 zinc fingers, but its functions remain unknown. In this study, mouse Zbtb34 cDNA was amplified by PCR and inserted into the plasmid pEGFP-N1 to generate Zbtb34-EGFP fusion protein. The upregulation of Zbtb34 in mouse embryonic stem cells promoted telomere elongation and increased cell proliferation. In order to understand the above phenomena, the telomere co-immunoprecipitation technique was employed to investigate the relationship between Zbtb34 and telomeres. The results indicated that Zbtb34 could bind to the DNA sequences of the telomeres. Alanine substitution of the third zinc finger abolished such binding. Since Pot1 is the only protein binding to the single-stranded DNA at the end of the telomeres, we further investigated the relationship between Zbtb34 and Pot1. The results revealed that the upregulation of Zbtb34 decreased the binding of Pot1b to the telomeres. Through the upregulation of Pot1b, the binding of Zbtb34 to the telomeres was also reduced. In conclusion, we showed that the main biological function of Zbtb34 was to bind telomere DNA via its third ZnF, competing with Pot1b for the binding sites, resulting in telomere elongation and cell proliferation.
Collapse
Affiliation(s)
- Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
- Guihang Guiyang Hospital Affiliated to Zunyi Medical University, Guiyang, Guizhou 550027, China
| | - Xinran Wei
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Yue Gao
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xiaodie Gao
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xia Li
- Clinical Laboratory, Hospital Affiliated to Guilin Medical University, Guilin, Guangxi 541001, China
| | - Yujuan Zhong
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xiujuan Wang
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Chong Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Tianle Shi
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Jiabin Lv
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Tao Liu
- Guihang Guiyang Hospital Affiliated to Zunyi Medical University, Guiyang, Guizhou 550027, China
| |
Collapse
|
7
|
Lanzi C, Cassinelli G. Combinatorial strategies to potentiate the efficacy of HDAC inhibitors in fusion-positive sarcomas. Biochem Pharmacol 2022; 198:114944. [DOI: 10.1016/j.bcp.2022.114944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/02/2022] [Indexed: 12/12/2022]
|
8
|
Chiu HY, Loh AHP, Taneja R. Mitochondrial calcium uptake regulates tumour progression in embryonal rhabdomyosarcoma. Cell Death Dis 2022; 13:419. [PMID: 35490194 PMCID: PMC9056521 DOI: 10.1038/s41419-022-04835-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/09/2022]
Abstract
AbstractEmbryonal rhabdomyosarcoma (ERMS) is characterised by a failure of cells to complete skeletal muscle differentiation. Although ERMS cells are vulnerable to oxidative stress, the relevance of mitochondrial calcium homoeostasis in oncogenesis is unclear. Here, we show that ERMS cell lines as well as primary tumours exhibit elevated expression of the mitochondrial calcium uniporter (MCU). MCU knockdown resulted in impaired mitochondrial calcium uptake and a reduction in mitochondrial reactive oxygen species (mROS) levels. Phenotypically, MCU knockdown cells exhibited reduced cellular proliferation and motility, with an increased propensity to differentiate in vitro and in vivo. RNA-sequencing of MCU knockdown cells revealed a significant reduction in genes involved in TGFβ signalling that play prominent roles in oncogenesis and inhibition of myogenic differentiation. Interestingly, modulation of mROS production impacted TGFβ signalling. Our study elucidates mechanisms by which mitochondrial calcium dysregulation promotes tumour progression and suggests that targeting the MCU complex to restore mitochondrial calcium homoeostasis could be a therapeutic avenue in ERMS.
Collapse
|
9
|
Marchesi I, Fais M, Fiorentino FP, Bordoni V, Sanna L, Zoroddu S, Bagella L. Bromodomain Inhibitor JQ1 Provides Novel Insights and Perspectives in Rhabdomyosarcoma Treatment. Int J Mol Sci 2022; 23:ijms23073581. [PMID: 35408939 PMCID: PMC8998669 DOI: 10.3390/ijms23073581] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/24/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common type of pediatric soft tissue sarcoma. It is classified into two main subtypes: embryonal (eRMS) and alveolar (aRMS). MYC family proteins are frequently highly expressed in RMS tumors, with the highest levels correlated with poor prognosis. A pharmacological approach to inhibit MYC in cancer cells is represented by Bromodomain and Extra-Terminal motif (BET) protein inhibitors. In this paper, we evaluated the effects of BET inhibitor (+)-JQ1 (JQ1) on the viability of aRMS and eRMS cells. Interestingly, we found that the drug sensitivity of RMS cell lines to JQ1 was directly proportional to the expression of MYC. JQ1 induces G1 arrest in cells with the highest steady-state levels of MYC, whereas apoptosis is associated with MYC downregulation. These findings suggest BET inhibition as an effective strategy for the treatment of RMS alone or in combination with other drugs.
Collapse
Affiliation(s)
- Irene Marchesi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
- Kitos Biotech Srls, Tramariglio, 07041 Alghero, Italy
| | - Milena Fais
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
| | - Francesco Paolo Fiorentino
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
- Kitos Biotech Srls, Tramariglio, 07041 Alghero, Italy
| | - Valentina Bordoni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
| | - Luca Sanna
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
| | - Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (I.M.); (M.F.); (F.P.F.); (V.B.); (L.S.); (S.Z.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Centre for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
- Correspondence:
| |
Collapse
|
10
|
Montagna C, Filomeni G. Looking at denitrosylation to understand the myogenesis gone awry theory of rhabdomyosarcoma. Nitric Oxide 2022; 122-123:1-5. [PMID: 35182743 DOI: 10.1016/j.niox.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/26/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
S-nitrosylation of proteins is a nitric oxide (NO)-based post-translational modification of cysteine residues. By removing the NO moiety from S-nitrosothiol adducts, denitrosylases restore sulfhydryl protein pool and act as downstream tuners of S-nitrosylation signaling. Alterations in the S-nitrosylation/denitrosylation dynamics are implicated in many pathological states, including cancer ontogenesis and progression, skeletal muscle myogenesis and function. Here, we aim to provide and link different lines of evidence, and elaborate on the possible role of S-nitrosylation/denitrosylation signaling in rhabdomyosarcoma, one of the most common pediatric mesenchymal malignancy.
Collapse
Affiliation(s)
- Costanza Montagna
- Department of Biology, Tor Vergata University, Rome, Italy; Unicamillus-Saint Camillus University of Health Sciences, Rome, Italy.
| | - Giuseppe Filomeni
- Department of Biology, Tor Vergata University, Rome, Italy; Redox Signaling and Oxidative Stress Group, Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Healthy Aging, Department of Clinical Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
11
|
Chang WI, Lin C, Liguori N, Honeyman JN, DeNardo B, El-Deiry W. Molecular Targets for Novel Therapeutics in Pediatric Fusion-Positive Non-CNS Solid Tumors. Front Pharmacol 2022; 12:747895. [PMID: 35126101 PMCID: PMC8811504 DOI: 10.3389/fphar.2021.747895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/03/2021] [Indexed: 12/31/2022] Open
Abstract
Chromosomal fusions encoding novel molecular drivers have been identified in several solid tumors, and in recent years the identification of such pathogenetic events in tumor specimens has become clinically actionable. Pediatric sarcomas and other rare tumors that occur in children as well as adults are a group of heterogeneous tumors often with driver gene fusions for which some therapeutics have already been developed and approved, and others where there is opportunity for progress and innovation to impact on patient outcomes. We review the chromosomal rearrangements that represent oncogenic events in pediatric solid tumors outside of the central nervous system (CNS), such as Ewing Sarcoma, Rhabdomyosarcoma, Fibrolamellar Hepatocellular Carcinoma, and Renal Cell Carcinoma, among others. Various therapeutics such as CDK4/6, FGFR, ALK, VEGF, EGFR, PDGFR, NTRK, PARP, mTOR, BRAF, IGF1R, HDAC inhibitors are being explored among other novel therapeutic strategies such as ONC201/TIC10.
Collapse
Affiliation(s)
- Wen-I Chang
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Pediatric Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
- *Correspondence: Wen-I Chang, ; Wafik El-Deiry,
| | - Claire Lin
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Nicholas Liguori
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Joshua N. Honeyman
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
- Pediatric Surgery, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Bradley DeNardo
- Pediatric Hematology/Oncology, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
| | - Wafik El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- The Joint Program in Cancer Biology, Brown University and Lifespan Health System, Providence, RI, United States
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Hematology/Oncology Division, Department of Medicine, Lifespan Health System and Brown University, Providence, RI, United States
- *Correspondence: Wen-I Chang, ; Wafik El-Deiry,
| |
Collapse
|
12
|
Fatema K, Luelling S, Kirkham M, Pavek A, Heyneman AL, Barrott J. Epigenetics and precision medicine in bone and soft tissue sarcomas. EPIGENETICS IN PRECISION MEDICINE 2022:147-191. [DOI: 10.1016/b978-0-12-823008-4.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
13
|
MS-275 (Entinostat) Promotes Radio-Sensitivity in PAX3-FOXO1 Rhabdomyosarcoma Cells. Int J Mol Sci 2021; 22:ijms221910671. [PMID: 34639012 PMCID: PMC8508838 DOI: 10.3390/ijms221910671] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood. About 25% of RMS expresses fusion oncoproteins such as PAX3/PAX7-FOXO1 (fusion-positive, FP) while fusion-negative (FN)-RMS harbors RAS mutations. Radiotherapy (RT) plays a crucial role in local control but metastatic RMS is often radio-resistant. HDAC inhibitors (HDACi) radio-sensitize different cancer cells types. Thus, we evaluated MS-275 (Entinostat), a Class I and IV HDACi, in combination with RT on RMS cells in vitro and in vivo. MS-275 reversibly hampered cell survival in vitro in FN-RMS RD (RASmut) and irreversibly in FP-RMS RH30 cell lines down-regulating cyclin A, B, and D1, up-regulating p21 and p27 and reducing ERKs activity, and c-Myc expression in RD and PI3K/Akt/mTOR activity and N-Myc expression in RH30 cells. Further, MS-275 and RT combination reduced colony formation ability of RH30 cells. In both cell lines, co-treatment increased DNA damage repair inhibition and reactive oxygen species formation, down-regulated NRF2, SOD, CAT and GPx4 anti-oxidant genes and improved RT ability to induce G2 growth arrest. MS-275 inhibited in vivo growth of RH30 cells and completely prevented the growth of RT-unresponsive RH30 xenografts when combined with radiation. Thus, MS-275 could be considered as a radio-sensitizing agent for the treatment of intrinsically radio-resistant PAX3-FOXO1 RMS.
Collapse
|
14
|
Rossetti A, Petragnano F, Milazzo L, Vulcano F, Macioce G, Codenotti S, Cassandri M, Pomella S, Cicchetti F, Fasciani I, Antinozzi C, Di Luigi L, Festuccia C, De Felice F, Vergine M, Fanzani A, Rota R, Maggio R, Polimeni A, Tombolini V, Gravina GL, Marampon F. Romidepsin (FK228) fails in counteracting the transformed phenotype of rhabdomyosarcoma cells but efficiently radiosensitizes, in vitro and in vivo, the alveolar phenotype subtype. Int J Radiat Biol 2021; 97:943-957. [PMID: 33979259 DOI: 10.1080/09553002.2021.1928786] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/13/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE Herein we describe the in vitro and in vivo activity of FK228 (Romidepsin), an inhibitor of class I HDACs, in counteracting and radiosensitizing embryonal (ERMS, fusion-negative) and alveolar (ARMS, fusion-positive) rhabdomyosarcoma (RMS). METHODS RH30 (ARMS, fusion-positive) and RD (ERMS, fusion-negative) cell lines and human multipotent mesenchymal stromal cells (HMSC) were used. Flow cytometry analysis, RT-qPCR, western blotting and enzymatic assays were performed. Irradiation was delivered by using an x-6 MV photon linear accelerator. FK228 (1.2 mg/kg) in vivo activity, combined or not with radiation therapy (2 Gy), was assessed in murine xenografts. RESULTS Compared to HMSC, RMS expressed low levels of class I HDACs. In vitro, FK228, as single agents, reversibly downregulated class I HDACs expression and activity and induced oxidative stress, DNA damage and a concomitant growth arrest associated with PARP-1-mediated transient non-apoptotic cell death. Surviving cells upregulated the expression of cyclin A, B, D1, p27, Myc and activated PI3K/Akt/mTOR and MAPK signaling, known to be differently involved in cancer chemoresistance. Interestingly, while no radiosensitizing effects were detected, in vitro or in vivo, on RD cells, FK228 markedly radiosensitized RH30 cells by impairing antioxidant and DSBs repair pathways in vitro. Further, FK228 when combined with RT in vivo significantly reduced tumor mass in mouse RH30 xenografts. CONCLUSION FK228 did not show antitumor activity as a single agent whilst its combination with RT resulted in radiosensitization of fusion-positive RMS cells, thus representing a possible strategy for the treatment of the most aggressive RMS subtype.
Collapse
Affiliation(s)
- Alessandra Rossetti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giampiero Macioce
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Codenotti
- Division of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Matteo Cassandri
- Group of Epigenetics of Pediatric Sarcomas, Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Silvia Pomella
- Group of Epigenetics of Pediatric Sarcomas, Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Cristina Antinozzi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Claudio Festuccia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesca De Felice
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Massimo Vergine
- Department of Surgical Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Alessandro Fanzani
- Division of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rossella Rota
- Group of Epigenetics of Pediatric Sarcomas, Department of Oncohematology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Giovanni Luca Gravina
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
15
|
Walters ZS, Aladowicz E, Villarejo-Balcells B, Nugent G, Selfe JL, Eve P, Blagg J, Rossanese O, Shipley J. Role for the Histone Demethylase KDM4B in Rhabdomyosarcoma via CDK6 and CCNA2: Compensation by KDM4A and Apoptotic Response of Targeting Both KDM4B and KDM4A. Cancers (Basel) 2021; 13:1734. [PMID: 33917420 PMCID: PMC8038694 DOI: 10.3390/cancers13071734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 01/10/2023] Open
Abstract
Histone demethylases are epigenetic modulators that play key roles in regulating gene expression related to many critical cellular functions and are emerging as promising therapeutic targets in a number of tumor types. We previously identified histone demethylase family members as overexpressed in the pediatric sarcoma, rhabdomyosarcoma. Here we show high sensitivity of rhabdomyosarcoma cells to a pan-histone demethylase inhibitor, JIB-04 and identify a key role for the histone demethylase KDM4B in rhabdomyosarcoma cell growth through an RNAi-screening approach. Decreasing KDM4B levels affected cell cycle progression and transcription of G1/S and G2/M checkpoint genes including CDK6 and CCNA2, which are bound by KDM4B in their promoter regions. However, after sustained knockdown of KDM4B, rhabdomyosarcoma cell growth recovered. We show that this can be attributed to acquired molecular compensation via recruitment of KDM4A to the promoter regions of CDK6 and CCNA2 that are otherwise bound by KDM4B. Furthermore, upfront silencing of both KDM4B and KDM4A led to RMS cell apoptosis, not seen by reducing either alone. To circumvent compensation and elicit stronger therapeutic responses, our study supports targeting histone demethylase sub-family proteins through selective poly-pharmacology as a therapeutic approach.
Collapse
Affiliation(s)
- Zoë S. Walters
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (Z.S.W.); (E.A.); (B.V.-B.); (J.L.S.)
- Cancer Sciences, Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Ewa Aladowicz
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (Z.S.W.); (E.A.); (B.V.-B.); (J.L.S.)
| | - Barbara Villarejo-Balcells
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (Z.S.W.); (E.A.); (B.V.-B.); (J.L.S.)
| | - Gary Nugent
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (G.N.); (P.E.); (J.B.); (O.R.)
| | - Joanna L. Selfe
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (Z.S.W.); (E.A.); (B.V.-B.); (J.L.S.)
| | - Paul Eve
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (G.N.); (P.E.); (J.B.); (O.R.)
| | - Julian Blagg
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (G.N.); (P.E.); (J.B.); (O.R.)
| | - Olivia Rossanese
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (G.N.); (P.E.); (J.B.); (O.R.)
| | - Janet Shipley
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (Z.S.W.); (E.A.); (B.V.-B.); (J.L.S.)
| |
Collapse
|
16
|
Kowalczyk JT, Wan X, Hernandez ER, Luo R, Lyons GC, Wilson KM, Gallardo DC, Isanogle KA, Robinson CM, Mendoza A, Heske CM, Chen JQ, Luo X, Kelly AE, Difilippantinio S, Robey RW, Thomas CJ, Sackett DL, Morrison DK, Randazzo PA, Jenkins LMM, Yohe ME. Rigosertib Induces Mitotic Arrest and Apoptosis in RAS-Mutated Rhabdomyosarcoma and Neuroblastoma. Mol Cancer Ther 2020; 20:307-319. [PMID: 33158997 DOI: 10.1158/1535-7163.mct-20-0525] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/16/2020] [Accepted: 10/30/2020] [Indexed: 11/16/2022]
Abstract
Relapsed pediatric rhabdomyosarcomas (RMS) and neuroblastomas (NBs) have a poor prognosis despite multimodality therapy. In addition, the current standard of care for these cancers includes vinca alkaloids that have severe toxicity profiles, further underscoring the need for novel therapies for these malignancies. Here, we show that the small-molecule rigosertib inhibits the growth of RMS and NB cell lines by arresting cells in mitosis, which leads to cell death. Our data indicate that rigosertib, like the vinca alkaloids, exerts its effects mainly by interfering with mitotic spindle assembly. Although rigosertib has the ability to inhibit oncogenic RAS signaling, we provide evidence that rigosertib does not induce cell death through inhibition of the RAS pathway in RAS-mutated RMS and NB cells. However, the combination of rigosertib and the MEK inhibitor trametinib, which has efficacy in RAS-mutated tumors, synergistically inhibits the growth of an RMS cell line, suggesting a new avenue for combination therapy. Importantly, rigosertib treatment delays tumor growth and prolongs survival in a xenograft model of RMS. In conclusion, rigosertib, through its impact on the mitotic spindle, represents a potential therapeutic for RMS.
Collapse
Affiliation(s)
| | - Xiaolin Wan
- National Cancer Institute, Bethesda, Maryland
| | | | - Ruibai Luo
- National Cancer Institute, Bethesda, Maryland
| | | | - Kelli M Wilson
- National Center for Advancing Translational Sciences, Rockville, Maryland
| | | | - Kristine A Isanogle
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Christina M Robinson
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | | | | | | | | | - Simone Difilippantinio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Craig J Thomas
- National Center for Advancing Translational Sciences, Rockville, Maryland
| | - Dan L Sackett
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland
| | | | | | | | | |
Collapse
|
17
|
Mansour MA. SP3 is associated with migration, invasion, and Akt/PKB signalling in MDA-MB-231 breast cancer cells. J Biochem Mol Toxicol 2020; 35:e22657. [PMID: 33113244 DOI: 10.1002/jbt.22657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/06/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
Abstract
Specificity proteins (SPs) have pro-oncogenic functions in cancer cells, ranging from cancer cell proliferation, migration, invasion, and angiogenesis. There is strong evidence that several antineoplastic drugs target depletion of SP proteins via different pathways. However, the mode of action of SP3 and the underlying consequences of its depletion are not well understood. Here, we demonstrate that SP3 is overexpressed in invasive breast cancer cells vs normal counterparts. The gene expression analysis from The Cancer Genome Atlas datasets indicated that SP3 is strongly correlated with Akt signalling-related proteins, G protein subunit alpha 13, and RAB33B (RAB33B, member RAS oncogene family). RNA interference of SP3 decreased active phosphorylation of Akt at serine and threonine sites. These findings indicate that SP3 exhibits a pro-oncogenic function, which clearly fits the description of an nononcogene addiction gene. Future analyses are prompted to uncover the SP3 gene regulation function and to reveal downstream targets of SP3 in breast cancer.
Collapse
Affiliation(s)
- Mohammed A Mansour
- Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK.,Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
18
|
Sin Y, Yoshimatsu Y, Noguchi R, Tsuchiya R, Sei A, Ono T, Toki S, Kobayashi E, Arakawa A, Sugiyama M, Yoshida A, Kawai A, Kondo T. Establishment and characterization of a novel alveolar rhabdomyosarcoma cell line, NCC-aRMS1-C1. Hum Cell 2020; 33:1311-1320. [PMID: 32715445 DOI: 10.1007/s13577-020-00403-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Alveolar rhabdomyosarcoma (aRMS) is a histological subtype of RMS, which is the most common pediatric and adolescent soft-tissue sarcoma, accounting for 3-4% of all pediatric malignancies. Patient-derived cells are essential tools for understanding the molecular mechanisms of poor prognosis and developing novel anti-cancer drugs. However, only a limited number of well-characterized cell lines for rhabdomyosarcoma from public cell banks is available. Therefore, we aimed to establish a novel cell line of aRMS from the tumor tissue of a patient with aRMS. The cell line was established from surgically resected tumor tissue from a 4-year-old male patient diagnosed with stage III, T2bN1M0 aRMS and was named as NCC-aRMS1-C1. The cells were maintained for more than 3 months under tissue culture conditions and passaged more than 20 times. We confirmed the presence of identical fusion gene such as PAX7-FOXO1 in both the original tumor and NCC-aRMS1-C1. The cells exhibited spheroid formation and invasion. We found that docetaxel, vincristine, ifosfamide, dacarbazine, and romidepsin showed remarkable growth-suppressive effects on the NCC-aRMS1-C1 cells. In conclusion, the NCC-aRMS1-C1 cell line exhibited characteristics that may correspond to the lymph node metastasis in aRMS and mirror its less aggressive features. Thus, it may be useful for innovative seeds for novel therapeutic strategies.
Collapse
Affiliation(s)
- Yooksil Sin
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yuki Yoshimatsu
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Rei Noguchi
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ryuto Tsuchiya
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Akane Sei
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Takuya Ono
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Shunichi Toki
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Eisuke Kobayashi
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Ayumu Arakawa
- Department of Pediatric Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Masanaka Sugiyama
- Department of Pediatric Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiko Yoshida
- Department of Diagnosis Pathology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akira Kawai
- Department of Musculoskeletal Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
19
|
Singh RR, Mohammad J, Orr M, Reindl KM. Glutathione S-Transferase pi-1 Knockdown Reduces Pancreatic Ductal Adenocarcinoma Growth by Activating Oxidative Stress Response Pathways. Cancers (Basel) 2020; 12:E1501. [PMID: 32526885 PMCID: PMC7352757 DOI: 10.3390/cancers12061501] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Glutathione S-transferase pi-1 (GSTP1) plays an important role in regulating oxidative stress by conjugating glutathione to electrophiles. GSTP1 is overexpressed in breast, colon, lung, and prostate tumors, where it contributes to tumor progression and drug resistance; however, the role of GSTP1 in pancreatic ductal adenocarcinoma (PDAC) is not well understood. Using shRNA, we knocked down GSTP1 expression in three different PDAC cell lines and determined the effect on cell proliferation, cell cycle progression, and reactive oxygen species (ROS) levels. Our results show GSTP1 knockdown reduces PDAC cell growth, prolongs the G0/G1 phase, and elevates ROS in PDAC cells. Furthermore, GSTP1 knockdown results in the increased phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun and the decreased phosphorylation of extracellular signal-regulated kinase (ERK), p65, the reduced expression of specificity protein 1 (Sp1), and the increased expression of apoptosis-promoting genes. The addition of the antioxidant glutathione restored cell viability and returned protein expression levels to those found in control cells. Collectively, these data support the working hypothesis that the loss of GSTP1 elevates oxidative stress, which alters mitogen-activated protein (MAP) kinases and NF-κB signaling, and induces apoptosis. In support of these in vitro data, nude mice bearing orthotopically implanted GSTP1-knockdown PDAC cells showed an impressive reduction in the size and weight of tumors compared to the controls. Additionally, we observed reduced levels of Ki-67 and increased expression of cleaved caspase-3 in GSTP1-knockdown tumors, suggesting GSTP1 knockdown impedes proliferation and upregulates apoptosis in PDAC cells. Together, these results indicate that GSTP1 plays a significant role in PDAC cell growth and provides support for the pursuit of GSTP1 inhibitors as therapeutic agents for PDAC.
Collapse
Affiliation(s)
- Rahul R. Singh
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA; (R.R.S.); (J.M.)
| | - Jiyan Mohammad
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA; (R.R.S.); (J.M.)
| | - Megan Orr
- Department of Statistics, North Dakota State University, Fargo, ND 58108, USA;
| | - Katie M. Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58108, USA; (R.R.S.); (J.M.)
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW In an attempt to identify potential new therapeutic targets, efforts to describe the metabolic features unique to cancer cells are increasingly being reported. Although current standard of care regimens for several pediatric malignancies incorporate agents that target tumor metabolism, these drugs have been part of the therapeutic landscape for decades. More recent research has focused on the identification and targeting of new metabolic vulnerabilities in pediatric cancers. The purpose of this review is to describe the most recent translational findings in the metabolic targeting of pediatric malignancies. RECENT FINDINGS Across multiple pediatric cancer types, dependencies on a number of key metabolic pathways have emerged through study of patient tissue samples and preclinical modeling. Among the potentially targetable vulnerabilities are glucose metabolism via glycolysis, oxidative phosphorylation, amino acid and polyamine metabolism, and NAD metabolism. Although few agents have yet to move forward into clinical trials for pediatric cancer patients, the robust and promising preclinical data that have been generated suggest that future clinical trials should rationally test metabolically targeted agents for relevant disease populations. SUMMARY Recent advances in our understanding of the metabolic dependencies of pediatric cancers represent a source of potential new therapeutic opportunities for these diseases.
Collapse
|
21
|
Chen C, Dorado Garcia H, Scheer M, Henssen AG. Current and Future Treatment Strategies for Rhabdomyosarcoma. Front Oncol 2019; 9:1458. [PMID: 31921698 PMCID: PMC6933601 DOI: 10.3389/fonc.2019.01458] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/05/2019] [Indexed: 12/31/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, and can be subcategorized histologically and/or based on PAX-FOXO1 fusion gene status. Over the last four decades, there have been no significant improvements in clinical outcomes for advanced and metastatic RMS patients, underscoring a need for new treatment options for these groups. Despite significant advancements in our understanding of the genomic landscape and underlying biological mechanisms governing RMS that have informed the identification of novel therapeutic targets, development of these therapies in clinical trials has lagged far behind. In this review, we summarize the current frontline multi-modality therapy for RMS according to pediatric protocols, highlight emerging targeted therapies and immunotherapies identified by preclinical studies, and discuss early clinical trial data and the implications they hold for future clinical development.
Collapse
Affiliation(s)
- Celine Chen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Heathcliff Dorado Garcia
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Monika Scheer
- Pediatrics 5, Klinikum Stuttgart, Olgahospital, Stuttgart, Germany
| | - Anton G. Henssen
- Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Experimental and Clinical Research Center (ECRC) of the MDC and Charité Berlin, Berlin, Germany
| |
Collapse
|
22
|
Marampon F, Di Nisio V, Pietrantoni I, Petragnano F, Fasciani I, Scicchitano BM, Ciccarelli C, Gravina GL, Festuccia C, Del Fattore A, Tombolini M, De Felice F, Musio D, Cecconi S, Tini P, Maddalo M, Codenotti S, Fanzani A, Polimeni A, Maggio R, Tombolini V. Pro-differentiating and radiosensitizing effects of inhibiting HDACs by PXD-101 (Belinostat) in in vitro and in vivo models of human rhabdomyosarcoma cell lines. Cancer Lett 2019; 461:90-101. [DOI: 10.1016/j.canlet.2019.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/08/2019] [Accepted: 07/13/2019] [Indexed: 12/11/2022]
|
23
|
Pal A, Chiu HY, Taneja R. Genetics, epigenetics and redox homeostasis in rhabdomyosarcoma: Emerging targets and therapeutics. Redox Biol 2019; 25:101124. [PMID: 30709791 PMCID: PMC6859585 DOI: 10.1016/j.redox.2019.101124] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 12/16/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma accounting for 5-8% of malignant tumours in children and adolescents. Children with high risk disease have poor prognosis. Anti-RMS therapies include surgery, radiation and combination chemotherapy. While these strategies improved survival rates, they have plateaued since 1990s as drugs that target differentiation and self-renewal of tumours cells have not been identified. Moreover, prevailing treatments are aggressive with drug resistance and metastasis causing failure of several treatment regimes. Significant advances have been made recently in understanding the genetic and epigenetic landscape in RMS. These studies have identified novel diagnostic and prognostic markers and opened new avenues for treatment. An important target identified in high throughput drug screening studies is reactive oxygen species (ROS). Indeed, many drugs in clinical trials for RMS impact tumour progression through ROS. In light of such emerging evidence, we discuss recent findings highlighting key pathways, epigenetic alterations and their impacts on ROS that form the basis of developing novel molecularly targeted therapies in RMS. Such targeted therapies in combination with conventional therapy could reduce adverse side effects in young survivors and lead to a decline in long-term morbidity.
Collapse
Affiliation(s)
- Ananya Pal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Hsin Yao Chiu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Reshma Taneja
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
| |
Collapse
|
24
|
Histone Deacetylase Inhibitor Suberoylanilide Hydroxamic Acid Suppresses Human Adenovirus Gene Expression and Replication. J Virol 2019; 93:JVI.00088-19. [PMID: 30944181 DOI: 10.1128/jvi.00088-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022] Open
Abstract
Human adenovirus (HAdV) causes minor illnesses in most patients but can lead to severe disease and death in pediatric, geriatric, and immunocompromised individuals. No approved antiviral therapy currently exists for the treatment of these severe HAdV-induced diseases. In this study, we show that the pan-histone deacetylase (HDAC) inhibitor SAHA reduces HAdV-5 gene expression and DNA replication in tissue culture, ultimately decreasing virus yield from infected cells. Importantly, SAHA also reduced gene expression from more virulent and clinically relevant serotypes, including HAdV-4 and HAdV-7. In addition to SAHA, several other HDAC inhibitors (e.g., trichostatin A, apicidin, and panobinostat) also affected HAdV gene expression. We determined that loss of class I HDAC activity, mainly HDAC2, impairs efficient expression of viral genes, and that E1A physically interacts with HDAC2. Our results suggest that HDAC activity is necessary for HAdV replication, which may represent a novel pharmacological target in HAdV-induced disease.IMPORTANCE Although human adenovirus (HAdV) can cause severe diseases that can be fatal in some populations, there are no effective treatments to combat HAdV infection. In this study, we determined that the pan-histone deacetylase (HDAC) inhibitor SAHA has inhibitory activity against several clinically relevant serotypes of HAdV. This U.S. Food and Drug Administration-approved compound affects various stages of the virus lifecycle and reduces virus yield even at low concentrations. We further report that class I HDAC activity, particularly HDAC2, is required for efficient expression of viral genes during lytic infection. Investigation of the mechanism underlying SAHA-mediated suppression of HAdV gene expression and replication will enhance current knowledge of virus-cell interaction and may aid in the development of more effective antivirals with lower toxicity for the treatment of HAdV infections.
Collapse
|
25
|
Ma Y, Baltezor M, Rajewski L, Crow J, Samuel G, Staggs VS, Chastain KM, Toretsky JA, Weir SJ, Godwin AK. Targeted inhibition of histone deacetylase leads to suppression of Ewing sarcoma tumor growth through an unappreciated EWS-FLI1/HDAC3/HSP90 signaling axis. J Mol Med (Berl) 2019; 97:957-972. [PMID: 31025088 DOI: 10.1007/s00109-019-01782-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/17/2019] [Accepted: 03/27/2019] [Indexed: 12/14/2022]
Abstract
Ewing sarcoma (ES) are aggressive pediatric bone and soft tissue tumors driven by EWS-ETS fusion oncogenes, most commonly EWS-FLI1. Treatment of ES patients consists of up to 9 months of alternating courses of 2 chemotherapeutic regimens. Furthermore, EWS-ETS-targeted therapies have yet to demonstrate clinical benefit, thereby emphasizing a clinical responsibility to search for new therapeutic approaches. Our previous in silico drug screening identified entinostat as a drug hit that was predicted to reverse the ES disease signatures and EWS-FLI1-mediated gene signatures. Here, we establish preclinical proof of principle by investigating the in vitro and in vivo efficacy of entinostat in preclinical ES models, as well as characterizing the mechanisms of action and in vivo pharmacokinetics of entinostat. ES cells are preferentially sensitive to entinostat in an EWS-FLI1 or EWS-ERG-dependent manner. Entinostat induces apoptosis of ES cells through G0/G1 cell cycle arrest, intracellular reactive oxygen species (ROS) elevation, DNA damage, homologous recombination (HR) repair impairment, and caspase activation. Mechanistically, we demonstrate for the first time that HDAC3 is a transcriptional target of EWS-FLI1 and that entinostat inhibits growth of ES cells through suppressing a previously unexplored EWS-FLI1/HDAC3/HSP90 signaling axis. Importantly, entinostat significantly reduces tumor burden by 97.4% (89.5 vs. 3397.3 mm3 of vehicle, p < 0.001) and prolongs the median survival of mice (15.5 vs. 8.5 days of vehicle, p < 0.001), in two independent ES xenograft mouse models, respectively. Overall, our studies demonstrate promising activity of entinostat against ES, and support the clinical development of the entinostat-based therapies for children and young adults with metastatic/relapsed ES. KEY MESSAGES: • Entinostat potently inhibits ES both in vitro and in vivo. • EWS-FLI1 and EWS-ERG confer sensitivity to entinostat treatment. • Entinostat suppresses the EWS-FLI1/HDAC3/HSP90 signaling. • HDAC3 is a transcriptional target of EWS-FLI1. • HDAC3 is essential for ES cell viability and genomic stability maintenance.
Collapse
Affiliation(s)
- Yan Ma
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 4005B Wahl Hall East, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Michael Baltezor
- Lead Development Optimization Shared Resource, University of Kansas Cancer Center, Biotechnology Innovation and Optimization Center, Lawrence, KS, USA.,Institute for Advancing Medical Innovation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Lian Rajewski
- Lead Development Optimization Shared Resource, University of Kansas Cancer Center, Biotechnology Innovation and Optimization Center, Lawrence, KS, USA
| | - Jennifer Crow
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 4005B Wahl Hall East, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Glenson Samuel
- Division of Hematology/Oncology, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Vincent S Staggs
- Health Services & Outcomes Research, Children's Mercy Kansas City and School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Katherine M Chastain
- Division of Hematology/Oncology, Children's Mercy Kansas City, Kansas City, MO, USA
| | - Jeffrey A Toretsky
- Department of Oncology, Georgetown University Medical Center, Washington, D.C., USA
| | - Scott J Weir
- Institute for Advancing Medical Innovation, University of Kansas Medical Center, Kansas City, KS, USA.,Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS, USA.,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew K Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, 4005B Wahl Hall East, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA. .,University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
26
|
Mitsiogianni M, Koutsidis G, Mavroudis N, Trafalis DT, Botaitis S, Franco R, Zoumpourlis V, Amery T, Galanis A, Pappa A, Panayiotidis MI. The Role of Isothiocyanates as Cancer Chemo-Preventive, Chemo-Therapeutic and Anti-Melanoma Agents. Antioxidants (Basel) 2019; 8:E106. [PMID: 31003534 PMCID: PMC6523696 DOI: 10.3390/antiox8040106] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Many studies have shown evidence in support of the beneficial effects of phytochemicals in preventing chronic diseases, including cancer. Among such phytochemicals, sulphur-containing compounds (e.g., isothiocyanates (ITCs)) have raised scientific interest by exerting unique chemo-preventive properties against cancer pathogenesis. ITCs are the major biologically active compounds capable of mediating the anticancer effect of cruciferous vegetables. Recently, many studies have shown that a higher intake of cruciferous vegetables is associated with reduced risk of developing various forms of cancers primarily due to a plurality of effects, including (i) metabolic activation and detoxification, (ii) inflammation, (iii) angiogenesis, (iv) metastasis and (v) regulation of the epigenetic machinery. In the context of human malignant melanoma, a number of studies suggest that ITCs can cause cell cycle growth arrest and also induce apoptosis in human malignant melanoma cells. On such basis, ITCs could serve as promising chemo-therapeutic agents that could be used in the clinical setting to potentiate the efficacy of existing therapies.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Georgios Koutsidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Nikos Mavroudis
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AP, UK.
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Unit of Clinical Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Sotiris Botaitis
- Second Department of Surgery, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Vasilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Tom Amery
- The Watrercress Company / The Wasabi Company, Waddock, Dorchester, Dorset DT2 8QY, UK.
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
27
|
Genetic and epigenetic alterations induced by the small-molecule panobinostat: A mechanistic study at the chromosome and gene levels. DNA Repair (Amst) 2019; 78:70-80. [PMID: 30978576 DOI: 10.1016/j.dnarep.2019.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/05/2019] [Accepted: 03/15/2019] [Indexed: 11/20/2022]
Abstract
Increasing evidence supports the role of genetic and epigenetic alterations in a wide variety of human diseases, including cancer. Assessment of these alterations is hence essential for estimating the hazardous effects of human exposure to medications. Panobinostat received US Food and Drug Administration's approval in 2015 for treatment of certain tumors and its usefulness as part of a strategy to treat other diseases, such as human immunodeficiency virus infection, is currently investigated. Nevertheless, no data on in vivo genotoxical and epigenotoxical effects of panobinostat are available. The aim of the current study was to assess the genotoxical and epigenotoxical properties of panobinostat in murine bone marrow cells. Molecular mechanisms underlying these alterations were also evaluated. We show that mice treated with panobinostat doses recommended for human developed numerical chromosomal abnormalities, structural chromosomal damage, oxidative DNA damage, and DNA hypomethylation. These effects were dose-dependent. Further, panobinostat altered the expression of 23 genes implicated in DNA damage, as determined by RT² Profiler polymerase chain reaction (PCR) array, and confirmed by quantitative real-time PCR and western blotting. Collectively, these findings indicate that panobinostat exposure induces aneugenicity, clastogenicity, oxidative DNA damage, DNA hypomethylation, and down-regulation of repair gene expression, which may be responsible for panobinostat-induced genotoxical and epigenotoxical effects. Considering the potential toxicity of panobinostat, the medicinal use of panobinostat must be weighed against the risk of tumorigenesis and the demonstrated toxicity profile of panobinostat may support further development of chemotherapeutic treatments with reduced toxicity. Diminishing the metabolic liabilities associated with panobinostat exposure, and simultaneous use of panobinostat with DNA repair enhancers, are examples of strategies for drug design to reduce panobinostat carcinogenicity.
Collapse
|
28
|
Kasiappan R, Jutooru I, Mohankumar K, Karki K, Lacey A, Safe S. Reactive Oxygen Species (ROS)-Inducing Triterpenoid Inhibits Rhabdomyosarcoma Cell and Tumor Growth through Targeting Sp Transcription Factors. Mol Cancer Res 2019; 17:794-805. [PMID: 30610105 PMCID: PMC6397684 DOI: 10.1158/1541-7786.mcr-18-1071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/13/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Methyl 2-trifluoromethyl-3,11-dioxo-18β-olean-1,12-dien-3-oate (CF3DODA-Me) is derived synthetically from glycyrrhetinic acid, a major component of licorice, and this compound induced reactive oxygen species (ROS) in RD and Rh30 rhabdomyosarcoma (RMS) cells. CF3DODA-Me also inhibited growth and invasion and induced apoptosis in RMS cells, and these responses were attenuated after cotreatment with the antioxidant glutathione, demonstrating the effective anticancer activity of ROS in RMS. CF3DODA-Me also downregulated expression of specificity protein (Sp) transcription factors Sp1, Sp3, and Sp4 and prooncogenic Sp-regulated genes including PAX3-FOXO1 (in Rh30 cells). The mechanism of CF3DODA-Me-induced Sp-downregulation involved ROS-dependent repression of c-Myc and cMyc-regulated miR-27a and miR-17/20a, and this resulted in induction of the miRNA-regulated Sp repressors ZBTB4, ZBTB10, and ZBTB34. The cell and tumor growth effects of CF3DODA-Me further emphasize the sensitivity of RMS cells to ROS inducers and their potential clinical applications for treating this deadly disease. IMPLICATIONS: CF3DODA-Me and HDAC inhibitors that induce ROS-dependent Sp downregulation could be developed for clinical applications in treating rhabdomyosarcoma.
Collapse
Affiliation(s)
- Ravi Kasiappan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Indira Jutooru
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Alexandra Lacey
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| |
Collapse
|
29
|
Alborzinia H, Ignashkova TI, Dejure FR, Gendarme M, Theobald J, Wölfl S, Lindemann RK, Reiling JH. Golgi stress mediates redox imbalance and ferroptosis in human cells. Commun Biol 2018; 1:210. [PMID: 30511023 PMCID: PMC6262011 DOI: 10.1038/s42003-018-0212-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/05/2018] [Indexed: 12/15/2022] Open
Abstract
Cytotoxic activities of several Golgi-dispersing compounds including AMF-26/M-COPA, brefeldin A and golgicide A have previously been shown to induce autophagy or apoptosis. Here, we demonstrate that these Golgi disruptors also trigger ferroptosis, a non-apoptotic form of cell death characterized by iron-dependent oxidative degradation of lipids. Inhibitors of ferroptosis not only counteract cell death, but they also protect from Golgi dispersal and inhibition of protein secretion in response to several Golgi stress agents. Furthermore, the application of sublethal doses of ferroptosis-inducers such as erastin and sorafenib, low cystine growth conditions, or genetic knockdown of SLC7A11 and GPX4 all similarly protect cells from Golgi stress and lead to modulation of ACSL4, SLC7A5, SLC7A11 or GPX4 levels. Collectively, this study suggests a previously unrecognized function of the Golgi apparatus, which involves cellular redox control and prevents ferroptotic cell death. Hamed Alborzinia et al. show that Golgi-dispersing compounds trigger iron-dependent oxidative degradation of lipids, inducing a non-apoptotic cell death called ferroptosis. This study provides insight into the role of Golgi apparatus for preventing ferroptotic cell death through its cellular redox control.
Collapse
Affiliation(s)
- Hamed Alborzinia
- BioMed X Innovation Center, Im Neuenheimer Feld 583, 69120 Heidelberg, Germany.,4Present Address: Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | - Francesca R Dejure
- BioMed X Innovation Center, Im Neuenheimer Feld 583, 69120 Heidelberg, Germany
| | - Mathieu Gendarme
- BioMed X Innovation Center, Im Neuenheimer Feld 583, 69120 Heidelberg, Germany
| | - Jannick Theobald
- 2Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Stefan Wölfl
- 2Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Ralph K Lindemann
- 3Translational Innovation Platform Oncology, Merck Biopharma, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Jan H Reiling
- BioMed X Innovation Center, Im Neuenheimer Feld 583, 69120 Heidelberg, Germany.,5Present Address: Institute for Applied Cancer Science and Center for Co-Clinical Trials, University of Texas MD Anderson Cancer Center, Houston, TX USA
| |
Collapse
|
30
|
Bhat AV, Hora S, Pal A, Jha S, Taneja R. Stressing the (Epi)Genome: Dealing with Reactive Oxygen Species in Cancer. Antioxid Redox Signal 2018; 29:1273-1292. [PMID: 28816066 DOI: 10.1089/ars.2017.7158] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE Growing evidence indicates cross-talk between reactive oxygen species (ROS) and several key epigenetic processes such as DNA methylation, histone modifications, and miRNAs in normal physiology and human pathologies including cancer. This review focuses on how ROS-induced oxidative stress, metabolic intermediates, and epigenetic processes influence each other in various cancers. Recent Advances: ROS alter chromatin structure and metabolism that impact the epigenetic landscape in cancer cells. Several site-specific DNA methylation changes have been identified in different cancers and are discussed in the review. We also discuss the interplay of epigenetic enzymes and miRNAs in influencing malignant transformation in an ROS-dependent manner. CRITICAL ISSUES Loss of ROS-mediated signaling mostly by epigenetic regulation may promote tumorigenesis. In contrast, augmented oxidative stress because of high ROS levels may precipitate epigenetic alterations to effect various phases of carcinogenesis. We address both aspects in the review. FUTURE DIRECTIONS Several drugs targeting ROS are under various stages of clinical development. Recent analysis of human cancers has revealed pervasive deregulation of the epigenetic machinery. Thus, a better understanding of the cross-talk between ROS and epigenetic alterations in cancer could lead to the identification of new drug targets and more effective treatment modalities.
Collapse
Affiliation(s)
- Akshay V Bhat
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Shainan Hora
- 2 Cancer Science Institute, National University of Singapore , Singapore .,3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Ananya Pal
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Sudhakar Jha
- 2 Cancer Science Institute, National University of Singapore , Singapore .,3 Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Reshma Taneja
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| |
Collapse
|
31
|
Ghayad SE, Rammal G, Sarkis O, Basma H, Ghamloush F, Fahs A, Karam M, Harajli M, Rabeh W, Mouawad JE, Zalzali H, Saab R. The histone deacetylase inhibitor Suberoylanilide Hydroxamic Acid (SAHA) as a therapeutic agent in rhabdomyosarcoma. Cancer Biol Ther 2018; 20:272-283. [PMID: 30307360 DOI: 10.1080/15384047.2018.1529093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is an aggressive childhood sarcoma with two distinct subtypes, embryonal (ERMS) and alveolar (ARMS) histologies. More effective treatment is needed to improve outcomes, beyond conventional cytotoxic chemotherapy. The pan-histone deacetylase inhibitor, Suberoylanilide Hydroxamic Acid (SAHA), has shown promising efficacy in limited preclinical studies. We used a panel of human ERMS and ARMS cell lines and xenografts to evaluate the effects of SAHA as a therapeutic agent in both RMS subtypes. SAHA decreased cell viability by inhibiting S-phase progression in all cell lines tested, and induced apoptosis in all but one cell line. Molecularly, SAHA-treated cells showed activation of a DNA damage response, induction of the cell cycle inhibitors p21Cip1 and p27Kip1 and downregulation of Cyclin D1. In a subset of RMS cell lines, SAHA promoted features of cellular senescence and myogenic differentiation. Interestingly, SAHA treatment profoundly decreased protein levels of the driver fusion oncoprotein PAX3-FOXO1 in ARMS cells at a post-translational level. In vivo, SAHA-treated xenografts showed increased histone acetylation and induction of a DNA damage response, along with variable upregulation of p21Cip1 and p27Kip1. However, while the ARMS Rh41 xenograft tumor growth was significantly inhibited, there was no significant inhibition of the ERMS tumor xenograft RD. Thus, our work shows that, while SAHA is effective against ERMS and ARMS tumor cells in vitro, it has divergent in vivo effects . Together with the observed effects on the PAX3-FOXO1 fusion protein, these data suggest SAHA as a possible therapeutic agent for clinical testing in patients with fusion protein-positive RMS.
Collapse
Affiliation(s)
- Sandra E Ghayad
- a Department of Biology, Faculty of Science II , Lebanese University , Fanar , Lebanon
| | - Ghina Rammal
- a Department of Biology, Faculty of Science II , Lebanese University , Fanar , Lebanon.,b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Omar Sarkis
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Hussein Basma
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Farah Ghamloush
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Assil Fahs
- a Department of Biology, Faculty of Science II , Lebanese University , Fanar , Lebanon
| | - Mia Karam
- a Department of Biology, Faculty of Science II , Lebanese University , Fanar , Lebanon
| | - Mohamad Harajli
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Wissam Rabeh
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Joe E Mouawad
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Hassan Zalzali
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon
| | - Raya Saab
- b Department of Pediatrics and Adolescent Medicine , American University of Beirut , Beirut , Lebanon.,c Department of Anatomy, Cell Biology and Physiology , American University of Beirut , Beirut , Lebanon
| |
Collapse
|
32
|
Karki K, Harishchandra S, Safe S. Bortezomib Targets Sp Transcription Factors in Cancer Cells. Mol Pharmacol 2018; 94:1187-1196. [PMID: 30115673 PMCID: PMC6117503 DOI: 10.1124/mol.118.112797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022] Open
Abstract
Bortezomib alone and in combination with other anticancer agents are extensively used for chemotherapeutic treatment of multiple myeloma (MM) patients and are being developed for treating other cancers. Bortezomib acts through multiple pathways, and in this study with ANBL-6 and RPMI 8226 MM cells we show that bortezomib inhibited growth and induced apoptosis and that this was accompanied by downregulation of specificity protein (Sp) 1, Sp3, and Sp4 transcription factors that are overexpressed in these cells. Similar results were observed in pancreatic and colon cancer cells. The functional importance of this pathway was confirmed by showing that individual knockdown of Sp1, Sp3, and Sp4 in MM cells inhibited cell growth and induced apoptosis, and that this correlates with the results of previous studies in pancreatic, colon, and other cancer cell lines. The mechanism of bortezomib-mediated downregulation of Sp transcription factors in MM was due to the induction of caspase-8 and upstream factors, including Fas-associated death domain. These results demonstrate that an important underlying mechanism of action of bortezomib was due to the activation of caspase-8-dependent downregulation of Sp1, Sp3, Sp4, and pro-oncogenic Sp-regulated genes.
Collapse
Affiliation(s)
- Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Sneha Harishchandra
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
33
|
Safe S, Abbruzzese J, Abdelrahim M, Hedrick E. Specificity Protein Transcription Factors and Cancer: Opportunities for Drug Development. Cancer Prev Res (Phila) 2018; 11:371-382. [PMID: 29545399 DOI: 10.1158/1940-6207.capr-17-0407] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/14/2018] [Accepted: 02/28/2018] [Indexed: 02/06/2023]
Abstract
Specificity protein (Sp) transcription factors (TFs) such as Sp1 are critical for early development but their expression decreases with age and there is evidence that transformation of normal cells to cancer cells is associated with upregulation of Sp1, Sp3, and Sp4, which are highly expressed in cancer cells and tumors. Sp1 is a negative prognostic factor for pancreatic, colon, glioma, gastric, breast, prostate, and lung cancer patients. Functional studies also demonstrate that Sp TFs regulate genes responsible for cancer cell growth, survival, migration/invasion, inflammation and drug resistance, and Sp1, Sp3 and Sp4 are also nononcogene addiction (NOA) genes and important drug targets. The mechanisms of drug-induced downregulation of Sp TFs and pro-oncogenic Sp-regulated genes are complex and include ROS-dependent epigenetic pathways that initially decrease expression of the oncogene cMyc. Many compounds such as curcumin, aspirin, and metformin that are active in cancer prevention also exhibit chemotherapeutic activity and these compounds downregulate Sp TFs in cancer cell lines and tumors. The effects of these compounds on downregulation of Sp TFs in normal cells and the contribution of this response to their chemopreventive activity have not yet been determined. Cancer Prev Res; 11(7); 371-82. ©2018 AACR.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| | - James Abbruzzese
- Department of Medicine, Division of Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Maen Abdelrahim
- GI Medical Oncology, Cockrell Center for Advanced Therapeutics, Houston Methodist Cancer Center and Institute of Academic Medicine, Houston, Texas
| | - Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
34
|
Wachtel M, Schäfer BW. PAX3-FOXO1: Zooming in on an “undruggable” target. Semin Cancer Biol 2018; 50:115-123. [DOI: 10.1016/j.semcancer.2017.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/31/2017] [Accepted: 11/13/2017] [Indexed: 12/17/2022]
|
35
|
Salehi B, Zucca P, Sharifi-Rad M, Pezzani R, Rajabi S, Setzer WN, Varoni EM, Iriti M, Kobarfard F, Sharifi-Rad J. Phytotherapeutics in cancer invasion and metastasis. Phytother Res 2018; 32:1425-1449. [DOI: 10.1002/ptr.6087] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/11/2018] [Accepted: 03/13/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Paolo Zucca
- Department of Biomedical Sciences; University of Cagliari; Cagliari Italy
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology; Zabol University of Medical Sciences; Zabol 61663-335 Iran
| | - Raffaele Pezzani
- OU Endocrinology, Dept. Medicine (DIMED); University of Padova; via Ospedale 105 Padova 35128 Italy
- AIROB, Associazione Italiana per la Ricerca Oncologica di Base; Padova Italy
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - William N. Setzer
- Department of Chemistry; University of Alabama in Huntsville; Huntsville AL 35899 USA
| | - Elena Maria Varoni
- Department of Biomedical, Surgical and Dental Sciences; Milan State University; Milan Italy
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences; Milan State University; Milan Italy
| | - Farzad Kobarfard
- Phytochemistry Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Medicinal Chemistry, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Chemistry, Richardson College for the Environmental Science Complex; The University of Winnipeg; Winnipeg MB Canada
| |
Collapse
|
36
|
Yu Y, Shang R, Chen Y, Li J, Liang Z, Hu J, Liu K, Chen C. Tumor suppressive ZBTB4 inhibits cell growth by regulating cell cycle progression and apoptosis in Ewing sarcoma. Biomed Pharmacother 2018; 100:108-115. [PMID: 29425745 DOI: 10.1016/j.biopha.2018.01.132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/21/2018] [Accepted: 01/28/2018] [Indexed: 12/24/2022] Open
|
37
|
Safe S, Nair V, Karki K. Metformin-induced anticancer activities: recent insights. Biol Chem 2018; 399:321-335. [PMID: 29272251 DOI: 10.1515/hsz-2017-0271] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
Metformin is a widely used antidiabetic drug, and there is evidence among diabetic patients that metformin is a chemopreventive agent against multiple cancers. There is also evidence in human studies that metformin is a cancer chemotherapeutic agent, and several clinical trials that use metformin alone or in combination with other drugs are ongoing. In vivo and in vitro cancer cell culture studies demonstrate that metformin induces both AMPK-dependent and AMPK-independent genes/pathways that result in inhibition of cancer cell growth and migration and induction of apoptosis. The effects of metformin in cancer cells resemble the patterns observed after treatment with drugs that downregulate specificity protein 1 (Sp1), Sp3 and Sp4 or by knockdown of Sp1, Sp3 and Sp4 by RNA interference. Studies in pancreatic cancer cells clearly demonstrate that metformin decreases expression of Sp1, Sp3, Sp4 and pro-oncogenic Sp-regulated genes, demonstrating that one of the underlying mechanisms of action of metformin as an anticancer agent involves targeting of Sp transcription factors. These observations are consistent with metformin-mediated effects on genes/pathways in many other tumor types.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Vijayalekshmi Nair
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| |
Collapse
|
38
|
Zou Z, Chang H, Li H, Wang S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis 2017; 22:1321-1335. [PMID: 28936716 DOI: 10.1007/s10495-017-1424-9] [Citation(s) in RCA: 403] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS), a group of ions and molecules, include hydroxyl radicals (·OH), alkoxyl radicals, superoxide anion (O2·-), singlet oxygen (1O2) and hydrogen peroxide (H2O2). Hydroxyl radicals and alkoxyl radicals are extremely and highly reactive species respectively. Endogenous ROS are mainly formed in mitochondrial respiratory chain. Low levels of ROS play important roles in regulating biological functions in mammalian cells. However, excess production of ROS can induce cell death by oxidative damaging effects to intracellular biomacromolecules. Cancer cell death types induced by ROS include apoptotic, autophagic, ferroptotic and necrotic cell death. Since abnormal metabolism in cancer cells, they have higher ROS content compared to normal cells. The higher endogenous ROS levels in cancer cells endow them more susceptible to the ROS-induction treatment. Indeed, some anticancer drugs currently used in clinic, such as molecular targeted drugs and chemotherapeutic agents, effectively kill cancer cells by inducing ROS generation. In addition, photodynamic therapy (PDT) is mainly based on induction of ROS burst to kill cancer cells. The mechanism of cell death induced by radiotherapy using ionizing radiation also refers to ROS production. Moreover, ROS play an important role in tumor immune therapy. Altogether, combining above traditional treatments with ROS-induced agents will be considered as a promising strategy in cancer therapy. In this review, we focus on our current understanding of the anticancer effects of ROS.
Collapse
Affiliation(s)
- Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.
- Joint Laboratory of Laser Oncology with Cancer Center of Sun Yat-sen University, South China Normal University, Guangzhou, China.
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Haolong Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Songmao Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
39
|
Karki K, Hedrick E, Kasiappan R, Jin UH, Safe S. Piperlongumine Induces Reactive Oxygen Species (ROS)-Dependent Downregulation of Specificity Protein Transcription Factors. Cancer Prev Res (Phila) 2017; 10:467-477. [PMID: 28673967 PMCID: PMC6357769 DOI: 10.1158/1940-6207.capr-17-0053] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/19/2017] [Accepted: 06/20/2017] [Indexed: 01/08/2023]
Abstract
Piperlongumine is a natural product found in the plant species Piper longum, and this compound exhibits potent anticancer activity in multiple tumor types and has been characterized as an inducer of reactive oxygen species (ROS). Treatment of Panc1 and L3.6pL pancreatic, A549 lung, 786-O kidney, and SKBR3 breast cancer cell lines with 5 to 15 μmol/L piperlongumine inhibited cell proliferation and induced apoptosis and ROS, and these responses were attenuated after cotreatment with the antioxidant glutathione. Piperlongumine also downregulated expression of Sp1, Sp3, Sp4, and several pro-oncogenic Sp-regulated genes, including cyclin D1, survivin, cMyc, EGFR and hepatocyte growth factor receptor (cMet), and these responses were also attenuated after cotreatment with glutathione. Mechanistic studies in Panc1 cells showed that piperlongumine-induced ROS decreased expression of cMyc via an epigenetic pathway, and this resulted in downregulation of cMyc-regulated miRNAs miR-27a, miR-20a, and miR-17 and induction of the transcriptional repressors ZBTB10 and ZBTB4. These repressors target GC-rich Sp-binding sites to decrease transactivation. This pathway observed for piperlongumine in Panc1 cells has previously been reported for other ROS-inducing anticancer agents and shows that an important underlying mechanism of action of piperlongumine is due to downregulation of Sp1, Sp3, Sp4, and pro-oncogenic Sp-regulated genes. Cancer Prev Res; 10(8); 467-77. ©2017 AACR.
Collapse
Affiliation(s)
- Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Ravi Kasiappan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| |
Collapse
|
40
|
Tang F, Choy E, Tu C, Hornicek F, Duan Z. Therapeutic applications of histone deacetylase inhibitors in sarcoma. Cancer Treat Rev 2017; 59:33-45. [PMID: 28732326 DOI: 10.1016/j.ctrv.2017.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 02/05/2023]
Abstract
Sarcomas are a rare group of malignant tumors originating from mesenchymal stem cells. Surgery, radiation and chemotherapy are currently the only standard treatments for sarcoma. However, their response rates to chemotherapy are quite low. Toxic side effects and multi-drug chemoresistance make treatment even more challenging. Therefore, better drugs to treat sarcomas are needed. Histone deacetylase inhibitors (HDAC inhibitors, HDACi, HDIs) are epigenetic modifying agents that can inhibit sarcoma growth in vitro and in vivo through a variety of pathways, including inducing tumor cell apoptosis, causing cell cycle arrest, impairing tumor invasion and preventing metastasis. Importantly, preclinical studies have revealed that HDIs can not only sensitize sarcomas to chemotherapy and radiotherapy, but also increase treatment responses when combined with other chemotherapeutic drugs. Several phase I and II clinical trials have been conducted to assess the efficacy of HDIs either as monotherapy or in combination with standard chemotherapeutic agents or targeted therapeutic drugs for sarcomas. Combination regimen for sarcomas appear to be more promising than monotherapy when using HDIs. This review summarizes our current understanding and therapeutic applications of HDIs in sarcomas.
Collapse
Affiliation(s)
- Fan Tang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA; Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Edwin Choy
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA
| | - Chongqi Tu
- Department of Orthopedics, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, MA 02114, USA.
| |
Collapse
|
41
|
Concomitant epigenetic targeting of LSD1 and HDAC synergistically induces mitochondrial apoptosis in rhabdomyosarcoma cells. Cell Death Dis 2017; 8:e2879. [PMID: 28617441 PMCID: PMC5520898 DOI: 10.1038/cddis.2017.239] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/29/2017] [Accepted: 04/26/2017] [Indexed: 12/22/2022]
Abstract
The lysine-specific demethylase 1 (LSD1) is overexpressed in several cancers including rhabdomyosarcoma (RMS). However, little is yet known about whether or not LSD1 may serve as therapeutic target in RMS. We therefore investigated the potential of LSD1 inhibitors alone or in combination with other epigenetic modifiers such as histone deacetylase (HDAC) inhibitors. Here, we identify a synergistic interaction of LSD1 inhibitors (i.e., GSK690, Ex917) and HDAC inhibitors (i.e., JNJ-26481585, SAHA) to induce cell death in RMS cells. By comparison, LSD1 inhibitors as single agents exhibit little cytotoxicity against RMS cells. Mechanistically, GSK690 acts in concert with JNJ-26481585 to upregulate mRNA levels of the proapoptotic BH3-only proteins BMF, PUMA, BIM and NOXA. This increase in mRNA levels is accompanied by a corresponding upregulation of BMF, PUMA, BIM and NOXA protein levels. Importantly, individual knockdown of either BMF, BIM or NOXA significantly reduces GSK690/JNJ-26481585-mediated cell death. Similarly, genetic silencing of BAK significantly rescues cell death upon GSK690/JNJ-26481585 cotreatment. Also, overexpression of antiapoptotic BCL-2 or MCL-1 significantly protects RMS cells from GSK690/JNJ-26481585-induced cell death. Furthermore, GSK690 acts in concert with JNJ-26481585 to increase activation of caspase-9 and -3. Consistently, addition of the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) significantly reduces GSK690/JNJ-26481585-mediated cell death. In conclusion, concomitant LSD1 and HDAC inhibition synergistically induces cell death in RMS cells by shifting the ratio of pro- and antiapoptotic BCL-2 proteins in favor of apoptosis, thereby engaging the intrinsic apoptotic pathway. This indicates that combined treatment with LSD1 and HDAC inhibitors is a promising new therapeutic approach in RMS.
Collapse
|
42
|
Jin UH, Cheng Y, Zhou B, Safe S. Bardoxolone Methyl and a Related Triterpenoid Downregulate cMyc Expression in Leukemia Cells. Mol Pharmacol 2017; 91:438-450. [PMID: 28275049 PMCID: PMC5399643 DOI: 10.1124/mol.116.106245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/10/2017] [Indexed: 11/22/2022] Open
Abstract
Structurally related pentacyclic triterpenoids methyl 2-cyano-3,12-dioxoolean-1,9-dien-28-oate [bardoxolone-methyl (Bar-Me)] and methyl 2-trifluoromethyl-3,11-dioxoolean-1,12-dien-30-oate (CF3DODA-Me) contain 2-cyano-1-en-3-one and 2-trifluoromethyl-1-en-3-one moieties, respectively, in their A-rings and differ in the position of their en-one structures in ring C. Only Bar-Me forms a Michael addition adduct with glutathione (GSH) and inhibits IKKβ phosphorylation. These differences may be due to steric hindrance by the 11-keto group in CF3DODA-Me, which prevents Michael addition by the conjugated en-one in the A-ring. In contrast, both Bar-Me and CF3DODA-Me induce reactive oxygen species in HL-60 and Jurkat leukemia cells, inhibit cell growth, induce apoptosis and differentiation, and decrease expression of specificity proteins (Sp) 1, 3, and 4, and cMyc, and these effects are significantly attenuated after cotreatment with the antioxidant GSH. In contrast to solid tumor-derived cells, cMyc and Sp transcriptions are regulated independently and cMyc plays a more predominant role than Sp transcription factors in regulating HL-60 or Jurkat cell proliferation and differentiation compared with that observed in cells derived from solid tumors.
Collapse
Affiliation(s)
- Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Yating Cheng
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Beiyan Zhou
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
43
|
Lacey A, Rodrigues-Hoffman A, Safe S. PAX3-FOXO1A Expression in Rhabdomyosarcoma Is Driven by the Targetable Nuclear Receptor NR4A1. Cancer Res 2017; 77:732-741. [PMID: 27864345 PMCID: PMC5290192 DOI: 10.1158/0008-5472.can-16-1546] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/14/2016] [Accepted: 10/21/2016] [Indexed: 12/24/2022]
Abstract
Alveolar rhabdomyosarcoma (ARMS) is a devastating pediatric disease driven by expression of the oncogenic fusion gene PAX3-FOXO1A. In this study, we report overexpression of the nuclear receptor NR4A1 in rhabdomyosarcomas that is sufficient to drive high expression of PAX3-FOXO1A there. RNAi-mediated silencing of NR4A1 decreased expression of PAX3-FOXO1A and its downstream effector genes. Similarly, cell treatment with the NR4A1 small-molecule antagonists 1,1-bis(3-indolyl)-1-(p-hydroxy or p-carbomethoxyphenyl)methane (C-DIM) decreased PAX3-FOXO1A. Mechanistic investigations revealed a requirement for the NR4A1/Sp4 complex to bind GC-rich promoter regions to elevate transcription of the PAX3-FOXO1A gene. In parallel, NR4A1 also regulated expression of β1-integrin, which with PAX3-FOXO1A, contributed to tumor cell migration that was blocked by C-DIM/NR4A1 antagonists. Taken together, our results provide a preclinical rationale for the use of NR4A1 small-molecule antagonists to treat ARMS and other rhabdomyosarcomas driven by PAX3-FOXO1A. Cancer Res; 77(3); 732-41. ©2016 AACR.
Collapse
Affiliation(s)
- Alexandra Lacey
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | | | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| |
Collapse
|
44
|
Hedrick E, Li X, Safe S. Penfluridol Represses Integrin Expression in Breast Cancer through Induction of Reactive Oxygen Species and Downregulation of Sp Transcription Factors. Mol Cancer Ther 2017; 16:205-216. [PMID: 27811009 PMCID: PMC5222719 DOI: 10.1158/1535-7163.mct-16-0451] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022]
Abstract
It was recently demonstrated the penfluridol inhibited breast tumor growth and metastasis and this was associated with downregulation of α6- and β4-integrins. In this study, we observed the penfluridol induced reactive oxygen species (ROS) and this was the primary mechanism of action. Penfluridol-mediated growth inhibition, induction of apoptosis, and inhibition of breast cancer cell migration was attenuated after cotreatment with glutathione. Penfluridol also downregulated Sp transcription factors Sp1, Sp3, and Sp4 through epigenetic downregulation of cMyc and cMyc-regulated miRNAs (miR27a and miR20a/miR17) and induction of the miR-regulated Sp transcriptional repressors ZBTB10 and ZBTB4. α6- and β4-integrins as well as α5- and β1-integrins are Sp-regulated genes that are also coregulated by the orphan nuclear receptor NR4A1 and these integrins can be targeted by agents such as penfluridol that suppress Sp1, Sp3, and Sp4 and also by NR4A1 antagonists. Mol Cancer Ther; 16(1); 205-16. ©2016 AACR.
Collapse
Affiliation(s)
- Erik Hedrick
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas
| | - Xi Li
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
45
|
Kasiappan R, Jutooru I, Karki K, Hedrick E, Safe S. Benzyl Isothiocyanate (BITC) Induces Reactive Oxygen Species-dependent Repression of STAT3 Protein by Down-regulation of Specificity Proteins in Pancreatic Cancer. J Biol Chem 2016; 291:27122-27133. [PMID: 27875298 PMCID: PMC5207142 DOI: 10.1074/jbc.m116.746339] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 11/08/2016] [Indexed: 01/05/2023] Open
Abstract
The antineoplastic agent benzyl isothiocyanate (BITC) acts by targeting multiple pro-oncogenic pathways/genes, including signal transducer and activator of transcription 3 (STAT3); however, the mechanism of action is not well known. As reported previously, BITC induced reactive oxygen species (ROS) in Panc1, MiaPaCa2, and L3.6pL pancreatic cancer cells. This was accompanied by induction of apoptosis and inhibition of cell growth and migration, and these responses were attenuated in cells cotreated with BITC plus glutathione (GSH). BITC also decreased expression of specificity proteins (Sp) Sp1, Sp3, and Sp4 transcription factors (TFs) and several pro-oncogenic Sp-regulated genes, including STAT3 and phospho-STAT3 (pSTAT3), and GSH attenuated these responses. Knockdown of Sp TFs by RNA interference also decreased STAT3/pSTAT3 expression. BITC-induced ROS activated a cascade of events that included down-regulation of c-Myc, and it was also demonstrated that c-Myc knockdown decreased expression of Sp TFs and STAT3 These results demonstrate that in pancreatic cancer cells, STAT3 is an Sp-regulated gene that can be targeted by BITC and other ROS inducers, thereby identifying a novel therapeutic approach for targeting STAT3.
Collapse
Affiliation(s)
- Ravi Kasiappan
- From the Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466
| | - Indira Jutooru
- From the Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466
| | - Keshav Karki
- From the Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466
| | - Erik Hedrick
- From the Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466
| | - Stephen Safe
- From the Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466
| |
Collapse
|
46
|
Safe S, Kasiappan R. Natural Products as Mechanism-based Anticancer Agents: Sp Transcription Factors as Targets. Phytother Res 2016; 30:1723-1732. [PMID: 27384261 DOI: 10.1002/ptr.5669] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/16/2016] [Accepted: 06/01/2016] [Indexed: 08/29/2023]
Abstract
Naturally occurring anticancer agents and their derivatives act on multiple pathways to inhibit carcinogenesis and their inhibition of migration, invasion, growth, survival, and metastasis is associated with downregulation of genes associated with these responses. Several phytochemical-derived anticancer drugs including curcumin, betulinic acid, phenethylisothiocyanate and celastrol, and many others induce reactive oxygen species, and their effects on gene regulation show some overlap in various cancer cell lines. We hypothesize that reactive oxygen species-inducing anticancer agents and many other natural products target a common pathway in cancer cells, which initially involves downregulation of specificity protein 1 (Sp1), Sp3, and Sp4, which are highly expressed in tumors/cell lines derived from solid tumors. This hypothesis is supported by several published reports showing that a large number of phytochemical-derived anticancer agents downregulate Sp1, Sp3, Sp4, and pro-oncogenic Sp-regulated genes involved in cell growth (cyclin D1 and growth factor receptors), survival (bcl-2 and survivin), angiogenesis and migration (MMP-9, vascular endothelial growth factor and its receptors), and inflammation (NF-kB). The contribution of this pathway to the anticancer activity of drugs such as curcumin, celastrol, betulinic acid, and phenethylisothiocyanate must be determined in order to optimize clinical applications of drug combinations containing these compounds. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843-4466, USA.
| | - Ravi Kasiappan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843-4466, USA
| |
Collapse
|
47
|
Tornin J, Martinez-Cruzado L, Santos L, Rodriguez A, Núñez LE, Oro P, Hermosilla MA, Allonca E, Fernández-García MT, Astudillo A, Suarez C, Morís F, Rodriguez R. Inhibition of SP1 by the mithramycin analog EC-8042 efficiently targets tumor initiating cells in sarcoma. Oncotarget 2016; 7:30935-50. [PMID: 27105533 PMCID: PMC5058729 DOI: 10.18632/oncotarget.8817] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/28/2016] [Indexed: 12/13/2022] Open
Abstract
Tumor initiating cells (TICs), responsible for tumor initiation, and cancer stem cells (CSCs), responsible for tumor expansion and propagation, are often resistant to chemotherapeutic agents. To find therapeutic targets against sarcoma initiating and propagating cells we used models of myxoid liposarcoma (MLS) and undifferentiated pleomorphic sarcoma (UPS) developed from human mesenchymal stromal/stem cells (hMSCs), which constitute the most likely cell-of-origin for sarcoma. We found that SP1-mediated transcription was among the most significantly altered signaling. To inhibit SP1 activity, we used EC-8042, a mithramycin (MTM) analog (mithralog) with enhanced anti-tumor activity and highly improved safety. EC-8042 inhibited the growth of TIC cultures, induced cell cycle arrest and apoptosis and upregulated the adipogenic factor CEBPα. SP1 knockdown was able to mimic the anti-proliferative effects induced by EC-8042. Importantly, EC-8042 was not recognized as a substrate by several ABC efflux pumps involved in drug resistance, and, opposite to the chemotherapeutic drug doxorubicin, repressed the expression of many genes responsible for the TIC/CSC phenotype, including SOX2, C-MYC, NOTCH1 and NFκB1. Accordingly, EC-8042, but not doxorubicin, efficiently reduced the survival of CSC-enriched tumorsphere sarcoma cultures. In vivo, EC-8042 induced a profound inhibition of tumor growth associated to a strong reduction of the mitotic index and the induction of adipogenic differentiation and senescence. Finally, EC-8042 reduced the ability of tumor cells to reinitiate tumor growth. These data suggest that EC-8042 could constitute an effective treatment against both TIC and CSC subpopulations in sarcoma.
Collapse
Affiliation(s)
- Juan Tornin
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Lucia Martinez-Cruzado
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Laura Santos
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | - Aida Rodriguez
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | | | | | - Eva Allonca
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | - Aurora Astudillo
- Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Carlos Suarez
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| | | | - Rene Rodriguez
- Hospital Universitario Central de Asturias and Instituto Universitario de Oncología del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
48
|
Class III-specific HDAC inhibitor Tenovin-6 induces apoptosis, suppresses migration and eliminates cancer stem cells in uveal melanoma. Sci Rep 2016; 6:22622. [PMID: 26940009 PMCID: PMC4778058 DOI: 10.1038/srep22622] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/17/2016] [Indexed: 12/18/2022] Open
Abstract
Uveal melanoma (UM) is the most common intraocular malignancy in adults. Despite improvements in surgical, radiation and chemotherapy treatments, the overall survival of UM and prognosis remain poor. In the present study, we hypothesized that Sirtuin 1 and 2 (SIRT1/2), class III histone deacetylases (HDACs), were critical in controlling the destiny of bulk tumor cells and cancer stem cells (CSCs) of UM. We testified this hypothesis in four lines of UM cells (92.1, Mel 270, Omm 1 and Omm 2.3). Our results showed that inhibition of SIRT1/2 by Tenovin-6 induced apoptosis in UM cells by activating the expression of tumor suppressor genes such as p53 and elevating reactive oxygen species (ROS). Tenovin-6 inhibited the growth of UM cells. Tenovin-6 and vinblastine was synergistic in inducing apoptosis of UM cell line 92.1 and Mel 270. Furthermore, Tenovin-6 eliminated cancer stem cells in 92.1 and Mel 270 cells. In conclusion, our findings suggest that Tenovin-6 may be a promising agent to kill UM bulk tumor cells and CSCs.
Collapse
|
49
|
Lipchick BC, Fink EE, Nikiforov MA. Oxidative stress and proteasome inhibitors in multiple myeloma. Pharmacol Res 2016; 105:210-5. [PMID: 26827824 PMCID: PMC5044866 DOI: 10.1016/j.phrs.2016.01.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 11/23/2022]
Abstract
Multiple myeloma is a form of plasma cell neoplasm that accounts for approximately 10% of all hematological malignancies. Recently, several novel drugs have been discovered that almost doubled the overall survival of multiple myeloma patients. One of these drugs, the first-in-class proteasome inhibitor bortezomib (Velcade) has demonstrated remarkable response rates in multiple myeloma patients, and yet, currently this disease remains incurable. The major factor undermining the success of multiple myeloma treatment is a rapidly emerging resistance to the available therapy. Thus, the development of stand-alone or adjuvant anti-myeloma agents becomes of paramount importance. Overproduction of intracellular reactive oxygen species (ROS) often accompanies malignant transformation due to oncogene activation and/or enhanced metabolism in tumor cells. As a result, these cells possess higher levels of ROS and lower levels of antioxidant molecules compared to their normal counterparts. Unbalanced production of ROS leads to oxidative stress which, if left unchecked, could be toxic for the cell. In multiple myeloma cells where high rates of immunoglobulin synthesis is an additional factor contributing to overproduction of ROS, further induction of oxidative stress can be an effective strategy to cope with this disease. Here we will review the available data on the role of oxidative stress in the cytotoxicity of proteasome inhibitors and the use of ROS-inducing compounds as anti-myeloma agents.
Collapse
Affiliation(s)
- Brittany C Lipchick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Emily E Fink
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Mikhail A Nikiforov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
50
|
Vleeshouwer-Neumann T, Phelps M, Bammler TK, MacDonald JW, Jenkins I, Chen EY. Histone Deacetylase Inhibitors Antagonize Distinct Pathways to Suppress Tumorigenesis of Embryonal Rhabdomyosarcoma. PLoS One 2015; 10:e0144320. [PMID: 26636678 PMCID: PMC4670218 DOI: 10.1371/journal.pone.0144320] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/15/2015] [Indexed: 02/01/2023] Open
Abstract
Embryonal rhabdomyosarcoma (ERMS) is the most common soft tissue cancer in children. The prognosis of patients with relapsed or metastatic disease remains poor. ERMS genomes show few recurrent mutations, suggesting that other molecular mechanisms such as epigenetic regulation might play a major role in driving ERMS tumor biology. In this study, we have demonstrated the diverse roles of histone deacetylases (HDACs) in the pathogenesis of ERMS by characterizing effects of HDAC inhibitors, trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA; also known as vorinostat) in vitro and in vivo. TSA and SAHA suppress ERMS tumor growth and progression by inducing myogenic differentiation as well as reducing the self-renewal and migratory capacity of ERMS cells. Differential expression profiling and pathway analysis revealed downregulation of key oncogenic pathways upon HDAC inhibitor treatment. By gain-of-function, loss-of-function, and chromatin immunoprecipitation (ChIP) studies, we show that Notch1- and EphrinB1-mediated pathways are regulated by HDACs to inhibit differentiation and enhance migratory capacity of ERMS cells, respectively. Our study demonstrates that aberrant HDAC activity plays a major role in ERMS pathogenesis. Druggable targets in the molecular pathways affected by HDAC inhibitors represent novel therapeutic options for ERMS patients.
Collapse
Affiliation(s)
| | - Michael Phelps
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Isaac Jenkins
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Eleanor Y. Chen
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|