1
|
Chen F, Wen X, Li S, Wu J, Luo Y, Gao Y, Yu X, Chen L. Targeting hypoxia-mediated chemo-immuno resistance by a hybrid NBDHEX-Pt(IV) prodrug via declining nuclear STING1-promoted AhR-CIN in human lung squamous cell carcinoma. Transl Oncol 2025; 55:102350. [PMID: 40138855 PMCID: PMC11985067 DOI: 10.1016/j.tranon.2025.102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 02/19/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
As found in human lung squamous cell carcinoma (LUSC), STING1 involved in ER-Golgi intermediate compartment (ERGIC) could coordinate immune responses to ectopic DNA triggered by DNA-targeted chemotherapy. ERGIC STING1 is considered to compete with nuclear STING1 to decline aryl hydrocarbon receptor (AhR)-chromosomal instability (CIN)-triggered chronic STING activation which could cause therapeutic resistance. Moreover, GSTP1 was proved to inhibit ERGIC-STING1 via promoting S-glutathione modification of STING1. Hence, a potent GSTP1-targeted Pt(IV) hybrid NBDHEX-DN604, was designed via conjugating a GSTP1 inhibitor NBDHEX to the axial position of Pt(IV) prodrug. As mentioned, hypoxia is mainly observed in malignant tumors and develops acquired drug resistance. In vitro bio-properties of hypoxic SK-MES-1/cDDP cells demonstrated that NBDHEX-DN604 could reverse chemo-immuno resistance via intercepting GSTP1 to activate ERGIC STING1, leading to the decrease of nuclear STING1. The mechanistic data indicated that NBDHEX-DN604 could elevate ERGIC STING1 to mitigate nuclear STING1-mediated AhR-TLS-CIN-chronic activation. Meanwhile, NBDHEX-DN604 was found to decline STING1-AhR-CIN to circumvent chemo-immuno resistance, resulting in predominant in vivo antitumor effect in HY-KLN-205/cDDP-inoculated BALB/c mice. The data provide a novel rationale for the mixed chemo-immunotherapy of NBDHEX-DN604 as a potent Pt(IV) therapeutic method for patients with resistant LUSC.
Collapse
Affiliation(s)
- Feihong Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| | - Xin Wen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shan Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jiani Wu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yaxuan Luo
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Yuan Gao
- Senior Department of Obstetrics & Gynecology, the Seventh Medical Center of PLA General Hospital, Beijing 100700, China.
| | - Xiaoxuan Yu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| | - Li Chen
- Suzhou Institute for Drug Control, Suzhou 215104, PR China.
| |
Collapse
|
2
|
Su H, Shen J, Gao C, Zhao Y, Deng W, Qin B, Zhang X, Lai J, Wang Q, Dou J, Guo M. Epsin3 promotes non-small cell lung cancer progression via modulating EGFR stability. Cell Biosci 2025; 15:14. [PMID: 39910656 PMCID: PMC11800460 DOI: 10.1186/s13578-025-01358-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND The abnormal expression and overactivation of the epidermal growth factor receptor (EGFR), a typical cancer marker for non-small cell lung cancer (NSCLC), are closely related to the tumorigenesis and progression of NSCLC. However, the endocytosis mechanism of EGFR in lung cancer is not yet known. Epsin3 (EPN3), a member of the endocytic adaptor protein family, is essential for the endocytosis of multiple receptors. In this study, we aimed to investigate the role of EPN3 in modulating EGFR function, its effects on NSCLC progression, and its potential involvement in tyrosine kinase inhibitor (TKI) resistance, which remains a significant hurdle in NSCLC treatment. RESULTS Our findings revealed that the expression of EPN3 is significantly up-regulated in NSCLC patients. Elevated EPN3 expression was proportional to shorter overall survival in patients with NSCLC. Functional analyses revealed that EPN3 directly interacts with EGFR, enhancing its recycling to the plasma membrane and preventing its degradation via the lysosomal pathway. This stabilization of EGFR led to sustained downstream signalling, promoting NSCLC cell proliferation and migration. Notably, mutations in the EGFR tyrosine kinase domain, which typically confer resistance to TKIs, did not alter the regulatory effect of EPN3. CONCLUSIONS EPN3 enhances EGFR signalling by promoting its recycling and stability, contributing to NSCLC progression and TKI resistance. Targeting EPN3 could offer a novel therapeutic strategy to overcome drug resistance in EGFR-driven NSCLC.
Collapse
Affiliation(s)
- Huiling Su
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, Pharmaceutical University, 210009, Nanjing, China
| | - Jie Shen
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, Pharmaceutical University, 210009, Nanjing, China
| | - Chenzi Gao
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 210029, Nanjing, China
| | - Yue Zhao
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, Pharmaceutical University, 210009, Nanjing, China
| | - Wanyu Deng
- College of Life Science, Shangrao Normal University, 334001, Shangrao, China
| | - Bo Qin
- Shaoxing Women and Children's Hospital, 312000, Shaoxing, China
| | - Xin Zhang
- GeneMind Biosciences Company Limited, 518001, Shenzhen, China
| | - Juan Lai
- GeneMind Biosciences Company Limited, 518001, Shenzhen, China
| | - Qian Wang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Department of Biochemistry and Molecular Biology, Nanjing Medical University, 210029, Nanjing, China.
| | - Jie Dou
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, Pharmaceutical University, 210009, Nanjing, China.
| | - Min Guo
- State Key Laboratory of Natural Medicines, School of Life Science & Technology, Pharmaceutical University, 210009, Nanjing, China.
| |
Collapse
|
3
|
Wu D, Sun Q, Tang H, Xiao H, Luo J, Ouyang L, Sun Q. Acquired resistance to tyrosine kinase targeted therapy: mechanism and tackling strategies. Drug Resist Updat 2025; 78:101176. [PMID: 39642660 DOI: 10.1016/j.drup.2024.101176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/21/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
Over the past two decades, tyrosine kinase inhibitors (TKIs) have rapidly emerged as pivotal targeted agents, offering promising therapeutic prospects for patients. However, as the cornerstone of targeted therapies, an increasing number of TKIs have been found to develop acquired resistance during treatment, making the challenge of overcoming this resistance a primary focus of current research. This review comprehensively examines the evolution of TKIs from multiple perspectives, with particular emphasis on the mechanisms underlying acquired resistance, innovative drug design strategies, inherent challenges, and future directions.
Collapse
Affiliation(s)
- Defa Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qian Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China; West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Haolin Tang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Jiaxiang Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Qiu Sun
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China; Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China; West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
4
|
Biswas B, Huang YH, Craik DJ, Wang CK. The prospect of substrate-based kinase inhibitors to improve target selectivity and overcome drug resistance. Chem Sci 2024; 15:13130-13147. [PMID: 39183924 PMCID: PMC11339801 DOI: 10.1039/d4sc01088d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/02/2024] [Indexed: 08/27/2024] Open
Abstract
Human kinases are recognized as one of the most important drug targets associated with cancer. There are >80 FDA-approved kinase inhibitors to date, most of which work by inhibiting ATP binding to the kinase. However, the frequent development of single-point mutations within the kinase domain has made overcoming drug resistance a major challenge in drug discovery today. Targeting the substrate site of kinases can offer a more selective and resistance-resilient solution compared to ATP inhibition but has traditionally been challenging. However, emerging technologies for the discovery of drug leads using recombinant display and stabilization of lead compounds have increased interest in targeting the substrate site of kinases. This review discusses recent advances in the substrate-based inhibition of protein kinases and the potential of such approaches for overcoming the emergence of resistance.
Collapse
Affiliation(s)
- Biswajit Biswas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - Yen-Hua Huang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| | - Conan K Wang
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane QLD 4072 Australia 4072
| |
Collapse
|
5
|
Blagosklonny MV. From osimertinib to preemptive combinations. Oncotarget 2024; 15:232-237. [PMID: 38497774 PMCID: PMC10946407 DOI: 10.18632/oncotarget.28569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
Here, I suggest that while first-line osimertinib extends median progression-free survival (PFS) in EGFR-mutant lung cancer compared to first-generation TKIs, it reduces individual PFS in 15-20% of patients compared to first-generation TKIs. Since detecting a single resistant cell before treatment is usually impossible, osimertinib must be used in all patients as a first-line treatment, raising median PFS overall but harming some. The simplest remedy is a preemptive combination (PC) of osimertinib and gefitinib. A comprehensive PC (osimertinib, afatinib/gefitinib, and capmatinib) could dramatically increase PFS for 80% of patients compared to osimertinib alone, without harming anyone. This article also explores PCs for MET-driven lung cancer.
Collapse
|
6
|
Wu PS, Lin MH, Hsiao JC, Lin PY, Pan SH, Chen YJ. EGFR-T790M Mutation-Derived Interactome Rerouted EGFR Translocation Contributing to Gefitinib Resistance in Non-Small Cell Lung Cancer. Mol Cell Proteomics 2023; 22:100624. [PMID: 37495186 PMCID: PMC10545940 DOI: 10.1016/j.mcpro.2023.100624] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/20/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Secondary mutation, T790M, conferring tyrosine kinase inhibitors (TKIs) resistance beyond oncogenic epidermal growth factor receptor (EGFR) mutations presents a challenging unmet need. Although TKI-resistant mechanisms are intensively investigated, the underlying responses of cancer cells adapting drug perturbation are largely unknown. To illuminate the molecular basis linking acquired mutation to TKI resistance, affinity purification coupled mass spectrometry was adopted to dissect EGFR interactome in TKI-sensitive and TKI-resistant non-small cell lung cancer cells. The analysis revealed TKI-resistant EGFR-mutant interactome allocated in diverse subcellular distribution and enriched in endocytic trafficking, in which gefitinib intervention activated autophagy-mediated EGFR degradation and thus autophagy inhibition elevated gefitinib susceptibility. Alternatively, gefitinib prompted TKI-sensitive EGFR translocating toward cell periphery through Rab7 ubiquitination which may favor efficacy to TKIs suppression. This study revealed that T790M mutation rewired EGFR interactome that guided EGFR to autophagy-mediated degradation to escape treatment, suggesting that combination therapy with TKI and autophagy inhibitor may overcome acquired resistance in non-small cell lung cancer.
Collapse
Affiliation(s)
- Pei-Shan Wu
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan; Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Miao-Hsia Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | - Pei-Yi Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Szu-Hua Pan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan; Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan; Doctoral Degree Program of Translational Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Yu-Ju Chen
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan; Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Rodriguez SMB, Kamel A, Ciubotaru GV, Onose G, Sevastre AS, Sfredel V, Danoiu S, Dricu A, Tataranu LG. An Overview of EGFR Mechanisms and Their Implications in Targeted Therapies for Glioblastoma. Int J Mol Sci 2023; 24:11110. [PMID: 37446288 DOI: 10.3390/ijms241311110] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Despite all of the progress in understanding its molecular biology and pathogenesis, glioblastoma (GBM) is one of the most aggressive types of cancers, and without an efficient treatment modality at the moment, it remains largely incurable. Nowadays, one of the most frequently studied molecules with important implications in the pathogenesis of the classical subtype of GBM is the epidermal growth factor receptor (EGFR). Although many clinical trials aiming to study EGFR targeted therapies have been performed, none of them have reported promising clinical results when used in glioma patients. The resistance of GBM to these therapies was proven to be both acquired and innate, and it seems to be influenced by a cumulus of factors such as ineffective blood-brain barrier penetration, mutations, heterogeneity and compensatory signaling pathways. Recently, it was shown that EGFR possesses kinase-independent (KID) pro-survival functions in cancer cells. It seems imperative to understand how the EGFR signaling pathways function and how they interconnect with other pathways. Furthermore, it is important to identify the mechanisms of drug resistance and to develop better tailored therapeutic agents.
Collapse
Affiliation(s)
- Silvia Mara Baez Rodriguez
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Gheorghe Vasile Ciubotaru
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Gelu Onose
- Neuromuscular Rehabilitation Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
| | - Ani-Simona Sevastre
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Veronica Sfredel
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Suzana Danoiu
- Department of Physiology, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania
| | - Ligia Gabriela Tataranu
- Neurosurgical Department, Clinical Emergency Hospital "Bagdasar-Arseni", Soseaua Berceni 12, 041915 Bucharest, Romania
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy "Carol Davila", 020022 Bucharest, Romania
| |
Collapse
|
8
|
Kwon YM, Kim SH, Jung YS, Kwak JH. Synthesis and Biological Evaluation of ( S)-2-(Substituted arylmethyl)-1-oxo-1,2,3,4-tetrahydropyrazino[1,2- a]indole-3-carboxamide Analogs and Their Synergistic Effect against PTEN-Deficient MDA-MB-468 Cells. Pharmaceuticals (Basel) 2021; 14:ph14100974. [PMID: 34681198 PMCID: PMC8537755 DOI: 10.3390/ph14100974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/07/2023] Open
Abstract
A series of twenty-six compounds of furfuryl or benzyl tetrahydropyrazino[1,2-a]indole analogs were synthesized and evaluated for cytotoxic activity against the estrogen receptor (ER)-positive breast cancer cell line (MCF-7) and the epidermal growth factor receptor (EGFR) over-expressed triple-negative breast cancer cell line (MDA-MB-468). Among them, compounds 2b, 2f and 2i showed more potent activity and selectivity against MDA-MB-468 cells than gefitinib, as an EGFR- tyrosine kinase inhibitor. In addition, it was confirmed by means of isobologram analysis of combinational treatment with gefitinib that they have a synergistic effect, especially compounds 2b and 2f, which inhibit Akt T308 phosphorylation. Moreover, it was confirmed that 2-benzyl-1-oxo-1,2,3,4-tetrahydropyrazino[1,2-a]indole-3-carboxamide analogs (2b, 2f, and Ref 2) tend to selectively inhibit PI3Kβ, which is involved in the phosphorylation of Akt.
Collapse
Affiliation(s)
- Ye-Mi Kwon
- College of Pharmacy, Kyungsung University, Busan 48434, Korea;
| | - Sou Hyun Kim
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Korea;
| | - Young-Suk Jung
- Department of Pharmacy, Research Institute for Drug Development, College of Pharmacy, Pusan National University, Busan 46241, Korea;
- Correspondence: (Y.-S.J.); (J.-H.K.); Tel.: +82-51-510-2816 (Y.-S.J.); +82-51-663-4889 (J.-H.K.)
| | - Jae-Hwan Kwak
- College of Pharmacy, Kyungsung University, Busan 48434, Korea;
- Correspondence: (Y.-S.J.); (J.-H.K.); Tel.: +82-51-510-2816 (Y.-S.J.); +82-51-663-4889 (J.-H.K.)
| |
Collapse
|
9
|
Chen CH, Wang BW, Hsiao YC, Wu CY, Cheng FJ, Hsia TC, Chen CY, Wang Y, Weihua Z, Chou RH, Tang CH, Chen YJ, Wei YL, Hsu JL, Tu CY, Hung MC, Huang WC. PKCδ-mediated SGLT1 upregulation confers the acquired resistance of NSCLC to EGFR TKIs. Oncogene 2021; 40:4796-4808. [PMID: 34155348 PMCID: PMC8298203 DOI: 10.1038/s41388-021-01889-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
The tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) have been widely used for non-small cell lung cancer (NSCLC) patients, but the development of acquired resistance remains a therapeutic hurdle. The reduction of glucose uptake has been implicated in the anti-tumor activity of EGFR TKIs. In this study, the upregulation of the active sodium/glucose co-transporter 1 (SGLT1) was found to confer the development of acquired EGFR TKI resistance and was correlated with the poorer clinical outcome of the NSCLC patients who received EGFR TKI treatment. Blockade of SGLT1 overcame this resistance in vitro and in vivo by reducing glucose uptake in NSCLC cells. Mechanistically, SGLT1 protein was stabilized through the interaction with PKCδ-phosphorylated (Thr678) EGFR in the TKI-resistant cells. Our findings revealed that PKCδ/EGFR axis-dependent SGLT1 upregulation was a critical mechanism underlying the acquired resistance to EGFR TKIs. We suggest co-targeting PKCδ/SGLT1 as a potential strategy to improve the therapeutic efficacy of EGFR TKIs in NSCLC patients.
Collapse
Affiliation(s)
- Chia-Hung Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
| | - Bo-Wei Wang
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
| | - Yu-Chun Hsiao
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Drug Development Center, China Medical University, Taichung, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Fang-Ju Cheng
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Te-Chun Hsia
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
- Department of Respiratory Therapy, China Medical University, Taichung, Taiwan
- Department of Internal Medicine, Hyperbaric Oxygen Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Yi Chen
- Division of Thoracic Surgery, Department of Surgery, Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
- Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Zhang Weihua
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ruey-Hwang Chou
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan
| | - Chih-Hsin Tang
- School of Medicine, China Medical University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yun-Ju Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
- Department of Pharmacy, E-Da Hospital, Kaohsiung, Taiwan
| | - Ya-Ling Wei
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Jennifer L Hsu
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chih-Yen Tu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan.
- School of Medicine, China Medical University, Taichung, Taiwan.
| | - Mien-Chie Hung
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Drug Development Center, China Medical University, Taichung, Taiwan.
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.
| | - Wei-Chien Huang
- Center for Molecular Medicine, Research Center for Cancer Biology, and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
- Drug Development Center, China Medical University, Taichung, Taiwan.
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan.
| |
Collapse
|
10
|
Cohen P, Cross D, Jänne PA. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov 2021; 20:551-569. [PMID: 34002056 PMCID: PMC8127496 DOI: 10.1038/s41573-021-00195-4] [Citation(s) in RCA: 609] [Impact Index Per Article: 152.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 02/04/2023]
Abstract
Protein kinases regulate nearly all aspects of cell life, and alterations in their expression, or mutations in their genes, cause cancer and other diseases. Here, we review the remarkable progress made over the past 20 years in improving the potency and specificity of small-molecule inhibitors of protein and lipid kinases, resulting in the approval of more than 70 new drugs since imatinib was approved in 2001. These compounds have had a significant impact on the way in which we now treat cancers and non-cancerous conditions. We discuss how the challenge of drug resistance to kinase inhibitors is being met and the future of kinase drug discovery.
Collapse
Affiliation(s)
- Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK.
| | | | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana Farber Cancer Institute, Harvard University, Boston, MA, USA.
| |
Collapse
|
11
|
Crombet Ramos T, Santos Morales O, Dy GK, León Monzón K, Lage Dávila A. The Position of EGF Deprivation in the Management of Advanced Non-Small Cell Lung Cancer. Front Oncol 2021; 11:639745. [PMID: 34211836 PMCID: PMC8240591 DOI: 10.3389/fonc.2021.639745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/17/2021] [Indexed: 12/22/2022] Open
Abstract
Advanced non-small cell lung cancer (NSCLC) has faced a therapeutic revolution with the advent of tyrosine kinase inhibitors (TKIs) and immune checkpoints inhibitors (ICIs) approved for first and subsequent therapies. CIMAvax-EGF is a chemical conjugate between human-recombinant EGF and P64, a recombinant protein from Neisseria meningitides, which induces neutralizing antibodies against EGF. In the last 15 years, it has been extensively evaluated in advanced NSCLC patients. CIMAvax-EGF is safe, even after extended use, and able to keep EGF serum concentration below detectable levels. In a randomized phase III study, CIMAvax-EGF increased median overall survival of advanced NSCLC patients with at least stable disease after front-line chemotherapy. Patients bearing squamous-cell or adenocarcinomas and serum EGF concentration above 870 pg/ml had better survival compared to control patients treated with best supportive care as maintenance, confirming tumors' sensitivity to the EGF depletion. This manuscript reviews the state-of-the-art NSCLC therapy and proposes the most promising scenarios for evaluating CIMAvax-EGF, particularly in combination with TKIs or ICIs. We hypothesize that the optimal combination of CIMAvax-EGF with established therapies can further contribute to transform advanced cancer into a manageable chronic disease, compatible with years of good quality of life.
Collapse
Affiliation(s)
| | | | - Grace K. Dy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | | | | |
Collapse
|
12
|
Xiao H, Chen J, Duan L, Li S. Role of emerging vitamin K‑dependent proteins: Growth arrest‑specific protein 6, Gla‑rich protein and periostin (Review). Int J Mol Med 2021; 47:2. [PMID: 33448308 PMCID: PMC7834955 DOI: 10.3892/ijmm.2020.4835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/21/2020] [Indexed: 01/27/2023] Open
Abstract
Vitamin K‑dependent proteins (VKDPs) are a group of proteins that need vitamin K to conduct carboxylation. Thus far, scholars have identified a total of 17 VKDPs in the human body. In this review, we summarize three important emerging VKDPs: Growth arrest‑specific protein 6 (Gas 6), Gla‑rich protein (GRP) and periostin in terms of their functions in physiological and pathological conditions. As examples, carboxylated Gas 6 and GRP effectively protect blood vessels from calcification, Gas 6 protects from acute kidney injury and is involved in chronic kidney disease, GRP contributes to bone homeostasis and delays the progression of osteoarthritis, and periostin is involved in all phases of fracture healing and assists myocardial regeneration in the early stages of myocardial infarction. However, periostin participates in the progression of cardiac fibrosis, idiopathic pulmonary fibrosis and airway remodeling of asthma. In addition, we discuss the relationship between vitamin K, VKDPs and cancer, and particularly the carboxylation state of VKDPs in cancer.
Collapse
Affiliation(s)
- Huiyu Xiao
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044
| | - Jiepeng Chen
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515071, P.R. China
| | - Lili Duan
- Sungen Bioscience Co., Ltd., Shantou, Guangdong 515071, P.R. China
| | - Shuzhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning 116044
| |
Collapse
|
13
|
Chen CJ, Liu YP. MERTK Inhibition: Potential as a Treatment Strategy in EGFR Tyrosine Kinase Inhibitor-Resistant Non-Small Cell Lung Cancer. Pharmaceuticals (Basel) 2021; 14:ph14020130. [PMID: 33562150 PMCID: PMC7915726 DOI: 10.3390/ph14020130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/25/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Epidermal growth factor tyrosine kinase inhibitors (EGFR-TKIs) are currently the most effective treatment for non-small cell lung cancer (NSCLC) patients, who carry primary EGFR mutations. However, the patients eventually develop drug resistance to EGFR-TKIs after approximately one year. In addition to the acquisition of the EGFR T790M mutation, the activation of alternative receptor-mediated signaling pathways is a common mechanism for conferring the insensitivity of EGFR-TKI in NSCLC. Upregulation of the Mer receptor tyrosine kinase (MERTK), which is a member of the Tyro3-Axl-MERTK (TAM) family, is associated with a poor prognosis of many cancers. The binding of specific ligands, such as Gas6 and PROS1, to MERTK activates phosphoinositide 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) cascades, which are the signaling pathways shared by EGFR. Therefore, the inhibition of MERTK can be considered a new therapeutic strategy for overcoming the resistance of NSCLC to EGFR-targeted agents. Although several small molecules and monoclonal antibodies targeting the TAM family are being developed and have been described to enhance the chemosensitivity and converse the resistance of EGFR-TKI, few have specifically been developed as MERTK inhibitors. The further development and investigation of biomarkers which can accurately predict MERTK activity and the response to MERTK inhibitors and MERTK-specific drugs are vitally important for obtaining appropriate patient stratification and increased benefits in clinical applications.
Collapse
Affiliation(s)
- Chao-Ju Chen
- Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yu-Peng Liu
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-3121101
| |
Collapse
|
14
|
Wang Y, Chen Z, Han X, Li J, Guo H, Shi J. Acquired MET D1228N Mutations Mediate Crizotinib Resistance in Lung Adenocarcinoma with ROS1 Fusion: A Case Report. Oncologist 2020; 26:178-181. [PMID: 33000474 DOI: 10.1002/onco.13545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
Patients with non-small cell lung cancer (NSCLC) containing ROS1 fusions can have a marked response to the ROS1-targeted tyrosine kinase inhibitors (TKIs), such as crizotinib. Common resistance mechanisms of ROS1-fusion targeted therapy are acquired mutations in ROS1. Along with the use of next-generation sequencing in the clinical management of patients with NSCLC during sequential targeted therapy, many mechanisms of acquired resistance have been discovered in patients with activated tyrosine kinase receptors. Besides acquired resistance mutations, bypass mechanisms of resistance to epidermal growth factor receptor (EGFR)-TKI treatment are common in patients with EGFR mutations. Here we describe a patient with metastatic lung adenocarcinoma with CD74-ROS1 fusion who initially responded to crizotinib and then developed resistance by the acquired mutation of D1228N in the MET kinase domain, which showed short-term disease control for cabozantinib. KEY POINTS: The D1228N point mutation of MET is an acquired mutation for crizotinib resistance. The patient obtained short-term clinical benefit from cabozantinib therapy after resistance to crizotinib. The clinical use of next-generation sequencing could maximize the benefits of precision medicine in patients with cancer.
Collapse
Affiliation(s)
- Yu Wang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Zheng Chen
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Xiao Han
- Department of Experiment, Tumor Hospital Affiliated to Guangxi Medical University, Nanning, People's Republic of China
| | - Jiamei Li
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Honglin Guo
- Center Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, People's Republic of China
| | - Junping Shi
- OrigiMed, Shanghai, People's Republic of China
| |
Collapse
|
15
|
AXL Inactivation Inhibits Mesothelioma Growth and Migration via Regulation of p53 Expression. Cancers (Basel) 2020; 12:cancers12102757. [PMID: 32992696 PMCID: PMC7601862 DOI: 10.3390/cancers12102757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022] Open
Abstract
Malignant mesothelioma is a locally aggressive and highly lethal neoplasm. Dysregulation and activation of Gas6/AXL tyrosine kinase signaling are associated with mesothelioma progression, but the mechanisms of these AXL tumorigenic roles are poorly understood. p53 mutants in lung carcinoma upregulate AXL expression by binding and acetylating the AXL promoter. Although TP53 mutations are uncommon in mesothelioma, we hypothesized that these tumors might have alternative feedback mechanisms between AXL and p53. In the current report, we investigated AXL regulation of TP53 transcription, expression, and biological function in mesothelioma. AXL expression was stronger in mesothelioma than most of the other tumor types from the TCGA gene expression profile dataset. AXL knockdown by shRNA induced wild-type and mutant p53 expression in mesothelioma cell lines, suggesting that AXL pro-tumorigenic roles result in part from the suppression of p53 function. Likewise, induced AXL inhibited expression of wild type p53 in COS-7 cells and 293T cells. Immunofluorescence staining showed nuclear colocalization of AXL and p53; however, association of AXL and p53 was not demonstrated in immunoprecipitation complexes. The AXL effects on p53 expression resulted from the inhibition of TP53 transcription, as demonstrated by qRT-PCR after AXL silencing and TP53 promotor dual luciferase activity assays. Chromatin immunoprecipitation-qPCR and sequencing showed that AXL bound to the initial 600 bp sequence at the 5' end of the TP53 promoter. AXL inhibition (shRNA or R428) reduced mesothelioma cell viability, migration, and invasion, whereas TP53 shRNA knockdown attenuated antiproliferative, migration, and invasive effects of AXL silencing or AXL inactivation in these cells. These studies demonstrate a novel feedback regulation loop between AXL and p53, and provide a rationale for mesothelioma therapies targeting AXL/p53 signaling.
Collapse
|
16
|
TRIB3-EGFR interaction promotes lung cancer progression and defines a therapeutic target. Nat Commun 2020; 11:3660. [PMID: 32694521 PMCID: PMC7374170 DOI: 10.1038/s41467-020-17385-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
High expression or aberrant activation of epidermal growth factor receptor (EGFR) is related to tumor progression and therapy resistance across cancer types, including non-small cell lung cancer (NSCLC). EGFR tyrosine kinase inhibitors (TKIs) are first-line therapy for NSCLC. However, patients eventually deteriorate after inevitable acquisition of EGFR TKI-resistant mutations, highlighting the need for therapeutics with alternative mechanisms of action. Here, we report that the elevated tribbles pseudokinase 3 (TRIB3) is positively associated with EGFR stability and NSCLC progression. TRIB3 interacts with EGFR and recruits PKCα to induce a Thr654 phosphorylation and WWP1-induced Lys689 ubiquitination in the EGFR juxtamembrane region, which enhances EGFR recycling, stability, downstream activity, and NSCLC stemness. Disturbing the TRIB3-EGFR interaction with a stapled peptide attenuates NSCLC progression by accelerating EGFR degradation and sensitizes NSCLC cells to chemotherapeutic agents. These findings indicate that targeting EGFR degradation is a previously unappreciated therapeutic option in EGFR-related NSCLC.
Collapse
|
17
|
Qin Q, Li X, Liang X, Zeng L, Wang J, Sun L, Zhong D. CDK4/6 inhibitor palbociclib overcomes acquired resistance to third-generation EGFR inhibitor osimertinib in non-small cell lung cancer (NSCLC). Thorac Cancer 2020; 11:2389-2397. [PMID: 32677256 PMCID: PMC7471056 DOI: 10.1111/1759-7714.13521] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background The third‐generation EGFR‐TKI, represented by osimertinib, has been widely used in clinical practice; however, resistance eventually emerges. At present, it remains unclear whether an abnormal cell cycle is involved in acquired resistance, and whether the combination of palbociclib (CDK4/6 inhibitor) and osimertinib can overcome the third‐generation TKI resistance. Methods We established osimertinib‐resistant cells (H1975 OR) derived from EGFR‐mutant NSCLC cells H1975. Drug effects on cells were assessed with Cell Counting Kit‐8 (CCK8). Protein alterations were detected with western blot analysis. RT‐PCR was used to evaluate the differences of gene mRNA. Cell cycle distribution of H1975 S and H1975 OR cells was compared using flow cytometry. Results Compared with H1975, the sensitivity of H1975OR to the CDK4/6 inhibitor was increased and the proportion of cells in G1 phase was decreased. The mRNA level of CDK4, CDK 6 and the protein level of CDK4, pRB were increased in H1975OR. In the H1975OR cells, palbociclib significantly increased the proportion of G1 phase cells. The combination of osimertinib and palbociclib synergistically decreased the survival of H1975OR by cell cycle arrest. Combined treatment was found to inhibit the initial phosphorylation of RB by inhibiting the function of CDK4/6, significantly reducing the level of p‐RB, and blocking cell proliferation. Conclusions An osimertinib acquired resistance cell line (H1975 OR) was successfully established. The expression of cell cycle related genes was altered in H1975OR. The expression of CDK4 and the phosphorylation of Rb, the downstream molecule of CDK4/6, was increased in H1975OR cells. The combination of CDK4/6 inhibitor palbociclib and osimertinib could overcome the acquired resistance of osimertinib.
Collapse
Affiliation(s)
- Qiong Qin
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaoqing Li
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xingmei Liang
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lili Zeng
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jing Wang
- Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Linlin Sun
- Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Diansheng Zhong
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
18
|
朱 磊, 袁 平, 赵 志, 王 鑫, 王 国, 颜 亮. [Bacterial expression of 183-227aa region of HER3 extracellular domain I and preparation and identification of its polyclonal antibodies]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:806-813. [PMID: 32895213 PMCID: PMC7321272 DOI: 10.12122/j.issn.1673-4254.2020.06.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To prepare the recombinant peptide MVF-HER3 I composed of the 183-227aa peptide segment of human epidermal growth factor receptor 3 (HER3 I) and the measles virus protein 288-302 peptide segment (MVF), and prepare polyclonal antibodies (PcAb) against this recombinant peptide. METHODS The MVF-HER3 I gene was synthesized chemically and subcloned into pET21b or pET32a plasmid containing Thioredoxin (Trx) tag gene. The recombinant plasmids were identified by endonuclease digestion. MVF-HER3 I was expressed in E.coli BL21(DE3) cells under an optimal bacterial expression condition. The fusion protein Trx-MVF-HER3 I was purified using nickel ion affinity chromatography, and the purified protein was digested by enterokinase to remove Trx tag. The digested mixture underwent further nickel ion affinity chromatography to obtain purified MVF-HER3 I. The purified MVF-HER3 I was used to immunize SD rats subcutaneously for preparing anti-MVF-HER3 I PcAb. The titer of PcAb was determined using ELISA. The bindings of anti-MVF-HER3 I PcAb to MVF-HER3 I, native HER3 and MCF7 cells were analyzed using immunoblotting, immunoprecipitation and laser confocal microscopy. The growth inhibition effect of the antibodies on MCF7 cells cultured in the absence or presence of NRG was assessed using sulforhodamine B. RESULTS The recombinant peptide gene could not be expressed alone, but could be efficiently expressed after fusion with Trx gene under optimized conditions. The fusion peptide MVF-HER3 I was successfully prepared from Trx-MVF-HER3 I. The anti-MVF-HER3 I PcAb, with a titer reaching 1: 512 000, specifically bound to MVF-HER3 I, recognized native HER3 and bound to the membrane of MCF7 cells. The obtained PcAb could dose-dependently inhibit the growth of MCF7 cells irrespective of the presence or absence of NRG. CONCLUSIONS We successfully obtained the recombinant peptide MVF-HER3 I and prepared its PcAb, which can facilitate further functional analysis of HER3 signaling pathway.
Collapse
Affiliation(s)
- 磊 朱
- 安徽省多糖药物工程技术研究中心,安徽 芜湖 241002Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
- 皖南医学院药物研发中心,安徽 芜湖 241002Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
- 活性生物大分子研究安徽省重点实验室,安徽 芜湖 241002Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
- 皖南医学院药物筛选与评价研究所,安徽 芜湖 241002Research Institute for Pharmaceutical Screening & Evaluation, Wannan Medical College, Wuhu 241002, China
| | - 平川 袁
- 安徽省多糖药物工程技术研究中心,安徽 芜湖 241002Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
- 皖南医学院药物研发中心,安徽 芜湖 241002Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
- 活性生物大分子研究安徽省重点实验室,安徽 芜湖 241002Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - 志刚 赵
- 安徽省多糖药物工程技术研究中心,安徽 芜湖 241002Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
- 皖南医学院药物研发中心,安徽 芜湖 241002Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| | - 鑫 王
- 安徽省多糖药物工程技术研究中心,安徽 芜湖 241002Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
- 皖南医学院药物研发中心,安徽 芜湖 241002Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
| | - 国栋 王
- 安徽省多糖药物工程技术研究中心,安徽 芜湖 241002Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wuhu 241002, China
- 皖南医学院药物研发中心,安徽 芜湖 241002Drug Research & Development Center, Wannan Medical College, Wuhu 241002, China
- 活性生物大分子研究安徽省重点实验室,安徽 芜湖 241002Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| | - 亮 颜
- 活性生物大分子研究安徽省重点实验室,安徽 芜湖 241002Anhui Province Key Laboratory of Active Biological Macromolecules, Wuhu 241002, China
| |
Collapse
|
19
|
Larrimore KE, Rancati G. The conditional nature of gene essentiality. Curr Opin Genet Dev 2019; 58-59:55-61. [PMID: 31470233 DOI: 10.1016/j.gde.2019.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 11/18/2022]
Abstract
Essential genes are classically defined as required for cellular viability and reproductive success. Despite this deceptively simple definition, several lines of evidence suggest that gene essentiality is instead a conditional trait. Indeed, gene essentiality has been shown to depend on the environmental and genetic context as well as the variable ability of cells to acquire adaptive mutations to survive inactivation of seemingly essential genes. Here, we will discuss these findings and highlight the mechanisms underlying the ability of cells to survive an essential gene deletion. Also, since essential genes are prioritized as targets for anticancer therapy, we discuss emergence of bypass resistance mechanisms toward targeted therapies as the result of the conditional nature of gene essentiality. To identify targets associated to a lower risk of relapse (i.e. the return of cancer following remission), we finally call for a coordinated effort to quantify the variable nature of gene essentiality across species, cell types, and growth conditions.
Collapse
Affiliation(s)
- Katherine E Larrimore
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A⁎STAR), 8A Biomedical Grove, Immunos #05, Singapore 138648, Singapore
| | - Giulia Rancati
- Institute of Medical Biology (IMB), Agency for Science, Technology and Research (A⁎STAR), 8A Biomedical Grove, Immunos #05, Singapore 138648, Singapore.
| |
Collapse
|
20
|
Jimbo T, Hatanaka M, Komatsu T, Taira T, Kumazawa K, Maeda N, Suzuki T, Ota M, Haginoya N, Isoyama T, Fujiwara K. DS-1205b, a novel selective inhibitor of AXL kinase, blocks resistance to EGFR-tyrosine kinase inhibitors in a non-small cell lung cancer xenograft model. Oncotarget 2019; 10:5152-5167. [PMID: 31497246 PMCID: PMC6718264 DOI: 10.18632/oncotarget.27114] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/29/2019] [Indexed: 02/03/2023] Open
Abstract
The AXL receptor tyrosine kinase is involved in signal transduction in malignant cells. Recent studies have shown that the AXL upregulation underlies epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) resistance in EGFR-mutant non-small cell lung cancer (NSCLC). In this study, we investigated the effect of DS-1205b, a novel and selective inhibitor of AXL, on tumor growth and resistance to EGFR TKIs. In AXL-overexpressing NIH3T3 cells, DS-1205b potently inhibited hGAS6 ligand-induced migration in vitro and exerted significant antitumor activity in vivo. AXL was upregulated by long-term erlotinib or osimertinib treatment in HCC827 EGFR-mutant NSCLC cells, and DS-1205b treatment in combination with osimertinib or erlotinib effectively inhibited signaling downstream of EGFR in a cell-based assay. In an HCC827 EGFR-mutant NSCLC xenograft mouse model, combination treatment with DS-1205b and erlotinib significantly delayed the onset of tumor resistance compared to erlotinib monotherapy, and DS-1205b restored the antitumor activity of erlotinib in erlotinib-resistant tumors. DS-1205b also delayed the onset of resistance when used in combination with osimertinib in the model. These findings strongly suggest that DS-1205b can prolong the therapeutic benefit of EGFR TKIs in nonclinical as well as clinical settings.
Collapse
Affiliation(s)
- Takeshi Jimbo
- Oncology Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Mana Hatanaka
- Oncology Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | - Tomoe Taira
- Oncology Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Kentaro Kumazawa
- Quality & Safety Management Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Naoyuki Maeda
- Oncology Function, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Takashi Suzuki
- Biologics Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Masahiro Ota
- Research Management Department, Daiichi Sankyo RD Novare Co., Ltd., Tokyo, Japan
| | | | | | - Kosaku Fujiwara
- Medical Affairs Division, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
21
|
Thomas R, Weihua Z. Rethink of EGFR in Cancer With Its Kinase Independent Function on Board. Front Oncol 2019; 9:800. [PMID: 31508364 PMCID: PMC6716122 DOI: 10.3389/fonc.2019.00800] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/06/2019] [Indexed: 12/23/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is one of most potent oncogenes that are commonly altered in cancers. As a receptor tyrosine kinase, EGFR's kinase activity has been serving as the primary target for developing cancer therapeutics, namely the EGFR inhibitors including small molecules targeting its ATP binding pocket and monoclonal antibodies targeting its ligand binding domains. EGFR inhibitors have produced impressive therapeutic benefits to responsive types of cancers. However, acquired and innate resistances have precluded current anti-EGFR agents from offering sustainable benefits to initially responsive cancers and benefits to EGFR-positive cancers that are innately resistant. Recent years have witnessed a realization that EGFR possesses kinase-independent (KID) pro-survival functions in cancer cells. This new knowledge has offered a different angle of understanding of EGFR in cancer and opened a new avenue of targeting EGFR for cancer therapy. There are already many excellent reviews on the role of EGFR with a focus on its kinase-dependent functions and mechanisms of resistance to EGFR targeted therapies. The present opinion aims to initiate a fresh discussion about the function of EGFR in cancer cells by laying out some unanswered questions pertaining to EGFR in cancer cells, by rethinking the unmet therapeutic challenges from a view of EGFR's KID function, and by proposing novel approaches to target the KID functions of EGFR for cancer treatment.
Collapse
Affiliation(s)
- Rintu Thomas
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| | - Zhang Weihua
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX, United States
| |
Collapse
|
22
|
Nagpal A, Redvers RP, Ling X, Ayton S, Fuentes M, Tavancheh E, Diala I, Lalani A, Loi S, David S, Anderson RL, Smith Y, Merino D, Denoyer D, Pouliot N. Neoadjuvant neratinib promotes ferroptosis and inhibits brain metastasis in a novel syngeneic model of spontaneous HER2 +ve breast cancer metastasis. Breast Cancer Res 2019; 21:94. [PMID: 31409375 PMCID: PMC6693253 DOI: 10.1186/s13058-019-1177-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 07/26/2019] [Indexed: 12/24/2022] Open
Abstract
Background Human epidermal growth factor receptor-2 (HER2)-targeted therapies prolong survival in HER2-positive breast cancer patients. Benefit stems primarily from improved control of systemic disease, but up to 50% of patients progress to incurable brain metastases due to acquired resistance and/or limited permeability of inhibitors across the blood-brain barrier. Neratinib, a potent irreversible pan-tyrosine kinase inhibitor, prolongs disease-free survival in the extended adjuvant setting, and several trials evaluating its efficacy alone or combination with other inhibitors in early and advanced HER2-positive breast cancer patients are ongoing. However, its efficacy as a first-line therapy against HER2-positive breast cancer brain metastasis has not been fully explored, in part due to the lack of relevant pre-clinical models that faithfully recapitulate this disease. Here, we describe the development and characterisation of a novel syngeneic model of spontaneous HER2-positive breast cancer brain metastasis (TBCP-1) and its use to evaluate the efficacy and mechanism of action of neratinib. Methods TBCP-1 cells were derived from a spontaneous BALB/C mouse mammary tumour and characterised for hormone receptors and HER2 expression by flow cytometry, immunoblotting and immunohistochemistry. Neratinib was evaluated in vitro and in vivo in the metastatic and neoadjuvant setting. Its mechanism of action was examined by transcriptomic profiling, function inhibition assays and immunoblotting. Results TBCP-1 cells naturally express high levels of HER2 but lack expression of hormone receptors. TBCP-1 tumours maintain a HER2-positive phenotype in vivo and give rise to a high incidence of spontaneous and experimental metastases in the brain and other organs. Cell proliferation/viability in vitro is inhibited by neratinib and by other HER2 inhibitors, but not by anti-oestrogens, indicating phenotypic and functional similarities to human HER2-positive breast cancer. Mechanistically, neratinib promotes a non-apoptotic form of cell death termed ferroptosis. Importantly, metastasis assays demonstrate that neratinib potently inhibits tumour growth and metastasis, including to the brain, and prolongs survival, particularly when used as a neoadjuvant therapy. Conclusions The TBCP-1 model recapitulates the spontaneous spread of HER2-positive breast cancer to the brain seen in patients and provides a unique tool to identify novel therapeutics and biomarkers. Neratinib-induced ferroptosis provides new opportunities for therapeutic intervention. Further evaluation of neratinib neoadjuvant therapy is warranted. Electronic supplementary material The online version of this article (10.1186/s13058-019-1177-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aadya Nagpal
- Matrix Microenvironment & Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Richard P Redvers
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia.,Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - Xiawei Ling
- Metastasis Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, 3052, Australia
| | - Miriam Fuentes
- Matrix Microenvironment & Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Elnaz Tavancheh
- Matrix Microenvironment & Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Irmina Diala
- Puma Biotechnology, Inc., 10880 Wilshire Blvd, Los Angeles, CA, 90024, USA
| | - Alshad Lalani
- Puma Biotechnology, Inc., 10880 Wilshire Blvd, Los Angeles, CA, 90024, USA
| | - Sherene Loi
- Translational Breast Cancer Genomics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Steven David
- Peter MacCallum Cancer Centre, Moorabbin Campus, East Bentleigh, VIC, 3165, Australia
| | - Robin L Anderson
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia.,Metastasis Research Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, 3000, Australia.,Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Yvonne Smith
- Royal College of Surgeons, Dublin, D02 YN77, Ireland
| | - Delphine Merino
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia.,Tumour Progression and Heterogeneity Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.,Molecular Medicine Division, The Walter and ELIZA Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Delphine Denoyer
- Matrix Microenvironment & Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Normand Pouliot
- Matrix Microenvironment & Metastasis Laboratory, Olivia Newton-John Cancer Research Institute, 145 Studley Road, Heidelberg, VIC, 3084, Australia. .,School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia. .,Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
23
|
Thomas R, Srivastava S, Katreddy RR, Sobieski J, Weihua Z. Kinase-Inactivated EGFR Is Required for the Survival of Wild-Type EGFR-Expressing Cancer Cells Treated with Tyrosine Kinase Inhibitors. Int J Mol Sci 2019; 20:ijms20102515. [PMID: 31121829 PMCID: PMC6566606 DOI: 10.3390/ijms20102515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/07/2019] [Accepted: 05/19/2019] [Indexed: 12/28/2022] Open
Abstract
Inhibiting the tyrosine kinase activity of epidermal growth factor receptor (EGFR) using small molecule tyrosine kinase inhibitors (TKIs) is often ineffective in treating cancers harboring wild-type EGFR (wt-EGFR). TKIs are known to cause dimerization of EGFR without altering its expression level. Given the fact that EGFR possesses kinase-independent pro-survival function, the role of TKI-inactivated EGFR in cancer cell survival needs to be addressed. In this study, using wt-EGFR-expressing cancer cells A549 (lung), DU145 (prostate), PC3 (prostate), and MDA-MB-231 (breast), we characterized the TKI-induced dimerization status of EGFR and determined the dependency of cells on kinase-inactivated EGFR for survival. We report that TKI-induced EGFR dimerization is dependent on palmitoylation and independent of its kinase activity, and that mutations of the cysteine residues known to be critical for EGFR’s palmitoylation abolished TKI-induced EGFR dimerization. Furthermore, TKI-induced EGFR dimerization is persistent in TKI-resistant cells, and inhibition of palmitoylation by 2-bromopalmitate, or targeted reduction of the kinase-inactivated EGFR by siRNA or by an EGFR-downregulating peptide, are lethal to TKI-resistant cancer cells. This study suggests that kinase-inactivated EGFR remains to be a viable therapeutic target for wt-EGFR cancers and that inhibiting palmitoylation or downregulating EGFR may overcome TKI resistance.
Collapse
Affiliation(s)
- Rintu Thomas
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX 77204-5036, USA.
| | - Shivangi Srivastava
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX 77204-5036, USA.
| | - Rajasekhara Reddy Katreddy
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX 77204-5036, USA.
| | - Jason Sobieski
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX 77204-5036, USA.
| | - Zhang Weihua
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, Houston, TX 77204-5036, USA.
| |
Collapse
|
24
|
Kato S, Okamura R, Mareboina M, Lee S, Goodman A, Patel SP, Fanta PT, Schwab RB, Vu P, Raymond VM, Lanman RB, Sicklick JK, Lippman SM, Kurzrock R. Revisiting Epidermal Growth Factor Receptor ( EGFR) Amplification as a Target for Anti-EGFR Therapy: Analysis of Cell-Free Circulating Tumor DNA in Patients With Advanced Malignancies. JCO Precis Oncol 2019; 3. [PMID: 31058253 PMCID: PMC6497417 DOI: 10.1200/po.18.00180] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose To date, evidence for tissue epidermal growth factor receptor (EGFR) overexpression as a biomarker for anti-EGFR therapies has been weak. We investigated the genomic landscape of EGFR amplification in blood-derived cell-free tumor DNA (cfDNA) across diverse cancers and the role of anti-EGFR therapies in achieving response. Methods We assessed EGFR amplification status among 28,584 patients with malignancies evaluated by clinical-grade next-generation sequencing (NGS) of blood-derived cfDNA (54- to 73-gene panel). Furthermore, we curated the clinical characteristics of 1,434 patients at the University of California San Diego who had cfDNA testing by this NGS test. Results Overall, EGFR amplification was detected in cfDNA from 8.5% of patients (2,423 of 28,584), most commonly in colorectal (16.3% [458 of 2,807]), non–small-cell lung (9.0% [1,096 of 12,197]), and genitourinary cancers (8.1% [170 of 2,104]). Most patients had genomic coalterations (96.9% [95 of 98]), frequently involving genes affecting other tyrosine kinases (72.4% [71 of 98]), mitogen-activated protein kinase cascades (56.1% [55 of 98]), cell-cycle–associated signals (52.0% [51 of 98]), and the phosphoinositide 3-kinase pathway (35.7% [35 of 98]). EGFR amplification emerged in serial cfDNA after various anticancer therapies (n = 6), including checkpoint inhibitors (n = 4), suggesting a possible role for these amplifications in acquired resistance. Nine evaluable patients with EGFR amplification were treated with anti-EGFR–based regimens; five (55.6%) achieved partial responses, including three patients whose tissue NGS lacked EGFR amplification. Conclusion EGFR amplification was detected in cfDNA among 8.5% of 28,584 diverse cancers. Most patients had coexisting alterations. Responses were observed in five of nine patients who received EGFR inhibitors. Incorporating EGFR inhibitors into the treatment regimens of patients harboring EGFR amplification in cfDNA merits additional study.
Collapse
Affiliation(s)
- Shumei Kato
- University of California San Diego Moores Cancer Center, La Jolla
| | - Ryosuke Okamura
- University of California San Diego Moores Cancer Center, La Jolla
| | | | - Suzanna Lee
- University of California San Diego Moores Cancer Center, La Jolla
| | - Aaron Goodman
- University of California San Diego Moores Cancer Center, La Jolla
| | - Sandip P Patel
- University of California San Diego Moores Cancer Center, La Jolla
| | - Paul T Fanta
- University of California San Diego Moores Cancer Center, La Jolla
| | - Richard B Schwab
- University of California San Diego Moores Cancer Center, La Jolla
| | - Peter Vu
- University of California San Diego Moores Cancer Center, La Jolla
| | | | | | - Jason K Sicklick
- University of California San Diego Moores Cancer Center, La Jolla
| | - Scott M Lippman
- University of California San Diego Moores Cancer Center, La Jolla
| | - Razelle Kurzrock
- University of California San Diego Moores Cancer Center, La Jolla
| |
Collapse
|
25
|
Wilson GD, Johnson MD, Ahmed S, Cardenas PY, Grills IS, Thibodeau BJ. Targeted DNA sequencing of non-small cell lung cancer identifies mutations associated with brain metastases. Oncotarget 2018; 9:25957-25970. [PMID: 29899834 PMCID: PMC5995256 DOI: 10.18632/oncotarget.25409] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/24/2018] [Indexed: 12/27/2022] Open
Abstract
Introduction This study explores the hypothesis that dominant molecular oncogenes in non-small cell lung cancer (NSCLC) are associated with metastatic spread to the brain. Methods NSCLC patient groups with no evidence of metastasis, with metastatic disease to a non-CNS site, who developed brain metastasis after diagnosis, and patients with simultaneous diagnosis of NSCLC and metastatic brain lesions were studied using targeted sequencing. Results In patients with brain metastasis versus those without, only 2 variants (one each in BCL6 and NOTHC2) were identified that occurred in ≥ 4 NSCLC of patients with brain metastases but ≤ 1 of the NSCLC samples without brain metastases. At the gene level, 20 genes were found to have unique variants in more than 33% of the patients with brain metastases. When analyzed at the patient level, these 20 genes formed the basis of a predictive test to discriminate those with brain metastasis. Further analysis showed that PI3K/AKT signaling is altered in both the primary and metastases of NSCLC patients with brain lesions. Conclusion While no single variant was associated with brain metastasis, this study describes a potential gene panel for the identification of patients at risk and implicates PI3K/AKT signaling as a therapeutic target.
Collapse
Affiliation(s)
- George D Wilson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, USA.,Beaumont BioBank, William Beaumont Hospital, Royal Oak, MI, USA
| | - Matthew D Johnson
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, USA.,Department of Radiation Oncology, McLaren Health Care, Macomb, MI, USA
| | - Samreen Ahmed
- Beaumont BioBank, William Beaumont Hospital, Royal Oak, MI, USA
| | | | - Inga S Grills
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, USA
| | | |
Collapse
|
26
|
Song Z, Ren D, Xu X, Wang Y. Molecular cross-talk of IL-6 in tumors and new progress in combined therapy. Thorac Cancer 2018; 9:669-675. [PMID: 29603884 PMCID: PMC5983184 DOI: 10.1111/1759-7714.12633] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
IL-6, a cytokine activated by type I interferons (IFNs), is encoded by the IL-6 gene, and secreted by T cells and macrophages. It serves many purposes in the human body and is significant to pathological and physiological activities, such as acute inflammatory responses, autoimmune diseases, and tumor formation. The wide range of IL-6 actions on tumors rely on more than one specific pathway. Advances in modern research have determined that to fulfill its complex physiological functions, IL-6 must be involved in cross-talk with a number of other molecular pathways. Therefore, it is important to clarify the comprehensive pathway network associated with IL-6 activity and to explore the mechanisms to inhibit its pathological activity in order to develop corresponding treatment plans. This study is a simple review of the pathological and physiological actions of IL-6 on the human body. It explains in detail the molecular pathways involved in cross-talk between IL-6 and tumors, summarizing and discussing the latest progress made in IL-6-related internal medicine treatments in recent years, including chemotherapies, targeted therapies, and immunotherapies. Our results provide new insight into the treatment of tumors.
Collapse
Affiliation(s)
- Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Dian Ren
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Yuxin Wang
- Department of Cancer Biology, Lerner Research Institute The Cleveland Clinic Foundation, Cleveland, USA
| |
Collapse
|
27
|
Liu Q, Yu S, Zhao W, Qin S, Chu Q, Wu K. EGFR-TKIs resistance via EGFR-independent signaling pathways. Mol Cancer 2018; 17:53. [PMID: 29455669 PMCID: PMC5817859 DOI: 10.1186/s12943-018-0793-1] [Citation(s) in RCA: 246] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/01/2018] [Indexed: 01/29/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs)-treatments bring significant benefit for patients harboring epidermal growth factor receptor (EGFR) mutations, especially for those with lung cancer. Unfortunately, the majority of these patients ultimately develop to the acquired resistance after a period of treatment. Two central mechanisms are involved in the resistant process: EGFR secondary mutations and bypass signaling activations. In an EGFR-dependent manner, acquired mutations, such as T790 M, interferes the interaction between TKIs and the kinase domain of EGFR. While in an EGFR-independent manner, dysregulation of other receptor tyrosine kinases (RTKs) or abnormal activation of downstream compounds both have compensatory functions against the inhibition of EGFR through triggering phosphatidylinositol 3-kinase (PI3K)/Akt and mitogen-activated protein kinase (MAPK) signaling axes. Nowadays, many clinical trials aiming to overcome and prevent TKIs resistance in various cancers are ongoing or completed. EGFR-TKIs in accompany with the targeted agents for resistance-related factors afford a promising first-line strategy to further clinical application.
Collapse
Affiliation(s)
- Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
28
|
Zhang Y, Zhu T, Liu J, Liu J, Gao D, Su T, Zhao R. FLNa negatively regulated proliferation and metastasis in lung adenocarcinoma A549 cells via suppression of EGFR. Acta Biochim Biophys Sin (Shanghai) 2018; 50:164-170. [PMID: 29272322 DOI: 10.1093/abbs/gmx135] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 01/30/2023] Open
Abstract
Filamin A (FLNa) is a ubiquitously expressed cytoplasmic protein, which composes of an N-terminal actin binding domain (ABD) followed by 24 Ig-like repeats. FLNa functions as a cytoskeletal protein that links transmembrane receptors, including integrins, to F-actin and serves as a signaling intermediate. Recent studies have identified FLNa as a scaffold protein that interacts with over 90 proteins and plays vital roles in cellular signaling transduction. Mutations or defects in human FLNa gene have been shown to cause numerous developmental defects. Moreover, aberrant expression of FLNa has been observed in many cancers, such as parathyroid tumor, cervical cancer, and breast cancer. However, its role in lung adenocarcinoma has seldom been discussed. In the present study, our in vitro and in vivo studies demonstrated that silencing FLNa expression in lung cancer cell line A549 cells promoted proliferation, migration, and invasiveness of A549 cells by enhancing the activation of epidermal growth factor receptor and ERK signaling pathway. These results shed light on novel functions of FLNa in lung cancer and uncovered novel mechanisms, these results provided possible targets for the prediction and treatment for lung adenocarcinoma.
Collapse
Affiliation(s)
- Yuna Zhang
- Department of Endocrinology, Fourth Hospital, Hebei Medical University, Shijiazhuang 050011, China
| | - Tienian Zhu
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang 050082, China
| | - Jingpu Liu
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang 050082, China
| | - Jiankun Liu
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang 050082, China
| | - Dongmei Gao
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang 050082, China
| | - Tongyi Su
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang 050082, China
| | - Ruijing Zhao
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
29
|
Basi A, Khaledi F, Karbalaie Niya MH, Rezvani H, Rakhshani N. Epidermal Growth Factor Receptor Mutations in Lung Adenocarcinomas: A Single Center Study from Iran. Asian Pac J Cancer Prev 2018; 19:111-114. [PMID: 29373900 PMCID: PMC5844603 DOI: 10.22034/apjcp.2018.19.1.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Introduction: Lung cancer is the fifth leading tumor in Iran, and while its incidence remains relatively low, it
has been increasing steadily. Targeted therapies have brought new hope to patients with non small cell lung cancer
(NSCLC). The epidermal growth factor receptor (EGFR) gene is the prototype member of the type I receptor tyrosine
kinase (TK) family and plays a pivotal role in cell proliferation and differentiation. Studies from Asian countries have
revealed a higher frequency of EGFR mutations than in the West. The aim of this study was to measure the frequency
and type of EGFR mutations in a group of Iranian patients with lung adenocarcinomas. Methods: Formalin fixed
paraffin embedded (FFPE) lung adenocarcinoma tissues from 103 Iranian patients were sequentially tested for EGFR
mutations by the polymerase chain reaction (PCR) followed by direct nucleotide sequencing of exons 18, 19, 20, and
21. Patient’s demographics and other clinical details were obtained from the medical records of hospitals affiliated to
Iran University of Medical Sciences, Tehran, Iran. Statistical analyses were performed with SPSS v.20. Results: EGFR
mutations were detected in 25/103 (24.3%) patients. The most frequent was an exon 21 point mutation (L858R) (15
patients; 60%), followed by one in exon 19 (10 patients; 40%). The frequency of EGFR mutations in never-smoker
patients was significantly higher than in smokers (68% versus 32%; p < 0. 01). Conclusion: EGFR mutation frequency
is higher than in the West but lower than in East Asian and almost equal to reported rates for Indian and North African
populations. Smoking is negatively associated with EGFR mutations in Iranian lung adenocarcinomas.
Collapse
Affiliation(s)
- Ali Basi
- Hematology and Oncology Department, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | |
Collapse
|
30
|
Tamura S, Wang Y, Veeneman B, Hovelson D, Bankhead A, Broses LJ, Lorenzatti Hiles G, Liebert M, Rubin JR, Day KC, Hussain M, Neamati N, Tomlins S, Palmbos PL, Grivas P, Day ML. Molecular Correlates of In Vitro Responses to Dacomitinib and Afatinib in Bladder Cancer. Bladder Cancer 2018; 4:77-90. [PMID: 29430509 PMCID: PMC5798519 DOI: 10.3233/blc-170144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: The HER family of proteins (EGFR, HER2, HER3 and HER4) have long been thought to be therapeutic targets for bladder cancer, but previous clinical trials targeting these proteins have been disappointing. Second generation agents may be more effective. Objective: The aim of this study was to evaluate responses to two second-generation irreversible tyrosine kinase inhibitors, dacomitinib and afatinib, in bladder cancer cell lines. Methods: Cell lines were characterized by targeted next generation DNA sequencing, RNA sequencing, western blotting and flow cytometry. Cell survival responses to dacomitinib or afatinib were determined using (3-[4,5-dimethylthioazol-2-yl]-2,5-diphenyl tetrazolium bromide) (MTT) or [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and phenazine methosylfate (PMS) cell survival assays. Results: Only two cell lines of 12 tested were sensitive to afatinib. Sensitivity to afatinib was significantly associated with mutation in either HER2 or HER3 (p < 0.05). The two cell lines sensitive to afatinib were also responsive to dacomitinib ralong with an additional 4 other cell lines out of 16 tested. No characteristic was associated with dacomitinib sensitivity. Molecular profiling demonstrated that only two genes were high in both afatinib and dacomitinib sensitive cells. Further rhigher expression of RAS pathway genes was noted for dacomitinib responsive cells. Conclusions: This study confirms that cell line screening can be useful in pre-clinical evaluation of targeted small molecule inhibitors and suggests that compounds with similar structure(s) and target(s) may have distinct sensitivity profiles. Further rcombinational targeting of additional molecularly relevant pathways may be important in enhancing responses to HER targeted agents in bladder cancer.
Collapse
Affiliation(s)
- Shuzo Tamura
- Department of Medicinal Chemistry, School of Pharmacy, University of Michigan, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Current address: Yokohama City University, Yokohama City, Japan
| | - Yin Wang
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Brendan Veeneman
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Current Address: Pfizer, Pearl River, NY, USA
| | - Daniel Hovelson
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Armand Bankhead
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Luke J Broses
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Guadalupe Lorenzatti Hiles
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Monica Liebert
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - John R Rubin
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Kathleen C Day
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Maha Hussain
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA.,Current Address: Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Nouri Neamati
- Department of Medicinal Chemistry, School of Pharmacy, University of Michigan, Ann Arbor, MI, USA.,Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Scott Tomlins
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Philip L Palmbos
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Petros Grivas
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.,Current address: University of Washington, Seattle, WA, USA
| | - Mark L Day
- Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA.,Department of Urology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
31
|
Xie Y, Li C, Huang Y, Jia Z, Cao J. A novel multikinase inhibitor R8 exhibits potent inhibition on cancer cells through both apoptosis and autophagic cell death. Oncotarget 2017; 8:87209-87220. [PMID: 29152075 PMCID: PMC5675627 DOI: 10.18632/oncotarget.20257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/13/2017] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy is an important treatment for cancer patients, especially for those with unresectable lesions. Targeted therapy of cancer by specific inhibition of aberrant tyrosine kinase activities in cancer cells with chemically synthesized tyrosine kinase inhibitors (TKIs), shows better responses while less side effects than traditional chemotherapeutic drugs. It is common that cancer cells often exhibit deregulation of several tyrosine kinases simultaneously, multikinase TKIs (MKIs) therefore have greater advantages over single-target TKIs. Currently more MKIs are under developing for better efficacy for different types of cancer. In the present work, we evaluated the in vitro therapeutic potential of a novel MKI, namely R8, with comparison to the clinically available MKI Sunitinib. Results showed that R8 has stronger inhibition on six different types of cancer cell lines with lower IC50 than Sunitinib does. Cell cycle analysis showed that R8 induced significant G0/G1 arrest phase of lung cancer A549 and NCI-H226 cells. The inhibition was also confirmed by colony formation and migration assays in both lung cancer cell lines in a dose-dependent manner. R8 could significantly inhibit the phosphorylation of multiple receptor tyrosine kinases (RTKs) included PDGFRβ, VEGFR2, EGFR and C-Kit, leading to the down-regulation of PI3K-Akt-mTOR signaling. Further analysis revealed that R8 treatment induced more significant apoptosis than Sunitinib did, which might be the consequence of the autophagic cell death. In conclusion, this work suggested R8 to be a promising novel anticancer MKI, and provided the basis for further in vivo investigation on its potential in treatment of lung cancer.
Collapse
Affiliation(s)
- Yuqiong Xie
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Chunchun Li
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yali Huang
- Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Zhenyu Jia
- Institute of Occupational Diseases, Zhejiang Academy of Medical Sciences, Hangzhou 310013, China
| | - Jiang Cao
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
32
|
Vyse S, Howitt A, Huang PH. Exploiting Synthetic Lethality and Network Biology to Overcome EGFR Inhibitor Resistance in Lung Cancer. J Mol Biol 2017; 429:1767-1786. [PMID: 28478283 PMCID: PMC6175049 DOI: 10.1016/j.jmb.2017.04.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 12/16/2022]
Abstract
Despite the recent approval of third-generation therapies, overcoming resistance to epidermal growth factor receptor (EGFR) inhibitors remains a major challenge in non-small cell lung cancer. Conceptually, synthetic lethality holds the promise of identifying non-intuitive targets for tackling both acquired and intrinsic resistance in this setting. However, translating these laboratory findings into effective clinical strategies continues to be elusive. Here, we provide an overview of the synthetic lethal approaches that have been employed to study EGFR inhibitor resistance and review the oncogene and non-oncogene signalling mechanisms that have thus far been unveiled by synthetic lethality screens. We highlight the potential challenges associated with progressing these discoveries into the clinic including context dependency, signalling plasticity, and tumour heterogeneity, and we offer a perspective on emerging network biology and computational solutions to exploit these phenomena for cancer therapy and biomarker discovery. We conclude by presenting a number of tangible steps to bolster our understanding of fundamental synthetic lethality mechanisms and advance these findings beyond the confines of the laboratory.
Collapse
Affiliation(s)
- Simon Vyse
- Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Annie Howitt
- Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK
| | - Paul H Huang
- Division of Cancer Biology, The Institute of Cancer Research, London, SW3 6JB, UK.
| |
Collapse
|