1
|
Niu M, Wang N, Yang D, Fu L, Yang Y, Shen L, Wang H, Shao X. Multi-omics integration reveals immune hallmarks and biomarkers associated with FLT3 inhibitor sensitivity in FLT3-mutated AML. BLOOD SCIENCE 2025; 7:e00227. [PMID: 40115132 PMCID: PMC11925420 DOI: 10.1097/bs9.0000000000000227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/18/2025] [Indexed: 03/23/2025] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy characterized by poor clinical outcomes, frequently exacerbated by mutations in the FMS-like tyrosine kinase 3 (FLT3) gene. Although FLT3 inhibitors (FLT3i) have emerged as promising therapeutic agents, the absence of molecular biomarkers to predict FLT3i response remains a critical limitation in clinical practice. In this study, we performed a comprehensive multi-omics analysis integrating transcriptomic, proteomic, and pharmacogenomic data from the Beat AML cohort, the Cancer Cell Line Encyclopedia (CCLE), and the PXD023201 repository to elucidate the molecular consequences of FLT3 mutations in AML. Our analysis revealed significant differences in RNA and protein expression profiles between FLT3-mutant and wild-type AML cases, with a particularly striking association between FLT3 mutations and immune suppression. We further evaluated the drug sensitivity of FLT3-mutant patients to 3 FDA-approved FLT3i, gilteritinib, midostaurin, and quizartinib, and observed heightened sensitivity in FLT3-mutant cohorts, accompanied by the activation of immune-related pathways in treatment-responsive groups. These findings suggest a potential synergy between FLT3i efficacy and immune activation. Through rigorous bioinformatic analysis, we identified 3 candidate biomarkers: CD36, SASH1, and NIBAN2, associated with FLT3i sensitivity. These biomarkers were consistently upregulated in favorable prognostic subgroups and demonstrated strong correlations with immune activation pathways. The identification of CD36, SASH1, and NIBAN2 as predictive biomarkers offers a novel toolset for stratifying FLT3i response and prognosis.
Collapse
Affiliation(s)
- Mingming Niu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, PUMC Department of Stem Cell and Regenerative Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Ning Wang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, PUMC Department of Stem Cell and Regenerative Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Dandan Yang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, PUMC Department of Stem Cell and Regenerative Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Lixia Fu
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, PUMC Department of Stem Cell and Regenerative Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Yang Yang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, PUMC Department of Stem Cell and Regenerative Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Long Shen
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, PUMC Department of Stem Cell and Regenerative Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Hong Wang
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, PUMC Department of Stem Cell and Regenerative Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Xianfeng Shao
- State Key Laboratory of Experimental Hematology, Haihe Laboratory of Cell Ecosystem, National Clinical Research Center for Blood Diseases, PUMC Department of Stem Cell and Regenerative Medicine, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
2
|
Zhang X, Zhang X, Yin H, Li Q, Fan B, Jiang B, Xie A, Guo D, Hao H, Zhang B. Roles of SPOCK1 in the Formation Mechanisms and Treatment of Non-Small-Cell Lung Cancer and Brain Metastases from Lung Cancer. Onco Targets Ther 2025; 18:35-47. [PMID: 39835273 PMCID: PMC11745074 DOI: 10.2147/ott.s483576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Lung cancer is a malignant tumor with high morbidity and mortality in China and worldwide. Once it metastasizes to the brain, its prognosis is very poor. Brain metastases are found in about 20% of newly diagnosed non-small-cell lung cancer (NSCLC) patients. About 30% of NSCLC patients develop brain metastases during treatment. NSCLC that is positive for EGFR, ALK, and ROS1 variations is especially likely to metastasize to the brain. SPOCK1 is a proteoglycan with systemic physiological functions. It regulates the self-renewal of brain metastasis-initiating cells, regulates invasion and metastasis from the lung to the brain, plays an important role in tumor progression and treatment resistance, and has higher expression in metastatic tumor tissues than other tissues. Current treatments for NSCLC brain metastases include surgery, whole-brain radiotherapy, stereotactic radiotherapy, targeted therapy, and chemotherapy. SPOCK1 is involved in many signaling pathways, by which it influences a variety of NSCLC treatment methods. In this paper, the progress of research on the treatment of NSCLC brain metastases is reviewed to guide decisions on treatment options in clinical practice.
Collapse
Affiliation(s)
- Xuebing Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Xia Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
- Department of Oncology, Dalian Fifth People’s Hospital, Dalian, Liaoning, People’s Republic of China
| | - Hang Yin
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Qizheng Li
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Buqun Fan
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Bolun Jiang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Anqi Xie
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Dandan Guo
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| | - Huanling Hao
- Department of Oncology, Dandong First Hospital, Dandong, Liaoning, People’s Republic of China
| | - Bin Zhang
- Department of Oncology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, People’s Republic of China
| |
Collapse
|
3
|
Agir N, Georgakopoulos-Soares I, Zaravinos A. A Multi-Omics Analysis of a Mitophagy-Related Signature in Pan-Cancer. Int J Mol Sci 2025; 26:448. [PMID: 39859167 PMCID: PMC11765132 DOI: 10.3390/ijms26020448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Mitophagy, an essential process within cellular autophagy, has a critical role in regulating key cellular functions such as reproduction, metabolism, and apoptosis. Its involvement in tumor development is complex and influenced by the cellular environment. Here, we conduct a comprehensive analysis of a mitophagy-related gene signature, composed of PRKN, PINK1, MAP1LC3A, SRC, BNIP3L, BECN1, and OPTN, across various cancer types, revealing significant differential expression patterns associated with molecular subtypes, stages, and patient outcomes. Pathway analysis revealed a complex interplay between the expression of the signature and potential effects on the activity of various cancer-related pathways in pan-cancer. Immune infiltration analysis linked the mitophagy signature with certain immune cell types, particularly OPTN with immune infiltration in melanoma. Methylation patterns correlated with gene expression and immune infiltration. Mutation analysis also showed frequent alterations in PRKN (34%), OPTN (21%), PINK1 (28%), and SRC (15%), with implications for the tumor microenvironment. We also found various correlations between the expression of the mitophagy-related genes and sensitivity in different drugs, suggesting that targeting this signature could improve therapy efficacy. Overall, our findings underscore the importance of mitophagy in cancer biology and drug resistance, as well as its potential for informing treatment strategies.
Collapse
Affiliation(s)
- Nora Agir
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus;
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 1516, Cyprus;
- Cancer Genetics, Genomics and Systems Biology Laboratory, Basic and Translational Cancer Research Center (BTCRC), Nicosia 1516, Cyprus
| |
Collapse
|
4
|
Kalla C, Ott G, Finotello F, Niewola-Staszkowska K, Conza GD, Lahn M, van der Veen L, Schüler J, Falkenstern-Ge R, Kopecka J, Riganti C. The highly selective and oral phosphoinositide 3-kinase delta (PI3K-δ) inhibitor roginolisib induces apoptosis in mesothelioma cells and increases immune effector cell composition. Transl Oncol 2024; 43:101857. [PMID: 38412661 PMCID: PMC10907864 DOI: 10.1016/j.tranon.2023.101857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/12/2023] [Accepted: 12/03/2023] [Indexed: 02/29/2024] Open
Abstract
Targeting aberrantly expressed kinases in malignant pleural mesothelioma (MPM) is a promising therapeutic strategy. We here investigated the effect of the novel and highly selective Phosphoinositide 3-kinase delta (PI3K-δ) inhibitor roginolisib (IOA-244) on MPM cells and on the immune cells in MPM microenvironment. To this aim, we analyzed the expression of PI3K-δ by immunohistochemistry in specimens from primary MPM, cell viability and death in three different MPM cell lines treated with roginolisib alone and in combination with ipatasertib (AKT inhibitor) and sapanisertib (mTOR inhibitor). In a co-culture model of patient-derived MPM cells, autologous peripheral blood mononuclear cells and fibroblasts, the tumor cell viability and changes in immune cell composition were investigated after treatment of roginolisib with nivolumab and cisplatin. PI3K-δ was detected in 66/89 (74%) MPM tumors and was associated with reduced overall survival (12 vs. 25 months, P=0.0452). Roginolisib induced apoptosis in MPM cells and enhanced the anti-tumor efficacy of AKT and mTOR kinase inhibitors by suppressing PI3K-δ/AKT/mTOR and ERK1/2 signaling. Furthermore, the combination of roginolisib with chemotherapy and immunotherapy re-balanced the immune cell composition, increasing effector T-cells and reducing immune suppressive cells. Overall, roginolisib induces apoptosis in MPM cells and increases the antitumor immune cell effector function when combined with nivolumab and cisplatin. These results provide first insights on the potential of roginolisib as a therapeutic agent in patients with MPM and its potential in combination with established immunotherapy regimen.
Collapse
Affiliation(s)
- Claudia Kalla
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, 70376, Stuttgart, Germany; Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Auerbachstrasse 112, 70376, Stuttgart, Germany; Department of Clinical Pharmacology, University Hospital, University of Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - German Ott
- Department of Clinical Pathology, Robert-Bosch-Krankenhaus, Auerbachstrasse 112, 70376, Stuttgart, Germany
| | - Francesca Finotello
- Department of Molecular Biology, Digital Science Center (DiSC), Universität Innsbruck, Innrain 15, A-6020 Innsbruck, Austria
| | | | - Giusy Di Conza
- iOnctura SA, Avenue Secheron 15, 1202, Geneva, Switzerland
| | - Michael Lahn
- iOnctura SA, Avenue Secheron 15, 1202, Geneva, Switzerland
| | | | - Julia Schüler
- Charles River Germany GmbH, Am Flughafen 12, Freiburg, Germany
| | - Roger Falkenstern-Ge
- Department of Molecular and Pneumonological Oncology, Robert-Bosch-Krankenhaus, Auerbachstrasse 112, 70376, Stuttgart, Germany
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Nizza 44, 10126, Torino, Italy; Molecular Biotechnology Center "Guido Tarone", via Nizza 44, 10126, Torino, Italy
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Nizza 44, 10126, Torino, Italy; Molecular Biotechnology Center "Guido Tarone", via Nizza 44, 10126, Torino, Italy; Interdepartmental Center "G.Scansetti" for the study of asbestos and other toxic particulates, University of Torino, 10126 Torino, Italy.
| |
Collapse
|
5
|
Zhang H, Xie F, Yuan XY, Dai XT, Tian YF, Sun MM, Yu SQ, Cai JY, Sun B, Zhang WC, Shan CL. Discovery of a nitroaromatic nannocystin with potent in vivo anticancer activity against colorectal cancer by targeting AKT1. Acta Pharmacol Sin 2024; 45:1044-1059. [PMID: 38326625 PMCID: PMC11053100 DOI: 10.1038/s41401-024-01231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024]
Abstract
The development of targeted chemotherapeutic agents against colorectal cancer (CRC), one of the most common cancers with a high mortality rate, is in a constant need. Nannocystins are a family of myxobacterial secondary metabolites featuring a 21-membered depsipeptide ring. The in vitro anti-CRC activity of natural and synthetic nannocystins was well documented, but little is known about their in vivo efficacy and if positive, the underlying mechanism of action. In this study we synthesized a nitroaromatic nannocystin through improved preparation of a key fragment, and characterized its in vitro activity and in vivo efficacy against CRC. We first described the total synthesis of compounds 2-4 featuring Heck macrocyclization to forge their 21-membered macrocycle. In a panel of 7 cancer cell lines from different tissues, compound 4 inhibited the cell viability with IC values of 1-6 nM. In particular, compound 4 (1, 2, 4 nM) inhibited the proliferation of CRC cell lines (HCT8, HCT116 and LoVo) in both concentration and time dependent manners. Furthermore, compound 4 concentration-dependently inhibited the colony formation and migration of CRC cell lines. Moreover, compound 4 induced cell cycle arrest at sub-G1 phase, apoptosis and cellular senescence in CRC cell lines. In three patient-derived CRC organoids, compound 4 inhibited the PDO with IC values of 3.68, 28.93 and 11.81 nM, respectively. In a patient-derived xenograft mouse model, injection of compound 4 (4, 8 mg/kg, i.p.) every other day for 12 times dose-dependently inhibited the tumor growth without significant change in body weight. We conducted RNA-sequencing, molecular docking and cellular thermal shift assay to elucidate the anti-CRC mechanisms of compound 4, and revealed that it exerted its anti-CRC effect at least in part by targeting AKT1.
Collapse
Affiliation(s)
- Han Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Fei Xie
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Xiao-Ya Yuan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Xin-Tong Dai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Yun-Feng Tian
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Ming-Ming Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Si-Qi Yu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Jia-You Cai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Bin Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Wei-Cheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| | - Chang-Liang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
6
|
Liu PW, Lin J, Hou R, Cai Z, Gong Y, He PA, Yang J. Single-cell RNA-seq reveals the metabolic status of immune cells response to immunotherapy in triple-negative breast cancer. Comput Biol Med 2024; 169:107926. [PMID: 38183706 DOI: 10.1016/j.compbiomed.2024.107926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/09/2023] [Accepted: 01/01/2024] [Indexed: 01/08/2024]
Abstract
Immune checkpoint blockade (ICB) therapy offers promise in the treatment of triple-negative breast cancer (TNBC); however, its limited efficacy in certain TNBC patients poses a challenge. In this study, we elucidated the metabolic mechanism at 'sub-subtype' resolution underlying the non-response to ICB therapy in TNBC. Here, an analytic pipeline was developed to reveal the metabolic heterogeneity, which is correlated with the ICB outcomes, within each immune cell subtype. First, we identified metabolic 'sub-subtypes' within certain cell subtypes, predominantly T cell subsets, which are enriched in ICB non-responders and named as non-responder-enriched (NR-E) clusters. Notably, most of NR-E T metabolic cells exhibit globally higher metabolic activities compared to other cells within the same individual subtype. Further, we investigated the extra-cellular signals that trigger the metabolic status of NR-E T cells. In detail, the prediction of cell-to-cell communication indicated that NR-E T cells are regulated by plasmatic dendritic cells (pDCs) through TNFSF9, as well as by macrophages expressing SIGLEC9. In addition, we also validate the communication between TNFSF9+ pDCs and NR-E T cells utilizing deconvolution of spatial transcriptomics analysis. In summary, our research identified specific metabolic 'sub-subtypes' associated with ICB non-response and uncovered the mechanisms of their regulation in TNBC. And the proposed analytical pipeline can be used to examine metabolic heterogeneity within cell types that correlate with diverse phenotypes.
Collapse
Affiliation(s)
- Pei-Wen Liu
- School of Science, Zhejiang Sci-Tech University, Hangzhou, China; Geneis Beijing Co., Ltd., Beijing, China
| | - Jun Lin
- Depatment of Pathology, The People's Hospital of QuZhou City, ZheJiang, China
| | - Rui Hou
- Geneis Beijing Co., Ltd., Beijing, China
| | - Zhe Cai
- Extendcity (Shanghai) Co., Ltd., Shanghai, China
| | - Yue Gong
- Geneis Beijing Co., Ltd., Beijing, China
| | - Ping-An He
- School of Science, Zhejiang Sci-Tech University, Hangzhou, China.
| | | |
Collapse
|
7
|
Wei Y, Lan C, Yang C, Liao X, Zhou X, Huang X, Xie H, Zhu G, Peng T. Robust analysis of a novel PANoptosis-related prognostic gene signature model for hepatocellular carcinoma immune infiltration and therapeutic response. Sci Rep 2023; 13:14519. [PMID: 37666920 PMCID: PMC10477271 DOI: 10.1038/s41598-023-41670-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/29/2023] [Indexed: 09/06/2023] Open
Abstract
PANoptosis, an interplay between pyroptosis, apoptosis, and necroptosis, is deeply involved in cancer development and immunity. However, the influence of PANoptosis in hepatocellular carcinoma (HCC) remains to be further investigated. The differentially expressed PANoptosis-related genes (PANRGs) was screened in The Cancer Genome Atlas (TCGA) database. Accordingly, mutation, bioinformatics, and consensus clustering analyses were performed. Then, a prognostic risk model was developed by least absolute shrinkage and selection operator (LASSO) Cox regression. Furthermore, the prognostic value, immunity correlation and therapeutic response prediction ability of risk model were explored. A total of 18 PANRGs were differently expressed in the TCGA-HCC cohort and were mainly involved in cancer- and cell death-related signal pathways. Using unsupervised clustering method, we identified two PANRGs-mediated clustering patterns. The remarkable differences between the two clusters on overall survival (OS) and clinical features were demonstrated respectively. Based on the five-gene prognostic risk model, the calculated PANRG-scores were used to categorize the subgroups as high- and low-risk. Notably, the high-risk subgroup had a dismal prognosis and exhibited much lower immune infiltration levels of mast cells, nature killer cells and pDCs, but higher levels of aDCs, iDCs and Treg cells than those in the low-risk subgroup. Furthermore, we constructed a reliable nomogram combining clinical traits and PANRG-score to predict the OS of HCC patients. The significantly negative correlation between PANoptosis and tumor mutation burden (TMB), ferroptosis were revealed. In drug sensitivity analysis, the high-risk subgroup had a considerably lower TIDE score, suggesting a preferable response to immunotherapy, and may be more sensitive to Tipifarnib, Imatinib, Doxorubicin, and Gemcitabine. The upregulated mRNA expressions of FADD were validated in 16 paired HCC tissues of Guangxi cohort. Based on PANoptosis-related genes, an integrated risk signature was constructed to provide a roadmap for patient stratification and predict HCC patient's prognosis. The patients with the higher PANRG-score may carry a dismal survival and relatively low immune infiltration, but a potential better immunotherapy response. Therefore, future HCC therapy perspectives should emphasize the setting of PANoptosis to achieve a personalized, practicable and effective therapeutic regimen.
Collapse
Affiliation(s)
- Yongguang Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, China
| | - Chenlu Lan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, China
| | - Xinlei Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, China
| | - Haixiang Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, 530021, Nanning, People's Republic of China.
- Key Laboratory of High-Incidence-Tumor Prevention and Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, China.
| |
Collapse
|
8
|
Setiawan SA, Liu WZ, Weng PW, Lee CH, Yadav VK, Hardianti MS, Yeh CT, Chao TY. Synergistic disruption of BTK and BCL-2 causes apoptosis while inducing ferroptosis in double-hit lymphoma. Eur J Pharmacol 2023; 943:175526. [PMID: 36693553 DOI: 10.1016/j.ejphar.2023.175526] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
Double-hit lymphoma (DHL) is an aggressive subset of Diffuse Large B-cell Lymphoma (DLBCL) with poor outcomes and without satisfying treatment options. BTK inhibitor monotherapy is ineffective to suppress aggressive lymphoma. Hence, combination with other potential agents is warranted. Here, we demonstrated the second generation of BTK inhibitor, zanubrutinib, and a BCL-2 inhibitor, navitoclax, worked in synergistic manner to suppress DHL. Comprehensive in silico approach by interrogating single-cell to bulk-level profiling was employed along with in vitro and in vivo validation in DHL cell lines. Ablation of BTK enhanced sensitivity to navitoclax and suppressed proliferation of DHL cells. Combination of second generation of BTK inhibitor with navitoclax synergistically suppressed DLBCL cells with higher synergy score in DHL subset. The drug combination triggered apoptosis and ferroptosis, with the latter being characterized by reactive oxygen species (ROS) accumulation, extensive lipid peroxidation, and depletion of reduced glutathione. Moreover, ablation of BTK sensitized DHL cells to ferroptosis. Mechanistically, disruption of BTK and BCL-2 triggered ferroptosis by downregulating NRF2 and HMOX1, while deactivating GPX4. Combination of zanubrutinib and navitoclax effectively suppressed tumor growth in vivo. Our data suggest that zanubrutinib and navitoclax synergistically suppressed DHL by inducing apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Syahru Agung Setiawan
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City, 11031, Taiwan
| | | | - Pei-Wei Weng
- Department of Orthopaedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Department of Orthopaedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan; Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, 110, Taiwan
| | - Vijesh Kumar Yadav
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan
| | - Mardiah Suci Hardianti
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Faculty of Medicine Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Chi-Tai Yeh
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City, 11031, Taiwan; Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan; Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung, 95092, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, 11031, Taiwan.
| | - Tsu-Yi Chao
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei City, 11031, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City, 11031, Taiwan; Department of Hematology & Oncology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 23561, Taiwan; Division of Medical Oncology and Hematology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, 11409, Taiwan.
| |
Collapse
|
9
|
Wodi C, Belali T, Morse R, Porazinski S, Ladomery M. SPHINX-Based Combination Therapy as a Potential Novel Treatment Strategy for Acute Myeloid Leukaemia. Br J Biomed Sci 2023; 80:11041. [PMID: 36895328 PMCID: PMC9988938 DOI: 10.3389/bjbs.2023.11041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
Introduction: Dysregulated alternative splicing is a prominent feature of cancer. The inhibition and knockdown of the SR splice factor kinase SRPK1 reduces tumour growth in vivo. As a result several SPRK1 inhibitors are in development including SPHINX, a 3-(trifluoromethyl)anilide scaffold. The objective of this study was to treat two leukaemic cell lines with SPHINX in combination with the established cancer drugs azacitidine and imatinib. Materials and Methods: We selected two representative cell lines; Kasumi-1, acute myeloid leukaemia, and K562, BCR-ABL positive chronic myeloid leukaemia. Cells were treated with SPHINX concentrations up to 10μM, and in combination with azacitidine (up to 1.5 μg/ml, Kasumi-1 cells) and imatinib (up to 20 μg/ml, K562 cells). Cell viability was determined by counting the proportion of live cells and those undergoing apoptosis through the detection of activated caspase 3/7. SRPK1 was knocked down with siRNA to confirm SPHINX results. Results: The effects of SPHINX were first confirmed by observing reduced levels of phosphorylated SR proteins. SPHINX significantly reduced cell viability and increased apoptosis in Kasumi-1 cells, but less prominently in K562 cells. Knockdown of SRPK1 by RNA interference similarly reduced cell viability. Combining SPHINX with azacitidine augmented the effect of azacitidine in Kasumi-1 cells. In conclusion, SPHINX reduces cell viability and increases apoptosis in the acute myeloid leukaemia cell line Kasumi-1, but less convincingly in the chronic myeloid leukaemia cell line K562. Conclusion: We suggest that specific types of leukaemia may present an opportunity for the development of SRPK1-targeted therapies to be used in combination with established chemotherapeutic drugs.
Collapse
Affiliation(s)
- Chigeru Wodi
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Tareg Belali
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Ruth Morse
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Sean Porazinski
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Michael Ladomery
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
10
|
Tang YC, Powell RT, Gottlieb A. Molecular pathways enhance drug response prediction using transfer learning from cell lines to tumors and patient-derived xenografts. Sci Rep 2022; 12:16109. [PMID: 36168036 PMCID: PMC9515168 DOI: 10.1038/s41598-022-20646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
Computational models have been successful in predicting drug sensitivity in cancer cell line data, creating an opportunity to guide precision medicine. However, translating these models to tumors remains challenging. We propose a new transfer learning workflow that transfers drug sensitivity predicting models from large-scale cancer cell lines to both tumors and patient derived xenografts based on molecular pathways derived from genomic features. We further compute feature importance to identify pathways most important to drug response prediction. We obtained good performance on tumors (AUROC = 0.77) and patient derived xenografts from triple negative breast cancers (RMSE = 0.11). Using feature importance, we highlight the association between ER-Golgi trafficking pathway in everolimus sensitivity within breast cancer patients and the role of class II histone deacetylases and interlukine-12 in response to drugs for triple-negative breast cancer. Pathway information support transfer of drug response prediction models from cell lines to tumors and can provide biological interpretation underlying the predictions, serving as a steppingstone towards usage in clinical setting.
Collapse
Affiliation(s)
- Yi-Ching Tang
- grid.267308.80000 0000 9206 2401Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Reid T. Powell
- grid.264756.40000 0004 4687 2082Center for Translational Cancer Research, Texas A&M University, Houston, TX 77030 USA
| | - Assaf Gottlieb
- Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Wang R, Zhao L, Wang S, Zhao X, Liang C, Wang P, Li D. Regulatory pattern of abnormal promoter CpG island methylation in the glioblastoma multiforme classification. Front Genet 2022; 13:989985. [PMID: 36199581 PMCID: PMC9527345 DOI: 10.3389/fgene.2022.989985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022] Open
Abstract
Glioblastoma (GBM) is characterized by extensive genetic and phenotypic heterogeneity. However, it remains unexplored primarily how CpG island methylation abnormalities in promoter mediate glioblastoma typing. First, we presented a multi-omics scale map between glioblastoma sample clusters constructed based on promoter CpG island (PCGI) methylation-driven genes, using datasets including methylation profiles, expression profiles, and single-cell sequencing data from multiple highly annotated public clinical cohorts. Second, we identified differences in the tumor microenvironment between the two glioblastoma sample clusters and resolved key signaling pathways between cell clusters at the single-cell level based on comprehensive comparative analyses to investigate the reasons for survival differences between two of these clusters. Finally, we developed a diagnostic map and a prediction model for glioblastoma, and compared theoretical differences of drug sensitivity between two glioblastoma sample clusters. In summary, this study established a classification system for dissecting promoter CpG island methylation heterogeneity in glioblastoma and provides a new perspective for the diagnosis and treatment of glioblastoma.
Collapse
Affiliation(s)
- Rendong Wang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing, China
| | - Lei Zhao
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shijia Wang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing, China
| | - Xiaoxiao Zhao
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing, China
| | - Chuanyu Liang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Pei Wang
- Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dongguo Li
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical, Capital Medical University, Beijing, China
- *Correspondence: Dongguo Li,
| |
Collapse
|
12
|
Athira K, Gopakumar G. Breast cancer stage prediction: a computational approach guided by transcriptome analysis. Mol Genet Genomics 2022; 297:1467-1479. [PMID: 35922530 DOI: 10.1007/s00438-022-01932-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 07/17/2022] [Indexed: 11/25/2022]
Abstract
Breast cancer is the second leading cancer among women in terms of mortality rate. In recent years, its incidence frequency has been continuously rising across the globe. In this context, the new therapeutic strategies to manage the deadly disease attracts tremendous research focus. However, finding new prognostic predictors to refine the selection of therapy for the various stages of breast cancer is an unattempted issue. Aberrant expression of genes at various stages of cancer progression can be studied to identify specific genes that play a critical role in cancer staging. Moreover, while many schemes for subtype prediction in breast cancer have been explored in the literature, stage-wise classification remains a challenge. These observations motivated the proposed two-phased method: stage-specific gene signature selection and stage classification. In the first phase, meta-analysis of gene expression data is conducted to identify stage-wise biomarkers that were then used in the second phase of cancer classification. From the analysis, 118, 12 and 4 genes respectively in stage I, stage II and stage III are determined as potential biomarkers. Pathway enrichment, gene network and literature analysis validate the significance of the identified genes in breast cancer. In this study, machine learning methods were combined with principal component and posterior probability analysis. Such a scheme offers a unique opportunity to build a meaningful model for predicting breast cancer staging. Among the machine learning models compared, Support Vector Machine (SVM) is found to perform the best for the selected datasets with an accuracy of 92.21% during test data evaluation. Perhaps, biomarker identification performed here for stage-specific cancer treatment would be a meaningful step towards predictive medicine. Significantly, the determination of correct cancer stage using the proposed 134 gene signature set can possibly act as potential target for breast cancer therapeutics.
Collapse
Affiliation(s)
- K Athira
- Department of Computer Science and Engineering, NIT Campus PO, National Institute of Technology Calicut, Calicut, Kerala, India.
| | - G Gopakumar
- Department of Computer Science and Engineering, NIT Campus PO, National Institute of Technology Calicut, Calicut, Kerala, India
| |
Collapse
|
13
|
Wan RJ, Bai L, Jiang J, Hu CP, Chen Q, Zhao BR, Zhang Y, Li YY. N6-methyladenosine (m6A) regulator expression pattern correlates with the immune landscape in lung adenocarcinoma. Gene 2022; 836:146639. [PMID: 35700805 DOI: 10.1016/j.gene.2022.146639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/20/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Lung adenocarcinoma is the leading cause of tumor-related death. The tumor microenvironment (TME) may determine anti-tumor treatment responses. We focused on 23 m6A regulators, and analyzed m6A regulator expression patterns in 995 lung adenocarcinoma samples collected from 7 publicly available datasets. Two m6A clusters were identified, wherein gene clusters and m6A score were generated using unsupervised clustering and principal component analysis based on differentially expressed genes with prognostic significance. Further, three independent datasets from TCGA-LUAD and GEO were employed to validate the impact of m6A signatures and score. We found that m6A cluster 1 with high m6A score was associated with an inflamed TME, higher neoantigen and tumor mutation burden and improved response to immunotherapy. However, anti-tumor immunity cells were exhausted in high m6A score patients; thus, the prognosis of these patients was poor. Elucidation of m6A regulator expression pattern may facilitate the development of effective treatment strategies for lung adenocarcinoma.
Collapse
Affiliation(s)
- Rong-Jun Wan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Lu Bai
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Juan Jiang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Cheng-Ping Hu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Qiong Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Bing-Rong Zhao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yan Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Yuan-Yuan Li
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, China; Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China; Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, China; Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.
| |
Collapse
|
14
|
Systematic identification of biomarker-driven drug combinations to overcome resistance. Nat Chem Biol 2022; 18:615-624. [PMID: 35332332 DOI: 10.1038/s41589-022-00996-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 02/11/2022] [Indexed: 02/06/2023]
Abstract
The ability to understand and predict variable responses to therapeutic agents may improve outcomes in patients with cancer. We hypothesized that the basal gene-transcription state of cancer cell lines, coupled with cell viability profiles of small molecules, might be leveraged to nominate specific mechanisms of intrinsic resistance and to predict drug combinations that overcome resistance. We analyzed 564,424 sensitivity profiles to identify candidate gene-compound pairs, and validated nine such relationships. We determined the mechanism of a novel relationship, in which expression of the serine hydrolase enzymes monoacylglycerol lipase (MGLL) or carboxylesterase 1 (CES1) confers resistance to the histone lysine demethylase inhibitor GSK-J4 by direct enzymatic modification. Insensitive cell lines could be sensitized to GSK-J4 by inhibition or gene knockout. These analytical and mechanistic studies highlight the potential of integrating gene-expression features with small-molecule response to identify patient populations that are likely to benefit from treatment, to nominate rational candidates for combinations and to provide insights into mechanisms of action.
Collapse
|
15
|
Bima AIH, Elsamanoudy AZ, Albaqami WF, Khan Z, Parambath SV, Al-Rayes N, Kaipa PR, Elango R, Banaganapalli B, Shaik NA. Integrative system biology and mathematical modeling of genetic networks identifies shared biomarkers for obesity and diabetes. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:2310-2329. [PMID: 35240786 DOI: 10.3934/mbe.2022107] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Obesity and type 2 and diabetes mellitus (T2D) are two dual epidemics whose shared genetic pathological mechanisms are still far from being fully understood. Therefore, this study is aimed at discovering key genes, molecular mechanisms, and new drug targets for obesity and T2D by analyzing the genome wide gene expression data with different computational biology approaches. In this study, the RNA-sequencing data of isolated primary human adipocytes from individuals who are lean, obese, and T2D was analyzed by an integrated framework consisting of gene expression, protein interaction network (PIN), tissue specificity, and druggability approaches. Our findings show a total of 1932 unique differentially expressed genes (DEGs) across the diabetes versus obese group comparison (p≤0.05). The PIN analysis of these 1932 DEGs identified 190 high centrality network (HCN) genes, which were annotated against 3367 GO terms and functional pathways, like response to insulin signaling, phosphorylation, lipid metabolism, glucose metabolism, etc. (p≤0.05). By applying additional PIN and topological parameters to 190 HCN genes, we further mapped 25 high confidence genes, functionally connected with diabetes and obesity traits. Interestingly, ERBB2, FN1, FYN, HSPA1A, HBA1, and ITGB1 genes were found to be tractable by small chemicals, antibodies, and/or enzyme molecules. In conclusion, our study highlights the potential of computational biology methods in correlating expression data to topological parameters, functional relationships, and druggability characteristics of the candidate genes involved in complex metabolic disorders with a common etiological basis.
Collapse
Affiliation(s)
- Abdulhadi Ibrahim H Bima
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayman Zaky Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Walaa F Albaqami
- Department of Science, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | - Zeenath Khan
- Department of Science, Prince Sultan Military College of Health Sciences, Dhahran, Saudi Arabia
| | | | - Nuha Al-Rayes
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Prabhakar Rao Kaipa
- Department of Genetics, College of Science, Osmania University, Hyderabad, India
| | - Ramu Elango
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor A Shaik
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Mohamed SMA, Wohlmann A, Schofield P, Sia KCS, McCalmont H, Savvides SN, Verstraete K, Kavallaris M, Christ D, Friedrich KH, Bayat N, Lock RB. A recombinant antibody fragment directed to the thymic stromal lymphopoietin receptor (CRLF2) efficiently targets pediatric Philadelphia chromosome-like acute lymphoblastic leukemia. Int J Biol Macromol 2021; 190:214-223. [PMID: 34481852 DOI: 10.1016/j.ijbiomac.2021.08.194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/21/2021] [Accepted: 08/26/2021] [Indexed: 10/20/2022]
Abstract
Antibody fragments are promising building blocks for developing targeted therapeutics, thus improving treatment efficacy while minimising off-target toxicity. Despite recent advances in targeted therapeutics, patients with Philadelphia-like acute lymphoblastic leukemia (Ph-like ALL), a high-risk malignancy, lack specific and effective targeted treatments. Cytokine receptor-like factor 2 (CRLF2) is overexpressed in 50% of Ph-like ALL cases, conferring the survival of leukemia blasts through activation of the JAK/STAT signalling pathway. Targeting such a vital cell-surface protein could result in potent anti-leukaemic efficacy and reduce the likelihood of relapse associated with antigen loss. Herein, we developed a novel single-chain variable fragment (scFv) against CRLF2 based on a monoclonal antibody raised against the recombinant extracellular domain of human TSLPRα chain. The scFv fragment demonstrated excellent binding affinity with CRLF2 protein in the nanomolar range. Cellular association studies in vitro using an inducible CRLF2 knockdown cell line and ex vivo using patient-derived xenografts revealed the selective association of the scFv with CRLF2. The fragment exhibited significant receptor antagonistic effects on STAT5 signalling, suggesting possible therapeutic implications in vivo. This study is the first to describe the potential use of a novel scFv for targeting Ph-like ALL.
Collapse
Affiliation(s)
- Sara M A Mohamed
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.; University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Andreas Wohlmann
- Institute of Biochemistry II, Jena University Hospital, Jena, Germany
| | - Peter Schofield
- Garvan Institute of Medical Research, Sydney, NSW, Australia; St.Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | - Keith C S Sia
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.; University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia
| | - Hannah McCalmont
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.; University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia
| | | | | | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.; University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia; Australian Centre for Nanomedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW Sydney, Sydney, NSW, Australia
| | - Daniel Christ
- Garvan Institute of Medical Research, Sydney, NSW, Australia; St.Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, NSW, Australia
| | | | - Narges Bayat
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.; University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW, Australia; School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.; University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|