1
|
Shakiba M, Tuveson DA. Macrophages and fibroblasts as regulators of the immune response in pancreatic cancer. Nat Immunol 2025:10.1038/s41590-025-02134-6. [PMID: 40263612 DOI: 10.1038/s41590-025-02134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the few cancers that has yet to benefit from immunotherapies. This is primarily a result of its characteristic 'cold' tumor microenvironment composed of cancer-associated fibroblasts (CAFs), a dense network of extracellular matrix and several immune cell types, the most abundant of which are the tumor-associated macrophages (TAMs). Advances in single-cell and spatial technologies have elucidated the vast functional heterogeneity of CAFs and TAMs, their symbiotic relationship and their cooperative role in the tumor microenvironment. In this Review, we provide an overview of the heterogeneity of CAFs and TAMs, how they establish an immunosuppressive microenvironment and their collaboration in the remodeling of the extracellular matrix. Finally, we examine why the impact of immunotherapy in PDAC has been limited and how a detailed molecular and spatial understanding of the combined role of CAFs and TAMs is paramount to the design of effective therapies.
Collapse
Affiliation(s)
- Mojdeh Shakiba
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
2
|
Yen YT, Zhang Z, Chen A, Qiu Y, Liu Q, Wang Q, Li C, Wang C, Qian X, Shao J, Meng F, Yu L, Liu B, Li R. Enzymatically responsive nanocarriers targeting PD-1 and TGF-β pathways reverse immunotherapeutic resistance and elicit robust therapeutic efficacy. J Nanobiotechnology 2025; 23:124. [PMID: 39972327 PMCID: PMC11841268 DOI: 10.1186/s12951-025-03129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized lung cancer treatment, yet resistance remains a challenge. Co-inhibition of PD-1/PD-L1 and TGF-β shows promise but faces limited efficacy and systemic toxicity. We developed gelatinase-responsive nanoparticles (GPNPs) delivering anti-PD-1 antibody (αPD-1) and TGF-β receptor I inhibitor galunisertib (Gal). GPNPs effectively inhibit tumor progression without observed side effects. Immune profiling by cytometry assay reveals robust recruitment of both activated and exhausted tumor-infiltrating lymphocytes (TILs) and macrophages. Transcriptomic analysis indicates extracellular matrix modulation, supported by reduced collagen deposition and αSMA expression. Fate mapping demonstrates attenuation of Pdgfrα+ fibroblast transition to αSMA myofibroblasts, potentially reversing "immune-exclusive" status. This study validates GPNPs as a promising lung cancer immunotherapy platform, offering mechanistic insights for clinical translation and therapeutic enhancement.
Collapse
Affiliation(s)
- Ying-Tzu Yen
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhifan Zhang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Anni Chen
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Yuling Qiu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qin Liu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Qin Wang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Chunhua Li
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, Clinical College of Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, 210008, China
| | - Chun Wang
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaoping Qian
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Jie Shao
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Fanyan Meng
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lixia Yu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Clinical Cancer Institute of Nanjing University, Nanjing University, Nanjing, 210008, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Rutian Li
- The Comprehensive Cancer Center of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
- Clinical Cancer Institute of Nanjing University, Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
3
|
Zhang Y, Dong X, Zhang Y, Chen Z, Zhou G, Chen N, Shen W, Yang K, Pei P. Biomaterials to regulate tumor extracellular matrix in immunotherapy. J Control Release 2024; 376:149-166. [PMID: 39389365 DOI: 10.1016/j.jconrel.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
The tumor extracellular matrix (ECM) provides physical support and influences tumor development, metastasis, and the tumor microenvironment, creating barriers to immune drug delivery and cell infiltration. Therefore, modulating or degrading the ECM is of significant importance to enhance the efficacy of tumor immunotherapy. This manuscript initially summarizes the main strategies and mechanisms of biomaterials in modulating various components of the ECM, including collagen, fibronectin, hyaluronic acid, and in remodeling the ECM. Subsequently, it discusses the benefits of biomaterials for immunotherapy following ECM modulation, such as promoting the infiltration of drugs and immune cells, regulating immune cell function, and alleviating the immunosuppressive microenvironment. The manuscript also briefly introduces the application of biomaterials that utilize and mimic the ECM for tumor immunotherapy. Finally, it addresses the current challenges and future directions in this field, providing a comprehensive overview of the potential and innovation in leveraging biomaterials to enhance cancer treatment outcomes. Our work will offer a comprehensive overview of ECM modulation strategies and their application in biomaterials to enhance tumor immunotherapy.
Collapse
Affiliation(s)
- Yujie Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xuexue Dong
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Yanxiang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zetong Chen
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China; Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Ni Chen
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China.
| | - Wenhao Shen
- Department of Oncology, Taizhou People's Hospital Affiliated to Nanjing Medical University, Jiangsu, China.
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Pei Pei
- Department of Nuclear Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province 230022, China; Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China.
| |
Collapse
|
4
|
Yao H, Luo L, Li R, Zhao Y, Zhang L, Pešić M, Cai L, Li L. New insight into the role of SMAD4 mutation/deficiency in the prognosis and therapeutic resistance of pancreatic ductal adenocarcinomas. Biochim Biophys Acta Rev Cancer 2024; 1879:189220. [PMID: 39571764 DOI: 10.1016/j.bbcan.2024.189220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/03/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients have an unfavorable prognosis and disappointing treatment outcomes because of late diagnosis, high chemotherapy resistance, ineffective adjuvant chemotherapy, unavailable molecular targeted therapy, and profound immunosuppressive effects in the tumor microenvironment (TME). There are a variety of critical driver proteins, such as KRAS, TP53, PTEN and SMAD4, putatively involved in PDAC etiology. Current knowledge of their molecular mechanisms is still limited. SMAD4 gene alterations in ∼55 % of patients emphasize its key role in PDAC progression, metastasis, resistance and immunity. Despite extensive studies on the TGF-β/SMAD pathway, the impact of SMAD4 mutation/deficiency on PDAC prognosis and treatment, especially its mechanism in drug resistance, has not yet been elucidated. This review summarizes the latest advances in the effect of SMAD4 deficiency on the prognosis and therapeutic resistance of PDAC patients. It might be a predictive and prognostic biomarker or therapeutic target to achieve the desired clinical benefits. Moreover, we discuss potential strategies to implement targeted therapies in terms of SMAD4 genetic status.
Collapse
Affiliation(s)
- Hongjuan Yao
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Liaoxin Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Rui Li
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Yelin Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Li Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research, "Siniša Stanković"- National Institute of the Republic of Serbia, University of Belgrade, Despota Stefana 142, 11060 Belgrade, Serbia
| | - Lin Cai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, China..
| | - Liang Li
- State Key Laboratory of Respiratory Health and Multimorbidity; NHC Key Laboratory of Biotechnology for Microbial Drugs; Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, NO. 1 Tiantan Xili, Beijing 100050, China.
| |
Collapse
|
5
|
Xia RJ, Du XY, Shen LW, Ma JG, Xu SM, Fan RF, Qin JW, Yan L. Roles of the tumor microenvironment in the resistance to programmed cell death protein 1 inhibitors in patients with gastric cancer. World J Gastrointest Oncol 2024; 16:3820-3831. [PMID: 39350980 PMCID: PMC11438768 DOI: 10.4251/wjgo.v16.i9.3820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024] Open
Abstract
Despite the continuous developments and advancements in the treatment of gastric cancer (GC), which is one of the most prevalent types of cancer in China, the overall survival is still poor for most patients with advanced GC. In recent years, with the progress in tumor immunology research, attention has shifted toward immunotherapy as a therapeutic approach for GC. Programmed cell death protein 1 (PD-1) inhibitors, as novel immunosuppressive medications, have been widely utilized in the treatment of GC. However, many patients are still resistant to PD-1 inhibitors and experience recurrence in the advanced stages of PD-1 immunotherapy. To reduce the occurrence of drug resistance and recurrence in GC patients receiving PD-1 immunotherapy, to maximize the clinical activity of immunosuppressive drugs, and to elicit a lasting immune response, it is essential to research the tumor microenvironment mechanisms leading to PD-1 inhibitor resistance in GC patients. This article reviews the progress in studying the factors influencing the resistance to PD-1 inhibitors in the GC tumor microenvironment, aiming to provide insights and a basis for reducing resistance to PD-1 inhibitors for GC patients in the future.
Collapse
Affiliation(s)
- Ren-Jie Xia
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Medicine, Northwest Minzu University, Lanzhou 730050, Gansu Province, China
| | - Xiao-Yu Du
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
- Department of Medicine, Northwest Minzu University, Lanzhou 730050, Gansu Province, China
| | - Li-Wen Shen
- Department of Medical Support Center, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Jian-Guo Ma
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Shu-Mei Xu
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Rui-Fang Fan
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Jian-Wei Qin
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| | - Long Yan
- Department of General Surgery, The 940th Hospital of Joint Logistic Support Force of Chinese People’s Liberation Army, Lanzhou 730050, Gansu Province, China
| |
Collapse
|
6
|
Johansen AM, Forsythe SD, McGrath CT, Barker G, Jimenez H, Paluri RK, Pasche BC. TGFβ in Pancreas and Colorectal Cancer: Opportunities to Overcome Therapeutic Resistance. Clin Cancer Res 2024; 30:3676-3687. [PMID: 38916900 PMCID: PMC11371528 DOI: 10.1158/1078-0432.ccr-24-0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/16/2024] [Accepted: 05/30/2024] [Indexed: 06/26/2024]
Abstract
TGFβ is a pleiotropic signaling pathway that plays a pivotal role in regulating a multitude of cellular functions. TGFβ has a dual role in cell regulation where it induces growth inhibition and cell death; however, it can switch to a growth-promoting state under cancerous conditions. TGFβ is upregulated in colorectal cancer and pancreatic cancer, altering the tumor microenvironment and immune system and promoting a mesenchymal state. The upregulation of TGFβ in certain cancers leads to resistance to immunotherapy, and attempts to inhibit TGFβ expression have led to reduced therapeutic resistance when combined with chemotherapy and immunotherapy. Here, we review the current TGFβ inhibitor drugs in clinical trials for pancreatic and colorectal cancer, with the goal of uncovering advances in improving clinical efficacy for TGFβ combinational treatments in patients. Furthermore, we discuss the relevance of alterations in TGFβ signaling and germline variants in the context of personalizing treatment for patients who show lack of response to current therapeutics.
Collapse
Affiliation(s)
- Allan M. Johansen
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157-1082, USA
| | - Steven D. Forsythe
- Neuroendocrine Therapy Section, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Callum T. McGrath
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157-1082, USA
| | - Grayson Barker
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, 27157-1082, USA
| | - Hugo Jimenez
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| | - Ravi K. Paluri
- Section of Hematology/Oncology, Wake Forest School of Medicine, Winston-Salem, NC, 27157-1082. USA
| | - Boris C. Pasche
- Karmanos Cancer Institute, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
7
|
Vendramini-Costa DB, Francescone R, Franco-Barraza J, Luong T, Graves M, de Aquino AM, Steele N, Gardiner JC, Dos Santos SAA, Ogier C, Malloy E, Borghaei L, Martinez E, Zhigarev DI, Tan Y, Lee H, Zhou Y, Cai KQ, Klein-Szanto AJ, Wang H, Andrake M, Dunbrack RL, Campbell K, Cukierman E. Netrin G1 Ligand is a new stromal immunomodulator that promotes pancreatic cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594354. [PMID: 38798370 PMCID: PMC11118300 DOI: 10.1101/2024.05.15.594354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Understanding pancreatic cancer biology is fundamental for identifying new targets and for developing more effective therapies. In particular, the contribution of the stromal microenvironment to pancreatic cancer tumorigenesis requires further exploration. Here, we report the stromal roles of the synaptic protein Netrin G1 Ligand (NGL-1) in pancreatic cancer, uncovering its pro-tumor functions in cancer-associated fibroblasts and in immune cells. We observed that the stromal expression of NGL-1 inversely correlated with patients' overall survival. Moreover, germline knockout (KO) mice for NGL-1 presented decreased tumor burden, with a microenvironment that is less supportive of tumor growth. Of note, tumors from NGL-1 KO mice produced less immunosuppressive cytokines and displayed an increased percentage of CD8 + T cells than those from control mice, while preserving the physical structure of the tumor microenvironment. These effects were shown to be mediated by NGL-1 in both immune cells and in the local stroma, in a TGF-β-dependent manner. While myeloid cells lacking NGL-1 decreased the production of immunosuppressive cytokines, NGL-1 KO T cells showed increased proliferation rates and overall polyfunctionality compared to control T cells. CAFs lacking NGL-1 were less immunosuppressive than controls, with overall decreased production of pro-tumor cytokines and compromised ability to inhibit CD8 + T cells activation. Mechanistically, these CAFs downregulated components of the TGF-β pathway, AP-1 and NFAT transcription factor families, resulting in a less tumor-supportive phenotype. Finally, targeting NGL-1 genetically or using a functionally antagonistic small peptide phenocopied the effects of chemotherapy, while modulating the immunosuppressive tumor microenvironment (TME), rather than eliminating it. We propose NGL-1 as a new local stroma and immunomodulatory molecule, with pro-tumor roles in pancreatic cancer. Statement of Significance Here we uncovered the pro-tumor roles of the synaptic protein NGL-1 in the tumor microenvironment of pancreatic cancer, defining a new target that simultaneously modulates tumor cell, fibroblast, and immune cell functions. This study reports a new pathway where NGL-1 controls TGF-β, AP-1 transcription factor members and NFAT1, modulating the immunosuppressive microenvironment in pancreatic cancer. Our findings highlight NGL-1 as a new stromal immunomodulator in pancreatic cancer.
Collapse
|
8
|
Lee DU, Han BS, Jung KH, Hong SS. Tumor Stroma as a Therapeutic Target for Pancreatic Ductal Adenocarcinoma. Biomol Ther (Seoul) 2024; 32:281-290. [PMID: 38590092 PMCID: PMC11063484 DOI: 10.4062/biomolther.2024.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/10/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis owing to its desmoplastic stroma. Therefore, therapeutic strategies targeting this tumor stroma should be developed. In this study, we describe the heterogeneity of cancer-associated fibroblasts (CAFs) and their diverse roles in the progression, immune evasion, and resistance to treatment of PDAC. We subclassified the spatial distribution and functional activity of CAFs to highlight their effects on prognosis and drug delivery. Extracellular matrix components such as collagen and hyaluronan are described for their roles in tumor behavior and treatment outcomes, implying their potential as therapeutic targets. We also discussed the roles of extracellular matrix (ECM) including matrix metalloproteinases and tissue inhibitors in PDAC progression. Finally, we explored the role of the adaptive and innate immune systems in shaping the PDAC microenvironment and potential therapeutic strategies, with a focus on immune cell subsets, cytokines, and immunosuppressive mechanisms. These insights provide a comprehensive understanding of PDAC and pave the way for the development of prognostic markers and therapeutic interventions.
Collapse
Affiliation(s)
- Dae Ui Lee
- Department of Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| | - Beom Seok Han
- Program in Biomedical Science & Engineering, The Graduate School, Inha University, Incheon 22212, Republic of Korea
| | - Kyung Hee Jung
- Department of Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine, Inha University, Incheon 22332, Republic of Korea
- Program in Biomedical Science & Engineering, The Graduate School, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
9
|
Zhang H, Chen J, Bai J, Zhang J, Huang S, Zeng L, Zhou P, Shen Q, Yin T. Single dual-specific anti-PD-L1/TGF-β antibody synergizes with chemotherapy as neoadjuvant treatment for pancreatic ductal adenocarcinoma: a preclinical experimental study. Int J Surg 2024; 110:2679-2691. [PMID: 38489548 PMCID: PMC11093442 DOI: 10.1097/js9.0000000000001226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/13/2024] [Indexed: 03/17/2024]
Abstract
AIMS Chemotherapy resistance is an important cause of neoadjuvant therapy failure in pancreatic ductal adenocarcinoma (PDAC). BiTP (anti-PD-L1/TGF-β bispecific antibody) is a single antibody that can simultaneously and dually target transforming growth factor-beta (TGF-β) and programmed cell death ligand 1 (PD-L1). We attempted in this study to investigate the efficacy of BiTP in combination with first-line chemotherapy in PDAC. METHODS Preclinical assessments of BiTP plus gemcitabine and nab-paclitaxel were completed through a resectable KPC mouse model (C57BL/6J). Spectral flow cytometry, tissue section staining, enzyme-linked immunosorbent assays, Counting Kit-8, transwell, and Western blot assays were used to investigate the synergistic effects. RESULTS BiTP combinatorial chemotherapy in neoadjuvant settings significantly downstaged PDAC tumors, enhanced survival, and had a higher resectability for mice with PDAC. BiTP was high affinity binding to targets and reverse chemotherapy resistance of PDAC cells. The combination overcame immune evasion through reprogramming tumor microenvironment via increasing penetration and function of T cells, natural killer cells, and dendritic cells and decreasing the function of immunosuppression-related cells as regulatory T cells, M2 macrophages, myeloid-derived suppressor cells, and cancer-associated fibroblasts. CONCLUSION Our results suggest that the BiTP combinatorial chemotherapy is a promising neoadjuvant therapy for PDAC.
Collapse
Affiliation(s)
- Haoxiang Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Department of Hepatopancreatobiliary Surgery, Shengli Clinical Medical College of Fujian Medical University, Fuzhou
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Jiaoshun Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Jianwei Bai
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| | - Jing Zhang
- Wuhan YZY Biopharma Co., Ltd, Biolake, Wuhan, People’s Republic of China
| | - Shaoyi Huang
- Wuhan YZY Biopharma Co., Ltd, Biolake, Wuhan, People’s Republic of China
| | - Liang Zeng
- Wuhan YZY Biopharma Co., Ltd, Biolake, Wuhan, People’s Republic of China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd, Biolake, Wuhan, People’s Republic of China
| | - Qiang Shen
- Department of Interdisciplinary Oncology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
- Sino-German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan
| |
Collapse
|
10
|
Ye X, Yu Y, Zheng X, Ma H. Clinical immunotherapy in pancreatic cancer. Cancer Immunol Immunother 2024; 73:64. [PMID: 38430289 PMCID: PMC10908626 DOI: 10.1007/s00262-024-03632-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/09/2024] [Indexed: 03/03/2024]
Abstract
Pancreatic cancer remains a challenging disease with limited treatment options, resulting in high mortality rates. The predominant approach to managing pancreatic cancer patients continues to be systemic cytotoxic chemotherapy. Despite substantial advancements in immunotherapy strategies for various cancers, their clinical utility in pancreatic cancer has proven less effective and durable. Whether administered as monotherapy, employing immune checkpoint inhibitors, tumor vaccines, chimeric antigen receptors T cells, or in combination with conventional chemoradiotherapy, the clinical outcomes remain underwhelming. Extensive preclinical experiments and clinical trials in the realm of pancreatic cancer have provided valuable insights into the complexities of immunotherapy. Chief among the hurdles are the immunosuppressive tumor microenvironment, limited immunogenicity, and the inherent heterogeneity of pancreatic cancer. In this comprehensive review, we provide an overview and critical analysis of current clinical immunotherapy strategies for pancreatic cancer, emphasizing their endeavors to overcome immunotherapy resistance. Particular focus is placed on strategies aimed at reshaping the immunosuppressive microenvironment and enhancing T cell-mediated tumor cell killing. Ultimately, through deeper elucidation of the underlying pathogenic mechanisms of pancreatic cancer and the refinement of therapeutic approaches, we anticipate breakthroughs that will pave the way for more effective treatments in this challenging disease.
Collapse
Affiliation(s)
- Xiaorong Ye
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Province, People's Republic of China
| | - Yue Yu
- Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Province, People's Republic of China.
| | - Xiaohu Zheng
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Province, People's Republic of China.
- Hefei National Research Center for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China.
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, People's Republic of China.
| | - Hongdi Ma
- Hefei National Research Center for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China.
- Department of Pediatrics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui Province, People's Republic of China.
| |
Collapse
|
11
|
Hartupee C, Nagalo BM, Chabu CY, Tesfay MZ, Coleman-Barnett J, West JT, Moaven O. Pancreatic cancer tumor microenvironment is a major therapeutic barrier and target. Front Immunol 2024; 15:1287459. [PMID: 38361931 PMCID: PMC10867137 DOI: 10.3389/fimmu.2024.1287459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) is projected to become the 2nd leading cause of cancer-related deaths in the United States. Limitations in early detection and treatment barriers contribute to the lack of substantial success in the treatment of this challenging-to-treat malignancy. Desmoplasia is the hallmark of PDAC microenvironment that creates a physical and immunologic barrier. Stromal support cells and immunomodulatory cells face aberrant signaling by pancreatic cancer cells that shifts the complex balance of proper repair mechanisms into a state of dysregulation. The product of this dysregulation is the desmoplastic environment that encases the malignant cells leading to a dense, hypoxic environment that promotes further tumorigenesis, provides innate systemic resistance, and suppresses anti-tumor immune invasion. This desmoplastic environment combined with the immunoregulatory events that allow it to persist serve as the primary focus of this review. The physical barrier and immune counterbalance in the tumor microenvironment (TME) make PDAC an immunologically cold tumor. To convert PDAC into an immunologically hot tumor, tumor microenvironment could be considered alongside the tumor cells. We discuss the complex network of microenvironment molecular and cellular composition and explore how they can be targeted to overcome immuno-therapeutic challenges.
Collapse
Affiliation(s)
- Conner Hartupee
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Chiswili Y. Chabu
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Department of Surgery, School of Medicine, University of Missouri, Columbia, MO, United States
- Siteman Cancer Center, Washington University, St. Louis, MO, United States
| | - Mulu Z. Tesfay
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, United States
| | - Joycelynn Coleman-Barnett
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - John T. West
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
| | - Omeed Moaven
- Division of Surgical Oncology, Department of Surgery, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Department of Interdisciplinary Oncology, Louisiana Cancer Research Center, Louisiana State University (LSU) Health, New Orleans, LA, United States
- Louisiana State University - Louisiana Children's Medical Center (LSU - LCMC) Cancer Center, New Orleans, LA, United States
| |
Collapse
|
12
|
Ahuja S, Zaheer S. Multifaceted TGF-β signaling, a master regulator: From bench-to-bedside, intricacies, and complexities. Cell Biol Int 2024; 48:87-127. [PMID: 37859532 DOI: 10.1002/cbin.12097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Physiological embryogenesis and adult tissue homeostasis are regulated by transforming growth factor-β (TGF-β), an evolutionarily conserved family of secreted polypeptide factors, acting in an autocrine and paracrine manner. The role of TGF-β in inflammation, fibrosis, and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, especially fibrosis and cancer, overexpressed TGF-β causes extracellular matrix deposition, epithelial-mesenchymal transition, cancer-associated fibroblast formation, and/or angiogenesis. In this review article, we have tried to dive deep into the mechanism of action of TGF-β in inflammation, fibrosis, and carcinogenesis. As TGF-β and its downstream signaling mechanism are implicated in fibrosis and carcinogenesis blocking this signaling mechanism appears to be a promising avenue. However, targeting TGF-β carries substantial risk as this pathway is implicated in multiple homeostatic processes and is also known to have tumor-suppressor functions. There is a need for careful dosing of TGF-β drugs for therapeutic use and patient selection.
Collapse
Affiliation(s)
- Sana Ahuja
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| | - Sufian Zaheer
- Department of Pathology, Vardhman Mahavir Medical College and Safdarjung Hospital, New Delhi, India
| |
Collapse
|
13
|
Tran LC, Özdemir BC, Berger MD. The Role of Immune Checkpoint Inhibitors in Metastatic Pancreatic Cancer: Current State and Outlook. Pharmaceuticals (Basel) 2023; 16:1411. [PMID: 37895882 PMCID: PMC10609661 DOI: 10.3390/ph16101411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors, characterized by its aggressive tumor biology and poor prognosis. While immune checkpoint inhibitors (ICIs) play a major part in the treatment algorithm of various solid tumors, there is still no evidence of clinical benefit from ICI in patients with metastatic PDAC (mPDAC). This might be due to several reasons, such as the inherent low immunogenicity of pancreatic cancer, the dense stroma-rich tumor microenvironment that precludes an efficient migration of antitumoral effector T cells to the cancer cells, and the increased proportion of immunosuppressive immune cells, such as regulatory T cells (Tregs), cancer-associated fibroblasts (CAFs), and myeloid-derived suppressor cells (MDSCs), facilitating tumor growth and invasion. In this review, we provide an overview of the current state of ICIs in mPDAC, report on the biological rationale to implement ICIs into the treatment strategy of pancreatic cancer, and discuss preclinical studies and clinical trials in this field. Additionally, we shed light on the challenges of implementing ICIs into the treatment strategy of PDAC and discuss potential future directions.
Collapse
Affiliation(s)
| | | | - Martin D. Berger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
14
|
Guo J, Wang S, Gao Q. An integrated overview of the immunosuppression features in the tumor microenvironment of pancreatic cancer. Front Immunol 2023; 14:1258538. [PMID: 37771596 PMCID: PMC10523014 DOI: 10.3389/fimmu.2023.1258538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies. It is characterized by a complex and immunosuppressive tumor microenvironment (TME), which is primarily composed of tumor cells, stromal cells, immune cells, and acellular components. The cross-interactions and -regulations among various cell types in the TME have been recognized to profoundly shape the immunosuppression features that meaningfully affect PDAC biology and treatment outcomes. In this review, we first summarize five cellular composition modules by integrating the cellular (sub)types, phenotypes, and functions in PDAC TME. Then we discuss an integrated overview of the cross-module regulations as a determinant of the immunosuppressive TME in PDAC. We also briefly highlight TME-targeted strategies that potentially improve PDAC therapy.
Collapse
Affiliation(s)
- Jinglong Guo
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, China
| | - Siyue Wang
- Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Qi Gao
- Department of Cardiovascular Disease, the First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Karami Z, Mortezaee K, Majidpoor J. Dual anti-PD-(L)1/TGF-β inhibitors in cancer immunotherapy - Updated. Int Immunopharmacol 2023; 122:110648. [PMID: 37459782 DOI: 10.1016/j.intimp.2023.110648] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 08/25/2023]
Abstract
Immune checkpoint inhibitor (ICI) therapy suffers from tumor resistance and relapse in majority of patients due to the suppressive tumor immune microenvironment (TIME). Advances in the field have brought about development of fusion proteins able to target two signaling simultaneously and to exert maximal anti-cancer immunity. Bispecific inhibitors of transforming growth factor (TGF)-β signaling and programmed death-1 (PD-1) or programmed death-ligand 1 (PD-L1) are developed to reduce the rate of relapse and to achieve durable anti-cancer therapy. TGF-β is well-known for its immunosuppressive activity, and it takes critical roles in promotion of all tumor hallmarks. Bispecific anti-PD-(L)1/TGF-β inhibitors reinvigorate effector activity of CD8+ T and natural killer (NK) cells, hamper regulatory T cell (Treg) expansion, and increase the density of anti-tumor type 1 macrophages (M1). Responses to the bispecific approach are higher compared with solo anti-PD-(L)1 or TGF-β targeted therapy, and are seemingly more pronounced in human papillomavirus (HPV)+ patients. High expression of PD-L1 or immune-excluded phenotype in a tumor can also be markers of better response to the bispecific strategy. Besides, anti-PD-(L)1/TGF-β inhibitor therapy can be used safely with other therapeutic modalities including vaccination, radiation and chemotherapy.
Collapse
Affiliation(s)
- Zana Karami
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
16
|
An YF, Pu N, Jia JB, Wang WQ, Liu L. Therapeutic advances targeting tumor angiogenesis in pancreatic cancer: Current dilemmas and future directions. Biochim Biophys Acta Rev Cancer 2023; 1878:188958. [PMID: 37495194 DOI: 10.1016/j.bbcan.2023.188958] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Pancreatic cancer (PC) is one of the most lethal malignancies, which is generally resistant to various treatments. Tumor angiogenesis is deemed to be a pivotal rate-determining step for tumor growth and metastasis. Therefore, anti-angiogenetic therapy is a rational strategy to treat various cancers. However, numerous clinical trials on anti-angiogenetic therapies for PC are overwhelmingly disappointing. The unique characteristics of tumor blood vessels in PC, which are desperately lacking and highly compressed by the dense desmoplastic stroma, are reconsidered to explore some optimized strategies. In this review, we mainly focus on its specific characteristics of tumor blood vessels, discuss the current dilemmas of anti-angiogenic therapy in PC and their underlying mechanisms. Furthermore, we point out the future directions, including remodeling the abnormal vasculature or even reshaping the whole tumor microenvironment in which they are embedded to improve tumor microcirculation, and then create therapeutic vulnerabilities to the current available therapeutic strategies.
Collapse
Affiliation(s)
- Yan-Fei An
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Basic Medicine, Chang Zhi Medical College, Changzhi 046000,China; Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China
| | - Ning Pu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jin-Bin Jia
- Department of Basic Medicine and Institute of Liver Diseases, Shan Xi Medical University, Taiyuan 030000, China.
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
17
|
Nadal E, Saleh M, Aix SP, Ochoa-de-Olza M, Patel SP, Antonia S, Zhao Y, Gueorguieva I, Man M, Estrem ST, Liu J, Avsar E, Lin WH, Benhadji KA, Gandhi L, Guba SC, Diaz IA. A phase Ib/II study of galunisertib in combination with nivolumab in solid tumors and non-small cell lung cancer. BMC Cancer 2023; 23:708. [PMID: 37507657 PMCID: PMC10386782 DOI: 10.1186/s12885-023-11153-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND In this phase Ib/II open-label study, tumor immune suppression was targeted in patients with advanced refractory solid tumors and patients with recurrent/refractory non-small cell lung cancer (NSCLC) using galunisertib with nivolumab. METHODS Eligible patients were ≥ 18 years old, had an Eastern Cooperative Oncology Group performance status ≤ 1, and were treatment-naive for anti-programmed cell death-1, its ligand, or transforming growth factor β receptor 1 kinase inhibitors. Phase Ib was an open-label, dose-escalation assessment of the safety and tolerability of galunisertib with nivolumab in patients with advanced refractory solid tumors. Phase II evaluated the safety of galunisertib with nivolumab in NSCLC patients who had received prior platinum-based treatment but were immuno-oncology agent-naive. RESULTS This trial was conducted between October 2015 and August 2020. No dose-limiting toxicities were observed in phase I. In the phase II NSCLC cohort (n = 25), patients received 150 mg twice daily galunisertib (14 days on/14 days off dosing schedule for all phases) plus nivolumab at 3 mg/kg (intravenously every 2 weeks). In this phase, the most frequent treatment-related adverse events (AEs) were pruritus (n = 9, 36%), fatigue (n = 8, 32%), and decreased appetite (n = 7, 28%). No grade 4 or 5 treatment-related AEs were observed. Six (24%) patients had confirmed partial response (PR) and 4 (16%) had stable disease; 1 additional patient had confirmed PR after initial pseudo-progression. The median duration of response was 7.43 months (95% confidence interval [CI]: 3.75, NR). Among the 7 responders, including the delayed responder, 1 had high PD-L1 expression (≥ 50%). The median progression-free survival was 5.26 months (95% CI: 1.77, 9.20) and the median overall survival was 11.99 months (95% CI: 8.15, NR). Interferon gamma response genes were induced post-treatment and cell adhesion genes were repressed, although the association of these observations with tumor response and clinical outcomes was not statistically powered due to limited samples available. CONCLUSIONS The study met its primary endpoint as galunisertib combined with nivolumab was well tolerated. Preliminary efficacy was observed in a subset of patients in the Phase 2 NSCLC cohort. TRIAL REGISTRATION Trial registered with ClinicalTrials.gov (NCT02423343; 22.04.2015).
Collapse
Affiliation(s)
- Ernest Nadal
- Department of Medical Oncology, Catalan Institute of Oncology, IDIBELL, L'Hospitalet, Barcelona, Spain.
| | | | | | | | | | - Scott Antonia
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Yumin Zhao
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Michael Man
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | - Emin Avsar
- Eli Lilly and Company, Indianapolis, IN, USA
- Bristol Myers Squibb, Princeton, NJ, USA
| | - Wen Hong Lin
- Bristol Myers Squibb, Princeton, NJ, USA
- Immune-Onc Therapeutics, Palo Alto, CA, USA
| | | | - Leena Gandhi
- Eli Lilly and Company, Indianapolis, IN, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Inmaculada Ales Diaz
- UGCI Oncología Médica, Hospitales Universitarios Regional Y Virgen de La Victoria, IBIMA, Málaga, Spain
| |
Collapse
|
18
|
Gautam SK, Batra SK, Jain M. Molecular and metabolic regulation of immunosuppression in metastatic pancreatic ductal adenocarcinoma. Mol Cancer 2023; 22:118. [PMID: 37488598 PMCID: PMC10367391 DOI: 10.1186/s12943-023-01813-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/23/2023] [Indexed: 07/26/2023] Open
Abstract
Immunosuppression is a hallmark of pancreatic ductal adenocarcinoma (PDAC), contributing to early metastasis and poor patient survival. Compared to the localized tumors, current standard-of-care therapies have failed to improve the survival of patients with metastatic PDAC, that necessecitates exploration of novel therapeutic approaches. While immunotherapies such as immune checkpoint blockade (ICB) and therapeutic vaccines have emerged as promising treatment modalities in certain cancers, limited responses have been achieved in PDAC. Therefore, specific mechanisms regulating the poor response to immunotherapy must be explored. The immunosuppressive microenvironment driven by oncogenic mutations, tumor secretome, non-coding RNAs, and tumor microbiome persists throughout PDAC progression, allowing neoplastic cells to grow locally and metastasize distantly. The metastatic cells escaping the host immune surveillance are unique in molecular, immunological, and metabolic characteristics. Following chemokine and exosomal guidance, these cells metastasize to the organ-specific pre-metastatic niches (PMNs) constituted by local resident cells, stromal fibroblasts, and suppressive immune cells, such as the metastasis-associated macrophages, neutrophils, and myeloid-derived suppressor cells. The metastatic immune microenvironment differs from primary tumors in stromal and immune cell composition, functionality, and metabolism. Thus far, multiple molecular and metabolic pathways, distinct from primary tumors, have been identified that dampen immune effector functions, confounding the immunotherapy response in metastatic PDAC. This review describes major immunoregulatory pathways that contribute to the metastatic progression and limit immunotherapy outcomes in PDAC. Overall, we highlight the therapeutic vulnerabilities attributable to immunosuppressive factors and discuss whether targeting these molecular and immunological "hot spots" could improve the outcomes of PDAC immunotherapies.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
19
|
TGF-β2 antisense oligonucleotide enhances T-cell mediated anti-tumor activities by IL-2 via attenuation of fibrotic reaction in a humanized mouse model of pancreatic ductal adenocarcinoma. Biomed Pharmacother 2023; 159:114212. [PMID: 36610224 DOI: 10.1016/j.biopha.2022.114212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/20/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, with high mortality and recurrence rate. In this study, we generated a human immune system mouse model by transplanting human peripheral blood mononuclear cells into NSG-B2m mice followed by xenografting AsPC-1 cells, after which we assessed the role of transforming growth factor-β2 (TGF-β2) in T-cell-mediated anti-tumor immunity. We observed that inhibiting the TGF-β2 production by TGF-β2 antisense oligonucleotide (TASO) combined with IL-2 delays pancreatic cancer growth. Co-treatment of TASO and IL-2 had little effect on the SMAD-dependent pathway, but significantly inhibited the Akt phosphorylation and sequentially activated GSK-3β. Activation of GSK-3β by TASO subsequently suppressed β-catenin and α-SMA expression and resulted in attenuated fibrotic reactions, facilitating the infiltration of CD8 + cytotoxic T lymphocytes (CTLs) into the tumor. TGF-β2 inhibition suppressed the Foxp3 + regulatory T-cells in peripheral blood and tumors, thereby enhancing the tumoricidal effects of CTLs associated with increased granzyme B and cleaved caspase-3. Moreover, changes in the T-cell composition in peripheral blood and at the tumor site by TASO and IL-2 induced the increase of pro-inflammatory cytokines such as IFN-γ and TNF-α and the decrease of anti-inflammatory cytokines such as TGF-βs. These results indicate that the TGF-β2 inhibition by TASO combined with IL-2 enhances the T-cell mediated anti-tumor immunity against SMAD4-mutated PDAC by modulating the tumor-associated fibrosis, suggesting that TASO in combination with IL-2 may be a promising immunotherapeutic intervention for PDAC.
Collapse
|
20
|
Chow RD, Michaels T, Bellone S, Hartwich TM, Bonazzoli E, Iwasaki A, Song E, Santin AD. Distinct Mechanisms of Mismatch-Repair Deficiency Delineate Two Modes of Response to Anti-PD-1 Immunotherapy in Endometrial Carcinoma. Cancer Discov 2023; 13:312-331. [PMID: 36301137 PMCID: PMC9905265 DOI: 10.1158/2159-8290.cd-22-0686] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/29/2022] [Accepted: 10/19/2022] [Indexed: 02/07/2023]
Abstract
Mismatch repair-deficient (MMRd) cancers have varied responses to immune-checkpoint blockade (ICB). We conducted a phase II clinical trial of the PD-1 inhibitor pembrolizumab in 24 patients with MMRd endometrial cancer (NCT02899793). Patients with mutational MMRd tumors (6 patients) had higher response rates and longer survival than those with epigenetic MMRd tumors (18 patients). Mutation burden was higher in tumors with mutational MMRd compared with epigenetic MMRd; however, within each category of MMRd, mutation burden was not correlated with ICB response. Pretreatment JAK1 mutations were not associated with primary resistance to pembrolizumab. Longitudinal single-cell RNA-seq of circulating immune cells revealed contrasting modes of antitumor immunity for mutational versus epigenetic MMRd cancers. Whereas effector CD8+ T cells correlated with regression of mutational MMRd tumors, activated CD16+ NK cells were associated with ICB-responsive epigenetic MMRd tumors. These data highlight the interplay between tumor-intrinsic and tumor-extrinsic factors that influence ICB response. SIGNIFICANCE The molecular mechanism of MMRd is associated with response to anti-PD-1 immunotherapy in endometrial carcinoma. Tumors with epigenetic MMRd or mutational MMRd are correlated with NK cell or CD8+ T cell-driven immunity, respectively. Classifying tumors by the mechanism of MMRd may inform clinical decision-making regarding cancer immunotherapy. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Ryan D. Chow
- Department of Genetics, Yale University, New Haven, Connecticut, USA
- System Biology Institute, Yale University, West Haven, Connecticut, USA
- Corresponding authors: Correspondence to: Ryan D. Chow, Address: 850 West Campus Drive, ISTC 314, West Haven CT 06516, , Phone: 203-737-3825, Eric Song, Address: 300 Cedar Street, Suite S630, New Haven, CT 06519, , Phone: 203-785-2919, Alessandro D. Santin, Address: 333 Cedar Street, PO Box 208063, New Haven, CT 06511, , Phone: 203-737-2280
| | - Tai Michaels
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA
| | - Stefania Bellone
- Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tobias M.P. Hartwich
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Elena Bonazzoli
- Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
| | - Eric Song
- Department of Immunobiology, Yale University, New Haven, Connecticut, USA
- Corresponding authors: Correspondence to: Ryan D. Chow, Address: 850 West Campus Drive, ISTC 314, West Haven CT 06516, , Phone: 203-737-3825, Eric Song, Address: 300 Cedar Street, Suite S630, New Haven, CT 06519, , Phone: 203-785-2919, Alessandro D. Santin, Address: 333 Cedar Street, PO Box 208063, New Haven, CT 06511, , Phone: 203-737-2280
| | - Alessandro D. Santin
- Smilow Comprehensive Cancer Center, Yale University School of Medicine, New Haven, Connecticut, USA
- Corresponding authors: Correspondence to: Ryan D. Chow, Address: 850 West Campus Drive, ISTC 314, West Haven CT 06516, , Phone: 203-737-3825, Eric Song, Address: 300 Cedar Street, Suite S630, New Haven, CT 06519, , Phone: 203-785-2919, Alessandro D. Santin, Address: 333 Cedar Street, PO Box 208063, New Haven, CT 06511, , Phone: 203-737-2280
| |
Collapse
|
21
|
Development of a TGFβ-IL-2/15 Switch Receptor for Use in Adoptive Cell Therapy. Biomedicines 2023; 11:biomedicines11020459. [PMID: 36830995 PMCID: PMC9953633 DOI: 10.3390/biomedicines11020459] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/27/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Therapy employing T cells modified with chimeric antigen receptors (CARs) is effective in hematological malignancies but not yet in solid cancers. CAR T cell activity in solid tumors is limited by immunosuppressive factors, including transforming growth factor β (TGFβ). Here, we describe the development of a switch receptor (SwR), in which the extracellular domains of the TGFβ receptor are fused to the intracellular domains from the IL-2/15 receptor. We evaluated the SwR in tandem with two variants of a CAR that we have developed against STEAP1, a protein highly expressed in prostate cancer. The SwR-CAR T cell activity was assessed against a panel of STEAP1+/- prostate cancer cell lines with or without over-expression of TGFβ, or with added TGFβ, by use of flow cytometry cytokine and killing assays, Luminex cytokine profiling, cell counts, and flow cytometry phenotyping. The results showed that the SwR-CAR constructs improved the functionality of CAR T cells in TGFβ-rich environments, as measured by T cell proliferation and survival, cytokine response, and cytotoxicity. In assays with four repeated target-cell stimulations, the SwR-CAR T cells developed an activated effector memory phenotype with retained STEAP1-specific activity. In conclusion, the SwR confers CAR T cells with potent and durable in vitro functionality in TGFβ-rich environments. The SwR may be used as an add-on construct for CAR T cells or other forms of adoptive cell therapy.
Collapse
|
22
|
Principe DR, Cataneo JL, Dorman MJ, Koch RM, Studniarek A, Rana A, Gantt G, Nordenstam J. Serum Depletion of Complement Component 5a Is Associated With Increased Inflammation and Poor Clinical Outcomes in Patients With Perianal Fistulas. Dis Colon Rectum 2023; 66:288-298. [PMID: 35724247 DOI: 10.1097/dcr.0000000000002378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND Persistent disease is a significant issue in the management of perianal fistulas, with up to 50% of patients requiring additional treatment after surgery. OBJECTIVE This study aimed to identify a novel prognostic modality in hopes of risk-stratifying patients for persistent disease following corrective surgery. DESIGN This was a retrospective study based on prospectively collected data using a combination of histopathology, high-throughput proteomic arrays, and ELISA-based methods. SETTINGS This study used data obtained from patients who underwent corrective surgery for perianal fistulas at the University of Illinois Hospital between June 2019 and July 2020. PATIENTS A cohort of 22 consecutive patients who had corrective surgery for perianal fistulas were included in this study. The patients were divided into 2 groups: those with resolving fistulas (N = 13) and those with persisting fistulas (N = 9). MAIN OUTCOME MEASURES Nonresolving fistulas were determined by disease representation within 2 months of corrective surgery. RESULTS Serum samples from patients with persistent perianal fistulas displayed a consistent decrease in the expression of complement pathway component C5a compared with either healthy controls or patients with resolving forms of disease. This was paralleled by an increase in the fistula expression of C5a and an associated increase in tissue infiltrating leukocytes and interleukin-1β expression. LIMITATIONS This study was limited by its retrospective design, relatively small sample size, and single-center data analysis. CONCLUSIONS These results suggest that C5a is modestly depleted in patients with nonresolving forms of disease and traffics to the site of tissue damage and inflammation. Accordingly, serum C5a warrants continued investigation as a prognostic biomarker and predictor of recurrence in patients presenting with perianal fistulas. See Video Abstract at http://links.lww.com/DCR/B982 . LA DEPLECIN SRICA DEL COMPONENTE A DEL COMPLEMENTO SE ASOCIA CON UN AUMENTO DE LA INFLAMACIN Y MALOS RESULTADOS CLNICOS EN PACIENTES CON FSTULAS PERIANALES ANTECEDENTES:La persistencia de la enfermedad es un problema significativo en el manejo de las fístulas perianales, presente hasta en el 50 % de los pacientes después de la cirugía y que requieren tratamiento adicional.OBJETIVO:DISEÑO:Se trata de un estudio retrospectivo basado en datos recolectados prospectivamente usando una combinación de histopatología, arreglos proteómicos de alto rendimiento y métodos basados en ELISA.ENTORNO CLÍNICO:Este estudio utilizó datos de pacientes que se sometieron a cirugía correctiva por fístulas perianales en el Hospital de la Universidad de Illinois entre junio de 2019 y julio de 2020.PACIENTES:Se incluyó en este estudio una cohorte de 22 pacientes consecutivos que se sometieron a cirugía correctiva de fístulas perianales. Los pacientes se dividieron en 2 grupos: aquellos con fístulas en resolución (N = 13) y aquellos con fístulas persistentes (N = 9).PRINCIPALES MEDIDAS DE VALORACIÓN:Las fístulas que no se resuelven fueron determinadas por la reaparición de la enfermedad dentro de los 2 meses posteriores a la cirugía correctiva.RESULTADOS:Las muestras de suero de pacientes con fístulas perianales persistentes mostraron una disminución constante en la expresión del componente C5a de la vía del complemento en comparación con controles sanos o pacientes con formas de resolución de la enfermedad. Esto fue paralelo a un aumento en la expresión de C5a en la fístula y un aumento asociado en los leucocitos que se infiltran en el tejido y la expresión de IL-1β.LIMITACIONES:El estudio estuvo limitado por su diseño retrospectivo, tamaño de muestra relativamente pequeño y análisis de datos de un solo centro.CONCLUSIONES:Estos resultados sugieren que C5a se reduce moderadamente en pacientes con formas de enfermedad que no se resuelven y se desplaza al sitio del daño tisular e inflamación. En consecuencia, el C5a sérico justifica una investigación continua como biomarcador pronóstico y predictor de recurrencia en pacientes que presentan fístulas perianales. Consulte Video Resumen en http://links.lww.com/DCR/B982 . (Traducción- Dr. Ingrid Melo ).
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, Illinois
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - José L Cataneo
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
- University of Illinois College of Medicine, Chicago, Illinois
- University of Illinois, Metropolitan Group Hospitals General Surgery Residency, Advocate Illinois Masonic Hospital, Chicago, Illinois
| | - Matthew J Dorman
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Regina M Koch
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Adam Studniarek
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Ajay Rana
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Gerald Gantt
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| | - Johan Nordenstam
- Department of Surgery, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
23
|
Zhu YH, Zheng JH, Jia QY, Duan ZH, Yao HF, Yang J, Sun YW, Jiang SH, Liu DJ, Huo YM. Immunosuppression, immune escape, and immunotherapy in pancreatic cancer: focused on the tumor microenvironment. Cell Oncol (Dordr) 2023; 46:17-48. [PMID: 36367669 DOI: 10.1007/s13402-022-00741-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic cancer, is characterized by poor treatment response and low survival time. The current clinical treatment for advanced PDAC is still not effective. In recent years, the research and application of immunotherapy have developed rapidly and achieved substantial results in many malignant tumors. However, the translational application in PDAC is still far from satisfactory and needs to be developed urgently. To carry out the study of immunotherapy, it is necessary to fully decipher the immune characteristics of PDAC. This review summarizes the recent progress of the tumor microenvironment (TME) of PDAC and highlights its link with immunotherapy. We describe the molecular cues and corresponding intervention methods, collate several promising targets and progress worthy of further study, and put forward the importance of integrated immunotherapy to provide ideas for future research of TME and immunotherapy of PDAC.
Collapse
Affiliation(s)
- Yu-Heng Zhu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jia-Hao Zheng
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Qin-Yuan Jia
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Zong-Hao Duan
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Hong-Fei Yao
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jian Yang
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Yong-Wei Sun
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Shu-Heng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 800 Dongchuan Road, 200240, People's Republic of China.
| | - De-Jun Liu
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Yan-Miao Huo
- Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
24
|
Tumor immunology. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Pourali G, Zafari N, Velayati M, Mehrabadi S, Maftooh M, Hassanian SM, Mobarhan MG, Ferns GA, Avan A, Khazaei M. Therapeutic Potential of Targeting Transforming Growth Factor-beta (TGF-β) and Programmed Death-ligand 1 (PD-L1) in Pancreatic Cancer. Curr Drug Targets 2023; 24:1335-1345. [PMID: 38053355 DOI: 10.2174/0113894501264450231129042256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
Pancreatic cancer (PC) is one the most lethal malignancies worldwide affecting around half a million individuals each year. The treatment of PC is relatively difficult due to the difficulty in making an early diagnosis. Transforming growth factor-beta (TGF-β) is a multifunctional factor acting as both a tumor promoter in early cancer stages and a tumor suppressor in advanced disease. Programmed death-ligand 1 (PD-L1) is a ligand of programmed death-1 (PD-1), an immune checkpoint receptor, allowing tumor cells to avoid elimination by immune cells. Recently, targeting the TGF-β signaling and PD-L1 pathways has emerged as a strategy for cancer therapy. In this review, we have summarized the current knowledge regarding these pathways and their contribution to tumor development with a focus on PC. Moreover, we have reviewed the role of TGF-β and PD-L1 blockade in the treatment of various cancer types, including PC, and discussed the clinical trials evaluating TGF-β and PD-L1 antagonists in PC patients.
Collapse
Affiliation(s)
- Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Doctor, Mashhad University of Medical Science, Mashhad, Iran
| | - Nima Zafari
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahla Velayati
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shima Mehrabadi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Majid Ghayour Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
26
|
Rouzbahani E, Majidpoor J, Najafi S, Mortezaee K. Cancer stem cells in immunoregulation and bypassing anti-checkpoint therapy. Biomed Pharmacother 2022; 156:113906. [DOI: 10.1016/j.biopha.2022.113906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2022] Open
|
27
|
Metropulos AE, Munshi HG, Principe DR. The difficulty in translating the preclinical success of combined TGFβ and immune checkpoint inhibition to clinical trial. EBioMedicine 2022; 86:104380. [PMID: 36455409 PMCID: PMC9706619 DOI: 10.1016/j.ebiom.2022.104380] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the treatment paradigm for solid tumors. However, even in cancers generally considered ICI-sensitive, responses can vary significantly. Thus, there is an ever-increasing interest in identifying novel means of improving therapeutic responses, both for cancers in which ICIs are indicated and those for which they have yet to show significant anti-tumor activity. To this end, Transforming Growth Factor β (TGFβ) signaling is emerging as an important barrier to the efficacy of ICIs. Accordingly, several preclinical studies now support the use of combined TGFβ and immune checkpoint blockade, with near-uniform positive results across a wide range of tumor types. However, as these approaches have started to emerge in clinical trials, the addition of TGFβ inhibitors has often failed to show a meaningful benefit beyond the current generation of ICIs alone. Here, we summarize landmark clinical studies exploring combined TGFβ and immune checkpoint blockade. These studies not only reinforce the difficulty in translating results from rodents to clinical trials in immune-oncology but also underscore the need to re-evaluate the design of trials exploring this approach, incorporating both mechanism-driven combination strategies and novel, predictive biomarkers to identify the patients most likely to derive clinical benefit.
Collapse
Affiliation(s)
| | - Hidayatullah G Munshi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA.
| | | |
Collapse
|
28
|
Quach HT, Hou Z, Bellis RY, Saini JK, Amador-Molina A, Adusumilli PS, Xiong Y. Next-generation immunotherapy for solid tumors: combination immunotherapy with crosstalk blockade of TGFβ and PD-1/PD-L1. Expert Opin Investig Drugs 2022; 31:1187-1202. [PMID: 36448335 PMCID: PMC10085570 DOI: 10.1080/13543784.2022.2152323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
INTRODUCTION In solid tumor immunotherapy, less than 20% of patients respond to anti-programmed cell death 1 (PD-1)/programmed cell death 1 ligand 1 (PD-L1) agents. The role of transforming growth factor β (TGFβ) in diverse immunity is well-established; however, systemic blockade of TGFβ is associated with toxicity. Accumulating evidence suggests the role of crosstalk between TGFβ and PD-1/PD-L1 pathways. AREAS COVERED We focus on TGFβ and PD-1/PD-L1 signaling pathway crosstalk and the determinant role of TGFβ in the resistance of immune checkpoint blockade. We provide the rationale for combination anti-TGFβ and anti-PD-1/PD-L1 therapies for solid tumors and discuss the current status of dual blockade therapy in preclinical and clinical studies. EXPERT OPINION The heterogeneity of tumor microenvironment across solid tumors complicates patient selection, treatment regimens, and response and toxicity assessment for investigation of dual blockade agents. However, clinical knowledge from single-agent studies provides infrastructure to translate dual blockade therapies. Dual TGFβ and PD-1/PD-L1 blockade results in enhanced T-cell infiltration into tumors, a primary requisite for successful immunotherapy. A bifunctional fusion protein specifically targets TGFβ in the tumor microenvironment, avoiding systemic toxicity, and prevents interaction of PD-1+ cytotoxic cells with PD-L1+ tumor cells.
Collapse
Affiliation(s)
- Hue Tu Quach
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Zhaohua Hou
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Rebecca Y. Bellis
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Jasmeen K. Saini
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Alfredo Amador-Molina
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Prasad S. Adusumilli
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
- Director, Mesothelioma Program; Head, Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Yuquan Xiong
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
29
|
Bryce AS, Dreyer SB, Froeling FEM, Chang DK. Exploring the Biology of Cancer-Associated Fibroblasts in Pancreatic Cancer. Cancers (Basel) 2022; 14:5302. [PMID: 36358721 PMCID: PMC9659154 DOI: 10.3390/cancers14215302] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 08/23/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy characterised by a stubbornly low 5-year survival which is essentially unchanged in the past 5 decades. Despite recent advances in chemotherapy and surgical outcomes, progress continues to lag behind that of other cancers. The PDAC microenvironment is characterised by a dense, fibrotic stroma of which cancer-associated fibroblasts (CAFs) are key players. CAFs and fibrosis were initially thought to be uniformly tumour-promoting, however this doctrine is now being challenged by a wealth of evidence demonstrating CAF phenotypic and functional heterogeneity. Recent technological advances have allowed for the molecular profiling of the PDAC tumour microenvironment at exceptional detail, and these technologies are being leveraged at pace to improve our understanding of this previously elusive cell population. In this review we discuss CAF heterogeneity and recent developments in CAF biology. We explore the complex relationship between CAFs and other cell types within the PDAC microenvironment. We discuss the potential for therapeutic targeting of CAFs, and we finally provide an overview of future directions for the field and the possibility of improving outcomes for patients with this devastating disease.
Collapse
Affiliation(s)
- Adam S. Bryce
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Switchback Road, Bearsden G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, 84 Castle Street, Glasgow G4 0SF, UK
| | - Stephan B. Dreyer
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Switchback Road, Bearsden G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, 84 Castle Street, Glasgow G4 0SF, UK
| | - Fieke E. M. Froeling
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Switchback Road, Bearsden G61 1BD, UK
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- Beatson West of Scotland Cancer Centre, 1053 Great Western Rd, Glasgow G12 0YN, UK
| | - David K. Chang
- Wolfson Wohl Cancer Research Centre, School of Cancer Sciences, University of Glasgow, Switchback Road, Bearsden G61 1BD, UK
- West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, 84 Castle Street, Glasgow G4 0SF, UK
| |
Collapse
|
30
|
Zhang T, Ren Y, Yang P, Wang J, Zhou H. Cancer-associated fibroblasts in pancreatic ductal adenocarcinoma. Cell Death Dis 2022; 13:897. [PMID: 36284087 PMCID: PMC9596464 DOI: 10.1038/s41419-022-05351-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a prominent extracellular matrix (ECM) deposition and poor prognosis. High levels of ECM proteins derived from tumour cells reduce the efficacy of conventional cancer treatment paradigms and contribute to tumour progression and metastasis. As abundant tumour-promoting cells in the ECM, cancer-associated fibroblasts (CAFs) are promising targets for novel anti-tumour interventions. Nonetheless, related clinical trials are hampered by the lack of specific markers and elusive differences between CAF subtypes. Here, we review the origins and functional diversity of CAFs and show how they create a tumour-promoting milieu, focusing on the crosstalk between CAFs, tumour cells, and immune cells in the tumour microenvironment. Furthermore, relevant clinical advances and potential therapeutic strategies relating to CAFs are discussed.
Collapse
Affiliation(s)
- Tianyi Zhang
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yanxian Ren
- grid.412643.60000 0004 1757 2902Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Pengfei Yang
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Jufang Wang
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Heng Zhou
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China ,grid.450259.f0000 0004 1804 2516Key Laboratory of Space Radiobiology of Gansu Province & Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
31
|
Single-cell transcriptome reveals cellular hierarchies and guides p-EMT-targeted trial in skull base chordoma. Cell Discov 2022; 8:94. [PMID: 36127333 PMCID: PMC9489773 DOI: 10.1038/s41421-022-00459-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 08/19/2022] [Indexed: 11/08/2022] Open
Abstract
Skull base chordoma (SBC) is a bone cancer with a high recurrence rate, high radioresistance rate, and poorly understood mechanism. Here, we profiled the transcriptomes of 90,691 single cells, revealed the SBC cellular hierarchies, and explored novel treatment targets. We identified a cluster of stem-like SBC cells that tended to be distributed in the inferior part of the tumor. Combining radiated UM-Chor1 RNA-seq data and in vitro validation, we further found that this stem-like cell cluster is marked by cathepsin L (CTSL), a gene involved in the packaging of telomere ends, and may be responsible for radioresistance. Moreover, signatures related to partial epithelial-mesenchymal transition (p-EMT) were found to be significant in malignant cells and were related to the invasion and poor prognosis of SBC. Furthermore, YL-13027, a p-EMT inhibitor that acts through the TGF-β signaling pathway, demonstrated remarkable potency in inhibiting the invasiveness of SBC in preclinical models and was subsequently applied in a phase I clinical trial that enrolled three SBC patients. Encouragingly, YL-13027 attenuated the growth of SBC and achieved stable disease with no serious adverse events, underscoring the clinical potential for the precision treatment of SBC with this therapy. In summary, we conducted the first single-cell RNA sequencing of SBC and identified several targets that could be translated to the treatment of SBC.
Collapse
|
32
|
Han B, Fang T, Zhang Y, Zhang Y, Gao J, Xue Y. Association of the TGFβ gene family with microenvironmental features of gastric cancer and prediction of response to immunotherapy. Front Oncol 2022; 12:920599. [PMID: 36119489 PMCID: PMC9478444 DOI: 10.3389/fonc.2022.920599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022] Open
Abstract
In the complex tumor microenvironment, TGFβ is a pleiotropic cytokine involved in regulating cellular processes such as cancer cell proliferation, apoptosis and metastasis. TGFβ defines three subtypes (TGFβ1, TGFβ2, and TGFβ3), of which TGFβ is highly expressed in many cancers, especially those showing high dissemination potential. In addition, increased expression of TGFβ in multiple cancers is usually positively correlated with epithelial mesenchymal transition (EMT) and coordinated with the expression of genes driving EMT-related genes. TGFβ signaling in the tumor microenvironment inhibits the antitumor function of multiple immune cell populations, including T cells and natural killer cells, and the resulting immunosuppression severely limits the efficacy of immune checkpoint inhibitors and other immunotherapeutic approaches. As a major pathway to enhance the efficacy of cancer immunotherapy effects, the role of TGFβ signaling inhibitors have been evaluated in many clinical trials. However, the potential functions and mechanisms of TGFβ1, TGFβ2 and TGFβ3 in gastric cancer progression and tumor immunology are unclear. In this study, we comprehensively analyzed TGFβ1, TGFβ2 and TGFβ3 and gastric cancer microenvironmental features, including immune cell infiltration, EMT, hypoxia, mutation, immunotherapy and drug treatment, based on HMUCH sequencing data (GSE184336) and public databases. We also validated the protein expression levels of TGFβ in gastric cancer tissues as well as the role of TGFβ factor in cytology experiments. This report reveals the important role of the TGFβ gene family in gastric cancer and provides possible relationships and potential mechanisms of TGFβ in gastric cancer.
Collapse
|
33
|
Principe DR, Kamath SD, Korc M, Munshi HG. The immune modifying effects of chemotherapy and advances in chemo-immunotherapy. Pharmacol Ther 2022; 236:108111. [PMID: 35016920 PMCID: PMC9271143 DOI: 10.1016/j.pharmthera.2022.108111] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the treatment paradigm for several malignancies. While the use of single-agent or combined ICIs has achieved acceptable disease control rates in a variety of solid tumors, such approaches have yet to show substantial therapeutic efficacy in select difficult-to-treat cancer types. Recently, select chemotherapy regimens are emerging as extensive modifiers of the tumor microenvironment, leading to the reprogramming of local immune responses. Accordingly, data is now emerging to suggest that certain anti-neoplastic agents modulate various immune cell processes, most notably the cross-presentation of tumor antigens, leukocyte trafficking, and cytokine biosynthesis. As such, the combination of ICIs and cytotoxic chemotherapy are beginning to show promise in many cancers that have long been considered poorly responsive to ICI-based immunotherapy. Here, we discuss past and present attempts to advance chemo-immunotherapy in these difficult-to-treat cancer histologies, mechanisms through which select chemotherapies modify tumor immunogenicity, as well as important considerations when designing such approaches to maximize efficacy and improve therapeutic response rates.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, USA; Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL, USA.
| | - Suneel D Kamath
- Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA
| | - Murray Korc
- Department of Developmental and Cell Biology, University of California, Irvine, CA, USA
| | - Hidayatullah G Munshi
- Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
34
|
It Takes Two to Tango: Potential Prognostic Impact of Circulating TGF-Beta and PD-L1 in Pancreatic Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070960. [PMID: 35888050 PMCID: PMC9323895 DOI: 10.3390/life12070960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 12/19/2022]
Abstract
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with rising incidence and poor prognosis. The lack of reliable prognostic biomarkers hampers the individual evaluation of the survival and recurrence potential. Methods: Here, we investigate the value of plasma levels of two potential key players in molecular mechanisms underlying PDAC aggressiveness and immune evasion, soluble TGF-beta (sTGF-beta) and sPD-L1, in both metastatic and radically-resected PDAC. To this aim we prospectively enrolled 38 PDAC patients and performed appropriate statistical analyses in order to evaluate their correlation, and role in the prediction of disease relapse/progression, and patients’ outcome. Results: Metastatic patients showed lower levels of circulating sTGF-beta and higher levels of sPD-L1 compared to radically-resected patients. Moreover, a decrease in sTGF-beta levels (but not sPD-L1) was significantly associated with disease relapse in radically-resected patients. We also observed lower sTGF-beta at disease progression after first-line chemotherapy in metastatic patients, though this change was not statistically significant. We found a significant correlation between the levels of sTGF-beta and sPD-L1 before first-line chemotherapy. Conclusions: These findings support the possible interaction of TGF-beta and PD-L1 pathways and suggest that sTGF-beta and sPD-L1 might synergize and be new potential blood-based biomarkers.
Collapse
|
35
|
Principe DR, Cataneo JL, Timbers KE, Koch RM, Valyi-Nagy K, Mellgren A, Rana A, Gantt G. Leukocyte subtyping predicts for treatment failure and poor survival in anal squamous cell carcinoma. BMC Cancer 2022; 22:697. [PMID: 35751111 PMCID: PMC9229146 DOI: 10.1186/s12885-022-09742-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Anal squamous cell carcinoma (SCC) generally carries a favorable prognosis, as most tumors are highly sensitive to standard of care chemoradiation. However, outcomes are poor for the 20–30% of patients who are refractory to this approach, and many will require additional invasive procedures with no guarantee of disease resolution. Methods To identify the patients who are unlikely to respond to the current standard of care chemoradiation protocol, we explored a variety of objective clinical findings as a potential predictor of treatment failure and/or mortality in a single center retrospective study of 42 patients with anal SCC. Results Patients with an increase in total peripheral white blood cells (WBC) and/or neutrophils (ANC) had comparatively poor clinical outcomes, with increased rates of death and treatment failure, respectively. Using pre-treatment biopsies from 27 patients, tumors with an inflamed, neutrophil dominant stroma also had poor therapeutic responses, as well as reduced overall and disease-specific survival. Following chemoradiation, we observed uniform reductions in nearly all peripheral blood leukocyte subtypes, and no association between peripheral white blood cells and/or neutrophils and clinical outcomes. Additionally, post-treatment biopsies were available from 13 patients. In post-treatment specimens, patients with an inflamed tumor stroma now demonstrated improved overall and disease-specific survival, particularly those with robust T-cell infiltration. Conclusions Combined, these results suggest that routinely performed leukocyte subtyping may have utility in risk stratifying patients for treatment failure in anal SCC. Specifically, pre-treatment patients with a high WBC, ANC, and/or a neutrophil-dense tumor stroma may be less likely to achieve complete response using the standard of care chemoradiation regimen, and may benefit from the addition of a subsequent line of therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09742-7.
Collapse
Affiliation(s)
- Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, USA.,Department of Surgery, University of Illinois at Chicago, IL, Chicago, USA
| | - Jose L Cataneo
- Department of Surgery, University of Illinois at Chicago, IL, Chicago, USA
| | - Kaytlin E Timbers
- Department of Surgery, University of Illinois at Chicago, IL, Chicago, USA
| | - Regina M Koch
- Department of Surgery, University of Illinois at Chicago, IL, Chicago, USA
| | - Klara Valyi-Nagy
- Department of Pathology, University of Illinois at Chicago, IL, Chicago, USA
| | - Anders Mellgren
- Department of Surgery, Division of Colorectal Surgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Ajay Rana
- Department of Surgery, University of Illinois at Chicago, IL, Chicago, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - Gerald Gantt
- Department of Surgery, Division of Colorectal Surgery, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
36
|
Chen TW, Hung WZ, Chiang SF, Chen WTL, Ke TW, Liang JA, Huang CY, Yang PC, Huang KCY, Chao KSC. Dual inhibition of TGFβ signaling and CSF1/CSF1R reprograms tumor-infiltrating macrophages and improves response to chemotherapy via suppressing PD-L1. Cancer Lett 2022; 543:215795. [PMID: 35718267 DOI: 10.1016/j.canlet.2022.215795] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022]
Abstract
TGFβ contributes to chemoresistance in advanced colorectal cancer (CRC) via diverse immune-microenvironment mechanisms. Here, we found that cancer cell autonomous TGFβ directly triggered tumor programmed cell death 1 ligand 1 (PD-L1) upregulation, resulting in resistance to chemotherapy. Inhibition of tumor PD-L1 expression sensitized cancer cells to chemotherapy, reduced lung metastasis and increased the influx of CD8+ T cells. However, chemorefractory cancer cell-derived CSF1 recruited TAMs for TGFβ-mediated PD-L1 upregulation via a vicious cycle. High infiltration of macrophages was clinically correlated with the status of tumor PD-L1 after chemotherapy treatment in CRC patients. We found that depletion of immunosuppressive CSF1R+ TAM infiltration and blockade of the TGFβ receptor resulted in an increased influx of cytotoxic CD8+ T and effector memory CD8+ cells, a reduction in regulatory T cells, and a synergistic inhibition of tumor growth when combined with chemotherapy. These findings show that CSF1R+ TAMs and TGFβ are the dominant components that regulate PD-L1 expression within the immunosuppressive tumor microenvironment, providing a therapeutic strategy for advanced CRC patients.
Collapse
Affiliation(s)
- Tsung-Wei Chen
- Graduate Institute of Biomedical Science, China Medical University, Taichung, 40402, Taiwan; Department of Pathology, Asia University Hospital, Asia University, Taichung, 41354, Taiwan
| | - Wei-Ze Hung
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, 302, Taiwan; Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan; Department of Surgery, School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan; School of Chinese Medicine & Graduate Institute of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Radiotherapy, School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, 40402, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan; Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97004, Taiwan
| | - Pei-Chen Yang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan; Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| | - K S Clifford Chao
- Graduate Institute of Biomedical Science, China Medical University, Taichung, 40402, Taiwan; Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan; Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
37
|
Varricchio L, Hoffman R. Megakaryocytes Are Regulators of the Tumor Microenvironment and Malignant Hematopoietic Progenitor Cells in Myelofibrosis. Front Oncol 2022; 12:906698. [PMID: 35646681 PMCID: PMC9130548 DOI: 10.3389/fonc.2022.906698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/15/2022] [Indexed: 12/15/2022] Open
Abstract
Megakaryocytes (MKs) are multifunctional hematopoietic cells that produce platelets, serve as components of bone marrow (BM) niches that support the development of hematopoietic stem and progenitor cell (HSPC) and provide inflammatory signals. MKs can dynamically change their activities during homeostasis and following stress, thereby regulating hematopoietic stem cell (HSC) function. Myelofibrosis (MF) is a progressive chronic myeloproliferative neoplasm (MPN) characterized by hyperactivation of JAK/STAT signaling and MK hyperplasia, which is associated with an aberrant inflammatory signature. Since JAK1/2 inhibitor alone is incapable of depleting the malignant HSC clones or reversing BM fibrosis, the identification of mechanisms that cooperate with MF JAK/STAT signaling to promote disease progression might help in developing combination therapies to modify disease outcomes. Chronic inflammation and MK hyperplasia result in an abnormal release of TGFβ1, which plays a critical role in the pathobiology of MF by contributing to the development of BM fibrosis. Dysregulated TGFβ signaling can also alter the hematopoietic microenvironment supporting the predominance of MF-HSCs and enhance the quiescence of the reservoir of wild-type HSCs. Upregulation of TGFβ1 levels is a relatively late event in MF, while during the early pre-fibrotic stage of MF the alarmin S100A8/S100A9 heterocomplex promotes pro-inflammatory responses and sustains the progression of MF-HSCs. In this review, we will discuss the recent advances in our understanding of the roles of abnormal megakaryopoiesis, and the altered microenvironment in MF progression and the development of novel combined targeted therapies to disrupt the aberrant interplay between MKs, the BM microenvironment and malignant HSCs which would potentially limit the expansion of MF-HSC clones.
Collapse
Affiliation(s)
- Lilian Varricchio
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
38
|
Rana M, Kansal R, Chaib M, Teng B, Morrrison M, Hayes DN, Stanfill AG, Shibata D, Carson JA, Makowski L, Glazer ES. The pancreatic cancer immune tumor microenvironment is negatively remodeled by gemcitabine while TGF-β receptor plus dual checkpoint inhibition maintains antitumor immune cells. Mol Carcinog 2022; 61:549-557. [PMID: 35319799 DOI: 10.1002/mc.23401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 01/19/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) tumors have a highly immunosuppressive desmoplastic tumor microenvironment (TME) where immune checkpoint inhibition (ICI) therapy has been exceptionally ineffective. Transforming growth factor-β (TGF-β) receptor activation leads to cancer and immune cell proliferation and phenotype, and cytokine production leading to tumor progression and worse overall survival in PDA patients. We hypothesized that TGF-β receptor inhibition may alter PDA progression and antitumor immunity in the TME. Here, we used a syngeneic preclinical murine model of PDA to explore the impact of TGF-β pathway inhibitor galunisertib (GAL), dual checkpoint immunotherapy (anti-PD-L1 and CTLA-4), the chemotherapy gemcitabine (GEM), and their combinations on antitumor immune responses. Blockade of TGF-β and ICI in immune-competent mice bearing orthotopically injected murine PDA cells significantly inhibited tumor growth and was accompanied by antitumor M1 macrophage infiltration. In contrast, GEM treatment resulted in increased PDA tumor growth, decreased antitumor M1 macrophages, and decreased cytotoxic CD8+ T cell subpopulation compared to control mice. Together, these findings demonstrate the ability of TGF-β inhibition with GAL to prime antitumor immunity in the TME and the curative potential of combining GAL with dual ICI. These preclinical results indicate that targeted inhibition of TGF-β may enhance the efficacy of dual immunotherapy in PDA. Optimal manipulation of the immune TME with non-ICI therapy may enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Manjul Rana
- Department of Surgery, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Rita Kansal
- Department of Surgery, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Bin Teng
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Michelle Morrrison
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - David Neil Hayes
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Medicine, Division of Hematology and Oncology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Ansley G Stanfill
- Department of Nursing Science, College of Nursing, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - David Shibata
- Department of Surgery, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - James A Carson
- Department of Physical Therapy, College of Health Professions, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Liza Makowski
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Department of Medicine, Division of Hematology and Oncology, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Evan S Glazer
- Department of Surgery, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Center for Cancer Research, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
39
|
Yin C, Alqahtani A, Noel MS. The Next Frontier in Pancreatic Cancer: Targeting the Tumor Immune Milieu and Molecular Pathways. Cancers (Basel) 2022; 14:2619. [PMID: 35681599 PMCID: PMC9179513 DOI: 10.3390/cancers14112619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 12/11/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer with abysmal prognosis. It is currently the third most common cause of cancer-related mortality, despite being the 11th most common cancer. Chemotherapy is standard of care in all stages of pancreatic cancer, yet survival, particularly in the advanced stages, often remains under one year. We are turning to immunotherapies and targeted therapies in PDAC in order to directly attack the core features that make PDAC notoriously resistant to chemotherapy. While the initial studies of these agents in PDAC have generally been disappointing, we find optimism in recent preclinical and early clinical research. We find that despite the immunosuppressive effects of the PDAC tumor microenvironment, new strategies, such as combining immune checkpoint inhibitors with vaccine therapy or chemokine receptor antagonists, help elicit strong immune responses. We also expand on principles of DNA homologous recombination repair and highlight opportunities to use agents, such as PARP inhibitors, that exploit deficiencies in DNA repair pathways. Lastly, we describe advances in direct targeting of driver mutations and metabolic pathways and highlight some technological achievements such as novel KRAS inhibitors.
Collapse
Affiliation(s)
| | | | - Marcus S. Noel
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (A.A.)
| |
Collapse
|
40
|
Principe DR, Aissa AF, Kumar S, Pham TND, Underwood PW, Nair R, Ke R, Rana B, Trevino JG, Munshi HG, Benevolenskaya EV, Rana A. Calcium channel blockers potentiate gemcitabine chemotherapy in pancreatic cancer. Proc Natl Acad Sci U S A 2022; 119:e2200143119. [PMID: 35476525 PMCID: PMC9170157 DOI: 10.1073/pnas.2200143119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/19/2022] [Indexed: 12/15/2022] Open
Abstract
There is currently no effective treatment for pancreatic ductal adenocarcinoma (PDAC). While palliative chemotherapy offers a survival benefit to most patients, nearly all will eventually progress on treatment and long-term survivability remains poor. Given the lack of subsequent line treatment options, in this study, we sought to identify novel strategies to prevent, delay, or overcome resistance to gemcitabine, one of the most widely used medications in PDAC. Using a combination of single-cell RNA sequencing and high-throughput proteomic analysis, we identified a subset of gemcitabine-resistant tumor cells enriched for calcium/calmodulin signaling. Pharmacologic inhibition of calcium-dependent calmodulin activation led to the rapid loss of drug-resistant phenotypes in vitro, which additional single-cell RNA sequencing identified was due to impaired activation of the RAS/ERK signaling pathway. Consistent with these observations, calcium chelation or depletion of calcium in the culture media also impaired ERK activation in gemcitabine-resistant cells, and restored therapeutic responses to gemcitabine in vitro. We observed similar results using calcium channel blockers (CCBs) such as amlodipine, which inhibited prosurvival ERK signaling in vitro and markedly enhanced therapeutic responses to gemcitabine in both orthotopic xenografts and transgenic models of PDAC. Combined, these results offer insight into a potential means of gemcitabine resistance and suggest that select CCBs may provide a clinical benefit to PDAC patients receiving gemcitabine-based chemotherapy.
Collapse
Affiliation(s)
- Daniel R. Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL 60612
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60612
| | - Alexandre F. Aissa
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60612
| | - Sandeep Kumar
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612
| | - Thao N. D. Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL 60611
| | - Patrick W. Underwood
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL 32611
| | - Rakesh Nair
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612
| | - Rong Ke
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612
| | - Basabi Rana
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612
| | - Jose G. Trevino
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University, Richmond, VA 23284
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL 60611
- Jesse Brown VA Medical Center, Chicago, IL 60612
| | | | - Ajay Rana
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612
- Jesse Brown VA Medical Center, Chicago, IL 60612
| |
Collapse
|
41
|
Nel AE, Mei KC, Liao YP, Lu X. Multifunctional Lipid Bilayer Nanocarriers for Cancer Immunotherapy in Heterogeneous Tumor Microenvironments, Combining Immunogenic Cell Death Stimuli with Immune Modulatory Drugs. ACS NANO 2022; 16:5184-5232. [PMID: 35348320 PMCID: PMC9519818 DOI: 10.1021/acsnano.2c01252] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In addition to the contribution of cancer cells, the solid tumor microenvironment (TME) has a critical role in determining tumor expansion, antitumor immunity, and the response to immunotherapy. Understanding the details of the complex interplay between cancer cells and components of the TME provides an unprecedented opportunity to explore combination therapy for intervening in the immune landscape to improve immunotherapy outcome. One approach is the introduction of multifunctional nanocarriers, capable of delivering drug combinations that provide immunogenic stimuli for improvement of tumor antigen presentation, contemporaneous with the delivery of coformulated drug or synthetic molecules that provide immune danger signals or interfere in immune-escape, immune-suppressive, and T-cell exclusion pathways. This forward-looking review will discuss the use of lipid-bilayer-encapsulated liposomes and mesoporous silica nanoparticles for combination immunotherapy of the heterogeneous immune landscapes in pancreatic ductal adenocarcinoma and triple-negative breast cancer. We describe how the combination of remote drug loading and lipid bilayer encapsulation is used for the synthesis of synergistic drug combinations that induce immunogenic cell death, interfere in the PD-1/PD-L1 axis, inhibit the indoleamine-pyrrole 2,3-dioxygenase (IDO-1) immune metabolic pathway, restore spatial access to activated T-cells to the cancer site, or reduce the impact of immunosuppressive stromal components. We show how an integration of current knowledge and future discovery can be used for a rational approach to nanoenabled cancer immunotherapy.
Collapse
Affiliation(s)
- André E. Nel
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| | - Kuo-Ching Mei
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiangsheng Lu
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
42
|
Hung YH, Chen LT, Hung WC. The Trinity: Interplay among Cancer Cells, Fibroblasts, and Immune Cells in Pancreatic Cancer and Implication of CD8 + T Cell-Orientated Therapy. Biomedicines 2022; 10:biomedicines10040926. [PMID: 35453676 PMCID: PMC9026398 DOI: 10.3390/biomedicines10040926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/15/2022] [Accepted: 04/17/2022] [Indexed: 02/01/2023] Open
Abstract
The microenvironment in tumors is complicated and is constituted by different cell types and stromal proteins. Among the cell types, the abundance of cancer cells, fibroblasts, and immune cells is high and these cells work as the “Trinity” in promoting tumorigenesis. Although unidirectional or bidirectional crosstalk between two independent cell types has been well characterized, the multi-directional interplays between cancer cells, fibroblasts, and immune cells in vitro and in vivo are still unclear. We summarize recent studies in addressing the interaction of the “Trinity” members in the tumor microenvironment and propose a functional network for how these members communicate with each other. In addition, we discuss the underlying mechanisms mediating the interplay. Moreover, correlations of the alterations in the distribution and functionality of cancer cells, fibroblasts, and immune cells under different circumstances are reviewed. Finally, we point out the future application of CD8+ T cell-oriented therapy in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yu-Hsuan Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Division of Hematology & Oncology, Department of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 804, Taiwan
- Center for Cancer Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: (L.-T.C.); (W.-C.H.)
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan;
- Correspondence: (L.-T.C.); (W.-C.H.)
| |
Collapse
|
43
|
Zhang P, Qin C, Liu N, Zhou X, Chu X, Lv F, Gu Y, Yin L, Liu J, Zhou J, Huo M. The programmed site-specific delivery of LY3200882 and PD-L1 siRNA boosts immunotherapy for triple-negative breast cancer by remodeling tumor microenvironment. Biomaterials 2022; 284:121518. [DOI: 10.1016/j.biomaterials.2022.121518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/02/2022] [Accepted: 04/08/2022] [Indexed: 12/17/2022]
|
44
|
Birrer MJ, Fujiwara K, Oaknin A, Randall L, Ojalvo LS, Valencia C, Ray-Coquard I. The Changing Landscape of Systemic Treatment for Cervical Cancer: Rationale for Inhibition of the TGF-β and PD-L1 Pathways. Front Oncol 2022; 12:814169. [PMID: 35280818 PMCID: PMC8905681 DOI: 10.3389/fonc.2022.814169] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/24/2022] [Indexed: 12/28/2022] Open
Abstract
Cervical cancer is one of the most common and lethal cancers among women worldwide. Treatment options are limited in patients with persistent, recurrent, or metastatic cervical cancer, with <20% of women living >5 years. Persistent human papillomavirus (HPV) infection has been implicated in almost all cases of cervical cancer. HPV infection not only causes normal cervical cells to transform into cancer cells, but also creates an immunosuppressive environment for cancer cells to evade the immune system. Recent clinical trials of drugs targeting the PD-(L)1 pathway have demonstrated improvement in overall survival in patients with cervical cancer, but only 20% to 30% of patients show overall survival benefit beyond 2 years, and resistance to these treatments remains common. Therefore, novel treatment strategies targeting HPV infection-associated factors are currently being evaluated in clinical trials. Bintrafusp alfa is a first-in-class bifunctional fusion protein composed of the extracellular domain of the TGF-βRII receptor (a TGF-β "trap") fused to a human immunoglobulin G1 monoclonal antibody that blocks PD-L1. Early clinical trials of bintrafusp alfa have shown promising results in patients with advanced cervical cancer.
Collapse
Affiliation(s)
- Michael J Birrer
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas Medical School, Little Rock, AR, United States
| | - Keiichi Fujiwara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Ana Oaknin
- Gynaecological Cancer Program, Vall d'Hebron Institute of Oncology, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Leslie Randall
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Laureen S Ojalvo
- EMD Serono Research & Development Institute, Inc., Billerica, MA, United States
| | - Christian Valencia
- EMD Serono Research & Development Institute, Inc., Billerica, MA, United States
| | - Isabelle Ray-Coquard
- GINECO Group & Department of Medical Oncology, Centre Leon Berard, University Claude Bernard Lyon, Lyon, France
| |
Collapse
|
45
|
Ogasawara M, Yamasaki-Yashiki S, Hamada M, Yamaguchi-Miyamoto T, Kawasuji T, Honda H, Yanagibashi T, Ikutani M, Watanabe Y, Fujimoto R, Matsunaga T, Nakajima N, Nagai Y, Takatsu K. Betulin Attenuates TGF-β1- and PGE 2-Mediated Inhibition of NK Cell Activity to Suppress Tumor Progression and Metastasis in Mice. Biol Pharm Bull 2022; 45:339-353. [PMID: 35228400 DOI: 10.1248/bpb.b21-00921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transforming growth factor (TGF)-β1 and prostaglandin E2 (PGE2) are humoral factors critically involved in the induction of immunosuppression in the microenvironment of various types of tumors, including melanoma. In this study, we identified a natural compound that attenuated TGF-β1- and PGE2-induced immunosuppression and examined its effect on B16 melanoma growth in mice. By screening 502 natural compounds for attenuating activity against TGF-β1- or PGE2-induced suppression of cytolysis in poly(I:C)-stimulated murine splenocytes, we found that betulin was the most potent compound. Betulin also reduced TGF-β1- and PGE2-induced downregulation of perforin and granzyme B mRNA expression and cell surface expression of NKG2D and CD69 in natural killer (NK) cells. Cell depletion and coculture experiments showed that NK cells, dendritic cells, B cells, and T cells were necessary for the attenuating effects of betulin. Structure-activity relationship analysis revealed that two hydroxyl groups at positions C3 and C28 of betulin, their cis-configuration, and methyl group at C30 played crucial roles in its attenuating activity. In a subcutaneous implantation model of B16 melanoma in mice, intratumor administration of betulin and LY2157299, a TGF-β1 type I receptor kinase inhibitor, significantly retarded the growth of B16 melanoma. Notably, betulin increased significantly the number of CD69 positive NK cells in tumor sites at early stages of post-tumor cell injection. Our data suggest that betulin inhibits the growth of B16 melanoma by enhancing NK cell activity through attenuating the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Masaru Ogasawara
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | | | - Masahiro Hamada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University
| | | | - Toru Kawasuji
- Toyama Prefectural Institute for Pharmaceutical Research
| | - Hiroe Honda
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | - Tsutomu Yanagibashi
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | - Masashi Ikutani
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama.,Graduate School of Integrated Sciences for Life, Hiroshima University.,Department of Immune Regulation, Research Institute, National Center for Global Health and Medicine
| | - Yasuharu Watanabe
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| | - Ryota Fujimoto
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University
| | | | - Noriyuki Nakajima
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University
| | - Yoshinori Nagai
- Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama.,Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University
| | - Kiyoshi Takatsu
- Toyama Prefectural Institute for Pharmaceutical Research.,Department of Immunobiology and Pharmacological Genetics, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama
| |
Collapse
|
46
|
Principe DR, Underwood PW, Kumar S, Timbers KE, Koch RM, Trevino JG, Munshi HG, Rana A. Loss of SMAD4 Is Associated With Poor Tumor Immunogenicity and Reduced PD-L1 Expression in Pancreatic Cancer. Front Oncol 2022; 12:806963. [PMID: 35155243 PMCID: PMC8832494 DOI: 10.3389/fonc.2022.806963] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Transforming Growth Factor β (TGFβ) is a key mediator of immune evasion in pancreatic ductal adenocarcinoma (PDAC), and the addition of TGFβ inhibitors in select immunotherapy regimens shows early promise. Though the TGFβ target SMAD4 is deleted in approximately 55% of PDAC tumors, the effects of SMAD4 loss on tumor immunity have yet to be fully explored. Using a combination of genomic databases and PDAC specimens, we found that tumors with loss of SMAD4 have a comparatively poor T-cell infiltrate. SMAD4 loss was also associated with a reduction in several chemokines with known roles in T-cell recruitment, which was recapitulated using knockdown of SMAD4 in PDAC cell lines. Accordingly, JURKAT T-cells were poorly attracted to conditioned media from PDAC cells with knockdown of SMAD4 and lost their ability to produce IFNγ. However, while exogenous TGFβ modestly reduced PD-L1 expression in SMAD4-intact cell lines, SMAD4 and PD-L1 positively correlated in human PDAC samples. PD-L1 status was closely related to tumor-infiltrating lymphocytes, particularly IFNγ-producing T-cells, which were more abundant in SMAD4-expressing tumors. Low concentrations of IFNγ upregulated PD-L1 in tumor cells in vitro, even when administered alongside high concentrations of TGFβ. Hence, while SMAD4 may have a modest inhibitory effect on PD-L1 in tumor cells, SMAD4 indirectly promotes PD-L1 expression in the pancreatic tumor microenvironment by enhancing T-cell infiltration and IFNγ biosynthesis. These data suggest that pancreatic cancers with loss of SMAD4 represent a poorly immunogenic disease subtype, and SMAD4 status warrants further exploration as a predictive biomarker for cancer immunotherapy.
Collapse
Affiliation(s)
- Daniel R. Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, IL, United States
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Ajay Rana, ; Daniel R. Principe,
| | - Patrick W. Underwood
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Sandeep Kumar
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
| | - Kaytlin E. Timbers
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
| | - Regina M. Koch
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
| | - Jose G. Trevino
- Department of Surgery, Division of Surgical Oncology, Virginia Commonwealth University, Richmond, VA, United States
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Ajay Rana
- Department of Surgery, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown VA Medical Center, Chicago, IL, United States
- *Correspondence: Ajay Rana, ; Daniel R. Principe,
| |
Collapse
|
47
|
XP-524 is a dual-BET/EP300 inhibitor that represses oncogenic KRAS and potentiates immune checkpoint inhibition in pancreatic cancer. Proc Natl Acad Sci U S A 2022; 119:2116764119. [PMID: 35064087 PMCID: PMC8795568 DOI: 10.1073/pnas.2116764119] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
There are currently no effective treatments for pancreatic ductal adenocarcinoma (PDAC), which displays widespread resistance to chemotherapy, radiation therapy, and immunotherapy. Here, we demonstrate that the multispecificity BET/EP300 inhibitor XP-524 has pronounced single-agent efficacy in vitro, in vivo, and in ex vivo human PDAC slice cultures, functioning in part by attenuating oncogenic KRAS signaling. In vivo XP-524 led to extensive reprogramming of the pancreatic tumor microenvironment, sensitizing murine carcinoma to immune checkpoint inhibition and further extending survival. Given the urgent need for therapeutic approaches in PDAC, the combination of XP-524 and immune checkpoint inhibition warrants additional exploration. Pancreatic ductal adenocarcinoma (PDAC) is associated with extensive dysregulation of the epigenome and epigenetic regulators, such as bromodomain and extraterminal motif (BET) proteins, have been suggested as potential targets for therapy. However, single-agent BET inhibition has shown poor efficacy in clinical trials, and no epigenetic approaches are currently used in PDAC. To circumvent the limitations of the current generation of BET inhibitors, we developed the compound XP-524 as an inhibitor of the BET protein BRD4 and the histone acetyltransferase EP300/CBP, both of which are ubiquitously expressed in PDAC tissues and cooperate to enhance tumorigenesis. XP-524 showed increased potency and superior tumoricidal activity than the benchmark BET inhibitor JQ-1 in vitro, with comparable efficacy to higher-dose JQ-1 combined with the EP300/CBP inhibitor SGC-CBP30. We determined that this is in part due to the epigenetic silencing of KRAS in vitro, with similar results observed using ex vivo slice cultures of human PDAC tumors. Accordingly, XP-524 prevented KRAS-induced, neoplastic transformation in vivo and extended survival in two transgenic mouse models of aggressive PDAC. In addition to the inhibition of KRAS/MAPK signaling, XP-524 also enhanced the presentation of self-peptide and tumor recruitment of cytotoxic T lymphocytes, though these lymphocytes remained refractory from full activation. We, therefore, combined XP-524 with an anti–PD-1 antibody in vivo, which reactivated the cytotoxic immune program and extended survival well beyond XP-524 in monotherapy. Pending a comprehensive safety evaluation, these results suggest that XP-524 may benefit PDAC patients and warrant further exploration, particularly in combination with immune checkpoint inhibition.
Collapse
|
48
|
Kyte JA. Strategies for Improving the Efficacy of CAR T Cells in Solid Cancers. Cancers (Basel) 2022; 14:cancers14030571. [PMID: 35158839 PMCID: PMC8833730 DOI: 10.3390/cancers14030571] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cell therapy with genetically retargeted T cells shows strong clinical efficacy against leukaemia and lymphoma. To make this therapy efficient against solid cancers, a series of hurdles must be addressed. This includes the need to enable the T cells to survive long term in patients and to overcome immunosuppressive mechanisms in the tumour. Further, it is essential to prevent tumour cells from escaping by losing the protein that is recognised by the infused cells. The present article provides an overview of the key strategies that are currently being investigated to overcome these hurdles. A series of approaches have been described in preclinical models, but these remain untested in patients. The further progress of the field will depend on evaluating more strategies in a proper clinical setting. Abstract Therapy with T cells equipped with chimeric antigen receptors (CARs) shows strong efficacy against leukaemia and lymphoma, but not yet against solid cancers. This has been attributed to insufficient T cell persistence, tumour heterogeneity and an immunosuppressive tumour microenvironment. The present article provides an overview of key strategies that are currently investigated to overcome these hurdles. Basic aspects of CAR design are revisited, relevant for tuning the stimulatory signal to the requirements of solid tumours. Novel approaches for enhancing T cell persistence are highlighted, based on epigenetic or post-translational modifications. Further, the article describes CAR T strategies that are being developed for overcoming tumour heterogeneity and the escape of cancer stem cells, as well as for countering prevalent mechanisms of immune suppression in solid cancers. In general, personalised medicine is faced with a lack of drugs matching the patient’s profile. The advances and flexibility of modern gene engineering may allow for the filling of some of these gaps with tailored CAR T approaches addressing mechanisms identified as important in the individual patient. At this point, however, CAR T cell therapy remains unproved in solid cancers. The further progress of the field will depend on bringing novel strategies into clinical evaluation, while maintaining safety.
Collapse
Affiliation(s)
- Jon Amund Kyte
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway;
- Department of Clinical Cancer Research, Oslo University Hospital, Mail Box 4950 Nydalen, 0424 Oslo, Norway
| |
Collapse
|
49
|
Abstract
Transforming growth factor-β (TGFβ) signalling controls multiple cell fate decisions during development and tissue homeostasis; hence, dysregulation of this pathway can drive several diseases, including cancer. Here we discuss the influence that TGFβ exerts on the composition and behaviour of different cell populations present in the tumour immune microenvironment, and the context-dependent functions of this cytokine in suppressing or promoting cancer. During homeostasis, TGFβ controls inflammatory responses triggered by exposure to the outside milieu in barrier tissues. Lack of TGFβ exacerbates inflammation, leading to tissue damage and cellular transformation. In contrast, as tumours progress, they leverage TGFβ to drive an unrestrained wound-healing programme in cancer-associated fibroblasts, as well as to suppress the adaptive immune system and the innate immune system. In consonance with this key role in reprogramming the tumour microenvironment, emerging data demonstrate that TGFβ-inhibitory therapies can restore cancer immunity. Indeed, this approach can synergize with other immunotherapies - including immune checkpoint blockade - to unleash robust antitumour immune responses in preclinical cancer models. Despite initial challenges in clinical translation, these findings have sparked the development of multiple therapeutic strategies that inhibit the TGFβ pathway, many of which are currently in clinical evaluation.
Collapse
Affiliation(s)
- Daniele V F Tauriello
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Elena Sancho
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain.
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
50
|
Zhang M, Zhang YY, Chen Y, Wang J, Wang Q, Lu H. TGF-β Signaling and Resistance to Cancer Therapy. Front Cell Dev Biol 2021; 9:786728. [PMID: 34917620 PMCID: PMC8669610 DOI: 10.3389/fcell.2021.786728] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/02/2021] [Indexed: 12/12/2022] Open
Abstract
The transforming growth factor β (TGF-β) pathway, which is well studied for its ability to inhibit cell proliferation in early stages of tumorigenesis while promoting epithelial-mesenchymal transition and invasion in advanced cancer, is considered to act as a double-edged sword in cancer. Multiple inhibitors have been developed to target TGF-β signaling, but results from clinical trials were inconsistent, suggesting that the functions of TGF-β in human cancers are not yet fully explored. Multiple drug resistance is a major challenge in cancer therapy; emerging evidence indicates that TGF-β signaling may be a key factor in cancer resistance to chemotherapy, targeted therapy and immunotherapy. Finally, combining anti-TGF-β therapy with other cancer therapy is an attractive venue to be explored for the treatment of therapy-resistant cancer.
Collapse
Affiliation(s)
- Maoduo Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ying Yi Zhang
- Centre for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Yongze Chen
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jia Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hezhe Lu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|