1
|
Xu C, Wu Y, Yang S, Zhao X, Zhang H, Yan Y, Zhao J, Wei W, Meng Q, Wang Y, Zhang R. Inhibition of DJ-1 induces TFAM secretion from cancer cells to suppress tumor growth via promoting M1 macrophage polarization. Cell Signal 2025; 131:111765. [PMID: 40147549 DOI: 10.1016/j.cellsig.2025.111765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
DJ-1, also known as PARK7 (Parkinson's disease protein 7), which is involved in cell viability, apoptosis, transcriptional regulation, and oxidative stress adaptation, is also involved in the pathogenesis of various human diseases including carcinogenesis. Here, we aimed to determine the novel mechanism by which DJ-1 inhibition suppresses tumor growth. Our results showed that DJ-1 knockdown in cancer cells promoted the secretion of a significantly larger amount of mitochondrial transcription factor A (TFAM) into the cell culture medium. DJ-1 knockdown promotes p53 translocation to the mitochondria and stimulates the intrinsic mitochondrial apoptosis pathway, resulting in TFAM release. Moreover, DJ-1 knockdown induced the downregulation of sirtuin 3 (SIRT3), which increased the acetylation of TFAM and triggered its release. Furthermore, we found that extracellular TFAM played a critical role in antitumor activity by upregulating the expression of chemokine (CC motif) ligand 4 (CCL4) and chemokine (C-X-C motif) ligand 5 (CXCL5) in cancer cells, contributing to the promotion of M1 macrophage polarization in the tumor microenvironment (TME). Finally, we confirmed that the DJ-1 inhibitor suppressed tumor growth by increasing TFAM release from cancer cells and M1 macrophage polarization in vivo. These findings indicate that the depletion of DJ-1 stimulates apoptosis-dependent TFAM secretion that triggers M1 macrophage polarization, indicating a new therapeutic strategy by interfering with the DJ-1 function in cancer therapy.
Collapse
Affiliation(s)
- Caiqi Xu
- Institute of Clinical Pharmacology, Anhui Medical University, No. 81 of Meishan Road, Hefei, PR China
| | - Yaoyao Wu
- Institute of Clinical Pharmacology, Anhui Medical University, No. 81 of Meishan Road, Hefei, PR China
| | - Sui Yang
- Institute of Clinical Pharmacology, Anhui Medical University, No. 81 of Meishan Road, Hefei, PR China
| | - Xuechun Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, No. 81 of Meishan Road, Hefei, PR China
| | - Hao Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, No. 81 of Meishan Road, Hefei, PR China
| | - Yunwen Yan
- Department of Breast Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, PR China
| | - Jiemin Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, No. 81 of Meishan Road, Hefei, PR China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, No. 81 of Meishan Road, Hefei, PR China
| | - Qian Meng
- Institute of Clinical Pharmacology, Anhui Medical University, No. 81 of Meishan Road, Hefei, PR China.
| | - Yujuan Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350 of Shushanhu Road, Hefei, PR China.
| | - Rui Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, No. 81 of Meishan Road, Hefei, PR China.
| |
Collapse
|
2
|
Faleti OD, Alsaadawe M, Long J, Luo Q, Hu L, Zhang Y, Deng S, Wu G, Fang W, He M, Lyu X. Dimethyl fumarate abrogates hepatocellular carcinoma growth by inhibiting Nrf2/Bcl-xL axis and enhances sorafenib's efficacy. Sci Rep 2025; 15:16724. [PMID: 40369009 PMCID: PMC12078513 DOI: 10.1038/s41598-025-00832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/30/2025] [Indexed: 05/16/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is characterized by poor prognosis and remains a leading cause of cancer mortality worldwide. Advanced HCC is managed with several first-line therapies, including tyrosine kinase inhibitors (TKI) and immunotherapy (mAb-PD-1 and mAb-VEGF). However, the efficacy of HCC therapeutics is often short-lived. Recent studies have demonstrated that the activation of the Nrf2-Bcl-xL pathway contributes to poor prognosis in a subset of HCC patients. Here, we found that dimethyl fumarate (DMF), a drug used for treating psoriasis and multiple sclerosis, regulates the Nrf2-Bcl-xL signaling axis to inhibit HCC growth in a mice xenograft model. Mechanistically, the downregulation of the Nrf2-Bcl-xL axis led to mitochondria stress and apoptosis in vitro and in vivo. Enforced Nrf2 or Bcl-xL expression in HCC cells markedly reversed the antitumor effects of DMF in HCC cells. Importantly, DMF enhanced sorafenib's antitumor effects. Collectively, our results demonstrate new mechanism insights into the antitumor effects of DMF and that Nrf2-targeted therapy might improve HCC treatment outcomes.
Collapse
Affiliation(s)
- Oluwasijibomi Damola Faleti
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510630, China
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Kowloon, 999077, China
| | - Moyed Alsaadawe
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510630, China
- Cancer Center, TCM-Integrated Hospital, Southern Medical University, Guangzhou, 510630, China
| | - Jingyi Long
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510630, China
| | - Qingshuang Luo
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510630, China
| | - Longtai Hu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510630, China
| | - Yuanbin Zhang
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510630, China
| | - Simin Deng
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Gongfa Wu
- Department of Pathology, The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511300, Guangdong, China
| | - Weiyi Fang
- Cancer Center, TCM-Integrated Hospital, Southern Medical University, Guangzhou, 510630, China.
| | - Mingliang He
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Kowloon, 999077, China.
- Biotechology Center, CityU Shenzhen Research Institute, Nanshan, Shenzhen, 518000, China.
| | - Xiaoming Lyu
- Department of Laboratory Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China.
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, 510630, China.
| |
Collapse
|
3
|
Barut EN, Engin S, Öz E, Reis R. Dimethyl Fumarate Attenuates Cyclophosphamide-Induced Bladder Damage and Enhances Cytotoxic Activity Against SH-SY5Y Cells. J Biochem Mol Toxicol 2025; 39:e70212. [PMID: 40059813 PMCID: PMC11891824 DOI: 10.1002/jbt.70212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 05/13/2025]
Abstract
Cylophosphamide (CP)-induced acute cystitis is a debilitating bladder dysfunction commonly observed in cancer patients, primarily resulting from oxidative damage and inflammation in the bladder tissue. Dimethyl fumarate (DMF) is a fumaric acid ester approved for the treatment of multiple sclerosis due to its antioxidant and anti-inflammatory properties. Thus, we aimed to investigate the multiple effects of DMF, involving both its potential synergistic effect with CP on the SH-SY5Y cells and its uroprotective effect on CP-induced acute cystitis. Female Balb/c mice were orally administrated DMF (100 or 300 mg/kg/day) for five consecutive days before a single intraperitoneal (i.p) dose of CP. Mesna was administered 20 min before and at 4 h, 8 h after CP application. Following 24 h of CP injection, bladders were removed for functional, biochemical analysis and evaluation of vesical vascular permeability. SH-SY5Y cell viability was assayed by MTT test. CP markedly decreased carbachol-induced contraction of detrusor strips (p < 0.01), which was prevented by the high-dose DMF treatment (p < 0.05). Evans blue dye extravasation was greatly increased in the bladders of cystitis group (p < 0.001), which was significantly decreased in DMF-treated mice with cystitis (p < 0.01). Total GSH content was decreased (p < 0.01) whereas TNF-α level was increased (p < 0.05) in the bladders of cystitis group. High-dose DMF-treated mice showed an increment in total GSH content (p < 0.05) without any alterations on TNF-α levels of the bladders with cystitis. Additionally, combination of different concentrations of CP and DMF exhibited a potent synergistic cytotoxic effect in SH-SY5Y cells. DMF improved CP-induced acute cystitis by partially suppressing oxidative stress and inflammation, while also enhancing the cytotoxic effects of CP.
Collapse
Affiliation(s)
- Elif Nur Barut
- Department of PharmacologyFaculty of Pharmacy, Karadeniz Technical UniversityTrabzonTurkiye
| | - Seçkin Engin
- Department of PharmacologyFaculty of Pharmacy, Karadeniz Technical UniversityTrabzonTurkiye
| | - Elif Öz
- Department of Pharmaceutical ToxicologyAcıbadem Mehmet Ali Aydınlar University Faculty of PharmacyİstanbulTurkiye
- Department of Pharmaceutical ToxicologyIstanbul University Institute of Health ScienceİstanbulTurkiye
| | - Rengin Reis
- Department of Pharmaceutical ToxicologyAcıbadem Mehmet Ali Aydınlar University Faculty of PharmacyİstanbulTurkiye
| |
Collapse
|
4
|
Kumar A, Kishimoto K, Goel HL, Wisniewski CA, Li R, Pacheco B, Zhu LJ, Flavahan WA, Mercurio AM. Resistance to Radiation Enhances Metastasis by Altering RNA Metabolism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.638943. [PMID: 40060410 PMCID: PMC11888214 DOI: 10.1101/2025.02.19.638943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The cellular programs that mediate therapy resistance are often important drivers of metastasis, a phenomenon that needs to be understood better to improve screening and treatment options for cancer patients. Although this issue has been studied extensively for chemotherapy, less is known about a causal link between resistance to radiation therapy and metastasis. We investigated this problem in triple-negative breast cancer (TNBC) and established that radiation resistant tumor cells have enhanced metastatic capacity, especially to bone. Resistance to radiation increases the expression of integrin β3 (ITGβ3), which promotes enhanced migration and invasion. Bioinformatic analysis and subsequent experimentation revealed an enrichment of RNA metabolism pathways that stabilize ITGβ3 transcripts. Specifically, the RNA binding protein heterogenous nuclear ribonucleoprotein L (HNRNPL), whose expression is regulated by Nrf2, mediates the formation of circular RNAs (circRNAs) that function as competing endogenous RNAs (ceRNAs) for the family of let-7 microRNAs that target ITGβ3. Collectively, our findings identify a novel mechanism of radiation-induced metastasis that is driven by alterations in RNA metabolism.
Collapse
Affiliation(s)
- Ayush Kumar
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Kensei Kishimoto
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Hira Lal Goel
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Christi A Wisniewski
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Rui Li
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Brendan Pacheco
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Lihua Julie Zhu
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - William A Flavahan
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| | - Arthur M Mercurio
- Departments of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester MA
| |
Collapse
|
5
|
Wang Z, Guo L, Dong P, Zhu X, Li J, Cui L, Dong J, Liu K, Meng X, Wang H. Dimethyl fumarate alleviates Staphylococcus pseudintermedius-induced cell damage by inhibiting pyroptosis and bacterial virulence. Exp Eye Res 2025; 251:110210. [PMID: 39681234 DOI: 10.1016/j.exer.2024.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/02/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024]
Abstract
The resistance of pathogenic bacteria to various clinical antibiotics is the major problem in treating bacterial keratitis. Dimethyl fumarate (DMF) has good anti-fungal and anti-inflammatory effects in fungal keratitis, but its effect on bacterial keratitis is unclear. This study aims to investigate DMF's anti-inflammatory and antibacterial effects. The pyroptosis model was constructed by intracellular infection of canine corneal epithelial cells (CCECs) with Staphylococcus pseudintermedius (S. pseudintermedius), and 200 μM DMF was added to explore its function. Western blot, ELISA, immunostaining, flow cytometry, qRT-PCR, and bacterial counts were used to examine the expression of the NLRP3-GSDMD signaling pathway, virulence genes, and oxidant mediators. 111 clinical keratitis isolates or S. pseudintermedius were treated with different concentrations of DMF to detect bacterial growth and biofilm formation. Adding DMF resulted in the inhibition of the NLRP3-GSDMD pathway while activating the NRF2 pathway. This led to a decrease in pyroptosis rate, intracellular bacteria count, and ROS content. Additionally, DMF blocked the mRNA expression of virulence genes ebpS, hlgB, siet, lukS-I, PVL, icaA, icaD, spsD, and spsL associated with S. pseudintermedius infection. Furthermore, DMF demonstrated concentration-dependent inhibition of the growth of clinical isolates and the formation of S. pseudintermedius biofilm. In conclusion, our results indicate that DMF can inhibit pyroptosis and the growth of various clinical isolates, making it a novel ophthalmic drug with anti-inflammatory and antibacterial properties.
Collapse
MESH Headings
- Animals
- Pyroptosis/drug effects
- Dimethyl Fumarate/pharmacology
- Staphylococcus/pathogenicity
- Staphylococcus/drug effects
- Staphylococcal Infections/drug therapy
- Staphylococcal Infections/microbiology
- Staphylococcal Infections/pathology
- Staphylococcal Infections/metabolism
- Dogs
- Eye Infections, Bacterial/microbiology
- Eye Infections, Bacterial/drug therapy
- Eye Infections, Bacterial/pathology
- Virulence
- Epithelium, Corneal/microbiology
- Epithelium, Corneal/pathology
- Epithelium, Corneal/drug effects
- Epithelium, Corneal/metabolism
- Cells, Cultured
- Blotting, Western
- Enzyme-Linked Immunosorbent Assay
- Reactive Oxygen Species/metabolism
- Disease Models, Animal
- Flow Cytometry
- Corneal Ulcer/microbiology
- Corneal Ulcer/drug therapy
Collapse
Affiliation(s)
- Zhihao Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Pengfei Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Xinyi Zhu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
6
|
Schiavoni V, Emanuelli M, Milanese G, Galosi AB, Pompei V, Salvolini E, Campagna R. Nrf2 Signaling in Renal Cell Carcinoma: A Potential Candidate for the Development of Novel Therapeutic Strategies. Int J Mol Sci 2024; 25:13239. [PMID: 39769005 PMCID: PMC11675435 DOI: 10.3390/ijms252413239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer arising from renal tubular epithelial cells and is characterized by a high aggressive behavior and invasiveness that lead to poor prognosis and high mortality rate. Diagnosis of RCC is generally incidental and occurs when the stage is advanced and the disease is already metastatic. The management of RCC is further complicated by an intrinsic resistance of this malignancy to chemotherapy and radiotherapy, which aggravates the prognosis. For these reasons, there is intense research focused on identifying novel biomarkers which may be useful for a better prognostic assessment, as well as molecular markers which could be utilized for targeted therapy. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcriptional factor that has been identified as a key modulator of oxidative stress response, and its overexpression is considered a negative prognostic feature in several types of cancers including RCC, since it is involved in various key cancer-promoting functions such as proliferation, anabolic metabolism and resistance to chemotherapy. Given the key role of Nrf2 in promoting tumor progression, this enzyme could be a promising biomarker for a more accurate prediction of RCC course and it can also represent a valuable therapeutic target. In this review, we provide a comprehensive literature analysis of studies that have explored the role of Nrf2 in RCC, underlining the possible implications for targeted therapy.
Collapse
Affiliation(s)
- Valentina Schiavoni
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (M.E.); (G.M.); (A.B.G.); (V.P.)
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (M.E.); (G.M.); (A.B.G.); (V.P.)
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131 Ancona, Italy
| | - Giulio Milanese
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (M.E.); (G.M.); (A.B.G.); (V.P.)
| | - Andrea Benedetto Galosi
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (M.E.); (G.M.); (A.B.G.); (V.P.)
| | - Veronica Pompei
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (M.E.); (G.M.); (A.B.G.); (V.P.)
| | - Eleonora Salvolini
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (M.E.); (G.M.); (A.B.G.); (V.P.)
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy; (V.S.); (M.E.); (G.M.); (A.B.G.); (V.P.)
| |
Collapse
|
7
|
Nesbitt C, Van Der Walt A, Butzkueven H, Devitt B, Jokubaitis VG. Multiple sclerosis and cancer: Navigating a dual diagnosis. Mult Scler 2024; 30:1714-1736. [PMID: 39347791 DOI: 10.1177/13524585241274523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Healthcare breakthroughs are extending the lives of multiple sclerosis (MS) patients and cancer survivors, creating a growing cohort of individuals navigating a dual diagnosis. Determining the relationship between MS and cancer risk remains challenging, with inconclusive findings confounded by age, risk exposures, comorbidities, genetics and the ongoing introduction of new MS disease-modifying therapies (DMTs) across study periods.This research places significant emphasis on cancer survival, with less attention given to the impact on MS outcomes. Our review explores the existing literature on MS, cancer risk and the intersection of DMTs and cancer treatments. We aim to navigate the complexities of managing MS in cancer survivors to optimise outcomes for both conditions. Continuous research and the formulation of treatment guidelines are essential for guiding future care. Collaboration between neuro-immunology and oncology is crucial, with a need to establish databases for retrospective and ultimately prospective analysis of outcomes in these rapidly evolving fields.
Collapse
Affiliation(s)
- Cassie Nesbitt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
- Department of Neuroscience, Monash University, The Alfred Centre, Melbourne, VIC, Australia
| | - Anneke Van Der Walt
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
| | - Helmut Butzkueven
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
| | - Bianca Devitt
- Department of Oncology, Eastern Health Clinical School, Monash University, Melbourne, VIC, Australia
- Oncology Clinical Trials Unit, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
| | - Vilija G Jokubaitis
- Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, VIC, Australia
- Department of Neurology, MSNI Multiple Sclerosis and Neuro-Immunology, Alfred Health, Melbourne, VIC, Australia
- Department of Neuroscience, Monash University, The Alfred Centre, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Abdelaziz I, Bounaama A, Djerdjouri B, Amir-Tidadini ZC. Low-dose dimethylfumarate attenuates colitis-associated cancer in mice through M2 macrophage polarization and blocking oxidative stress. Toxicol Appl Pharmacol 2024; 489:117018. [PMID: 38945373 DOI: 10.1016/j.taap.2024.117018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Colitis-associated cancer (CAC) is an aggressive subtype of colorectal cancer that can develop in ulcerative colitis patients and is driven by chronic inflammation and oxidative stress. Current chemotherapy for CAC, based on 5-fluorouracil and oxalipltin, is not fully effective and displays severe side effects, prompting the search for alternative therapies. Dimethylfumarate (DMF), an activator of the nuclear factor erythroid 2-related factor 2 (NRF2), is a potent antioxidant and immunomodelatrory drug used in the treatment of multiple sclerosis and showed a strong anti-inflammatory effect on experimental colitis. Here, we investigated the chemotherapeutic effect of DMF on an experimental model of CAC. Male NMRI mice were given two subcutaneous injections of 1,2 Dimethylhydrazine (DMH), followed by three cycles of dextran sulfate sodium (DSS). Low-dose (DMF30) and high-dose of DMF (DMF100) or oxaliplatin (OXA) were administered from the 8th to 12th week of the experiment, and then the colon tissues were analysed histologically and biochemically. DMH/DSS induced dysplastic aberrant crypt foci (ACF), oxidative stress, and severe colonic inflammation, with a predominance of pro-inflammatory M1 macrophages. As OXA, DMF30 reduced ACF multiplicity and crypt dysplasia, but further restored redox status, and reduced colitis severity by shifting macrophages towards the anti-inflammatory M2 phenotype. Surprisingly, DMF100 exacerbated ACF multiplicity, oxidative stress, and colon inflammation, likely through NRF2 and p53 overexpression in colonic inflammatory cells. DMF had a dual effect on CAC. At low dose, DMF is chemotherapeutic and acts as an antioxidant and immunomodulator, whereas at high dose, DMF is pro-oxidant and exacerbates colitis-associated cancer.
Collapse
Affiliation(s)
- Ismahane Abdelaziz
- Tamayouz_Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Abdelkader Bounaama
- Tamayouz_Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria.
| | - Bahia Djerdjouri
- Tamayouz_Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | | |
Collapse
|
9
|
Martinez AN, Tortelote GG, Pascale CL, Ekanem UOI, Leite APDO, McCormack IG, Dumont AS. Dimethyl Fumarate Mediates Sustained Vascular Smooth Muscle Cell Remodeling in a Mouse Model of Cerebral Aneurysm. Antioxidants (Basel) 2024; 13:773. [PMID: 39061841 PMCID: PMC11274241 DOI: 10.3390/antiox13070773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Cerebral aneurysms (CA) are a type of vascular disease that causes significant morbidity and mortality with rupture. Dysfunction of the vascular smooth muscle cells (VSMCs) from circle of Willis (CoW) vessels mediates CA formation, as they are the major cell type of the arterial wall and play a role in maintaining vessel integrity. Dimethyl fumarate (DMF), a first-line oral treatment for relapsing-remitting multiple sclerosis, has been shown to inhibit VSMC proliferation and reduce CA formation in a mouse model. Potential unwanted side effects of DMF on VSMC function have not been investigated yet. The present study characterizes the impact of DMF on VSMC using single-cell RNA-sequencing (scRNA-seq) in CoW vessels following CA induction and further explores its role in mitochondrial function using in vitro VSMC cultures. Two weeks of DMF treatment following CA induction impaired the transcription of the glutathione redox system and downregulated mitochondrial respiration genes in VSMCs. In vitro, DMF treatment increased lactate formation and enhanced the mitochondrial production of reactive oxygen species (ROS). These effects rendered VSMCs vulnerable to oxidative stress and led to mitochondrial dysfunction and enhancement of apoptosis. Taken together, our data support the concept that the DMF-mediated antiproliferative effect on VSMCs is linked to disturbed antioxidative functions resulting in altered mitochondrial metabolism. This negative impact of DMF treatment on VSMCs may be linked to preexisting alterations of cerebrovascular function due to renal hypertension. Therefore, before severe adverse effects emerge, it would be clinically relevant to develop indices or biomarkers linked to this disturbed antioxidative function to monitor patients undergoing DMF treatment.
Collapse
Affiliation(s)
- Alejandra N. Martinez
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| | - Giovane G. Tortelote
- Department of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Crissey L. Pascale
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| | - Uduak-Obong I. Ekanem
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| | - Ana Paula de O. Leite
- Department of Pharmacology, The Tulane Center for Sex-Based Biology and Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Isabella G. McCormack
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| | - Aaron S. Dumont
- Department of Neurosurgery, The Tulane Center for Clinical Neurosciences, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70012, USA (A.S.D.)
| |
Collapse
|
10
|
Bresciani G, Manai F, Davinelli S, Tucci P, Saso L, Amadio M. Novel potential pharmacological applications of dimethyl fumarate-an overview and update. Front Pharmacol 2023; 14:1264842. [PMID: 37745068 PMCID: PMC10512734 DOI: 10.3389/fphar.2023.1264842] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Dimethyl fumarate (DMF) is an FDA-approved drug for the treatment of psoriasis and multiple sclerosis. DMF is known to stabilize the transcription factor Nrf2, which in turn induces the expression of antioxidant response element genes. It has also been shown that DMF influences autophagy and participates in the transcriptional control of inflammatory factors by inhibiting NF-κB and its downstream targets. DMF is receiving increasing attention for its potential to be repurposed for several diseases. This versatile molecule is indeed able to exert beneficial effects on different medical conditions through a pleiotropic mechanism, in virtue of its antioxidant, immunomodulatory, neuroprotective, anti-inflammatory, and anti-proliferative effects. A growing number of preclinical and clinical studies show that DMF may have important therapeutic implications for chronic diseases, such as cardiovascular and respiratory pathologies, cancer, eye disorders, neurodegenerative conditions, and systemic or organ specific inflammatory and immune-mediated diseases. This comprehensive review summarizes and highlights the plethora of DMF's beneficial effects and underlines its repurposing opportunities in a variety of clinical conditions.
Collapse
Affiliation(s)
- Giorgia Bresciani
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Federico Manai
- Department of Biology and Biotechnology L. Spallanzani, University of Pavia, Pavia, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Paolo Tucci
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology Vittorio Erspamer, Sapienza University, Rome, Italy
| | - Marialaura Amadio
- Section of Pharmacology, Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
11
|
DMF-Activated Nrf2 Ameliorates Palmitic Acid Toxicity While Potentiates Ferroptosis Mediated Cell Death: Protective Role of the NO-Donor S-Nitroso-N-Acetylcysteine. Antioxidants (Basel) 2023; 12:antiox12020512. [PMID: 36830070 PMCID: PMC9952671 DOI: 10.3390/antiox12020512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease that can develop into an aggressive form called nonalcoholic steatohepatitis (NASH), which ultimately progresses to cirrhosis, hepatocellular carcinoma (HCC), and end-stage liver failure. Currently, the deterioration of NAFLD is attributed to specific lipid toxicity which could be due to lipotoxicity and/or ferroptosis. In the current study, we evaluated the involvement of the nuclear factor erythroid 2 (NFE2)-related factor 2 (Nrf-2), which is a main activator of phase II metabolism in the two types of lipid-induced toxicity in hepatocytes, lipotoxicity by saturated fatty acids, and in ferroptosis, and the effect of NO donor treatment. AML12 cells were exposed to 600 μM palmitic acid to induce lipotoxicity or treated with 20 μM erastin or 5 μM RSL3 for ferroptosis. In SFA-lipotoxicity, pretreatment with the Nrf2 activator dimethyl fumarate (DMF) managed to ameliorate the cells and the oxidative stress level while aggravating ferroptosis due to emptying the thiol pool. On the other hand, the nitric oxide (NO)-donor, S-nitroso-N-acetylcysteine (NAC-SNO) proved to be effective in the prevention of hepatocytes ferroptosis.
Collapse
|
12
|
Gambichler T, Brüggestrat LG, Skrygan M, Scheel CH, Susok L, Becker JC. The Antineoplastic Effect of Dimethyl Fumarate on Virus-Negative Merkel Cell Carcinoma Cell Lines: Preliminary Results. Cancers (Basel) 2023; 15:cancers15020547. [PMID: 36672496 PMCID: PMC9857057 DOI: 10.3390/cancers15020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare, difficult-to-treat skin cancer once immunotherapy has failed. MCC is associated either with the clonal integration of the Merkel cell polyomavirus (MCPyV) or mutagenic UV-radiation. Fumaric acid esters, including dimethyl fumarate (DMF), have been shown to inhibit cell growth in cutaneous melanoma and lymphoma. We aimed to explore the effects of DMF on MCPyV-negative MCC cell lines. Three MCC cell lines (MCC13, MCC14.2, and MCC26) were treated with different doses of DMF. The cytotoxic effects and cell proliferation were assessed by the MTT cytotoxicity assay and BrdU proliferation assay at different time points. A significant reduction in cell viability and proliferation were demonstrated for all the cell lines used, with DMF proving to be effective.
Collapse
Affiliation(s)
- Thilo Gambichler
- Skin Cancer Center, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
- Correspondence:
| | - Lyn G. Brüggestrat
- Skin Cancer Center, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Marina Skrygan
- Skin Cancer Center, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Christina H. Scheel
- Skin Cancer Center, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Laura Susok
- Skin Cancer Center, Department of Dermatology, Venereology and Allergology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Jürgen C. Becker
- Translational Skin Cancer Research, German Cancer Consortium (DKTK) Partner Site Essen, Düsseldorf, Department of Dermatology, University Duisburg-Essen, 45117 Essen, Germany
- Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Marques ES, Severance EG, Min B, Arsenault P, Conlin SM, Timme-Laragy AR. Developmental impacts of Nrf2 activation by dimethyl fumarate (DMF) in the developing zebrafish (Danio rerio) embryo. Free Radic Biol Med 2023; 194:284-297. [PMID: 36528121 PMCID: PMC9906634 DOI: 10.1016/j.freeradbiomed.2022.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Dimethyl fumarate (DMF) is pharmaceutical activator of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates of many cellular antioxidant response pathways, and has been used to treat inflammatory diseases such as multiple sclerosis. However, DMF has been shown to produce adverse effects on offspring in animal studies and as such is not recommended for use during pregnancy. The goal of this work is to better understand how these adverse effects are initiated and the role of DMF-induced Nrf2 activation during three critical windows of development in embryonic zebrafish (Danio rerio): pharyngula, hatching, and protruding-mouth stages. To evaluate Nrf2 activation, wildtype zebrafish, and mutant zebrafish (nrf2afh318/fh318) embryos with a loss of function mutation in Nrf2a, the co-ortholog to human Nrf2, were treated for 6 h with DMF (0-20 μM) beginning at the pharyngula, hatching, or protruding-mouth stage and assessed for survival and morphology. Nrf2a mutant fish had an increase in survival, however, morphology studies demonstrated Nrf2a mutant fish had more severe deformities occurring with exposures during the hatching stage. To verify Nrf2 cellular localization and downstream impacts on protein-S-glutathionylation in situ, a concentration below the LOAEL was chosen (7 μM) for immunohistochemistry and S-glutathionylation. Embryos were imaged via epifluorescence microscopy studies, the Nrf2a protein in the body tissue was decreased with DMF only when exposed at the hatching stage, while total protein S-glutathionylation was modulated by Nrf2a activity and DMF during the pharyngula and protruding-mouth stage. The pancreatic islet and liver were further analyzed via confocal microscopy. Pancreatic islets and liver also had tissue specific differences with Nrf2a protein expression and protein S-glutathionylation. This work demonstrates how critical windows of exposure and Nrf2a activity may influence toxicity of DMF and highlights tissue-specific changes in Nrf2a protein levels and S-glutathionylation in pancreatic islet and liver during embryonic development.
Collapse
Affiliation(s)
- Emily S Marques
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Emily G Severance
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Bellis Min
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Paige Arsenault
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Sarah M Conlin
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Alicia R Timme-Laragy
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| |
Collapse
|
14
|
Manai F, Govoni S, Amadio M. The Challenge of Dimethyl Fumarate Repurposing in Eye Pathologies. Cells 2022; 11:cells11244061. [PMID: 36552824 PMCID: PMC9777082 DOI: 10.3390/cells11244061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Dimethyl fumarate (DMF) is a small molecule currently approved and used in the treatment of psoriasis and multiple sclerosis due to its immuno-modulatory, anti-inflammatory, and antioxidant properties. As an Nrf2 activator through Keap1 protein inhibition, DMF unveils a potential therapeutical use that is much broader than expected so far. In this comprehensive review we discuss the state-of-art and future perspectives regarding the potential repositioning of this molecule in the panorama of eye pathologies, including Age-related Macular Degeneration (AMD). The DMF's mechanism of action, an extensive analysis of the in vitro and in vivo evidence of its beneficial effects, together with a search of the current clinical trials, are here reported. Altogether, this evidence gives an overview of the new potential applications of this molecule in the context of ophthalmological diseases characterized by inflammation and oxidative stress, with a special focus on AMD, for which our gene-disease (KEAP1-AMD) database search, followed by a protein-protein interaction analysis, further supports the rationale of DMF use. The necessity to find a topical route of DMF administration to the eye is also discussed. In conclusion, the challenge of DMF repurposing in eye pathologies is feasible and worth scientific attention and well-focused research efforts.
Collapse
Affiliation(s)
- Federico Manai
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Marialaura Amadio
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
- Correspondence: ; Tel.: +39-0382-987888
| |
Collapse
|
15
|
Matteo P, Federico D, Emanuela M, Giulia R, Tommaso B, Alfredo G, Anna C, Annamaria O. New and Old Horizons for an Ancient Drug: Pharmacokinetics, Pharmacodynamics, and Clinical Perspectives of Dimethyl Fumarate. Pharmaceutics 2022; 14:pharmaceutics14122732. [PMID: 36559226 PMCID: PMC9788528 DOI: 10.3390/pharmaceutics14122732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
(1) Background: In their 60-year history, dimethyl fumarate and other salts of fumaric acid have been used for the treatment of psoriasis and other immune-mediated diseases for their immune-modulating properties. Over the years, new mechanisms of action have been discovered for this evergreen drug that remains a first-line treatment for several different inflammatory diseases. Due to its pleiotropic effects, this molecule is still of great interest in varied conditions, not exclusively inflammatory diseases. (2) Methods: The PubMed database was searched using combinations of the following keywords: dimethyl fumarate, pharmacokinetics, pharmacodynamics, adverse effects, psoriasis, multiple sclerosis, and clinical indications. This article reviews and updates the pharmacokinetics, mechanisms of action, and clinical indications of dimethyl fumarate. (3) Conclusions: The pharmacology of dimethyl fumarate is complex, fascinating, and not fully known. Progressive insights into the molecule's mechanisms of action will make it possible to maximize its clinical efficacy, reduce concerns about adverse effects, and find other possible areas of application.
Collapse
Affiliation(s)
- Paolinelli Matteo
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Polytechnic Marche University, 60121 Ancona, Italy
- Correspondence:
| | - Diotallevi Federico
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Polytechnic Marche University, 60121 Ancona, Italy
| | - Martina Emanuela
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Polytechnic Marche University, 60121 Ancona, Italy
| | - Radi Giulia
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Polytechnic Marche University, 60121 Ancona, Italy
| | | | | | - Campanati Anna
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Polytechnic Marche University, 60121 Ancona, Italy
| | - Offidani Annamaria
- Department of Clinical and Molecular Sciences-Dermatological Clinic, Polytechnic Marche University, 60121 Ancona, Italy
| |
Collapse
|
16
|
Kalyanaraman B. NAC, NAC, Knockin' on Heaven's door: Interpreting the mechanism of action of N-acetylcysteine in tumor and immune cells. Redox Biol 2022; 57:102497. [PMID: 36242913 PMCID: PMC9563555 DOI: 10.1016/j.redox.2022.102497] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
N-acetylcysteine (NAC) has been used as a direct scavenger of reactive oxygen species (hydrogen peroxide, in particular) and an antioxidant in cancer biology and immuno-oncology. NAC is the antioxidant drug most frequently employed in studies using tumor cells, immune cells, and preclinical mouse xenografts. Most studies use redox-active fluorescent probes such as dichlorodihydrofluorescein, hydroethidine, mitochondria-targeted hydroethidine, and proprietary kit-based probes (i.e., CellROX Green and CellROX Red) for intracellular detection of superoxide or hydrogen peroxide. Inhibition of fluorescence by NAC was used as a key experimental observation to support the formation of reactive oxygen species and redox mechanisms proposed for ferroptosis, tumor metastasis, and redox signaling in the tumor microenvironment. Reactive oxygen species such as superoxide and hydrogen peroxide stimulate or abrogate tumor cells and immune cells depending on multiple factors. Understanding the mechanism of antioxidants is crucial for interpretation of the results. Because neither NAC nor the fluorescent probes indicated above react directly with hydrogen peroxide, it is critically important to reinterpret the results to advance our understanding of the mechanism of action of NAC and shed additional mechanistic insight on redox-regulated signaling in tumor biology. To this end, this review is focused on how NAC could affect multiple pathways in cancer cells, including iron signaling, ferroptosis, and the glutathione-dependent antioxidant and redox signaling mechanism, and how NAC could inhibit oxidation of the fluorescent probes through multiple mechanisms.
Collapse
Affiliation(s)
- Balaraman Kalyanaraman
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, USA.
| |
Collapse
|
17
|
Guan S, Zhang R, Zhao Y, Meng Z, Lu J. 1,3-Dichloro-2-propanol induced ferroptosis through Nrf2/ARE signaling pathway in hepatocytes. ENVIRONMENTAL TOXICOLOGY 2022; 37:2515-2528. [PMID: 35870111 DOI: 10.1002/tox.23615] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/16/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
1,3-Dichloro-2-propanol (1,3-DCP) is a representative chloropropane environmental contaminant with multiple toxicities. Ferroptosis is a novel iron-dependent form of regulated cell death that is closely associated with the accumulation of lipid peroxides, Fe2+ and reactive oxygen species (ROS). In this study, we found that 1,3-DCP could induce mouse liver injury via ferroptosis. Administrating of C57BL/6J mice with 12.5, 25, and 50 mg/kg 1,3-DCP for 4 weeks via oral gavage, the data showed that 1,3-DCP exposure led to the pathological changes in mouse livers, remarkably induced accumulation of malondialdehyde (MDA) and Iron, reduction of glutathione (GSH), and changed in the expression of ferroptosis marker proteins glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase-4 (ACSL4). Then, we also proved the results with HepG2 cells in vitro. The data showed that treatment 1,3-DCP significantly triggered the ferroptosis in vitro. Furthermore, we found that the ferroptosis-related signal pathways were significantly activated in mice livers and HepG2 cells in response to 1,3-DCP exposure. The data showed that 1,3-DCP induced ferroptosis by inhibiting nuclear factor erythroid 2-related factor 2 (Nrf2) translocation into nuclear and thereby suppressing the expression of its downstream target proteins including GPX4, ferritin heavy chain (FTH), ferroportin (FPN), cystine/glutamate transporter xCT (SLC7A11), and heme oxygenase 1 (HO-1). Taken together, our findings confirmed that 1,3-DCP induced ferroptosis via the Nrf2/ARE signaling pathway in hepatocytes. Our works provide new toxicity mechanisms of 1,3-DCP with ferroptosis on hepatocytes injury.
Collapse
Affiliation(s)
- Shuang Guan
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| | - Ranran Zhang
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Yanan Zhao
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Zhuoqun Meng
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
| | - Jing Lu
- College of Food Science and Engineering, Jilin University, Changchun, People's Republic of China
- Key Laboratory of Zoonosis, Ministry of Education College of Veterinary Medicine, Jilin University, Changchun, People's Republic of China
| |
Collapse
|
18
|
Jia Y, Kim RQ, Kooij R, Ovaa H, Sapmaz A, Geurink PP. Chemical Toolkit for PARK7: Potent, Selective, and High-Throughput. J Med Chem 2022; 65:13288-13304. [PMID: 36149939 PMCID: PMC9574860 DOI: 10.1021/acs.jmedchem.2c01113] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The multifunctional human Parkinson's disease protein 7 (PARK7/DJ1) is an attractive therapeutic target due to its link with early-onset Parkinson's disease, upregulation in various cancers, and contribution to chemoresistance. However, only a few compounds have been identified to bind PARK7 due to the lack of a dedicated chemical toolbox. We report the creation of such a toolbox and showcase the application of each of its components. The selective PARK7 submicromolar inhibitor with a cyanimide reactive group covalently modifies the active site Cys106. Installment of different dyes onto the inhibitor delivered two PARK7 probes. The Rhodamine110 probe provides a high-throughput screening compatible FP assay, showcased by screening a compound library (8000 molecules). The SulfoCy5-equipped probe is a valuable tool to assess the effect of PARK7 inhibitors in a cell lysate. Our work creates new possibilities to explore PARK7 function in a physiologically relevant setting and develop new and improved PARK7 inhibitors.
Collapse
Affiliation(s)
- Yuqing Jia
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Robbert Q Kim
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Raymond Kooij
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Huib Ovaa
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Aysegul Sapmaz
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| | - Paul P Geurink
- Oncode Institute & Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, The Netherlands
| |
Collapse
|
19
|
Rupp T, Debasly S, Genest L, Froget G, Castagné V. Therapeutic Potential of Fingolimod and Dimethyl Fumarate in Non-Small Cell Lung Cancer Preclinical Models. Int J Mol Sci 2022; 23:ijms23158192. [PMID: 35897763 PMCID: PMC9330228 DOI: 10.3390/ijms23158192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 01/27/2023] Open
Abstract
New therapies are required for patients with non-small cell lung cancer (NSCLC) for which the current standards of care poorly affect the patient prognosis of this aggressive cancer subtype. In this preclinical study, we aim to investigate the efficacy of Fingolimod, a described inhibitor of sphingosine-1-phosphate (S1P)/S1P receptors axis, and Dimethyl Fumarate (DMF), a methyl ester of fumaric acid, both already approved as immunomodulators in auto-immune diseases with additional expected anti-cancer effects. The impact of both drugs was analyzed with in vitro cell survival analysis and in vivo graft models using mouse and human NSCLC cells implanted in immunocompetent or immunodeficient mice, respectively. We demonstrated that Fingolimod and DMF repressed tumor progression without apparent adverse effects in vivo in three preclinical mouse NSCLC models. In vitro, Fingolimod did not affect either the tumor proliferation or the cytotoxicity, although DMF reduced tumor cell proliferation. These results suggest that Fingolimod and DMF affected tumor progression through different cellular mechanisms within the tumor microenvironment. Fingolimod and DMF might uncover potential therapeutic opportunities in NSCLC.
Collapse
Affiliation(s)
- Tristan Rupp
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
- Correspondence: or ; Tel.: +33-(0)2-43-69-36-07
| | - Solène Debasly
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
- CNRS UMR 7369 (Matrice Extracellulaire et Dynamique Cellulaire, MEDyC), Université de Reims-Champagne-Ardenne, Campus Moulin de la Housse, 51687 Reims, France
| | - Laurie Genest
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
| | - Guillaume Froget
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
| | - Vincent Castagné
- Porsolt SAS, ZA de Glatigné, 53940 Le Genest-Saint-Isle, France; (S.D.); (L.G.); (G.F.); (V.C.)
| |
Collapse
|
20
|
Petcherski A, Sharma M, Satta S, Daskou M, Vasilopoulos H, Hugo C, Ritou E, Dillon BJ, Fung E, Garcia G, Scafoglio C, Purkayastha A, Gomperts BN, Fishbein GA, Arumugaswami V, Liesa M, Shirihai OS, Kelesidis T. Mitoquinone mesylate targets SARS-CoV-2 infection in preclinical models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.22.481100. [PMID: 35233569 PMCID: PMC8887067 DOI: 10.1101/2022.02.22.481100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To date, there is no effective oral antiviral against SARS-CoV-2 that is also anti-inflammatory. Herein, we show that the mitochondrial antioxidant mitoquinone/mitoquinol mesylate (Mito-MES), a dietary supplement, has potent antiviral activity against SARS-CoV-2 and its variants of concern in vitro and in vivo . Mito-MES had nanomolar in vitro antiviral potency against the Beta and Delta SARS-CoV-2 variants as well as the murine hepatitis virus (MHV-A59). Mito-MES given in SARS-CoV-2 infected K18-hACE2 mice through oral gavage reduced viral titer by nearly 4 log units relative to the vehicle group. We found in vitro that the antiviral effect of Mito-MES is attributable to its hydrophobic dTPP+ moiety and its combined effects scavenging reactive oxygen species (ROS), activating Nrf2 and increasing the host defense proteins TOM70 and MX1. Mito-MES was efficacious reducing increase in cleaved caspase-3 and inflammation induced by SARS-CoV2 infection both in lung epithelial cells and a transgenic mouse model of COVID-19. Mito-MES reduced production of IL-6 by SARS-CoV-2 infected epithelial cells through its antioxidant properties (Nrf2 agonist, coenzyme Q10 moiety) and the dTPP moiety. Given established safety of Mito-MES in humans, our results suggest that Mito-MES may represent a rapidly applicable therapeutic strategy that can be added in the therapeutic arsenal against COVID-19. Its potential long-term use by humans as diet supplement could help control the SARS-CoV-2 pandemic, especially in the setting of rapidly emerging SARS-CoV-2 variants that may compromise vaccine efficacy. One-Sentence Summary Mitoquinone/mitoquinol mesylate has potent antiviral and anti-inflammatory activity in preclinical models of SARS-CoV-2 infection.
Collapse
|
21
|
Thomas SD, Jha NK, Sadek B, Ojha S. Repurposing Dimethyl Fumarate for Cardiovascular Diseases: Pharmacological Effects, Molecular Mechanisms, and Therapeutic Promise. Pharmaceuticals (Basel) 2022; 15:ph15050497. [PMID: 35631325 PMCID: PMC9143321 DOI: 10.3390/ph15050497] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
Dimethyl fumarate (DMF) is a small molecule that has been shown to assert potent in vivo immunoregulatory and anti-inflammatory therapeutic actions. The drug has been approved and is currently in use for treating multiple sclerosis and psoriasis in the USA and Europe. Since inflammatory reactions have been significantly implicated in the etiology and progression of diverse disease states, the pharmacological actions of DMF are presently being explored and generalized to other diseases where inflammation needs to be suppressed and immunoregulation is desirable, either as a monotherapeutic agent or as an adjuvant. In this review, we focus on DMF, and present an overview of its mechanism of action while briefly discussing its pharmacokinetic profile. We further discuss in detail its pharmacological uses and highlight its potential applications in the treatment of cardiovascular diseases. DMF, with its unique combination of anti-inflammatory and vasculoprotective effects, has the potential to be repurposed as a therapeutic agent in patients with atherosclerotic cardiovascular disease. The clinical studies mentioned in this review with respect to the beneficial effects of DMF in atherosclerosis involve observations in patients with multiple sclerosis and psoriasis in small cohorts and for short durations. The findings of these studies need to be assessed in larger prospective clinical trials, ideally with a double-blind randomized study design, investigating the effects on cardiovascular endpoints as well as morbidity and mortality. The long-term impact of DMF therapy on cardiovascular diseases also needs to be confirmed.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India;
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (B.S.); (S.O.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence: (B.S.); (S.O.)
| |
Collapse
|
22
|
Li H, Wang Y, Su R, Jia Y, Lai X, Su H, Fan Y, Wang Y, Xing W, Qin J. Dimethyl Fumarate Combined With Vemurafenib Enhances Anti-Melanoma Efficacy via Inhibiting the Hippo/YAP, NRF2-ARE, and AKT/mTOR/ERK Pathways in A375 Melanoma Cells. Front Oncol 2022; 12:794216. [PMID: 35141161 PMCID: PMC8820202 DOI: 10.3389/fonc.2022.794216] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/05/2022] [Indexed: 12/18/2022] Open
Abstract
Melanoma is a deadly form of skin cancer with high rates of resistance to traditional chemotherapy and radiotherapy. BRAF inhibitors (BRAFi) can achieve initial efficacy when used to treat melanoma patients, but drug resistance and relapse are common, emphasizing the need for new therapeutic strategies. Herein, we reported that combination of dimethyl fumarate (DMF) and vemurafenib (Vem) inhibited melanoma cell proliferation more significantly and induced more cell death than single agent did both in vitro and in vivo. DMF/Vem treatment induced cell death through inhibiting the expression and transcriptional activity of NRF2 thereby resulting in more reactive oxygen species (ROS) and via inhibiting the expression of YAP, a key downstream effector of Hippo pathway. DMF/Vem treatment also reduced phosphorylation of AKT, 4EBP1, P70S6K and ERK in AKT/mTOR/ERK signaling pathways. RNA-seq analysis revealed that DMF/Vem treatment specifically suppressed 4561 genes which belong to dozens of cell signaling pathways. These results indicated that DMF/Vem treatment manifested an enhanced antitumor efficacy through inhibiting multiple cell signaling pathways, and thus would be a novel promising therapeutic approach targeted for melanoma.
Collapse
Affiliation(s)
- Hongxia Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yaping Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Rina Su
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yuchen Jia
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xiong Lai
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Huimin Su
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yaochun Fan
- Inner Mongolia Autonomous Region Center for Disease Control and Prevention, Hohhot, China
| | - Yuewu Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Wanjin Xing
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, College of Life Sciences, Inner Mongolia University, Hohhot, China
- *Correspondence: Wanjin Xing, ; Jianzhong Qin,
| | - Jianzhong Qin
- College of Biological Sciences and Biotechnology, Dalian University, Dalian, China
- *Correspondence: Wanjin Xing, ; Jianzhong Qin,
| |
Collapse
|
23
|
Wang J, Yang J, Cao M, Zhao Z, Cao B, Yu S. The potential roles of Nrf2/Keap1 signaling in anticancer drug interactions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100028. [PMID: 34909662 PMCID: PMC8663926 DOI: 10.1016/j.crphar.2021.100028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor (erythroid-derived 2)-related factor 2 (Nrf2), together with its suppressive binding partner Kelch-like ECH-associated protein 1 (Keap1), regulates cellular antioxidant response and drug metabolism. The roles of Nrf2/Keap1 signaling in the pathology of many diseases have been extensively investigated, and small molecules targeting Nrf2/Keap1 signaling have been developed to prevent or treat diseases such as multiple sclerosis, chronic kidney disease and cancer. Notably, Nrf2 plays dual roles in cancer development and treatment. Activation of Nrf2/Keap1 signaling in cancer cells has been reported to promote cancer progression and result in therapy resistance. Since cancer patients are often suffering comorbidities of other chronic diseases, anticancer drugs could be co-administrated with other drugs and herbs. Nrf2/Keap1 signaling modulators, especially activators, are common in drugs, herbs and dietary ingredients, even they are developed for other targets. Therefore, drug-drug or herb-drug interactions due to modulation of Nrf2/Keap1 signaling should be considered in cancer therapies. Here we briefly summarize basic biochemistry and physiology functions of Nrf2/Keap1 signaling, Nrf2/Keap1 signaling modulators that cancer patients could be exposed to, and anticancer drugs that are sensitive to Nrf2/Keap1 signaling, aiming to call attention to the potential drug-drug or herb-drug interactions between anticancer drugs and these Nrf2/Keap1 signaling modulators.
Collapse
Affiliation(s)
- Jingya Wang
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, PR China
| | - Jin Yang
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, PR China
| | - Mingnan Cao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - Baoshan Cao
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, 100191, China
| | - Siwang Yu
- State Key Laboratory of Natural and Biomimetic Drugs; Department of Molecular and Cellular Pharmacology, Peking University School of Pharmaceutical Sciences, Beijing, 100191, PR China
| |
Collapse
|
24
|
Dai B, Augustine JJ, Kang Y, Roife D, Li X, Deng J, Tan L, Rusling LA, Weinstein JN, Lorenzi PL, Kim MP, Fleming JB. Compound NSC84167 selectively targets NRF2-activated pancreatic cancer by inhibiting asparagine synthesis pathway. Cell Death Dis 2021; 12:693. [PMID: 34247201 PMCID: PMC8272721 DOI: 10.1038/s41419-021-03970-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (NRF2) is aberrantly activated in about 93% of pancreatic cancers. Activated NRF2 regulates multiple downstream molecules involved in cancer cell metabolic reprogramming, translational control, and treatment resistance; however, targeting NRF2 for pancreatic cancer therapy remains largely unexplored. In this study, we used the online computational tool CellMinerTM to explore the NCI-60 drug databases for compounds with anticancer activities correlating most closely with the mRNA expression of NQO1, a marker for NRF2 pathway activity. Among the >100,000 compounds analyzed, NSC84167, termed herein as NRF2 synthetic lethality compound-01 (NSLC01), was one of the top hits (r = 0.71, P < 0.001) and selected for functional characterization. NSLC01 selectively inhibited the viabilities of four out of seven conventional pancreatic cancer cell lines and induced dramatic apoptosis in the cells with high NRF2 activation. The selective anticancer activity of NSLC01 was further validated with a panel of nine low-passage pancreatic patient-derived cell lines, and a significant reverse correlation between log(IC50) of NSLC01 and NQO1 expression was confirmed (r = -0.5563, P = 0.024). Notably, screening of a panel of nine patient-derived xenografts (PDXs) revealed six PDXs with high NQO1/NRF2 activation, and NSLC01 dramatically inhibited the viabilities and induced apoptosis in ex vivo cultures of PDX tumors. Consistent with the ex vivo results, NSLC01 inhibited the tumor growth of two NRF2-activated PDX models in vivo (P < 0.01, n = 7-8) but had no effects on the NRF2-low counterpart. To characterize the mechanism of action, we employed a metabolomic isotope tracer assay that demonstrated that NSLC01-mediated inhibition of de novo synthesis of multiple amino acids, including asparagine and methionine. Importantly, we further found that NSLC01 suppresses the eEF2K/eEF2 translation elongation cascade and protein translation of asparagine synthetase. In summary, this study identified a novel compound that selectively targets protein translation and induces synthetic lethal effects in NRF2-activated pancreatic cancers.
Collapse
Affiliation(s)
- Bingbing Dai
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jithesh J Augustine
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ya'an Kang
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David Roife
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Xinqun Li
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jenying Deng
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lin Tan
- Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Leona A Rusling
- Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - John N Weinstein
- Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Philip L Lorenzi
- Departments of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael P Kim
- Departments of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
25
|
Meseguer-Ripolles J, Lucendo-Villarin B, Tucker C, Ferreira-Gonzalez S, Homer N, Wang Y, Starkey Lewis PJ, M Toledo E, Mellado-Gomez E, Simpson J, Flint O, Jaiswal H, Beer NL, Karlsen AE, Forbes SJ, Dear JW, Hughes J, Hay DC. Dimethyl fumarate reduces hepatocyte senescence following paracetamol exposure. iScience 2021; 24:102552. [PMID: 34151225 PMCID: PMC8188562 DOI: 10.1016/j.isci.2021.102552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/07/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022] Open
Abstract
Liver disease is a major cause of premature death. Oxidative stress in the liver represents a key disease driver. Compounds, such as dimethyl fumarate (DMF), can activate the antioxidant response and are used clinically to treat disease. In this study, we tested the protective properties of DMF before or after paracetamol exposure. Following DMF administration, Nrf2 nuclear translocation was tracked at the single-cell level and target gene transactivation confirmed. Next, the protective properties of DMF were examined following paracetamol exposure. Transcriptomic and biochemical analysis revealed that DMF rescue was underpinned by reduced Nf-kB and TGF-β signaling and cell senescence. Following on from these studies, we employed a Zebrafish model to study paracetamol exposure in vivo. We combined a genetically modified Zebrafish model, expressing green fluorescent protein exclusively in the liver, with automated microscopy. Pre-treatment with DMF, prior to paracetamol exposure, led to reduced liver damage in Zebrafish demonstrating protective properties.
Collapse
Affiliation(s)
- Jose Meseguer-Ripolles
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Baltasar Lucendo-Villarin
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Carl Tucker
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Drive, Edinburgh EH16 4TJ, UK
| | - Sofia Ferreira-Gonzalez
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Natalie Homer
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Drive, Edinburgh, UK
| | - Yu Wang
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Philip J. Starkey Lewis
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Enrique M Toledo
- Novo Nordisk Research Centre Oxford (NNRCO), Novo Nordisk Ltd, Innovation Building - Old Road Campus Roosevelt Drive, OX3 7FZ Oxford, UK
- Novo Nordisk Ltd, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Esther Mellado-Gomez
- Novo Nordisk Research Centre Oxford (NNRCO), Novo Nordisk Ltd, Innovation Building - Old Road Campus Roosevelt Drive, OX3 7FZ Oxford, UK
- Novo Nordisk Ltd, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Joanna Simpson
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Drive, Edinburgh, UK
| | - Oliver Flint
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Himjyot Jaiswal
- Novo Nordisk Research Centre Oxford (NNRCO), Novo Nordisk Ltd, Innovation Building - Old Road Campus Roosevelt Drive, OX3 7FZ Oxford, UK
- Novo Nordisk Ltd, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Nicola L. Beer
- Novo Nordisk Research Centre Oxford (NNRCO), Novo Nordisk Ltd, Innovation Building - Old Road Campus Roosevelt Drive, OX3 7FZ Oxford, UK
- Novo Nordisk Ltd, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Allan E. Karlsen
- Novo Nordisk Research Centre Oxford (NNRCO), Novo Nordisk Ltd, Innovation Building - Old Road Campus Roosevelt Drive, OX3 7FZ Oxford, UK
- Novo Nordisk Ltd, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Stuart J. Forbes
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - James W. Dear
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47 Little France Drive, Edinburgh, UK
| | - Jeremy Hughes
- Centre for Inflammation Research, University of Edinburgh, 47 Little France Drive, Edinburgh EH16 4TJ, UK
| | - David C. Hay
- Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| |
Collapse
|
26
|
Tang Y, Chen J, Li J, Zheng Y, Zhong X, Huang S, Chen B, Peng B, Zou X, Chen X. Pristimerin synergistically sensitizes conditionally reprogrammed patient derived-primary hepatocellular carcinoma cells to sorafenib through endoplasmic reticulum stress and ROS generation by modulating Akt/FoxO1/p27 kip1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 86:153563. [PMID: 33951569 DOI: 10.1016/j.phymed.2021.153563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 01/12/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-associated mortality worldwide. Sorafenib (SORA), as a first-line therapeutic drug, has been used to treat HCC, but resistance poses a major limitation on the efficacy of SORA chemotherapy. Pristimerin (PRIS), a natural bioactive component isolated from various plant species in the Celastraceae and Hippocrateaceae families, has been reported to exhibit outstanding antitumor effects in several types of cells in vitro. PURPOSE The aim of this study was to investigate whether PRIS can exert synergistic anti-tumor effects with the combination of SORA, and if so, through what mechanism. METHODS Conditionally reprogrammed patient derived-primary hepatocellular carcinoma cells (CRHCs) were isolated from human liver cancer tissues and treated with SORA and PRIS. Cell proliferation, apoptosis, migration and tube formation ability were detected by DNA content quantification, flow cytometry, transwell assay and Matrigel-based angiogenesis assay. Gene and protein expression were assessed by qRT-PCR and Western blot respectively. RESULTS Initially, we observed that the combination of the two drugs had a much stronger inhibitory effect on CRHCs growth than either drug alone. Moreover, the combination of 2 µM SORA and 1 µM PRIS exhibited a significant anti‑migrative and anti-invaded effect on CRHCs, and remarkably inhibited capillary structure formation of Human Umbilical Vein Endothelial Cells (HUVECs). Furthermore, the combined treatment with SORA and PRIS synergistically induced intrinsic apoptosis in CRHCs, involving a caspase-4-dependent mechanism paralleled by an increased Bax/Bcl-xL ratio. These activities were mediated through ROS generation and the induction of endoplasmic reticulum (ER) stress and mitochondrial dysfunction. GRP78 silencing or ER stress inhibitor 4-phenylbutyric acid administration was revealed to abolish the anticancer effects of PRIS, indicating the critical role of GRP78 in mediating the bioactivity of PRIS. The present study also provides mechanistic evidence that PRIS modulated the Akt/FoxO1/p27kip1 signaling pathway, which is required for mitochondrial-mediated intrinsic apoptosis, activation of ER stress, and stimulation of caspase-4 induced by PRIS, and, consequently resulting in suppressed cell viability, migration and angiogenesis co-treated with SORA in CRHCs. CONCLUSION Our results suggest the use of PRIS as sensitizers of chemotherapy paving the way for innovative and promising targeted chemotherapy-based therapeutic strategies in human HCC.
Collapse
Affiliation(s)
- Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China.
| | - Jie Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Jiaqi Li
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Yifan Zheng
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Xiuxiu Zhong
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, 510623 Guangzhou, China
| | - Shuai Huang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Guangzhou Medical University, 510260 Guangzhou, China
| | - Bin Chen
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Baogang Peng
- Department of Liver Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Department of Spinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China.
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital, Sun Yat-sen University, 510080 Guangzhou, China.
| |
Collapse
|
27
|
Wu X, Huang L, Liu J. Relationship between oxidative stress and nuclear factor-erythroid-2-related factor 2 signaling in diabetic cardiomyopathy (Review). Exp Ther Med 2021; 22:678. [PMID: 33986843 PMCID: PMC8111863 DOI: 10.3892/etm.2021.10110] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is the leading cause of death worldwide, and oxidative stress was discovered to serve an important role in the pathophysiology of the condition. An imbalance between free radicals and antioxidant defenses is known to be associated with cellular dysfunction, leading to the development of various types of cardiac disease. Nuclear factor-erythroid-2-related factor 2 (NRF2) is a transcription factor that controls the basal and inducible expression levels of various antioxidant genes and other cytoprotective phase II detoxifying enzymes, which are ubiquitously expressed in the cardiac system. Kelch-like ECH-associated protein 1 (Keap1) serves as the main intracellular regulator of NRF2. Emerging evidence has revealed that NRF2 is a critical regulator of cardiac homeostasis via the suppression of oxidative stress. The activation of NRF2 was discovered to enhance specific endogenous antioxidant defense factors, one of which is antioxidant response element (ARE), which was subsequently illustrated to detoxify and counteract oxidative stress-associated DCM. The NRF2 signaling pathway is closely associated with the development of various types of cardiac disease, including ischemic heart disease, heart failure, myocardial infarction, atrial fibrillation and myocarditis. Therefore, it is hypothesized that drugs targeting this pathway may be developed to inhibit the activation of NRF2 signaling, thereby preventing the occurrence of DCM and effectively treating the disease.
Collapse
Affiliation(s)
- Xia Wu
- Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Leitao Huang
- Department of Orthopedics, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210031, P.R. China
| | - Jichun Liu
- Department of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, P.R. China.,Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
28
|
Eniafe J, Jiang S. The functional roles of TCA cycle metabolites in cancer. Oncogene 2021; 40:3351-3363. [PMID: 33864000 DOI: 10.1038/s41388-020-01639-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022]
Abstract
The tricarboxylic acid cycle (TCA cycle) has been known for decades as a hub for generating cellular energy and precursors for biosynthetic pathways. Several cancers harbor mutations that affect the integrity of this cycle, mostly at the levels of isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), and fumarate hydratase (FH). This results in dysregulation in the production of TCA cycle metabolites and is probably implicated in cancer initiation. By modulating cellular activities, including metabolism and signaling, TCA cycle intermediates are able to impact the processes of cancer development and progression. In this review, we discuss the functional roles of the TCA cycle intermediates in suppressing or promoting the progression of cancers. A further understanding of TCA metabolites' roles and molecular mechanisms in oncogenesis would prompt developing novel metabolite-based cancer therapy in the future.
Collapse
Affiliation(s)
- Joseph Eniafe
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA
| | - Shuai Jiang
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, LA, 71130, USA.
| |
Collapse
|
29
|
Kourakis S, Timpani CA, Campelj DG, Hafner P, Gueven N, Fischer D, Rybalka E. Standard of care versus new-wave corticosteroids in the treatment of Duchenne muscular dystrophy: Can we do better? Orphanet J Rare Dis 2021; 16:117. [PMID: 33663533 PMCID: PMC7934375 DOI: 10.1186/s13023-021-01758-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pharmacological corticosteroid therapy is the standard of care in Duchenne Muscular Dystrophy (DMD) that aims to control symptoms and slow disease progression through potent anti-inflammatory action. However, a major concern is the significant adverse effects associated with long term-use. MAIN: This review discusses the pros and cons of standard of care treatment for DMD and compares it to novel data generated with the new-wave dissociative corticosteroid, vamorolone. The current status of experimental anti-inflammatory pharmaceuticals is also reviewed, with insights regarding alternative drugs that could provide therapeutic advantage. CONCLUSIONS Although novel dissociative steroids may be superior substitutes to corticosteroids, other potential therapeutics should be explored. Repurposing or developing novel pharmacological therapies capable of addressing the many pathogenic features of DMD in addition to anti-inflammation could elicit greater therapeutic advantages.
Collapse
Affiliation(s)
- Stephanie Kourakis
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia
| | - Cara A Timpani
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC, Australia
| | - Dean G Campelj
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC, Australia
| | - Patricia Hafner
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital of Basel (UKBB), Basel, Switzerland
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS, Australia
| | - Dirk Fischer
- Division of Neuropediatrics and Developmental Medicine, University Children's Hospital of Basel (UKBB), Basel, Switzerland
| | - Emma Rybalka
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia. .,Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC, Australia.
| |
Collapse
|
30
|
Chen K, Wu S, Ye S, Huang H, Zhou Y, Zhou H, Wu S, Mao Y, Shangguan F, Lan L, Chen B. Dimethyl Fumarate Induces Metabolic Crisie to Suppress Pancreatic Carcinoma. Front Pharmacol 2021; 12:617714. [PMID: 33692690 PMCID: PMC7937954 DOI: 10.3389/fphar.2021.617714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/15/2021] [Indexed: 01/22/2023] Open
Abstract
Dimethyl fumarate (DMF) is an approved drug used in the treatment of multiple sclerosis (MS) and psoriasis therapy. Multiple studies have demonstrated other pharmacological activities of DMF such as an anti-cancer agent. In particular, studies have shown that DMF can modulate the NRF2/HO1/NQO1 antioxidant signal pathway and inactivate NF-κB to suppress the growth of colon and breast cancer cells, and induce cell death. In this study, we aimed to evaluate the anti-tumor activities of DMF in pancreatic cancer (PC) focusing on cell death as the predominant mechanism of response. We showed that both mitochondrial respiration and aerobic glycolysis were severely depressed following treatment with DMF and the effects could be abrogated by treatment with L-cysteine and N-acetyl-L-cysteine (NAC). Importantly, we verified that DMF induced metabolic crisis and that cell death was not related to alterations in ROS. Our data implied that MTHFD1 could be a potential downstream target of DMF identified by molecular docking analysis. Finally, we confirmed that MTHFD1 is up-regulated in PC and overexpression of MTHFD1 was negatively related to outcomes of PC patients. Our data indicate that DMF induces metabolic crisie to suppress cell growth and could be a potential novel therapy in the treatment of PC.
Collapse
Affiliation(s)
- Kaiyuan Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shanshan Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Laboratory of Precision Medical Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Sisi Ye
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Laboratory of Precision Medical Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huimin Huang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yi Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongfei Zhou
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shijia Wu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yefan Mao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fugen Shangguan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Bicheng Chen
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
31
|
Gómez-Moreno M, Sánchez-Seco VG, Moreno-García S, Cámara PS, Sabin-Muñoz J, Ayuso-Peralta L, Oreja-Guevara C, Díaz-Díaz J, Sainz de la Maza S, Costa-Frossard L, Pilo de la Fuente B, Aladro-Benito Y. Cancer diagnosis in a Spanish cohort of multiple sclerosis patients under dimethylfumarate treatment. Mult Scler Relat Disord 2021; 49:102747. [PMID: 33524928 DOI: 10.1016/j.msard.2021.102747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Potential increase of cancer incidence is one of the main safety concerns of the disease-modifying therapies employed in Multiple Sclerosis (MS). OBJECTIVE Detailed description of patients who developed cancer among a prospective cohort of Spanish MS patients on dimethyl fumarate (DMF) treatment. METHODS We describe patients who developed cancer among a cohort of 886 MS patients on DMF treatment (2681 patient-years), with a median time of exposure of 39.5 months (IQR 23-51.5), who participated in a multicentre and prospective real-world study conducted in 16 Spanish National Health System hospitals from February 2014 to May 2019. Local researchers were periodically contacted by the investigation team to monitor safety issues. Cancer histories were collected from the medical records and the information was updated at July 30th 2020. RESULTS Eight Caucasian women developed cancer, which accounts for 0.9% and an accumulated malignancy rate of 298.39 cases per 100,000 patient-years of DMF exposure. At the time of cancer diagnosis, age was between 33 to 67 years and median time on DMF treatment 16.5 months (range 1-53). Two patients had familiar history of cancer. No specific cancer lines were found (breast cancer in 2 cases, thyroid in 3, urothelial carcinoma, cervix and a progression to leiomyosarcoma from a mitotically active leiomyoma). DMF was withdrawn during cancer treatment in 6 patients and reintroduced later. All cancers except one are in complete remission. The patient with leiomyosarcoma died by cancer progression. CONCLUSION A relationship between cancers and DMF is unlikely because the malignancy rate was similar to that of the age-and sex-matched general population, and because of the absence of specific tumour cell lines. Nevertheless, as with other immunosuppressive DMTs, clinicians treating MS should be aware of any potential cancer symptom and demand proper testing.
Collapse
Affiliation(s)
- Mayra Gómez-Moreno
- Department of Neurology, Hospital Universitario Infanta Leonor, Avenida Gran Vía del Este, 80, 28031 Madrid, Spain
| | - Victoria Galán Sánchez-Seco
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitario Doce de Octubre, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Sara Moreno-García
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitario Doce de Octubre, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Paula Salgado Cámara
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitario Doce de Octubre, Av. de Córdoba, s/n, 28041 Madrid, Spain
| | - Julia Sabin-Muñoz
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitario Puerta de Hierro, Calle Joaquín Rodrigo, 1, 28222 Majadahonda, Madrid, Spain
| | - Lucia Ayuso-Peralta
- Department of Neurology, Hospital Universitario Príncipe de Asturias, Carr. de Alcalá, s/n, 28805 Meco, Madrid, Spain
| | - Celia Oreja-Guevara
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitario Clínico San Carlos, Calle del Prof Martín Lagos, s/n, 28040 Madrid, Spain
| | - Judit Díaz-Díaz
- Multiple Sclerosis Unit, Department of Neurology, Hospital Universitario Clínico San Carlos, Calle del Prof Martín Lagos, s/n, 28040 Madrid, Spain
| | - Susana Sainz de la Maza
- Multiple Sclerosis Unit, Department of Neurology,Hospital Universitario Ramón y Cajal, M-607, km. 9, 100, 28034 Madrid, Spain
| | - Lucienne Costa-Frossard
- Multiple Sclerosis Unit, Department of Neurology,Hospital Universitario Ramón y Cajal, M-607, km. 9, 100, 28034 Madrid, Spain
| | - Belén Pilo de la Fuente
- Multiple Sclerosis Unit, Department of Neurology,Hospital Universitario Getafe, Carr. Madrid - Toledo, Km 12,500, 28905 Getafe, Madrid, Spain
| | - Yolanda Aladro-Benito
- Multiple Sclerosis Unit, Department of Neurology,Hospital Universitario Getafe, Carr. Madrid - Toledo, Km 12,500, 28905 Getafe, Madrid, Spain.
| |
Collapse
|
32
|
Zhang J, Duan D, Song ZL, Liu T, Hou Y, Fang J. Small molecules regulating reactive oxygen species homeostasis for cancer therapy. Med Res Rev 2021; 41:342-394. [PMID: 32981100 DOI: 10.1002/med.21734] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/27/2020] [Accepted: 08/22/2020] [Indexed: 12/13/2022]
Abstract
Elevated intracellular reactive oxygen species (ROS) and antioxidant defense systems have been recognized as one of the hallmarks of cancer cells. Compared with normal cells, cancer cells exhibit increased ROS to maintain their malignant phenotypes and are more dependent on the "redox adaptation" mechanism. Thus, there are two apparently contradictory but virtually complementary therapeutic strategies for the regulation of ROS to prevent or treat cancer. The first strategy, that is, chemoprevention, is to prevent or reduce intracellular ROS either by suppressing ROS production pathways or by employing antioxidants to enhance ROS clearance, which protects normal cells from malignant transformation and inhibits the early stage of tumorigenesis. The second strategy is the ROS-mediated anticancer therapy, which stimulates intracellular ROS to a toxicity threshold to activate ROS-induced cell death pathways. Therefore, targeting the regulation of intracellular ROS-related pathways by small-molecule candidates is considered to be a promising treatment for tumors. We herein first briefly introduce the source and regulation of ROS, and then focus on small molecules that regulate ROS-related pathways and show efficacy in cancer therapy from the perspective of pharmacophores. Finally, we discuss several challenges in developing cancer therapeutic agents based on ROS regulation and propose the direction of future development.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Dongzhu Duan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
- Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji, China
| | - Zi-Long Song
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Tianyu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yanan Hou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, and School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
33
|
Clerici S, Boletta A. Role of the KEAP1-NRF2 Axis in Renal Cell Carcinoma. Cancers (Basel) 2020; 12:E3458. [PMID: 33233657 PMCID: PMC7699726 DOI: 10.3390/cancers12113458] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
NRF2 is a transcription factor that coordinates the antioxidant response in many different tissues, ensuring cytoprotection from endogenous and exogenous stress stimuli. In the kidney, its function is essential in appropriate cellular response to oxidative stress, however its aberrant activation supports progression, metastasis, and resistance to therapies in renal cell carcinoma, similarly to what happens in other nonrenal cancers. While at the moment direct inhibitors of NRF2 are not available, understanding the molecular mechanisms that regulate its hyperactivation in specific tumor types is crucial as it may open new therapeutic perspectives. Here, we focus our attention on renal cell carcinoma, describing how NRF2 hyperactivation can contribute to tumor progression and chemoresistance. Furthermore, we highlight the mechanism whereby the many pathways that are generally altered in these tumors converge to dysregulation of the KEAP1-NRF2 axis.
Collapse
Affiliation(s)
| | - Alessandra Boletta
- IRCCS San Raffaele Scientific Institute, Molecular Basis of Cystic Kidney Diseases, Division of Genetics and Cell Biology, 20132 Milan, Italy;
| |
Collapse
|
34
|
Calabrese EJ, Kozumbo WJ. The phytoprotective agent sulforaphane prevents inflammatory degenerative diseases and age-related pathologies via Nrf2-mediated hormesis. Pharmacol Res 2020; 163:105283. [PMID: 33160067 DOI: 10.1016/j.phrs.2020.105283] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/17/2022]
Abstract
In numerous experimental models, sulforaphane (SFN) is shown herein to induce hormetic dose responses that are not only common but display endpoints of biomedical and clinical relevance. These hormetic responses are mediated via the activation of nuclear factor erythroid- derived 2 (Nrf2) antioxidant response elements (AREs) and, as such, are characteristically biphasic, well integrated, concentration/dose dependent, and specific with regard to the targeted cell type and the temporal profile of response. In experimental disease models, the SFN-induced hormetic activation of Nrf2 was shown to effectively reduce the occurrence and severity of a wide range of human-related pathologies, including Parkinson's disease, Alzheimer's disease, stroke, age-related ocular damage, chemically induced brain damage, and renal nephropathy, amongst others, while also enhancing stem cell proliferation. Although SFN was broadly chemoprotective within an hormetic dose-response context, it also enhanced cell proliferation/cell viability at low concentrations in multiple tumor cell lines. Although the implications of the findings in tumor cells are largely uncertain at this time and warrant further consideration, the potential utility of SFN in cancer treatment has not been precluded. This assessment of SFN complements recent reports of similar hormesis-based chemoprotections by other widely used dietary supplements, such as curcumin, ginkgo biloba, ginseng, green tea, and resveratrol. Interestingly, the mechanistic profile of SFN is similar to that of numerous other hormetic agents, indicating that activation of the Nrf2/ARE pathway is probably a central, integrative, and underlying mechanism of hormesis itself. The Nrf2/ARE pathway provides an explanation for how large numbers of agents that both display hormetic dose responses and activate Nrf2 can function to limit age-related damage, the progression of numerous disease processes, and chemical- and radiation- induced toxicities. These findings extend the generality of the hormetic dose response to include SFN and many other chemical activators of Nrf2 that are cited in the biomedical literature and therefore have potentially important public health and clinical implications.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, United States.
| | | |
Collapse
|
35
|
Xu L, Wu J, Li N, Jiang C, Guo Y, Cao P, Wang D. AITC induces MRP1 expression by protecting against CS/CSE-mediated DJ-1 protein degradation via activation of the DJ-1/Nrf2 axis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:481-492. [PMID: 33093270 PMCID: PMC7585591 DOI: 10.4196/kjpp.2020.24.6.481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 11/15/2022]
Abstract
The present study aimed to examine the effect of allyl isothiocyanate (AITC) on chronic obstructive pulmonary disease and to investigate whether upregulation of multidrug resistance-associated protein 1 (MRP1) associated with the activation of the PARK7 (DJ-1)/nuclear factor erythroid 2-related factor 2 (Nrf2) axis. Lung function indexes and histopathological changes in mice were assessed by lung function detection and H&E staining. The expression levels of Nrf2, MRP1, heme oxygenase-1 (HO-1), and DJ-1 were determined by immunohistochemistry, Western blotting and reverse transcription-quantitative polymerase chain reaction. Next, the expression of DJ-1 in human bronchial epithelial (16HBE) cells was silenced by siRNA, and the effect of DJ-1 expression level on cigarette smoke extract (CSE)-stimulated protein degradation and AITC-induced protein expression was examined. The expression of DJ-1, Nrf2, HO-1, and MRP1 was significantly decreased in the wild type model group, while the expression of each protein was significantly increased after administration of AITC. Silencing the expression of DJ-1 in 16HBE cells accelerated CSE-induced protein degradation, and significantly attenuated the AITC-induced mRNA and protein expression of Nrf2 and MRP1. The present study describes a novel mechanism by which AITC induces MRP1 expression by protecting against CS/CSEmediated DJ-1 protein degradation via activation of the DJ-1/Nrf2 axis.
Collapse
Affiliation(s)
- Lingling Xu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Jie Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China.,Department of Pharmacy, Lu'an People's Hospital Affiliated to Anhui Medical University, Lu'an, Anhui 237016, P.R. China
| | - Nini Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Chengjun Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Yan Guo
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Peng Cao
- Laboratory of Cellular and Molecular Biology, Jiangsu Academy of Chinese Medicine, Nanjing, Jiangsu 210028, P.R. China
| | - Dianlei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China.,Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei 230012, P.R. China
| |
Collapse
|
36
|
Zhu H, Chen G, Wang Y, Lin X, Zhou J, Wang Z, Suo N. Dimethyl fumarate protects nucleus pulposus cells from inflammation and oxidative stress and delays the intervertebral disc degeneration. Exp Ther Med 2020; 20:269. [PMID: 33199994 PMCID: PMC7664592 DOI: 10.3892/etm.2020.9399] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Lower back pain is a common problem in middle-aged and elderly people, and intervertebral disc degeneration (IVDD) is often the main cause. The present study aimed to explore the effects of dimethyl fumarate (DMF) on inflammation and oxidative stress in the intervertebral disc. C57/BL6 mice were used to construct an IVDD model by tail suspension and daily intraperitoneal injections of 10 mg/kg DMF were administered to analyze the effects of DMF on IVDD. In addition, human nucleus pulposus (NP) cells were cultured and stimulated cells with recombinant human IL-1β and DMF to examine the effects of DMF on inflammation and oxidative stress in NP cells. DMF significantly increased the intervertebral disc height index of mice and inhibited the degradation of the extracellular matrix of mouse NP tissue. In addition, DMF also decreased the expression of inflammatory factors [including IL-6, IL-8, matrix metalloproteinase (MMP)3 and MMP13] in NP cells. In terms of oxidative stress, DMF significantly increased the antioxidative stress response in NP cells and reduced endoplasmic reticulum stress. DMF also increased the activity of the nuclear factor erythroid 2-related factor (Nrf) 2/heme oxygenase (HO)-1 signaling pathway in NP cells and increased the phosphorylation of Akt. DMF also increased the anti-inflammatory and antioxidative ability of NP cells by promoting the activity of the Nrf2/HO-1 and PI3K/Akt signaling pathways, thus delaying IVDD.
Collapse
Affiliation(s)
- Hainian Zhu
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Gang Chen
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Yuhua Wang
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Xuchen Lin
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Jingyuan Zhou
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Zengshun Wang
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| | - Nanangxiu Suo
- Department of Orthopedics, Qinghai Provincial People's Hospital, Xining, Qinghai 810007, P.R. China
| |
Collapse
|
37
|
Kourakis S, Timpani CA, de Haan JB, Gueven N, Fischer D, Rybalka E. Dimethyl Fumarate and Its Esters: A Drug with Broad Clinical Utility? Pharmaceuticals (Basel) 2020; 13:ph13100306. [PMID: 33066228 PMCID: PMC7602023 DOI: 10.3390/ph13100306] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Fumaric acid esters (FAEs) are small molecules with anti-oxidative, anti-inflammatory and immune-modulating effects. Dimethyl fumarate (DMF) is the best characterised FAE and is approved and registered for the treatment of psoriasis and Relapsing-Remitting Multiple Sclerosis (RRMS). Psoriasis and RRMS share an immune-mediated aetiology, driven by severe inflammation and oxidative stress. DMF, as well as monomethyl fumarate and diroximel fumarate, are commonly prescribed first-line agents with favourable safety and efficacy profiles. The potential benefits of FAEs against other diseases that appear pathogenically different but share the pathologies of oxidative stress and inflammation are currently investigated.
Collapse
Affiliation(s)
- Stephanie Kourakis
- College of Health and Biomedicine, Victoria University, Melbourne, VIC 8001, Australia;
| | - Cara A. Timpani
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science, Victoria University, St Albans, VIC 3021, Australia
| | - Judy B. de Haan
- Oxidative Stress Laboratory, Baker Heart and Diabetes Institute, Basic Science Domain, Melbourne, VIC 3004, Australia;
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3083, Australia
| | - Nuri Gueven
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7005, Australia;
| | - Dirk Fischer
- Division of Developmental- and Neuropediatrics, University Children’s Hospital Basel, University of Basel, 4056 Basel, Switzerland;
| | - Emma Rybalka
- Institute for Health and Sport, Victoria University, Melbourne, VIC 8001, Australia;
- Australian Institute for Musculoskeletal Science, Victoria University, St Albans, VIC 3021, Australia
- Correspondence: ; Tel.: +61-383-958-226
| |
Collapse
|
38
|
Solana-Manrique C, Sanz FJ, Ripollés E, Bañó MC, Torres J, Muñoz-Soriano V, Paricio N. Enhanced activity of glycolytic enzymes in Drosophila and human cell models of Parkinson's disease based on DJ-1 deficiency. Free Radic Biol Med 2020; 158:137-148. [PMID: 32726690 DOI: 10.1016/j.freeradbiomed.2020.06.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative debilitating disorder characterized by progressive disturbances in motor, autonomic and psychiatric functions. One of the genes involved in familial forms of the disease is DJ-1, whose mutations cause early-onset PD. Besides, it has been shown that an over-oxidized and inactive form of the DJ-1 protein is found in brains of sporadic PD patients. Interestingly, the DJ-1 protein plays an important role in cellular defense against oxidative stress and also participates in mitochondrial homeostasis. Valuable insights into potential PD pathogenic mechanisms involving DJ-1 have been obtained from studies in cell and animal PD models based on DJ-1 deficiency such as Drosophila. Flies mutant for the DJ-1β gene, the Drosophila ortholog of human DJ-1, exhibited disease-related phenotypes such as motor defects, increased reactive oxygen species production and high levels of protein carbonylation. In the present study, we demonstrate that DJ-1β mutants also show a significant increase in the activity of several regulatory glycolytic enzymes. Similar results were obtained in DJ-1-deficient SH-SY5Y neuroblastoma cells, thus suggesting that loss of DJ-1 function leads to an increase in the glycolytic rate. In such a scenario, an enhancement of the glycolytic pathway could be a protective mechanism to decrease ROS production by restoring ATP levels, which are decreased due to mitochondrial dysfunction. Our results also show that meclizine and dimethyl fumarate, two FDA-approved compounds with different clinical applications, are able to attenuate PD-related phenotypes in both models. Moreover, we found that they may exert their beneficial effect by increasing glycolysis through the activation of key glycolytic enzymes. Taken together, these results are consistent with the idea that increasing glycolysis could be a potential disease-modifying strategy for PD, as recently suggested. Besides, they also support further evaluation and potential repurposing of meclizine and dimethyl fumarate as modulators of energy metabolism for neuroprotection in PD.
Collapse
Affiliation(s)
- Cristina Solana-Manrique
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Francisco José Sanz
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Edna Ripollés
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - M Carmen Bañó
- Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain; Departamento de Bioquímica y Biología Molecular, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain
| | - Josema Torres
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, 46100, Burjassot, Spain
| | - Verónica Muñoz-Soriano
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Nuria Paricio
- Departamento de Genética, Facultad CC Biológicas, Universidad de Valencia, 46100, Burjassot, Spain; Estructura de Recerca Interdisciplinar en Biotecnologia I Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain.
| |
Collapse
|
39
|
Tian Y, Liu Q, Yu S, Chu Q, Chen Y, Wu K, Wang L. NRF2-Driven KEAP1 Transcription in Human Lung Cancer. Mol Cancer Res 2020; 18:1465-1476. [PMID: 32571982 DOI: 10.1158/1541-7786.mcr-20-0108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Accepted: 06/16/2020] [Indexed: 11/16/2022]
Abstract
Constitutive NRF2 activation by disrupted KEAP1-NRF2 interaction has been reported in a variety of human cancers. However, studies focusing on NRF2-driven KEAP1 expression under human cancer contexts are still uncommon. We examined mRNA expression correlation between NRF2 and KEAP1 in multiple human cancers. We measured KEAP1 mRNA and protein alterations in response to the activation or silencing of NRF2. We queried chromatin immunoprecipitation sequencing (ChIP-seq) datasets to identify NRF2 binding to KEAP1 promoters in human cells. We used reporter assay and CRISPR editing to assess KEAP1 promoter activity and mRNA abundance change. To determine specimen implication of the feedback pattern, we used gene expression ratio to predict NRF2 signal disruption as well as patients' prognosis. Correlation analysis showed KEAP1 mRNA expression was in positive association with NRF2 in multiple squamous cell cancers. The positive correlations were consistent across all squamous cell lung cancer cohorts, but not in adenocarcinomas. In human lung cells, NRF2 interventions significantly altered KEAP1 mRNA and protein expressions. ChIP-quantitative PCR (ChIP-qPCR) and sequencing data demonstrated consistent NRF2 occupancy to KEAP1 promoter. Deleting NRF2 binding site significantly reduced baseline and inducible KEAP1 promoter activity and KEAP1 mRNA expression. By incorporating tumor tissue KEAP1 mRNA expressions in estimating NRF2 signaling disruptions, we found increased TXN/KEAP1 mRNA ratio in cases with NRF2 gain or KEAP1 loss and decreased NRF2/KEAP1 mRNA ratio in cases with NRF2-KEAP1 somatic mutations. In TCGA PanCancer datasets, we also identified that cases with loss-of-function mutations in NRF2 pathway recurrently appeared above the NRF2-KEAP1 mRNA expression regression lines. Moreover, compared with previous NRF2 signatures, the ratio-based strategy showed better predictive performance in survival analysis with multiple squamous cell lung cancer cohort validations. IMPLICATIONS: NRF2-driven KEAP1 transcription is a crucial component of NRF2 signaling modulation. This hidden circuit will provide in-depth insight into novel cancer prevention and therapeutic strategies.
Collapse
Affiliation(s)
- Yijun Tian
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, Florida
| | - Qian Liu
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, Florida
| | - Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Wuhan, P.R. China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Wuhan, P.R. China
| | - Yuan Chen
- Department of Oncology, Tongji Hospital of Tongji Medical College, Wuhan, P.R. China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Wuhan, P.R. China.
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, P.R. China
| | - Liang Wang
- Department of Tumor Biology, Moffitt Cancer Center, Tampa, Florida.
- Department of Pathology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
40
|
Jin W. Novel Insights into PARK7 (DJ-1), a Potential Anti-Cancer Therapeutic Target, and Implications for Cancer Progression. J Clin Med 2020; 9:jcm9051256. [PMID: 32357493 PMCID: PMC7288009 DOI: 10.3390/jcm9051256] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/28/2022] Open
Abstract
The expression of PARK7 is upregulated in various types of cancer, suggesting its potential role as a critical regulator of the pathogenesis of cancer and in the treatment of cancer and neurodegenerative diseases, including Parkinson’s disease, Alzheimer’s disease, and Huntington disease. PARK7 activates various intracellular signaling pathways that have been implicated in the induction of tumor progression, which subsequently enhances tumor initiation, continued proliferation, metastasis, recurrence, and resistance to chemotherapy. Additionally, secreted PARK7 has been identified as a high-risk factor for the pathogenesis and survival of various cancers. This review summarizes the current understanding of the correlation between the expression of PARK7 and tumor progression.
Collapse
Affiliation(s)
- Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-840, Korea
| |
Collapse
|
41
|
Potential Benefits of Nrf2/Keap1 Targeting in Pancreatic Islet Cell Transplantation. Antioxidants (Basel) 2020; 9:antiox9040321. [PMID: 32316115 PMCID: PMC7222398 DOI: 10.3390/antiox9040321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 12/26/2022] Open
Abstract
Permanent pancreatic islet cell destruction occurs in type 1 diabetes mellitus (T1DM) through the infiltration of inflammatory cells and cytokines. Loss of β-cell integrity secondary to oxidation leads to an inability to appropriately synthesize and secrete insulin. Allogenic islet cell transplantation (ICT) has risen as a therapeutic option to mitigate problematic hypoglycemia. Nevertheless, during the process of transplantation, islet cells are exposed to oxidatively caustic conditions that severely decrease the islet cell yield. Islet cells are at a baseline disadvantage to sustain themselves during times of metabolic stress as they lack a robust anti-oxidant defense system, glycogen stores, and vascularity. The Nrf2/Keap1 system is a master regulator of antioxidant genes that has garnered attention as pharmacologic activators have shown a protective response and a low side effect profile. Herein, we present the most recently studied Nrf2/Keap1 activators in pancreas for application in ICT: Dh404, dimethyl fumarate (DMF), and epigallocatechin gallate (EGCG). Furthermore, we discuss that Nrf2/Keap1 is a potential target to ameliorate oxidative stress at every step of the Edmonton Protocol.
Collapse
|
42
|
Dwivedi DK, Jena GB. Diethylnitrosamine and thioacetamide-induced hepatic damage and early carcinogenesis in rats: Role of Nrf2 activator dimethyl fumarate and NLRP3 inhibitor glibenclamide. Biochem Biophys Res Commun 2020; 522:381-387. [PMID: 31761320 DOI: 10.1016/j.bbrc.2019.11.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/15/2019] [Indexed: 12/22/2022]
Abstract
Two-stage rat hepatocarcinogenesis model was used to induce early carcinogenesis in which thioacetamide (TAA) promotes diethylnitrosamine (DEN) initiated carcinogenesis. Dimethyl fumarate (DMF) used to treat multiple sclerosis, activates the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant responsive element (ARE) pathway during oxidative stress, and maintains antioxidant levels. Glibenclamide (GLB), a sulphonylurea drug used to treat type II diabetes, possesses anti-inflammatory properties and inhibits NLRP3 inflammasomes. The present study was designed to investigate the concurrent intervention of DMF and GLB on DEN + TAA-induced early hepatic carcinogenesis. DMF and GLB treatment improved DEN + TAA-induced decrease in body weight, increase in liver weight and plasma transaminases, histopathological alterations, DNA damage, and apoptosis. DMF and GLB intervention significantly ameliorated the DEN + TAA-induced alterations in the antioxidant (Nrf2, HO-1, SOD-1, catalase), inflammatory (NF-κB, NLRP3, ASC, caspase-1), fibrogenic (TGF-β1, collagen) and regenerative proliferative stress (GST-p, HGF, c-MET, TGFα, EGF, AFP) markers. The present results indicate that Nrf2/ARE activation and NLRP3 inhibition might be a rational approach to attenuate oxidative stress and chronic inflammation associated progression of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Durgesh Kumar Dwivedi
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India.
| | - G B Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab, 160062, India.
| |
Collapse
|
43
|
Mangano K, Lanteri R, Basile MS, Bellavia N, Latino R, Messina D, Fagone P, Colletti G, Nania R, Caltabiano R, Di Marco R, Di Cataldo A. Effects of GIT-27NO, a NO-donating compound, on hepatic ischemia/reperfusion injury. Int J Immunopathol Pharmacol 2020; 33:2058738419862736. [PMID: 31298048 PMCID: PMC6628530 DOI: 10.1177/2058738419862736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hepatic ischemia/reperfusion injury (IRI) is a clinical condition that may lead
to cellular injury and organ dysfunction that can be observed in different
conditions, such as trauma, shock, liver resection, and transplantation.
Moderate levels of nitric oxide (NO) produced by the endothelial isoform of the
NO synthase protect against liver IRI. GIT-27NO is a NO-derivative of the
toll-like receptor 4 antagonist VGX-1027 that has been shown to possess both
antineoplastic and immunomodulatory properties in vitro and in vivo. In this
study, we have investigated the effects of this compound in vitro, in a model of
oxidative stress induced in HepG2 cells by hydrogen peroxide
(H2O2), and in vivo, in a rat model of IRI of the
liver. GIT-27NO significantly counteracted the toxic effects induced by the
H2O2 on the HepG2 cells and in vivo, GIT-27NO reduced
the transaminase levels and the histological liver injury by reducing necrotic
areas with preservation of viable tissue. These effects were almost similar to
that of the positive control drug dimethyl fumarate. These data suggest that the
beneficial effect of GIT-27NO in the hepatic IRI can be secondary to
anti-oxidative effects and hepatocyte necrosis reduction probably mediated by NO
release.
Collapse
Affiliation(s)
- Katia Mangano
- 1 Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Raffaele Lanteri
- 2 Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Maria Sofia Basile
- 1 Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Noemi Bellavia
- 2 Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Rosalia Latino
- 2 Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Domenico Messina
- 1 Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Paolo Fagone
- 1 Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giuseppe Colletti
- 1 Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Riccardo Nania
- 1 Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Rosario Caltabiano
- 3 Department of Surgical Sciences, Organ Transplantation and Advanced Technologies, G.F. Ingrassia, University of Catania, Catania, Italy
| | - Roberto Di Marco
- 4 Department of Medicine and Health Sciences "Vincenzo Tiberio," University of Molise, Campobasso, Italy
| | - Antonio Di Cataldo
- 2 Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| |
Collapse
|
44
|
Melamed E, Lee MW. Multiple Sclerosis and Cancer: The Ying-Yang Effect of Disease Modifying Therapies. Front Immunol 2020; 10:2954. [PMID: 31998289 PMCID: PMC6965059 DOI: 10.3389/fimmu.2019.02954] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Over the past two decades, the field of multiple sclerosis (MS) has been transformed by the rapidly expanding arsenal of new disease modifying therapies (DMTs). Current DMTs for MS aim to modulate innate and adaptive immune responses toward a less inflammatory phenotype. Since the immune system is also critical for identifying and eliminating malignant cells, immunosuppression from DMTs may predictably increase the risk of cancer development in MS patients. Compared with healthy controls, patients with autoimmune conditions, such as MS, may already have a higher risk of developing certain malignancies and this risk may further be magnified by DMT treatments. For those patients who develop both MS and cancer, these comorbid presentations create a challenge for clinicians on how to therapeutically address management of cancer in the context of MS autoimmunity. As there are currently no accepted guidelines for managing MS patients with prior history of or newly developed malignancy, we undertook this review to evaluate the molecular mechanisms of current DMTs and their potential for instigating and treating cancer in patients living with MS.
Collapse
Affiliation(s)
- Esther Melamed
- Department of Neurology, Dell Medical School, Austin, TX, United States
| | - Michael William Lee
- Department of Oncology, Department of Medical Education, Dell Medical School, Austin, TX, United States
| |
Collapse
|
45
|
Carlson J, Price L, Deng H. Nrf2 and the Nrf2-Interacting Network in Respiratory Inflammation and Diseases. NRF2 AND ITS MODULATION IN INFLAMMATION 2020. [PMCID: PMC7241096 DOI: 10.1007/978-3-030-44599-7_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Atmospheric pollutants and cigarette smoke influence the human respiratory system and induce airway inflammation, injury, and pathogenesis. Activation of the NF-E2-related factor 2 (Nrf2) transcription factor and downstream antioxidant response element (ARE)-mediated transcriptions play a central role in protecting respiratory cells against reactive oxidative species (ROS) that are induced by airway toxins and inflammation. Recent studies have revealed that Nrf2 can also target and activate many genes involved in developmental programs such as cell proliferation, cell differentiation, cell death, and metabolism. Nrf2 is closely regulated by the interaction with kelch-like ECH-associated protein 1 (Keap1), while also directly interacts with a number of other proteins, including inflammatory factors, transcription factors, autophagy mediators, kinases, epigenetic modifiers, etc. It is believed that the multiple target genes and the complicated interacting network of Nrf2 account for the roles of Nrf2 in physiologies and pathogeneses. This chapter summarizes the molecular functions and protein interactions of Nrf2, as well as the roles of Nrf2 and the Nrf2-interacting network in respiratory inflammation and diseases, including acute lung injury (ALI), asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), cystic fibrosis (CF), viral/bacterial infections, and lung cancers. Therapeutic applications that target Nrf2 and its interacting proteins in respiratory diseases are also reviewed.
Collapse
|
46
|
Hammad A, Namani A, Elshaer M, Wang XJ, Tang X. "NRF2 addiction" in lung cancer cells and its impact on cancer therapy. Cancer Lett 2019; 467:40-49. [PMID: 31574294 DOI: 10.1016/j.canlet.2019.09.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 12/24/2022]
Abstract
Nuclear factor erythroid 2-like factor 2 (NRF2) is a master regulator of the antioxidant enzymes and the detoxification proteins that play major roles in redox homeostasis. Although it plays a protective role against tumorigenesis, emerging evidence has shown that the NRF2 pathway is frequently altered in different types of cancer, including lung cancer. NRF2 activation influences many of the hallmarks of cancer and their signaling pathways, mainly apoptosis, proliferation, angiogenesis, metastasis, and metabolic reprogramming to establish cellular metabolic processes leading to "NRF2 addiction" in lung cancer cells. Intriguingly, constitutive activation of NRF2 promotes cancer development as well as resistance to chemotherapy and radiotherapy, and these malignant phenotypes lead to a poor prognosis in lung cancer patients. Therefore, targeted inhibition of the NRF2 together with traditional chemotherapy, radiotherapy, and immunotherapy, may be a promising approach to improving the survival rates of the NRF2-addicted lung cancer cases. Here we summarize the recent advances in NRF2-addicted lung cancer.
Collapse
Affiliation(s)
- Ahmed Hammad
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Akhileshwar Namani
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Mohamed Elshaer
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Xiu Jun Wang
- Department of Pharmacology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiuwen Tang
- Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| |
Collapse
|
47
|
Selman M, Ou P, Rousso C, Bergeron A, Krishnan R, Pikor L, Chen A, Keller BA, Ilkow C, Bell JC, Diallo JS. Dimethyl fumarate potentiates oncolytic virotherapy through NF-κB inhibition. Sci Transl Med 2019; 10:10/425/eaao1613. [PMID: 29367345 DOI: 10.1126/scitranslmed.aao1613] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/22/2017] [Indexed: 12/24/2022]
Abstract
Resistance to oncolytic virotherapy is frequently associated with failure of tumor cells to get infected by the virus. Dimethyl fumarate (DMF), a common treatment for psoriasis and multiple sclerosis, also has anticancer properties. We show that DMF and various fumaric and maleic acid esters (FMAEs) enhance viral infection of cancer cell lines as well as human tumor biopsies with several oncolytic viruses (OVs), improving therapeutic outcomes in resistant syngeneic and xenograft tumor models. This results in durable responses, even in models otherwise refractory to OV and drug monotherapies. The ability of DMF to enhance viral spread results from its ability to inhibit type I interferon (IFN) production and response, which is associated with its blockade of nuclear translocation of the transcription factor nuclear factor κB (NF-κB). This study demonstrates that unconventional application of U.S. Food and Drug Administration-approved drugs and biological agents can result in improved anticancer therapeutic outcomes.
Collapse
Affiliation(s)
- Mohammed Selman
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Paula Ou
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Christopher Rousso
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Anabel Bergeron
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ramya Krishnan
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Larissa Pikor
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Andrew Chen
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada
| | - Brian A Keller
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Carolina Ilkow
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - John C Bell
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, Ontario K1H 8L6, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
48
|
Saidu NEB, Kavian N, Leroy K, Jacob C, Nicco C, Batteux F, Alexandre J. Dimethyl fumarate, a two-edged drug: Current status and future directions. Med Res Rev 2019; 39:1923-1952. [PMID: 30756407 DOI: 10.1002/med.21567] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/11/2022]
Abstract
Dimethyl fumarate (DMF) is a fumaric acid ester registered for the treatment of relapsing-remitting multiple sclerosis (RRMS). It induces protein succination leading to inactivation of cysteine-rich proteins. It was first shown to possess cytoprotective and antioxidant effects in noncancer models, which appeared related to the induction of the nuclear factor erythroid 2 (NF-E2)-related factor 2 (NRF2) pathway. DMF also displays antitumor activity in several cellular and mice models. Recently, we showed that the anticancer mechanism of DMF is dose-dependent and is paradoxically related to the decrease in the nuclear translocation of NRF2. Some other studies performed indicate also the potential role of DMF in cancers, which are dependent on the NRF2 antioxidant and cellular detoxification program, such as KRAS-mutated lung adenocarcinoma. It, however, seems that DMF has multiple biological effects as it has been shown to also inhibit the transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), thus blocking downstream targets that may be involved in the development and progression of inflammatory cascades leading to various disease processes, including tumors, lymphomas, diabetic retinopathy, arthritis, and psoriasis. Herein, we present the current status and future directions of the use of DMF in various diseases models with particular emphases on its targeting of specific intracellular signal transduction cascades in cancer; to shed some light on its possible mode of action.
Collapse
Affiliation(s)
- Nathaniel Edward Bennett Saidu
- Department of Development, Reproduction and Cancer, Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France.,Division of Molecular Medicine, Institut Ruđer Bošković, Zagreb, Croatia
| | - Niloufar Kavian
- Department of Development, Reproduction and Cancer, Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France.,Department of Immunology, Cochin Hospital, AP-HP, Paris, France.,Division of Public Health Laboratory Sciences, HKU Pasteur Research Pole, University of Hong Kong, Hong Kong, SAR China
| | - Karen Leroy
- Department of Development, Reproduction and Cancer, Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France.,Department of Molecular Genetics, Cochin Hospital, AP-HP, Paris, France
| | - Claus Jacob
- Division of Bioorganic Chemistry, University of Saarland, Saarbruecken, Germany
| | - Carole Nicco
- Department of Development, Reproduction and Cancer, Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France
| | - Frédéric Batteux
- Department of Development, Reproduction and Cancer, Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France.,Department of Immunology, Cochin Hospital, AP-HP, Paris, France
| | - Jérôme Alexandre
- Department of Development, Reproduction and Cancer, Paris Descartes University, Sorbonne Paris Cité, INSERM U1016, Cochin Institute, CARPEM, Paris, France.,Department of Medical Oncology, Cochin Hospital, AP-HP, Paris, France
| |
Collapse
|
49
|
Chong SJF, Lai JXH, Eu JQ, Bellot GL, Pervaiz S. Reactive Oxygen Species and Oncoprotein Signaling-A Dangerous Liaison. Antioxid Redox Signal 2018; 29:1553-1588. [PMID: 29186971 DOI: 10.1089/ars.2017.7441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE There is evidence to implicate reactive oxygen species (ROS) in tumorigenesis and its progression. This has been associated with the interplay between ROS and oncoproteins, resulting in enhanced cellular proliferation and survival. Recent Advances: To date, studies have investigated specific contributions of the crosstalk between ROS and signaling networks in cancer initiation and progression. These investigations have challenged the established dogma of ROS as agents of cell death by demonstrating a secondary function that fuels cell proliferation and survival. Studies have thus identified (onco)proteins (Bcl-2, STAT3/5, RAS, Rac1, and Myc) in manipulating ROS level as well as exploiting an altered redox environment to create a milieu conducive for cancer formation and progression. CRITICAL ISSUES Despite these advances, drug resistance and its association with an altered redox metabolism continue to pose a challenge at the mechanistic and clinical levels. Therefore, identifying specific signatures, altered protein expressions, and modifications as well as protein-protein interplay/function could not only enhance our understanding of the redox networks during cancer initiation and progression but will also provide novel targets for designing specific therapeutic strategies. FUTURE DIRECTIONS Not only a heightened realization is required to unravel various gene/protein networks associated with cancer formation and progression, particularly from the redox standpoint, but there is also a need for developing more sensitive tools for assessing cancer redox metabolism in clinical settings. This review attempts to summarize our current knowledge of the crosstalk between oncoproteins and ROS in promoting cancer cell survival and proliferation and treatment strategies employed against these oncoproteins. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jolin Xiao Hui Lai
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jie Qing Eu
- 2 Cancer Science Institute , Singapore, Singapore
| | - Gregory Lucien Bellot
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,3 Department of Hand and Reconstructive Microsurgery, National University Health System , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,4 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,5 National University Cancer Institute, National University Health System , Singapore, Singapore .,6 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
50
|
Aberration of Nrf2‑Bach1 pathway in colorectal carcinoma; role in carcinogenesis and tumor progression. Ann Diagn Pathol 2018; 38:138-144. [PMID: 30597358 DOI: 10.1016/j.anndiagpath.2018.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/18/2018] [Indexed: 12/30/2022]
Abstract
Nrf2 and Bach1 are important transcriptional factors that protect against reactive oxygen species (ROS). Although aberration of these molecules was associated with malignant transformation and progression, their aberration pattern in colorectal carcinoma (CRC) is not yet fully studied. In this study, Nrf2 and Bach1 were immunohistochemically examined in 93 formalin-fixed paraffin-embedded blocks of colonic tumors (65 carcinoma with their corresponding surgical margins and 28 adenomas). Nrf2 expression was gradually increased in the apparently normal mucosa (57 ± 41)-adenoma (90 ± 36)-carcinoma (198 ± 78) direction and only showed significant higher mean of expression in CRC with brisk inflammatory peritumoral response. The mean of Bach1 expression was highest in apparently normal colonic mucosa (267 ± 16), lowest in adenoma (53 ± 31) and high in carcinoma tissues (194 ± 93). Significant higher mean of expression was detected in carcinoma with: LN metastasis (p = 0.04), lymphovascular invasion (p = 0.024); perineural invasion (p = 0.03) and advanced pathological stage (p < 0.001). Significant higher mean of expression of Nrf2 and Bach1 was detected in adenoma specimens with high grade dysplasia (p = 0.016 and p = 0.024) respectively. In conclusion, Nfr2 and Bach1 expression are altered in CRC but in different way. Nrf2 is gradually increasing from normal mucosa to adenoma and was highest in carcinoma but was not associated with features of tumor invasiveness. Bach1 was highest in normal mucosa; less in adenoma then increased in carcinoma and was associated with features of tumor invasiveness and metastasis. This may indicate a possible role of Nrf2 in CRC carcinogenesis and a role of Bach1 in CRC progression.
Collapse
|