1
|
Storaci AM, Bertolini I, Martelli C, De Turris G, Mansour N, Crosti M, De Filippo MR, Ottobrini L, Valenti L, Polledri E, Fustinoni S, Caroli M, Fanizzi C, Bosari S, Ferrero S, Zadra G, Vaira V. V-ATPase in glioma stem cells: a novel metabolic vulnerability. J Exp Clin Cancer Res 2025; 44:17. [PMID: 39825382 PMCID: PMC11740391 DOI: 10.1186/s13046-025-03280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/08/2025] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a lethal brain tumor characterized by the glioma stem cell (GSC) niche. The V-ATPase proton pump has been described as a crucial factor in sustaining GSC viability and tumorigenicity. Here we studied how patients-derived GSCs rely on V-ATPase activity to sustain mitochondrial bioenergetics and cell growth. METHODS V-ATPase activity in GSC cultures was modulated using Bafilomycin A1 (BafA1) and cell viability and metabolic traits were analyzed using live assays. The GBM patients-derived orthotopic xenografts were used as in vivo models of disease. Cell extracts, proximity-ligation assay and advanced microscopy was used to analyze subcellular presence of proteins. A metabolomic screening was performed using Biocrates p180 kit, whereas transcriptomic analysis was performed using Nanostring panels. RESULTS Perturbation of V-ATPase activity reduces GSC growth in vitro and in vivo. In GSC there is a pool of V-ATPase that localize in mitochondria. At the functional level, V-ATPase inhibition in GSC induces ROS production, mitochondrial damage, while hindering mitochondrial oxidative phosphorylation and reducing protein synthesis. This metabolic rewiring is accompanied by a higher glycolytic rate and intracellular lactate accumulation, which is not exploited by GSCs for biosynthetic or survival purposes. CONCLUSIONS V-ATPase activity in GSC is critical for mitochondrial metabolism and cell growth. Targeting V-ATPase activity may be a novel potential vulnerability for glioblastoma treatment.
Collapse
Affiliation(s)
- Alessandra Maria Storaci
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Irene Bertolini
- Molecular and Cellular Oncogenesis Program, Wistar Institute, Philadelphia, PA, USA
| | - Cristina Martelli
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giorgia De Turris
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Nadia Mansour
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mariacristina Crosti
- INGM, Istituto Nazionale Di Genetica Molecolare "Romeo Ed Enrica Invernizzi", 20122, Milan, Italy
| | | | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Department of Transfusion Medicine, Precision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Polledri
- EPIGET-Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
| | - Silvia Fustinoni
- EPIGET-Epidemiology, Epigenetics, and Toxicology Lab, Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
- Environmental and Industrial Toxicology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Manuela Caroli
- Division of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Fanizzi
- Division of Neurosurgery, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Silvano Bosari
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefano Ferrero
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122, Milan, Italy
| | - Giorgia Zadra
- Institute of Molecular Genetics, National Research Council (CNR-IGM), 27100, Pavia, Italy
| | - Valentina Vaira
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy.
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
2
|
Knight K, Park JB, Oot RA, Khan MM, Roh SH, Wilkens S. Monoclonal nanobodies alter the activity and assembly of the yeast vacuolar H +-ATPase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632502. [PMID: 39829782 PMCID: PMC11741422 DOI: 10.1101/2025.01.10.632502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The vacuolar ATPase (V-ATPase; V1Vo) is a multi-subunit rotary nanomotor proton pump that acidifies organelles in virtually all eukaryotic cells, and extracellular spaces in some specialized tissues of higher organisms. Evidence suggests that metastatic breast cancers mislocalize V-ATPase to the plasma membrane to promote cell survival and facilitate metastasis, making the V-ATPase a potential drug target. We have generated a library of camelid single-domain antibodies (Nanobodies; Nbs) against lipid-nanodisc reconstituted yeast V-ATPase Vo proton channel subcomplex. Here, we present an in-depth characterization of three anti-Vo Nbs using biochemical and biophysical in vitro experiments. We find that the Nbs bind Vo with high affinity, with one Nb inhibiting holoenzyme activity and another one preventing enzyme assembly. Using cryoEM, we find that two of the Nbs bind the c subunit ring of the Vo on the lumen side of the complex. Additionally, we show that one of the Nbs raised against yeast Vo can pull down human V-ATPase (HsV1Vo). Our research demonstrates Nb versatility to target and modulate the activity of the V-ATPase, and highlights the potential for future therapeutic Nb development.
Collapse
Affiliation(s)
- Kassidy Knight
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jun Bae Park
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Present address: Department of Cancer Biology, Lerner research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rebecca A. Oot
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Md. Murad Khan
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Present address: Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Soung-Hun Roh
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
3
|
Chen T, Lin X, Lu S, Li B. V-ATPase in cancer: mechanistic insights and therapeutic potentials. Cell Commun Signal 2024; 22:613. [PMID: 39707503 DOI: 10.1186/s12964-024-01998-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Vacuolar-type H+-ATPase (V-ATPase) is a crucial proton pump that plays an essential role in maintaining intracellular pH homeostasis and a variety of physiological processes. This review provides an in-depth exploration of the structural components, functional mechanisms, and regulatory modes of V-ATPase in cancer cells. Comprising two main domains, V1 and V0, V-ATPase drives the proton pump through ATP hydrolysis, sustaining the pH balance within the cell and organelles. In cancer cells, the enhanced activity of V-ATPase is closely associated with the proliferation and metastasis of tumor cells, and it promotes the growth and invasion of tumor cells by regulating pH values in the tumor microenvironment. Moreover, the interaction between V-ATPase and key metabolic regulatory factors, the mechanistic target of rapamycin complex 1 (mTORC1) and AMP-activated protein kinase (AMPK), impacts the metabolic state of cancer cells. The role of V-ATPase in tumor drug resistance and its regulatory mechanism in non-canonical autophagy offer new perspectives and potential targets for cancer therapy. Future research directions will focus on the specific mechanisms of action of V-ATPase in the tumor microenvironment and how to translate its inhibitors into clinical applications, providing significant scientific evidence for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Tingting Chen
- School of Basic Medicine, Guangdong Medical University, DongGuan, China.
| | - Xiaotan Lin
- Department of Family Planning, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Shuo Lu
- School of Basic Medicine, Guangdong Medical University, DongGuan, China
| | - Bo Li
- College of Basic Medical Science, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
4
|
Zhang J, Yang L, Xu B, Ji H, Liu S, Wang X, Li X, Wang Q, Song Z. The role of ATP6V0D2 in breast cancer: associations with prognosis, immune characteristics, and TNBC progression. Front Oncol 2024; 14:1511810. [PMID: 39678496 PMCID: PMC11638046 DOI: 10.3389/fonc.2024.1511810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 11/11/2024] [Indexed: 12/17/2024] Open
Abstract
Objective Researches have identified ATPase H+ transporting V0 subunit d2 (ATP6V0D2) as a significant factor in various cancers. However, its prognostic value in breast cancer (BRCA) and its biological role in BRCA cells remain unclear. Methods In this research, we examined the varying expression levels of ATP6V0D2 in both BRCA and normal breast tissue by utilizing information derived from databases including the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO), along with clinical samples. Survival studies were carried out to investigate the link between ATP6V0D2 levels and prognosis in BRCA patients. A series of enrichment analyses identified possible pathways associated with the differentially expressed genes in BRCA. The relationships among ATP6V0D2 expression, immune characteristics, and gene mutation were evaluated using Spearman's test. Finally, the expression of ATP6V0D2 was identified by quantitative real-time polymerase chain reaction (RT-qPCR) alongside western blot analysis. Additionally, Cell Counting kit-8 (CCK-8), Colony formation, Transwell, Scratch healing, and Mouse xenograft tumor assays were conducted to assessed the impact of ATP6V0D2 knockdown on the biological functions in TNBC. Results ATP6V0D2 exhibited high expression in a range of cancers and correlated with unfavorable prognosis in BRCA. Functional enrichment analyses revealed enrichment of extracellular matrix-receptor interaction, focal adhesion, and the signaling pathway of tumor growth factor-beta in the high ATP6V0D2 expression group. Additionally, ATP6V0D2 was closely associated with immune checkpoints. Its expression positively associated with the infiltration levels of macrophage and neutrophil, but inversely with CD8+ T and plasmacytoid dendritic cells. Mutation analysis revealed that PIK3CA, linked to decreased OS, exhibited a higher mutation rate in the ATP6V0D2 high expression group. Furthermore, ATP6V0D2 knockdown inhibited TNBC cells invasion, migration, and proliferation abilities. Conclusion ATP6V0D2 acts as a promising indicator for both diagnosis and prediction of outcomes in breast cancer and could potentially be a novel therapeutic target for BRCA.
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lixian Yang
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, Hebei, China
| | - Bin Xu
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haibo Ji
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shuo Liu
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaohan Wang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaolong Li
- Department of Breast Surgery, Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Quanle Wang
- Department of Breast Surgery, Fourth Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | - Zhenchuan Song
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- Key Laboratory for Breast Cancer Molecular Medicine of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Li Z, Alshagawi MA, Oot RA, Alamoudi MK, Su K, Li W, Collins MP, Wilkens S, Forgac M. A nanobody against the V-ATPase c subunit inhibits metastasis of 4T1-12B breast tumor cells to lung in mice. Oncotarget 2024; 15:575-587. [PMID: 39145534 PMCID: PMC11325586 DOI: 10.18632/oncotarget.28638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
The vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump that functions to control the pH of intracellular compartments as well as to transport protons across the plasma membrane of various cell types, including cancer cells. We have previously shown that selective inhibition of plasma membrane V-ATPases in breast tumor cells inhibits the invasion of these cells in vitro. We have now developed a nanobody directed against an extracellular epitope of the mouse V-ATPase c subunit. We show that treatment of 4T1-12B mouse breast cancer cells with this nanobody inhibits V-ATPase-dependent acidification of the media and invasion of these cells in vitro. We further find that injection of this nanobody into mice implanted with 4T1-12B cells orthotopically in the mammary fat pad inhibits metastasis of tumor cells to lung. These results suggest that plasma membrane V-ATPases represent a novel therapeutic target to limit breast cancer metastasis.
Collapse
Affiliation(s)
- Zhen Li
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- These authors contributed equally to this work
| | - Mohammed A. Alshagawi
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Department of Pharmacology, University of Minnesota School of Medicine, MN 55455, USA
- These authors contributed equally to this work
| | - Rebecca A. Oot
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Mariam K. Alamoudi
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Kevin Su
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Korro Bio, Cambridge, MA 02139, USA
| | - Wenhui Li
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Michael P. Collins
- Program in Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Foghorn Therapeutics, Cambridge, MA 02139, USA
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael Forgac
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Program in Pharmacology and Drug Development, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
- Program in Cellular, Molecular and Developmental Biology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
6
|
Huang TX, Huang HS, Dong SW, Chen JY, Zhang B, Li HH, Zhang TT, Xie Q, Long QY, Yang Y, Huang LY, Zhao P, Bi J, Lu XF, Pan F, Zou C, Fu L. ATP6V0A1-dependent cholesterol absorption in colorectal cancer cells triggers immunosuppressive signaling to inactivate memory CD8 + T cells. Nat Commun 2024; 15:5680. [PMID: 38971819 PMCID: PMC11227557 DOI: 10.1038/s41467-024-50077-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/27/2024] [Indexed: 07/08/2024] Open
Abstract
Obesity shapes anti-tumor immunity through lipid metabolism; however, the mechanisms underlying how colorectal cancer (CRC) cells utilize lipids to suppress anti-tumor immunity remain unclear. Here, we show that tumor cell-intrinsic ATP6V0A1 drives exogenous cholesterol-induced immunosuppression in CRC. ATP6V0A1 facilitates cholesterol absorption in CRC cells through RAB guanine nucleotide exchange factor 1 (RABGEF1)-dependent endosome maturation, leading to cholesterol accumulation within the endoplasmic reticulum and elevated production of 24-hydroxycholesterol (24-OHC). ATP6V0A1-induced 24-OHC upregulates TGF-β1 by activating the liver X receptor (LXR) signaling. Subsequently, the release of TGF-β1 into the tumor microenvironment by CRC cells activates the SMAD3 pathway in memory CD8+ T cells, ultimately suppressing their anti-tumor activities. Moreover, we identify daclatasvir, a clinically used anti-hepatitis C virus (HCV) drug, as an ATP6V0A1 inhibitor that can effectively enhance the memory CD8+ T cell activity and suppress tumor growth in CRC. These findings shed light on the potential for ATP6V0A1-targeted immunotherapy in CRC.
Collapse
Affiliation(s)
- Tu-Xiong Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Hui-Si Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Shao-Wei Dong
- Department of Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, 518000, Guangdong, China
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, 518038, Guangdong, China
| | - Jia-Yan Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Bin Zhang
- Department of Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, 518000, Guangdong, China
| | - Hua-Hui Li
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, Guangdong, China
| | - Tian-Tian Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Qiang Xie
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Qiao-Yun Long
- Department of Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, 518000, Guangdong, China
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Lin-Yuan Huang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China
| | - Pan Zhao
- Department of Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, 518000, Guangdong, China
| | - Jiong Bi
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Xi-Feng Lu
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, Guangdong, China
| | - Chang Zou
- Department of Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, 518000, Guangdong, China.
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen, 518000, Guangdong, China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Medical School, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
7
|
Kim HM, Kim KJ, Lee K, Yoon MJ, Choih J, Hong TJ, Cho EJ, Jung HJ, Kim J, Park JS, Na HY, Heo YS, Park CG, Park H, Han S, Bae D. GNUV201, a novel human/mouse cross-reactive and low pH-selective anti-PD-1 monoclonal antibody for cancer immunotherapy. BMC Immunol 2024; 25:29. [PMID: 38730320 PMCID: PMC11088064 DOI: 10.1186/s12865-024-00609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/13/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Several PD-1 antibodies approved as anti-cancer therapies work by blocking the interaction of PD-1 with its ligand PD-L1, thus restoring anti-cancer T cell activities. These PD-1 antibodies lack inter-species cross-reactivity, necessitating surrogate antibodies for preclinical studies, which may limit the predictability and translatability of the studies. RESULTS To overcome this limitation, we have developed an inter-species cross-reactive PD-1 antibody, GNUV201, by utilizing an enhanced diversity mouse platform (SHINE MOUSE™). GNUV201 equally binds to human PD-1 and mouse PD-1, equally inhibits the binding of human PD-1/PD-L1 and mouse PD-1/PD-L1, and effectively suppresses tumor growth in syngeneic mouse models. The epitope of GNUV201 mapped to the "FG loop" of hPD-1, distinct from those of Keytruda® ("C'D loop") and Opdivo® (N-term). Notably, the structural feature where the protruding epitope loop fits into GNUV201's binding pocket supports the enhanced binding affinity due to slower dissociation (8.7 times slower than Keytruda®). Furthermore, GNUV201 shows a stronger binding affinity at pH 6.0 (5.6 times strong than at pH 7.4), which mimics the hypoxic and acidic tumor microenvironment (TME). This phenomenon is not observed with marketed antibodies (Keytruda®, Opdivo®), implying that GNUV201 achieves more selective binding to and better occupancy on PD-1 in the TME. CONCLUSIONS In summary, GNUV201 exhibited enhanced affinity for PD-1 with slow dissociation and preferential binding in TME-mimicking low pH. Human/monkey/mouse inter-species cross-reactivity of GNUV201 could enable more predictable and translatable efficacy and toxicity preclinical studies. These results suggest that GNUV201 could be an ideal antibody candidate for anti-cancer drug development.
Collapse
MESH Headings
- Animals
- Humans
- Programmed Cell Death 1 Receptor/immunology
- Programmed Cell Death 1 Receptor/metabolism
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Mice
- Cross Reactions/immunology
- Immunotherapy/methods
- Hydrogen-Ion Concentration
- Neoplasms/immunology
- Neoplasms/therapy
- B7-H1 Antigen/immunology
- B7-H1 Antigen/metabolism
- B7-H1 Antigen/antagonists & inhibitors
- Cell Line, Tumor
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Immune Checkpoint Inhibitors/pharmacology
- Epitopes/immunology
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Mice, Inbred C57BL
- Female
Collapse
Affiliation(s)
- Hae-Mi Kim
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Kyoung-Jin Kim
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Kwanghyun Lee
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Myeong Jin Yoon
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Jenny Choih
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
- Genuv US Subsidiary, CIC, 1 Broadway, Cambridge, MA, USA
| | - Tae-Joon Hong
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Eun Ji Cho
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Hak-Jun Jung
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Jayoung Kim
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Ji Soo Park
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 PLUS/FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Young Na
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Seok Heo
- Department of Chemistry, Konkuk University, 120 Neungdong-Ro, Gwangjin-Gu, Seoul, 05029, Republic of Korea
| | - Chae Gyu Park
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
- Laboratory of Immunology, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Heungrok Park
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
| | - Sungho Han
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea
- Genuv US Subsidiary, CIC, 1 Broadway, Cambridge, MA, USA
| | - Donggoo Bae
- Genuv Inc., B1 Shinyoung Building, 14 Gyeonghuigung-gil, Jongno-gu, Seoul, Republic of Korea.
| |
Collapse
|
8
|
Zhu K, Ma J, Tian Y, Liu Q, Zhang J. An immune-related exosome signature predicts the prognosis and immunotherapy response in ovarian cancer. BMC Womens Health 2024; 24:49. [PMID: 38238671 PMCID: PMC10795461 DOI: 10.1186/s12905-024-02881-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Cancer-derived exosomes contribute significantly in intracellular communication, particularly during tumorigenesis. Here, we aimed to identify two immune-related ovarian cancer-derived exosomes (IOCEs) subgroups in ovarian cancer (OC) and establish a prognostic model for OC patients based on immune-related IOCEs. METHODS The Cancer Genome Atlas (TCGA) database was used to obtain RNA-seq data, as well as clinical and prognostic information. Consensus clustering analysis was performed to identify two IOCEs-associated subgroups. Kaplan-Meier analysis was used to compare the overall survival (OS) between IOCEs-high and IOCEs-low subtype. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were conducted to investigate the mechanisms and biological effects of differentially expressed genes (DEGs) between the two subtypes. Besides, an IOCE-related prognostic model of OC was constructed by Lasso regression analysis, and the signature was validated using GSE140082 as the validation set. RESULTS In total, we obtained 21 differentially expressed IOCEs in OC, and identified two IOCE-associated subgroups by consensus clustering. IOCE-low subgroup showed a favorable prognosis while IOCE-high subgroup had a higher level of immune cell infiltration and immune response. GSEA showed that pathways in cancer and immune response were mainly enriched in IOCE-high subgroup. Thus, IOCE-high subgroup may benefit more in immunotherapy treatment. In addition, we constructed a risk model based on nine IOCE-associated genes (CLDN4, AKT2, CSPG5, ALDOC, LTA4H, PSMA2, PSMA5, TCIRG1, ANO6). CONCLUSION We developed a novel stratification system for OV based on IOCE signature, which could be used to estimate the prognosis as well as immunotherapy for OC patient.
Collapse
Affiliation(s)
- Kaibo Zhu
- Department of Pathology, Women's Hospital School of Medicine Zhejiang University, No.3, East Qingchun Road, Shangcheng District, Hangzhou, China
| | - Jiao Ma
- Department of Pathology, Zhejiang Hospital, Hangzhou, China
| | - Yiping Tian
- Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Qin Liu
- Department of Pathology, Women's Hospital School of Medicine Zhejiang University, No.3, East Qingchun Road, Shangcheng District, Hangzhou, China.
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital Zhejiang University School of Medicine, No.1, Xueshi Road, Shangcheng District, Hangzhou, China.
| |
Collapse
|
9
|
Knopf P, Stowbur D, Hoffmann SHL, Hermann N, Maurer A, Bucher V, Poxleitner M, Tako B, Sonanini D, Krishnamachary B, Sinharay S, Fehrenbacher B, Gonzalez-Menendez I, Reckmann F, Bomze D, Flatz L, Kramer D, Schaller M, Forchhammer S, Bhujwalla ZM, Quintanilla-Martinez L, Schulze-Osthoff K, Pagel MD, Fransen MF, Röcken M, Martins AF, Pichler BJ, Ghoreschi K, Kneilling M. Acidosis-mediated increase in IFN-γ-induced PD-L1 expression on cancer cells as an immune escape mechanism in solid tumors. Mol Cancer 2023; 22:207. [PMID: 38102680 PMCID: PMC10722725 DOI: 10.1186/s12943-023-01900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/12/2023] [Indexed: 12/17/2023] Open
Abstract
Immune checkpoint inhibitors have revolutionized cancer therapy, yet the efficacy of these treatments is often limited by the heterogeneous and hypoxic tumor microenvironment (TME) of solid tumors. In the TME, programmed death-ligand 1 (PD-L1) expression on cancer cells is mainly regulated by Interferon-gamma (IFN-γ), which induces T cell exhaustion and enables tumor immune evasion. In this study, we demonstrate that acidosis, a common characteristic of solid tumors, significantly increases IFN-γ-induced PD-L1 expression on aggressive cancer cells, thus promoting immune escape. Using preclinical models, we found that acidosis enhances the genomic expression and phosphorylation of signal transducer and activator of transcription 1 (STAT1), and the translation of STAT1 mRNA by eukaryotic initiation factor 4F (elF4F), resulting in an increased PD-L1 expression. We observed this effect in murine and human anti-PD-L1-responsive tumor cell lines, but not in anti-PD-L1-nonresponsive tumor cell lines. In vivo studies fully validated our in vitro findings and revealed that neutralizing the acidic extracellular tumor pH by sodium bicarbonate treatment suppresses IFN-γ-induced PD-L1 expression and promotes immune cell infiltration in responsive tumors and thus reduces tumor growth. However, this effect was not observed in anti-PD-L1-nonresponsive tumors. In vivo experiments in tumor-bearing IFN-γ-/- mice validated the dependency on immune cell-derived IFN-γ for acidosis-mediated cancer cell PD-L1 induction and tumor immune escape. Thus, acidosis and IFN-γ-induced elevation of PD-L1 expression on cancer cells represent a previously unknown immune escape mechanism that may serve as a novel biomarker for anti-PD-L1/PD-1 treatment response. These findings have important implications for the development of new strategies to enhance the efficacy of immunotherapy in cancer patients.
Collapse
Affiliation(s)
- Philipp Knopf
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Dimitri Stowbur
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany
| | - Sabrina H L Hoffmann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Natalie Hermann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Andreas Maurer
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany
| | - Valentina Bucher
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Marilena Poxleitner
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Bredi Tako
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - Dominik Sonanini
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany
| | - Balaji Krishnamachary
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanhita Sinharay
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | | | - Irene Gonzalez-Menendez
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany
- Institute of Pathology and Neuropathology, Department of Pathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| | - Felix Reckmann
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
| | - David Bomze
- Department of Dermatology, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Lukas Flatz
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | - Daniela Kramer
- Interfaculty Institute of Biochemistry, Eberhard Karls University, Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany
| | | | - Zaver M Bhujwalla
- Division of Cancer Imaging Research, The Russell H Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Leticia Quintanilla-Martinez
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany
- Institute of Pathology and Neuropathology, Department of Pathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, Tübingen University Hospital, Tübingen, Germany
| | - Klaus Schulze-Osthoff
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany
- Interfaculty Institute of Biochemistry, Eberhard Karls University, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Mark D Pagel
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Marieke F Fransen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center (LUMC), Leiden, Netherlands
| | - Martin Röcken
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - André F Martins
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Bernd J Pichler
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany
- German Cancer Consortium (DKTK), partner site Tübingen, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
| | - Manfred Kneilling
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany.
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", Röntgenweg 13, 72076, Tübingen, Germany.
- Department of Dermatology, Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
10
|
Xu J, Jiang J, Yin C, Wang Y, Shi B. Identification of ATP6V0A4 as a potential biomarker in renal cell carcinoma using integrated bioinformatics analysis. Oncol Lett 2023; 26:366. [PMID: 37559594 PMCID: PMC10407721 DOI: 10.3892/ol.2023.13952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/16/2023] [Indexed: 08/11/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common pathological type of renal cancer, and is associated with a high mortality rate, which is related to high rates of tumor recurrence and metastasis. The aim of the present study was to identify reliable molecular biomarkers with high specificity and sensitivity for ccRCC. A total of eight ccRCC-related expression profiles were downloaded from Gene Expression Omnibus for integrated bioinformatics analysis to screen for significantly differentially expressed genes (DEGs). Reverse transcription-quantitative (RT-q)PCR, western blotting and immunohistochemistry staining assays were performed to evaluate the expression levels of candidate biomarkers in ccRCC tissues and cell lines. In total, 255 ccRCC specimens and 165 adjacent normal kidney specimens were analyzed, and 344 significant DEGs, consisting of 115 upregulated DEGs and 229 downregulated DEGs, were identified. The results of Gene Ontology analysis suggested a significant enrichment of DEGs in 'organic anion transport' and 'small molecule catabolic process' in biological processes, in 'apical plasma membrane' and 'apical part of the cell' in cell components, and in 'anion transmembrane transporter activity' and 'active transmembrane transporter activity' in molecular functions. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis indicated that the DEGs were significantly enriched in the 'phagosome', the 'PPAR signaling pathway', 'complement and coagulation cascades', the 'HIF-1 signaling pathway' and 'carbon metabolism'. Next, 7 hub genes (SUCNR1, CXCR4, VCAN, CASR, ATP6V0A4, VEGFA and SERPINE1) were identified and validated using The Cancer Genome Atlas database. Survival analysis showed that low expression of ATP6V0A4 was associated with a poor prognosis in patients with ccRCC. Additionally, received operating characteristic curves indicated that ATP6V0A4 could distinguish ccRCC samples from normal kidney samples. Furthermore, RT-qPCR, western blotting and immunohistochemistry staining results showed that ATP6V0A4 was significantly downregulated in ccRCC tissues and cell lines. In conclusion, ATP6V0A4 may be involved in tumor progression and regarded as a potential therapeutic target for the recurrence and metastasis of ccRCC.
Collapse
Affiliation(s)
- Jinming Xu
- Department of Urology, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
- Department of Urology, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jiahao Jiang
- Department of Urology, Shenzhen Second People's Hospital, Clinical College of Anhui Medical University, Shenzhen, Guangdong 518035, P.R. China
| | - Cong Yin
- Department of Urology, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| | - Yan Wang
- Department of Urology, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, P.R. China
| | - Bentao Shi
- Department of Urology, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
11
|
Okui T, Hiasa M, Hata K, Roodman GD, Nakanishi M, Yoneda T. The acid-sensing nociceptor TRPV1 controls breast cancer progression in bone via regulating HGF secretion from sensory neurons. RESEARCH SQUARE 2023:rs.3.rs-3105966. [PMID: 37461623 PMCID: PMC10350177 DOI: 10.21203/rs.3.rs-3105966/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Cancers showing excessive innervation of sensory neurons (SN) in their microenvironments are associated with poor outcomes due to promoted growth, increased tumor recurrence, metastasis, and cancer pain, suggesting SNs play a regulatory role in cancer aggressiveness. Using a preclinical model in which mouse 4T1 breast cancer (BC) cells were injected into the bone marrow of tibiae, we found 4T1 BC cells aggressively colonized bone with bone destruction and subsequently spread to the lung. Of note, 4T1 BC colonization induced the acidic tumor microenvironment in bone in which SNs showed increased innervation and excitation with elevated expression of the acid-sensing nociceptor transient receptor potential vanilloid-1 (TRPV1), eliciting bone pain (BP) assessed by mechanical hypersensitivity. Further, these excited SNs produced increased hepatocyte growth factor (HGF). Importantly, the administration of synthetic and natural TRPV1 antagonists and genetic deletion of TRPV1 decreased HGF production in SNs and inhibited 4T1 BC colonization in bone, pulmonary metastasis from bone, and BP induction. Our results suggest the TRPV1 of SNs promotes BC colonization in bone and lung metastasis via up-regulating HGF production in SNs. The SN TRPV1 may be a novel therapeutic target for BC growing in the acidic bone microenvironment and for BP.
Collapse
Affiliation(s)
| | - Masahiro Hiasa
- The University of Tokushima Graduate School of Dentistry
| | - Kenji Hata
- Osaka University Graduate School of Dentistry
| | | | | | | |
Collapse
|
12
|
Nakanishi-Matsui M, Matsumoto N. V-ATPase a3 Subunit in Secretory Lysosome Trafficking in Osteoclasts. Biol Pharm Bull 2022; 45:1426-1431. [PMID: 36184499 DOI: 10.1248/bpb.b22-00371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Vacuolar-type ATPase (V-ATPase) shares its structure and rotational catalysis with F-type ATPase (F-ATPase, ATP synthase). However, unlike subunits of F-ATPase, those of V-ATPase have tissue- and/or organelle-specific isoforms. Structural diversity of V-ATPase generated by different combinations of subunit isoforms enables it to play diverse physiological roles in mammalian cells. Among these various roles, this review focuses on the functions of lysosome-specific V-ATPase in bone resorption by osteoclasts. Lysosomes remain in the cytoplasm in most cell types, but in osteoclasts, secretory lysosomes move toward and fuse with the plasma membrane to secrete lysosomal enzymes, which is essential for bone resorption. Through this process, lysosomal V-ATPase harboring the a3 isoform of the a subunit is relocated to the plasma membrane, where it transports protons from the cytosol to the cell exterior to generate the acidic extracellular conditions required for secreted lysosomal enzymes. In addition to this role as a proton pump, we recently found that the lysosomal a3 subunit of V-ATPase is essential for anterograde trafficking of secretory lysosomes. Specifically, a3 interacts with Rab7, a member of the Rab guanosine 5'-triphosphatase (GTPase) family that regulates organelle trafficking, and recruits it to the lysosomal membrane. These findings revealed the multifunctionality of lysosomal V-ATPase in osteoclasts; V-ATPase is responsible not only for the formation of the acidic environment by transporting protons, but also for intracellular trafficking of secretory lysosomes by recruiting organelle trafficking factors. Herein, we summarize the molecular mechanism underlying secretory lysosome trafficking in osteoclasts, and discuss the possible regulatory role of V-ATPase in organelle trafficking.
Collapse
Affiliation(s)
| | - Naomi Matsumoto
- Division of Biochemistry, School of Pharmacy, Iwate Medical University
| |
Collapse
|
13
|
Xu C, Jia B, Yang Z, Han Z, Wang Z, Liu W, Cao Y, Chen Y, Gu J, Zhang Y. Integrative Analysis Identifies TCIRG1 as a Potential Prognostic and Immunotherapy-Relevant Biomarker Associated with Malignant Cell Migration in Clear Cell Renal Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14194583. [PMID: 36230507 PMCID: PMC9558535 DOI: 10.3390/cancers14194583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary TCIRG1, also known as V-ATPase-a3, is critical for cellular metabolism, membrane transport, and intracellular signaling through its dependent acidification. In earlier research, TCIRG1 was found to be dysregulated in several cancers and to accelerate the growth of various malignancies. The molecular mechanisms behind TCIRG1 and its possible role in the development of clear cell renal cell carcinoma are still poorly understood. Our research is the first to thoroughly examine TCIRG1’s function in clear cell renal cell carcinoma prognosis, immunity, and treatment. The validity that TCIRG1 can accelerate the development of renal clear cell carcinoma was also confirmed in this work by using certain testable experiments. This establishes the theoretical framework for our future investigation into the occurrence and progression of clear cell renal cell carcinoma. Abstract Background: TCIRG1, also known as V-ATPase-a3, is critical for cellular life activities through its dependent acidification. Prior to the present research, its relationship with prognostic and tumor immunity in clear cell renal cell carcinoma (ccRCC) had not yet been investigated. Methods: We assessed TCIRG1 expression in normal and tumor tissues using data from TCGA, GEO, GTEX, and IHC. We also analyzed the relationship between TCIRG1 and somatic mutations, TMB, DNA methylation, cancer stemness, and immune infiltration. We evaluated the relevance of TCIRG1 to immunotherapy and potential drugs. Finally, we explored the effect of TCIRG1 knockdown on tumor cells. Results: TCIRG1 was overexpressed in tumor tissue and predicted a significantly unfavorable clinical outcome. High TCIRG1 expression may be associated with fewer PBRM1 and more BAP1 mutations and may reduce DNA methylation, thus leading to a poor prognosis. TCIRG1 was strongly associated with CD8+ T-cell, Treg, and CD4+ T-cell infiltration. Moreover, TCIRG1 was positively correlated with TIDE scores and many drug sensitivities. Finally, experiments showed that the knockdown of TCIRG1 inhibited the migration of ccRCC cells. Conclusions: TCIRG1 may have great potential in identifying prognostic and immunomodulatory mechanisms in tumor patients and may provide a new therapeutic strategy for ccRCC.
Collapse
Affiliation(s)
- Chao Xu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Bolin Jia
- National Cancer Center, National Clinical Research Center for Cancer, Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Jinyuan Road, Economic, and Technological Development Zone, Guangyang District, Langfang 065001, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
- Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Zhenwei Han
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Zhu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Wuyao Liu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Yilong Cao
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Yao Chen
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
| | - Junfei Gu
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang 050000, China
- Correspondence: (J.G.); (Y.Z.)
| | - Yong Zhang
- National Cancer Center, National Clinical Research Center for Cancer, Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Jinyuan Road, Economic, and Technological Development Zone, Guangyang District, Langfang 065001, China
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing 100021, China
- Correspondence: (J.G.); (Y.Z.)
| |
Collapse
|
14
|
Hsu CH, Lee KJ, Chiu YH, Huang KC, Wang GS, Chen LP, Liao KW, Lin CS. The Lysosome in Malignant Melanoma: Biology, Function and Therapeutic Applications. Cells 2022; 11:1492. [PMID: 35563798 PMCID: PMC9103375 DOI: 10.3390/cells11091492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Lysosomes are membrane-bound vesicles that play roles in the degradation and recycling of cellular waste and homeostasis maintenance within cells. False alterations of lysosomal functions can lead to broad detrimental effects and cause various diseases, including cancers. Cancer cells that are rapidly proliferative and invasive are highly dependent on effective lysosomal function. Malignant melanoma is the most lethal form of skin cancer, with high metastasis characteristics, drug resistance, and aggressiveness. It is critical to understand the role of lysosomes in melanoma pathogenesis in order to improve the outcomes of melanoma patients. In this mini-review, we compile our current knowledge of lysosomes' role in tumorigenesis, progression, therapy resistance, and the current treatment strategies related to lysosomes in melanoma.
Collapse
Affiliation(s)
- Chia-Hsin Hsu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Keng-Jung Lee
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA;
| | - Yi-Han Chiu
- Department of Microbiology, Soochow University, Taipei 10617, Taiwan;
| | - Kuo-Ching Huang
- Holistic Education Center, Mackay Medical College, New Taipei City 25245, Taiwan;
| | - Guo-Shou Wang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (G.-S.W.); (K.-W.L.)
| | - Lei-Po Chen
- Ph.D. Degree Program of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan;
| | - Kuang-Wen Liao
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan; (G.-S.W.); (K.-W.L.)
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan;
| |
Collapse
|
15
|
The lactate sensor GPR81 regulates glycolysis and tumor growth of breast cancer. Sci Rep 2022; 12:6261. [PMID: 35428832 PMCID: PMC9012857 DOI: 10.1038/s41598-022-10143-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/23/2022] [Indexed: 12/27/2022] Open
Abstract
Metabolic reprogramming is a malignant phenotype of cancer. Cancer cells utilize glycolysis to fuel rapid proliferation even in the presence of oxygen, and elevated glycolysis is coupled to lactate fermentation in the cancer microenvironment. Although lactate has been recognized as a metabolic waste product, it has become evident that lactate functions as not only an energy source but a signaling molecule through the lactate receptor G-protein-coupled receptor 81 (GPR81) under physiological conditions. However, the pathological role of GPR81 in cancer remains unclear. Here, we show that GPR81 regulates the malignant phenotype of breast cancer cell by reprogramming energy metabolism. We found that GPR81 is highly expressed in breast cancer cell lines but not in normal breast epithelial cells. Knockdown of GPR81 decreased breast cancer cell proliferation, and tumor growth. Mechanistically, glycolysis and lactate-dependent ATP production were impaired in GPR81-silenced breast cancer cells. RNA sequencing accompanied by Gene Ontology enrichment analysis further demonstrated a significant decrease in genes associated with cell motility and silencing of GPR81 suppressed cell migration and invasion. Notably, histological examination showed strong expression of GPR81 in clinical samples of human breast cancer. Collectively, our findings suggest that GPR81 is critical for malignancy of breast cancer and may be a potential novel therapeutic target for breast carcinoma.
Collapse
|
16
|
Ravi Kiran AVVV, Kusuma Kumari G, Krishnamurthy PT, Khaydarov RR. Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater Sci 2021; 9:7667-7704. [PMID: 34673853 DOI: 10.1039/d1bm01127h] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over recent years, advancements in nanomedicine have allowed new approaches to diagnose and treat tumors. Nano drug delivery systems exploit the enhanced permeability and retention (EPR) effect and enter the tumor tissue's interstitial space. However, tumor barriers play a crucial role, and cause inefficient EPR or the homing effect. Mounting evidence supports the hypothesis that the components of the tumor microenvironment, such as the extracellular matrix, and cellular and physiological components collectively or cooperatively hinder entry and distribution of drugs, and therefore, limit the theragnostic applications of cancer nanomedicine. This abnormal tumor microenvironment plays a pivotal role in cancer nanomedicine and was recently recognized as a promising target for improving nano-drug delivery and their therapeutic outcomes. Strategies like passive or active targeting, stimuli-triggered nanocarriers, and the modulation of immune components have shown promising results in achieving anticancer efficacy. The present review focuses on the tumor microenvironment and nanoparticle-based strategies (polymeric, inorganic and organic nanoparticles) for intruding the tumor barrier and improving therapeutic effects.
Collapse
Affiliation(s)
- Ammu V V V Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Garikapati Kusuma Kumari
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Renat R Khaydarov
- Institute of Nuclear Physics, Uzbekistan Academy of Sciences, Tashkent, 100047, Uzbekistan.
| |
Collapse
|
17
|
Chu A, Zirngibl RA, Manolson MF. The V-ATPase a3 Subunit: Structure, Function and Therapeutic Potential of an Essential Biomolecule in Osteoclastic Bone Resorption. Int J Mol Sci 2021; 22:ijms22136934. [PMID: 34203247 PMCID: PMC8269383 DOI: 10.3390/ijms22136934] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
This review focuses on one of the 16 proteins composing the V-ATPase complex responsible for resorbing bone: the a3 subunit. The rationale for focusing on this biomolecule is that mutations in this one protein account for over 50% of osteopetrosis cases, highlighting its critical role in bone physiology. Despite its essential role in bone remodeling and its involvement in bone diseases, little is known about the way in which this subunit is targeted and regulated within osteoclasts. To this end, this review is broadened to include the three other mammalian paralogues (a1, a2 and a4) and the two yeast orthologs (Vph1p and Stv1p). By examining the literature on all of the paralogues/orthologs of the V-ATPase a subunit, we hope to provide insight into the molecular mechanisms and future research directions specific to a3. This review starts with an overview on bone, highlighting the role of V-ATPases in osteoclastic bone resorption. We then cover V-ATPases in other location/functions, highlighting the roles which the four mammalian a subunit paralogues might play in differential targeting and/or regulation. We review the ways in which the energy of ATP hydrolysis is converted into proton translocation, and go in depth into the diverse role of the a subunit, not only in proton translocation but also in lipid binding, cell signaling and human diseases. Finally, the therapeutic implication of targeting a3 specifically for bone diseases and cancer is discussed, with concluding remarks on future directions.
Collapse
|
18
|
Di Pompo G, Errani C, Gillies R, Mercatali L, Ibrahim T, Tamanti J, Baldini N, Avnet S. Acid-Induced Inflammatory Cytokines in Osteoblasts: A Guided Path to Osteolysis in Bone Metastasis. Front Cell Dev Biol 2021; 9:678532. [PMID: 34124067 PMCID: PMC8194084 DOI: 10.3389/fcell.2021.678532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Bone metastasis (BM) is a dismal complication of cancer that frequently occurs in patients with advanced carcinomas and that often manifests as an osteolytic lesion. In bone, tumor cells promote an imbalance in bone remodeling via the release of growth factors that, directly or indirectly, stimulate osteoclast resorption activity. However, carcinoma cells are also characterized by an altered metabolism responsible for a decrease of extracellular pH, which, in turn, directly intensifies osteoclast bone erosion. Here, we speculated that tumor-derived acidosis causes the osteoblast–osteoclast uncoupling in BM by modulating the pro-osteoclastogenic phenotype of osteoblasts. According to our results, a low pH recruits osteoclast precursors and promotes their differentiation through the secretome of acid-stressed osteoblasts that includes pro-osteoclastogenic factors and inflammatory mediators, such as RANKL, M-CSF, TNF, IL-6, and, above the others, IL-8. The treatment with the anti-IL-6R antibody tocilizumab or with an anti-IL-8 antibody reverted this effect. Finally, in a series of BM patients, circulating levels of the osteolytic marker TRACP5b significantly correlated with IL-8. Our findings brought out that tumor-derived acidosis promotes excessive osteolysis at least in part by inducing an inflammatory phenotype in osteoblasts, and these results strengthen the use of anti-IL-6 or anti-IL-8 strategies to treat osteolysis in BM.
Collapse
Affiliation(s)
- Gemma Di Pompo
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Costantino Errani
- Orthopaedic Oncology Surgical Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Robert Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, United States
| | - Laura Mercatali
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Toni Ibrahim
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo Per Lo Studio Dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Jacopo Tamanti
- National Tumor Assistance (ANT) Foundation, Bologna, Italy
| | - Nicola Baldini
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sofia Avnet
- Biomedical Science and Technologies Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
Disruption of pH Dynamics Suppresses Proliferation and Potentiates Doxorubicin Cytotoxicity in Breast Cancer Cells. Pharmaceutics 2021; 13:pharmaceutics13020242. [PMID: 33572458 PMCID: PMC7916175 DOI: 10.3390/pharmaceutics13020242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/30/2021] [Accepted: 02/06/2021] [Indexed: 01/08/2023] Open
Abstract
The reverse pH gradient is a major feature associated with cancer cell reprogrammed metabolism. This phenotype is supported by increased activity of pH regulators like ATPases, carbonic anhydrases (CAs), monocarboxylate transporters (MCTs) and sodium-proton exchangers (NHEs) that induce an acidic tumor microenvironment, responsible for the cancer acid-resistant phenotype. In this work, we analyzed the expression of these pH regulators and explored their inhibition in breast cancer cells as a strategy to enhance the sensitivity to chemotherapy. Expression of the different pH regulators was evaluated by immunofluorescence and Western blot in two breast cancer cell lines (MDA-MB-231 and MCF-7) and by immunohistochemistry in human breast cancer tissues. Cell viability, migration and invasion were evaluated upon exposure to the pH regulator inhibitors (PRIs) concanamycin-A, cariporide, acetazolamide and cyano-4-hydroxycinnamate. Additionally, PRIs were combined with doxorubicin to analyze the effect of cell pH dynamic disruption on doxorubicin sensitivity. Both cancer cell lines expressed all pH regulators, except for MCT1 and CAXII, only expressed in MCF-7 cells. There was higher plasma membrane expression of the pH regulators in human breast cancer tissues than in normal breast epithelium. Additionally, pH regulator expression was significantly associated with different molecular subtypes of breast cancer. pH regulator inhibition decreased cancer cell aggressiveness, with a higher effect in MDA-MB-231. A synergistic inhibitory effect was observed when PRIs were combined with doxorubicin in the breast cancer cell line viability. Our results support proton dynamic disruption as a breast cancer antitumor strategy and the use of PRIs to boost the activity of conventional therapy.
Collapse
|
20
|
Qi C, Lei L, Hu J, Wang G, Liu J, Ou S. T cell immune regulator 1 is a prognostic marker associated with immune infiltration in glioblastoma multiforme. Oncol Lett 2021; 21:252. [PMID: 33664816 PMCID: PMC7882896 DOI: 10.3892/ol.2021.12514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most common primary brain tumor and glioblastoma multiforme (GBM) is the most malignant brain glioma with the worst prognosis. T cell immune regulator 1 (TCIRG1) constitutes the V0a3 subunit of vacuolar ATPase (V-ATPase), and the function of V-ATPase in malignant tumors, such as breast cancer, melanoma and hepatocellular carcinoma, has been reported. However, the effect of the TCIRG1 subunit on GBM remains to be fully elucidated. mRNA levels of TCIRG1 in different cancer types and the corresponding normal tissues were extracted from the Oncomine and Tumor Immune Estimation Resource (TIMER) databases. The Gene Expression Omnibus (access number: GSE16011), the Chinese Glioma Genome Atlas and The Cancer Genome Atlas were used to investigate the mRNA level of TCIRG1 in glioma. Protein level validation in glioma was performed using western blotting. The Database for Annotation, Visualization and Integrated Discovery was used to analyze Gene Ontology (GO) categories for genes correlated with TCIRG1 in GBM. Protein-protein interaction (PPI) networks and module analyses were performed using Cytoscape software and the MCODE plugin. The correlation between tumor immune cell infiltration and TCIRG1 expression was explored using the TIMER database. Additionally, the correlation between TCIRG1 and the gene signature of immune infiltration was explored through TIMER and Gene Expression Profiling Interactive Analysis. External validation of TCIRG1 expression according to immune signatures in GBM was performed using the GSE16011 dataset with the GlioVis online tool. It was found that TCIRG1 expression was increased in GBM and numerous malignant tumors and may serve as a biomarker of the mesenchymal subtype of GBM. GO category analysis of positively correlated genes revealed that TCIRG1 was correlated with the immune response in GBM. PPI network and module analyses also supported the potential function of TCIRG1 in the local immune response. The expression of TCIRG1 was associated with various immune markers. It was therefore speculated that TCIRG1 is associated with glioma malignancy and may be a marker of unfavorable prognosis in patients with GBM, and it could be regarded as a prognostic biomarker and an indicator of immune infiltration in GBM.
Collapse
Affiliation(s)
- Chunxiao Qi
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China.,Department of Neurosurgery, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Lei Lei
- Department of Rheumatology and Immunology, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian, Liaoning 116033, P.R. China
| | - Jinqu Hu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Gang Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jiyuan Liu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shaowu Ou
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
21
|
Santos-Pereira C, Rodrigues LR, Côrte-Real M. Emerging insights on the role of V-ATPase in human diseases: Therapeutic challenges and opportunities. Med Res Rev 2021; 41:1927-1964. [PMID: 33483985 DOI: 10.1002/med.21782] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022]
Abstract
The control of the intracellular pH is vital for the survival of all organisms. Membrane transporters, both at the plasma and intracellular membranes, are key players in maintaining a finely tuned pH balance between intra- and extracellular spaces, and therefore in cellular homeostasis. V-ATPase is a housekeeping ATP-driven proton pump highly conserved among prokaryotes and eukaryotes. This proton pump, which exhibits a complex multisubunit structure based on cell type-specific isoforms, is essential for pH regulation and for a multitude of ubiquitous and specialized functions. Thus, it is not surprising that V-ATPase aberrant overexpression, mislocalization, and mutations in V-ATPase subunit-encoding genes have been associated with several human diseases. However, the ubiquitous expression of this transporter and the high toxicity driven by its off-target inhibition, renders V-ATPase-directed therapies very challenging and increases the need for selective strategies. Here we review emerging evidence linking V-ATPase and both inherited and acquired human diseases, explore the therapeutic challenges and opportunities envisaged from recent data, and advance future research avenues. We highlight the importance of V-ATPases with unique subunit isoform molecular signatures and disease-associated isoforms to design selective V-ATPase-directed therapies. We also discuss the rational design of drug development pipelines and cutting-edge methodological approaches toward V-ATPase-centered drug discovery. Diseases like cancer, osteoporosis, and even fungal infections can benefit from V-ATPase-directed therapies.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal.,Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Department of Biological Engineering, Centre of Biological Engineering (CEB), University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Department of Biology, Centre of Molecular and Environmental Biology (CBMA), University of Minho, Braga, Portugal
| |
Collapse
|
22
|
Endolysosomal TRPMLs in Cancer. Biomolecules 2021; 11:biom11010065. [PMID: 33419007 PMCID: PMC7825278 DOI: 10.3390/biom11010065] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Lysosomes, the degradative endpoints and sophisticated cellular signaling hubs, are emerging as intracellular Ca2+ stores that govern multiple cellular processes. Dys-homeostasis of lysosomal Ca2+ is intimately associated with a variety of human diseases including cancer. Recent studies have suggested that the Ca2+-permeable channels Transient Receptor Potential (TRP) Mucolipins (TRPMLs, TRPML1-3) integrate multiple processes of cell growth, division and metabolism. Dysregulation of TRPMLs activity has been implicated in cancer development. In this review, we provide a summary of the latest development of TRPMLs in cancer. The expression of TRPMLs in cancer, TRPMLs in cancer cell nutrient sensing, TRPMLs-mediated lysosomal exocytosis in cancer development, TRPMLs in TFEB-mediated gene transcription of cancer cells, TRPMLs in bacteria-related cancer development and TRPMLs-regulated antitumor immunity are discussed. We hope to guide readers toward a more in-depth discussion of the importance of lysosomal TRPMLs in cancer progression and other human diseases.
Collapse
|
23
|
Wan Y, Ma X, Li Y, Huang X, Gan T, Xu L, Cao W, Liu Q. Local strong acids: A driving force for metastasis. Med Hypotheses 2020; 144:110221. [PMID: 33254528 DOI: 10.1016/j.mehy.2020.110221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/22/2020] [Indexed: 12/23/2022]
Abstract
Carcinogenesis was postulated as the result of the local buildup of strong acids such as hydrogenchloride which may trigger metastasis. A previous study revealed that bicarbonate raised tumor pH and suppressed metastases. The phosphate groups in DNA on neutrophil extracellular traps possess hydrogen bonding capacity and can accept protons. The proteins commonly found in neutrophil extracellular traps such as CCDC25, myeloperoxidase (MPO), histone H3, peptidylarginine deiminase 4 (PAD4) possess basic amino acid content at about 20.2%, 12.8%, 24.3% and 13.0% respectively, which attracts anions such as chloride. The striking 20.2% basic amino acid content in CCDC25 is similar to that of typical oncoproteins. Local hydrogenchloride may be the dominant impetus for metastasis, accounting for the anticancer effects of virtually all weak organic acids, acetic acid and lactic acid in particular.
Collapse
Affiliation(s)
- Yulin Wan
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaoqian Ma
- The Third Xiang Ya Hospital of Central South University, Changsha 410006, China
| | - Yin Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Xia Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tao Gan
- School of Basic Medicine, Gannan Medical University, Ganzhou 34100, Jiangxi, China
| | - Li Xu
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Weiguo Cao
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC 29634, USA
| | - Qiuyun Liu
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
24
|
Baamonde A, Menéndez L, González-Rodríguez S, Lastra A, Seitz V, Stein C, Machelska H. A low pKa ligand inhibits cancer-associated pain in mice by activating peripheral mu-opioid receptors. Sci Rep 2020; 10:18599. [PMID: 33122720 PMCID: PMC7596718 DOI: 10.1038/s41598-020-75509-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/15/2020] [Indexed: 01/08/2023] Open
Abstract
The newly designed fentanyl derivative [( ±)-N-(3-fluoro-1-phenethylpiperidine-4-yl)-N-phenyl propionamide] (NFEPP) was recently shown to produce analgesia selectively via peripheral mu-opioid receptors (MOR) at acidic pH in rat inflamed tissues. Here, we examined the pH-dependency of NFEPP binding to brain MOR and its effects on bone cancer-induced pain in mice. The IC50 of NFEPP to displace bound [3H]-DAMGO was significantly higher compared to fentanyl at pH 7.4, but no differences were observed at pH 5.5 or 6.5. Intravenous NFEPP (30-100 nmol/kg) or fentanyl (17-30 nmol/kg) inhibited heat hyperalgesia in mice inoculated with B16-F10 melanoma cells. The peripherally-restricted opioid receptor antagonist naloxone-methiodide reversed the effect of NFEPP (100 nmol/kg), but not of fentanyl (30 nmol/kg). The antihyperalgesic effect of NFEPP was abolished by a selective MOR- (cyprodime), but not delta- (naltrindole) or kappa- (nor-binaltorphimine) receptor antagonists. Ten-fold higher doses of NFEPP than fentanyl induced maximal antinociception in mice without tumors, which was reversed by the non-restricted antagonist naloxone, but not by naloxone-methiodide. NFEPP also reduced heat hyperalgesia produced by fibrosarcoma- (NCTC 2472) or prostate cancer-derived (RM1) cells. These data demonstrate the increased affinity of NFEPP for murine MOR at low pH, and its ability to inhibit bone cancer-induced hyperalgesia through peripheral MOR. In mice, central opioid receptors may be activated by ten-fold higher doses of NFEPP.
Collapse
Affiliation(s)
- Ana Baamonde
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain.
| | - Luis Menéndez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Sara González-Rodríguez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Ana Lastra
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Viola Seitz
- Department of Experimental Anesthesiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14474, Potsdam, Germany
| | - Christoph Stein
- Department of Experimental Anesthesiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Halina Machelska
- Department of Experimental Anesthesiology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
25
|
Role of pH Regulatory Proteins and Dysregulation of pH in Prostate Cancer. Rev Physiol Biochem Pharmacol 2020; 182:85-110. [PMID: 32776252 DOI: 10.1007/112_2020_18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prostate cancer is the fourth most commonly diagnosed cancer, and although it is often a slow-growing malignancy, it is the second leading cause of cancer-associated deaths in men and the first in Europe and North America. In many forms of cancer, when the disease is a solid tumor confined to one organ, it is often readily treated. However, when the cancer becomes an invasive metastatic carcinoma, it is more often fatal. It is therefore of great interest to identify mechanisms that contribute to the invasion of cells to identify possible targets for therapy. During prostate cancer progression, the epithelial cells undergo epithelial-mesenchymal transition that is characterized by morphological changes, a loss of cell-cell adhesion, and invasiveness. Dysregulation of pH has emerged as a hallmark of cancer with a reversed pH gradient and with a constitutively increased intracellular pH that is elevated above the extracellular pH. This phenomenon has been referred to as "a perfect storm" for cancer progression. Acid-extruding ion transporters include the Na+/H+ exchanger NHE1 (SLC9A1), the Na+HCO3- cotransporter NBCn1 (SLC4A7), anion exchangers, vacuolar-type adenosine triphosphatases, and the lactate-H+ cotransporters of the monocarboxylate family (MCT1 and MCT4 (SLC16A1 and 3)). Additionally, carbonic anhydrases contribute to acid transport. Of these, several have been shown to be upregulated in different human cancers including the NBCn1, MCTs, and NHE1. Here the role and contribution of acid-extruding transporters in prostate cancer growth and metastasis were examined. These proteins make significant contributions to prostate cancer progression.
Collapse
|
26
|
Almasi S, El Hiani Y. Exploring the Therapeutic Potential of Membrane Transport Proteins: Focus on Cancer and Chemoresistance. Cancers (Basel) 2020; 12:cancers12061624. [PMID: 32575381 PMCID: PMC7353007 DOI: 10.3390/cancers12061624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023] Open
Abstract
Improving the therapeutic efficacy of conventional anticancer drugs represents the best hope for cancer treatment. However, the shortage of druggable targets and the increasing development of anticancer drug resistance remain significant problems. Recently, membrane transport proteins have emerged as novel therapeutic targets for cancer treatment. These proteins are essential for a plethora of cell functions ranging from cell homeostasis to clinical drug toxicity. Furthermore, their association with carcinogenesis and chemoresistance has opened new vistas for pharmacology-based cancer research. This review provides a comprehensive update of our current knowledge on the functional expression profile of membrane transport proteins in cancer and chemoresistant tumours that may form the basis for new cancer treatment strategies.
Collapse
Affiliation(s)
- Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON KIH 8M5, Canada;
| | - Yassine El Hiani
- Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence:
| |
Collapse
|
27
|
Collins MP, Forgac M. Regulation and function of V-ATPases in physiology and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183341. [PMID: 32422136 DOI: 10.1016/j.bbamem.2020.183341] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023]
Abstract
The vacuolar H+-ATPases (V-ATPases) are essential, ATP-dependent proton pumps present in a variety of eukaryotic cellular membranes. Intracellularly, V-ATPase-dependent acidification functions in such processes as membrane traffic, protein degradation, autophagy and the coupled transport of small molecules. V-ATPases at the plasma membrane of certain specialized cells function in such processes as bone resorption, sperm maturation and urinary acidification. V-ATPases also function in disease processes such as pathogen entry and cancer cell invasiveness, while defects in V-ATPase genes are associated with disorders such as osteopetrosis, renal tubular acidosis and neurodegenerative diseases. This review highlights recent advances in our understanding of V-ATPase structure, mechanism, function and regulation, with an emphasis on the signaling pathways controlling V-ATPase assembly in mammalian cells. The role of V-ATPases in cancer and other human pathologies, and the prospects for therapeutic intervention, are also discussed.
Collapse
Affiliation(s)
- Michael P Collins
- Cell, Molecular and Developmental Biology, Tufts University Graduate School of Biomedical Sciences, United States of America
| | - Michael Forgac
- Cell, Molecular and Developmental Biology, Tufts University Graduate School of Biomedical Sciences, United States of America; Dept. of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, United States of America.
| |
Collapse
|
28
|
Real-time monitoring of extracellular pH using a pH-potentiometric sensing SECM dual-microelectrode. Anal Bioanal Chem 2020; 412:3737-3743. [DOI: 10.1007/s00216-020-02625-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023]
|
29
|
Abstract
Nearly 100 years ago, Otto Warburg undertook a study of tumor metabolism, and discovered increased lactate caused by increased glycolysis in cancer cells. His experiments were conducted in the presence of excess oxygen, but today tumor tissue is known to be a hypoxic environment. However, an increase of glycolysis and lactate production is still a valid observation. Numerous abnormalities and mutations of metabolic enzymes have been found in many cancers. For example, pyruvate kinase M2 has been associated with many cancers and is a major contributor to directing glycolysis into fermentation, forming lactate. Increases in several enzymes, including glucose 6-phosphate dehydrogenase, pyruvate kinase M2, Rad6, or deficiency of other enzymes such as succinate dehydrogenase, all may contribute directly or indirectly to increases in lactate associated with the Warburg effect. In addition, the increased lactate and acid-base changes are modified further by monocarboxylate transporters and carbonic anhydrase, which contribute to alkalinizing tumor cells while acidifying the tumor extracellular environment. This acidification leads to cancer spread. Fully understanding the mechanisms underlying the Warburg effect should provide new approaches to cancer treatment.
Collapse
Affiliation(s)
- Netanya Y Spencer
- Research Division, Joslin Diabetes Center, Boston, MA; Department of Medicine, Harvard Medical School, Boston, MA.
| | - Robert C Stanton
- Research Division, Joslin Diabetes Center, Boston, MA; Department of Medicine, Harvard Medical School, Boston, MA; Nephrology Division, Beth Israel Deaconess Medical Center, Boston, MA
| |
Collapse
|
30
|
Ward C, Meehan J, Gray ME, Murray AF, Argyle DJ, Kunkler IH, Langdon SP. The impact of tumour pH on cancer progression: strategies for clinical intervention. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2020; 1:71-100. [PMID: 36046070 PMCID: PMC9400736 DOI: 10.37349/etat.2020.00005] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Dysregulation of cellular pH is frequent in solid tumours and provides potential opportunities for therapeutic intervention. The acidic microenvironment within a tumour can promote migration, invasion and metastasis of cancer cells through a variety of mechanisms. Pathways associated with the control of intracellular pH that are under consideration for intervention include carbonic anhydrase IX, the monocarboxylate transporters (MCT, MCT1 and MCT4), the vacuolar-type H+-ATPase proton pump, and the sodium-hydrogen exchanger 1. This review will describe progress in the development of inhibitors to these targets.
Collapse
Affiliation(s)
- Carol Ward
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Mark E Gray
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG Midlothian, UK
| | - Alan F Murray
- School of Engineering, Institute for Integrated Micro and Nano Systems, EH9 3JL Edinburgh, UK
| | - David J Argyle
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush, EH25 9RG Midlothian, UK
| | - Ian H Kunkler
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| | - Simon P Langdon
- Cancer Research UK Edinburgh Centre and Edinburgh Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, EH4 2XU Edinburgh, UK
| |
Collapse
|
31
|
Flinck M, Hagelund S, Gorbatenko A, Severin M, Pedraz-Cuesta E, Novak I, Stock C, Pedersen SF. The Vacuolar H + ATPase α3 Subunit Negatively Regulates Migration and Invasion of Human Pancreatic Ductal Adenocarcinoma Cells. Cells 2020; 9:E465. [PMID: 32085585 PMCID: PMC7072798 DOI: 10.3390/cells9020465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 12/12/2022] Open
Abstract
Increased metabolic acid production and upregulation of net acid extrusion render pH homeostasis profoundly dysregulated in many cancers. Plasma membrane activity of vacuolar H+ ATPases (V-ATPases) has been implicated in acid extrusion and invasiveness of some cancers, yet often on the basis of unspecific inhibitors. Serving as a membrane anchor directing V-ATPase localization, the a subunit of the V0 domain of the V-ATPase (ATP6V0a1-4) is particularly interesting in this regard. Here, we map the regulation and roles of ATP6V0a3 in migration, invasion, and growth in pancreatic ductal adenocarcinoma (PDAC) cells. a3 mRNA and protein levels were upregulated in PDAC cell lines compared to non-cancer pancreatic epithelial cells. Under control conditions, a3 localization was mainly endo-/lysosomal, and its knockdown had no detectable effect on pHi regulation after acid loading. V-ATPase inhibition, but not a3 knockdown, increased HIF-1 expression and decreased proliferation and autophagic flux under both starved and non-starved conditions, and spheroid growth of PDAC cells was also unaffected by a3 knockdown. Strikingly, a3 knockdown increased migration and transwell invasion of Panc-1 and BxPC-3 PDAC cells, and increased gelatin degradation in BxPC-3 cells yet decreased it in Panc-1 cells. We conclude that in these PDAC cells, a3 is upregulated and negatively regulates migration and invasion, likely in part via effects on extracellular matrix degradation.
Collapse
Affiliation(s)
- Mette Flinck
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Sofie Hagelund
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Andrej Gorbatenko
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Marc Severin
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Elena Pedraz-Cuesta
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Ivana Novak
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| | - Christian Stock
- Department of Gastroentero-, Hepato- and Endocrinology, Hannover Medical School, D-30625 Hannover, Germany;
| | - Stine Falsig Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, DK-2100 Copenhagen, Denmark; (M.F.); (S.H.); (M.S.); (E.P.-C.); (I.N.)
| |
Collapse
|
32
|
Abstract
Skeletal involvement is a frequent and troublesome complication in advanced cancers. In the process of tumor cells homing to the skeleton to form bone metastases (BM), different mechanisms allow tumor cells to interact with cells of the bone microenvironment and seed in the bone tissue. Among these, tumor acidosis has been directly associated with tumor invasion and aggressiveness in several types of cancer although it has been less explored in the context of BM. In bone, the association of local acidosis and cancer invasiveness is even more important for tumor expansion since the extracellular matrix is formed by both organic and hard inorganic matrices and bone cells are used to sense protons and adapt or react to a low pH to maintain tissue homeostasis. In the BM microenvironment, increased concentration of protons may derive not only from glycolytic tumor cells but also from tumor-induced osteoclasts, the bone-resorbing cells, and may influence the progression or symptoms of BM in many different ways, by directly enhancing cancer cell motility and aggressiveness, or by modulating the functions of bone cells versus a pro-tumorigenic phenotype, or by inducing bone pain. In this review, we will describe and discuss the cause of acidosis in BM, its role in BM microenvironment, and which are the final effectors that may be targeted to treat metastatic patients.
Collapse
Affiliation(s)
- Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Silvia Lemma
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Unit, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40123, Bologna, Italy
| |
Collapse
|
33
|
Hálfdánarson ÓÖ, Pottegård A, Lund SH, Ogmundsdottir MH, Ogmundsdottir HM, Zoega H. Use of proton pump inhibitors and mortality among Icelandic patients with prostate cancer. Basic Clin Pharmacol Toxicol 2020; 126:484-491. [PMID: 31872571 DOI: 10.1111/bcpt.13379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/12/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022]
Abstract
Proton pump inhibitors (PPIs) are commonly used drugs among cancer patients. Due to conflicting reports on their safety, we aimed to determine whether PPI use is associated with mortality among prostate cancer patients. In this population-based cohort study, we identified incident diagnoses of prostate cancer between 2007 and 2012 (n = 1058). Follow-up was from 12 months after diagnosis until death, emigration or end the of study. Post-diagnosis use was defined as ≥2 filled prescriptions following diagnosis. We used time-dependent Cox proportional hazard regression models to compute hazard ratios (HRs) and 95% confidence intervals (CIs) for prostate cancer-specific and all-cause mortality associated with post-diagnosis use of PPIs. We identified 347 (32.8%) post-diagnosis PPI users and 711 (67.2%) non-users after diagnosis. Of the 347 patients using PPIs after diagnosis, 59 (17.0%) died due to any cause and 22 (6.3%) due to prostate cancer, compared with 144 (20.3%) and 76 (10.7%) among non-users after diagnosis, respectively. Post-diagnosis PPI use was not associated with prostate cancer-specific mortality (HR 0.88; 95% CI: 0.52-1.48) or all-cause mortality (HR 1.02; 95% CI: 0.73-1.43). Contrary to a previous report, this study did not find evidence of an association between post-diagnosis PPI use and mortality among prostate cancer patients.
Collapse
Affiliation(s)
- Óskar Ö Hálfdánarson
- Faculty of Medicine, Centre of Public Health Sciences, University of Iceland, Reykjavík, Iceland.,Medicines Policy Research Unit, Centre for Big Data Research in Health, UNSW Sydney, Sydney, NSW, Australia
| | - Anton Pottegård
- Clinical Pharmacology and Pharmacy, University of Southern Denmark, Odense, Denmark
| | | | - Margret H Ogmundsdottir
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Helga M Ogmundsdottir
- Faculty of Medicine, Cancer Research Laboratory, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Helga Zoega
- Faculty of Medicine, Centre of Public Health Sciences, University of Iceland, Reykjavík, Iceland.,Medicines Policy Research Unit, Centre for Big Data Research in Health, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
34
|
Wang J, Chen D, Song W, Liu Z, Ma W, Li X, Zhang C, Wang X, Wang Y, Yang Y, Cao W, Qi L. ATP6L promotes metastasis of colorectal cancer by inducing epithelial-mesenchymal transition. Cancer Sci 2020; 111:477-488. [PMID: 31840304 PMCID: PMC7004526 DOI: 10.1111/cas.14283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/04/2019] [Accepted: 12/08/2019] [Indexed: 12/22/2022] Open
Abstract
ATP6L, the C subunit of the V-ATPase V0 domain, is involved in regulating the acidic tumor micro-environment and may promote tumor progression. However, the expression and functional role of ATP6L in tumors have not yet been well explored. In this study, we found that ATP6L protein overexpression was related to colorectal cancer histological differentiation (P < 0.001), presence of metastasis (P < 0.001) and recurrence (P = 0.02). ATP6L expression in the liver metastatic foci was higher than in the primary foci (P = 0.04). ATP6L expression was notably concomitant with epithelial-mesenchymal transition (EMT) immunohistochemical features, such as reduced expression of the epithelial marker E-cadherin (P = 0.021) and increased expression of the mesenchymal marker vimentin (P = 0.004). Results of in vitro and in vivo experiments showed that ATP6L expression could alter cell morphology, regulate EMT-associated protein expression, and enhance migration and invasion. The effect of ATP6L on metastasis was further demonstrated in a tail vein injection mice model. In addition, the mouse xenograft model showed that ATP6L-overexpressing HCT116 cells grew into larger tumor masses, showed less necrosis and formed more micro-vessels than the control cells. Taken together, our results suggest that ATP6L promotes metastasis of colorectal cancer by inducing EMT and angiogenesis, and is a potential target for tumor therapy.
Collapse
Affiliation(s)
- Jingyi Wang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy,Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Dandan Chen
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy,Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wangzhao Song
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zhiyong Liu
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy,Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenjuan Ma
- Department of Breast Imaging, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiaofeng Li
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chao Zhang
- Department of Bone and Soft Tissue Tumors, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xin Wang
- Department of Epidemiology and Biostatistics, First Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yalei Wang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy,Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Ye Yang
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy,Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wenfeng Cao
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy,Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Lisha Qi
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy,Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
35
|
Couto-Vieira J, Nicolau-Neto P, Costa EP, Figueira FF, Simão TDA, Okorokova-Façanha AL, Ribeiro Pinto LF, Façanha AR. Multi-cancer V-ATPase molecular signatures: A distinctive balance of subunit C isoforms in esophageal carcinoma. EBioMedicine 2020; 51:102581. [PMID: 31901859 PMCID: PMC6948166 DOI: 10.1016/j.ebiom.2019.11.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 01/05/2023] Open
Abstract
Background V-ATPases are hetero-oligomeric enzymes consisting of 13 subunits and playing key roles in ion homeostasis and signaling. Differential expression of these proton pumps has been implicated in carcinogenesis and metastasis. To elucidate putative molecular signatures underlying these phenomena, we evaluated the expression of V-ATPase genes in esophageal squamous cell carcinoma (ESCC) and extended the analysis to other cancers. Methods Expression of all V-ATPase genes were analyzed in ESCC by a microarray data and in different types of tumors available from public databases. Expression of C isoforms was validated by qRT-PCR in paired ESCC samples. Findings A differential expression pattern of V-ATPase genes was found in different tumors, with combinations in up- and down-regulation leading to an imbalance in the expression ratios of their isoforms. Particularly, a high C1 and low C2 expression pattern accurately discriminated ESCC from normal tissues. Structural modeling of C2a isoform uncovered motifs for oncogenic kinases in an additional peptide stretch, and an actin-biding domain downstream to this sequence. Interpretation Altogether these data revealed that the expression ratios of subunits/isoforms could form a conformational code that controls the H+ pump regulation and interactions related to tumorigenesis. This study establishes a paradigm change by uncovering multi-cancer molecular signatures present in the V-ATPase structure, from which future studies must address the complexity of the onco-related V-ATPase assemblies as a whole, rather than targeting changes in specific subunit isoforms. Funding This work was supported by grants from CNPq and FAPERJ-Brazil.
Collapse
Affiliation(s)
- Juliana Couto-Vieira
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Pedro Nicolau-Neto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rio de Janeiro, RJ, Brazil
| | - Evenilton Pessoa Costa
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Frederico Firme Figueira
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | | | - Anna Lvovna Okorokova-Façanha
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Luis Felipe Ribeiro Pinto
- Programa de Carcinogênese Molecular, Instituto Nacional de Câncer - INCA, Rio de Janeiro, RJ, Brazil; Departamento de Bioquímica, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Arnoldo Rocha Façanha
- Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
36
|
Elingaard-Larsen LO, Rolver MG, Sørensen EE, Pedersen SF. How Reciprocal Interactions Between the Tumor Microenvironment and Ion Transport Proteins Drive Cancer Progression. Rev Physiol Biochem Pharmacol 2020; 182:1-38. [PMID: 32737753 DOI: 10.1007/112_2020_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid tumors comprise two major components: the cancer cells and the tumor stroma. The stroma is a mixture of cellular and acellular components including fibroblasts, mesenchymal and cancer stem cells, endothelial cells, immune cells, extracellular matrix, and tumor interstitial fluid. The insufficient tumor perfusion and the highly proliferative state and dysregulated metabolism of the cancer cells collectively create a physicochemical microenvironment characterized by altered nutrient concentrations and varying degrees of hypoxia and acidosis. Furthermore, both cancer and stromal cells secrete numerous growth factors, cytokines, and extracellular matrix proteins which further shape the tumor microenvironment (TME), favoring cancer progression.Transport proteins expressed by cancer and stromal cells localize at the interface between the cells and the TME and are in a reciprocal relationship with it, as both sensors and modulators of TME properties. It has been amply demonstrated how acid-base and nutrient transporters of cancer cells enable their growth, presumably by contributing both to the extracellular acidosis and the exchange of metabolic substrates and waste products between cells and TME. However, the TME also impacts other transport proteins important for cancer progression, such as multidrug resistance proteins. In this review, we summarize current knowledge of the cellular and acellular components of solid tumors and their interrelationship with key ion transport proteins. We focus in particular on acid-base transport proteins with known or proposed roles in cancer development, and we discuss their relevance for novel therapeutic strategies.
Collapse
Affiliation(s)
- Line O Elingaard-Larsen
- Translational Type 2 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Michala G Rolver
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ester E Sørensen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
37
|
Ramirez C, Hauser AD, Vucic EA, Bar-Sagi D. Plasma membrane V-ATPase controls oncogenic RAS-induced macropinocytosis. Nature 2019; 576:477-481. [PMID: 31827278 PMCID: PMC7048194 DOI: 10.1038/s41586-019-1831-x] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/21/2019] [Indexed: 01/17/2023]
Abstract
Oncogenic activation of Ras is associated with the acquisition of a unique set of metabolic dependencies that contribute to tumor cell fitness. Mutant Ras cells are endowed with the capability to internalize and degrade extracellular protein via a fluid–phase uptake mechanism termed macropinocytosis1. There is a growing appreciation for the role of this Ras-dependent process in the generation of free amino acids that can be used to support tumor cell growth under nutrient limiting conditions2. However, little is known about the molecular steps that mediate the induction of macropinocytosis by oncogenic Ras. Here we identify vacuolar ATPase (v-ATPase) as an essential regulator of Ras-induced macropinocytosis. Oncogenic Ras promotes the translocation of v-ATPase from intracellular membranes to the plasma membrane (PM) via a pathway that requires protein kinase A (PKA) activation by a bicarbonate-dependent soluble adenylate cyclase (sAC). PM accumulation of v-ATPase is necessary for the cholesterol-dependent association of Rac1 with the PM, a prerequisite for the stimulation of membrane ruffling and macropinocytosis. These observations identify a link between v-ATPase trafficking and nutrient supply by macropinocytosis that could be exploited to curtail the metabolic adaptation capacity of mutant Ras tumor cells.
Collapse
Affiliation(s)
- Craig Ramirez
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Andrew D Hauser
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Emily A Vucic
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
38
|
Paškevičiūtė M, Petrikaitė V. Proton Pump Inhibitors Modulate Transport Of Doxorubicin And Its Liposomal Form Into 2D And 3D Breast Cancer Cell Cultures. Cancer Manag Res 2019; 11:9761-9769. [PMID: 31819614 PMCID: PMC6877465 DOI: 10.2147/cmar.s224097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 09/11/2019] [Indexed: 01/20/2023] Open
Abstract
PURPOSE The purpose of our study was to evaluate the influence of two PPIs (omeprazole (OME) and lansoprazole (LANSO)) on weakly basic anticancer drug doxorubicin (DOX) and pegylated liposomal doxorubicin (PLD) delivery to monolayer-cultured 4T1 murine breast cancer cells and tumor spheroids. METHODS The effect of PPIs on cell viability was evaluated by MTT assay. 3D cell cultures (spheroids) were formed using 3D bioprinting method. DOX and PLD penetration into cancer cells and spheroids at pH 6.0 and 7.4 was assessed using fluorescence microscopy. RESULTS Both OME and LANSO did not reduce the viability of 4T1 cells at 100 μM and lower concentrations, and therefore, in further experiments, 100 μM of PPIs was used. At pH 7.4, both tested PPIs did not enhance DOX (5 µM) and PLD (concentration corresponding to 5 µM DOX) delivery into 2D cell cultures. However, in acidic conditions, both PPIs increased the amount of drug in cancer cells and their nucleus. At physiological pH they were not effective at improving DOX delivery into spheroids, but after 2 hrs of incubation, OME slightly increased PLD delivery into edge and middle zones. At pH 6.0, both tested PPIs significantly enhanced DOX and PLD transport into spheroids, but the positive effect on delivery was observed only within the first 4 hrs of incubation. CONCLUSION Both OME and LANSO increased DOX and PLD penetration into monolayer-cultured cells at acidic conditions but did not show a positive effect on drug delivery at physiological pH. Also, pretreatment with tested PPIs slightly increased DOX and PLD delivery in the edge and middle zones of tumor spheroids. Thus, OME and LANSO are promising transport modulators of weakly basic drugs.
Collapse
Affiliation(s)
- Miglė Paškevičiūtė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, KaunasLT-50161, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, KaunasLT-50161, Lithuania
- Institute of Physiology and Pharmacology, Faculty of Medicine, Lithuanian University of Health Sciences, KaunasLT-44307, Lithuania
| |
Collapse
|
39
|
McGuire CM, Collins MP, Sun-Wada G, Wada Y, Forgac M. Isoform-specific gene disruptions reveal a role for the V-ATPase subunit a4 isoform in the invasiveness of 4T1-12B breast cancer cells. J Biol Chem 2019; 294:11248-11258. [PMID: 31167791 PMCID: PMC6643023 DOI: 10.1074/jbc.ra119.007713] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/30/2019] [Indexed: 12/17/2022] Open
Abstract
The vacuolar H+-ATPase (V-ATPase) is an ATP-driven proton pump present in various intracellular membranes and at the plasma membrane of specialized cell types. Previous work has reported that plasma membrane V-ATPases are key players in breast cancer cell invasiveness. The two subunit a-isoforms known to target the V-ATPase to the plasma membrane are a3 and a4, and expression of a3 has been shown to correlate with plasma membrane localization of the V-ATPase in various invasive human breast cancer cell lines. Here we analyzed the role of subunit a-isoforms in the invasive mouse breast cancer cell line, 4T1-12B. Quantitation of mRNA levels for each isoform by quantitative RT-PCR revealed that a4 is the dominant isoform expressed in these cells. Using a CRISPR/Cas9-based approach to disrupt the genes encoding each of the four V-ATPase subunit a-isoforms, we found that ablation of only the a4-encoding gene significantly inhibits invasion and migration of 4T1-12B cells. Additionally, cells with disrupted a4 exhibited reduced V-ATPase expression at the leading edge, suggesting that the a4 isoform is primarily responsible for targeting the V-ATPase to the plasma membrane in 4T1-12B cells. These findings suggest that different subunit a-isoforms may direct V-ATPases to the plasma membrane of different invasive breast cancer cell lines. They further suggest that expression of V-ATPases at the cell surface is the primary factor that promotes an invasive cancer cell phenotype.
Collapse
Affiliation(s)
- Christina M McGuire
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts 02111
- Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
| | - Michael P Collins
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts 02111
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
| | - GeHong Sun-Wada
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Kyoto 610-0395, Japan
| | - Yoh Wada
- Division of Biological Science, Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan
| | - Michael Forgac
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Tufts University, Boston, Massachusetts 02111
- Program in Biochemistry, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
- Program in Cell, Molecular, and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts 02111
| |
Collapse
|
40
|
Yang J, Guo F, Yuan L, Lv G, Gong J, Chen J. Elevated expression of the V-ATPase D2 subunit triggers increased energy metabolite levels in Kras G12D -driven cancer cells. J Cell Biochem 2019; 120:11690-11701. [PMID: 30746744 DOI: 10.1002/jcb.28448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Mutations of the Ras oncogene are frequently detected in human cancers. Among Ras-mediated tumorigenesis, Kras-driven cancers are the most dominant mutation types. Here, we investigated molecular markers related to the Kras mutation, which is involved in energy metabolism in Kras mutant-driven cancer. We first generated a knock-in KrasG12D cell line as a model. The genotype and phenotype of the Kras G12D -driven cells were first confirmed. Dramatically elevated metabolite characterization was observed in Kras G12D -driven cells compared with wild-type cells. Analysis of mitochondrial metabolite-related genes showed that two of the 84 genes in Kras G12D -driven cells differed from control cells by at least twofold. The messenger RNA and protein levels of ATP6V0D2 were significantly upregulated in Kras G12D -driven cells. Knockdown of ATP6V0D2 expression inhibited motility and invasion but did not affect the proliferation of Kras G12D -driven cells. We further investigated ATP6V0D2 expression in tumor tissue microarrays. ATP6V0D2 overexpression was observed in most carcinoma tissues, such as melanoma, pancreas, and kidney. Thus, we suggest that ATP6V0D2, as one of the V-ATPase (vacuolar-type H + -ATPase) subunit isoforms, may be a potential therapeutic target for Kras mutation cancer.
Collapse
Affiliation(s)
- Jigang Yang
- Nuclear Medicine Department, Beijing Friendship Hospital, Affiliated to Capital Medical University, Beijing, China
| | - Feihu Guo
- R&D Department, High Tech of Atom Co Ltd, Beijing, China
| | - Leilei Yuan
- Nuclear Medicine Department, Beijing Friendship Hospital, Affiliated to Capital Medical University, Beijing, China
| | - Guangxin Lv
- Department of Biological Sciences, College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jianhua Gong
- Oncology Department, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jing Chen
- Department of Biological Sciences, College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| |
Collapse
|
41
|
Yang OCY, Loh SH. Acidic Stress Triggers Sodium-Coupled Bicarbonate Transport and Promotes Survival in A375 Human Melanoma Cells. Sci Rep 2019; 9:6858. [PMID: 31048755 PMCID: PMC6497716 DOI: 10.1038/s41598-019-43262-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/18/2019] [Indexed: 12/27/2022] Open
Abstract
Melanoma cells preserve intracellular pH (pHi) within a viable range despite an acidic ambient pH that typically falls below pH 7.0. The molecular mechanisms underlying this form of acidic preservation in melanoma remain poorly understood. Previous studies had demonstrated that proton transporters including the monocarboxylate transporter (MCT), the sodium hydrogen exchanger (NHE), and V-Type ATPase mediate acid extrusion to counter intracellular acidification in melanoma cells. In this report, the expression and function of the Sodium-Coupled Bicarbonate Transporter (NCBT) family of base loaders were further characterized in melanoma cell lines. NCBT family members were found to be expressed in three different melanoma cell lines – A375, MeWo, and HS695T – and included the electrogenic sodium-bicarbonate cotransporter isoforms 1 and 2 (NBCe1 and NBCe2), the electroneutral sodium-bicarbonate cotransporter (NBCn1), and the sodium-dependent chloride-bicarbonate exchanger (NDCBE). These transporters facilitated 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS)-dependent pHi recovery in melanoma cells, in response to intracellular acidification induced by ammonium chloride prepulse. Furthermore, the expression of NCBTs were upregulated via chronic exposure to extracellular acidification. Given the current research interest in the NCBTs as a molecular driver of tumourigenesis, characterising NCBT in melanoma provides impetus for developing novel therapeutic targets for melanoma treatment.
Collapse
Affiliation(s)
- Oscar C Y Yang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom.,Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hurng Loh
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, United Kingdom. .,Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan. .,Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
42
|
Choudhury H, Pandey M, Yin TH, Kaur T, Jia GW, Tan SQL, Weijie H, Yang EKS, Keat CG, Bhattamishra SK, Kesharwani P, Md S, Molugulu N, Pichika MR, Gorain B. Rising horizon in circumventing multidrug resistance in chemotherapy with nanotechnology. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:596-613. [PMID: 31029353 DOI: 10.1016/j.msec.2019.04.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/24/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
Multidrug resistance (MDR) is one of the key barriers in chemotherapy, leading to the generation of insensitive cancer cells towards administered therapy. Genetic and epigenetic alterations of the cells are the consequences of MDR, resulted in drug resistivity, which reflects in impaired delivery of cytotoxic agents to the cancer site. Nanotechnology-based nanocarriers have shown immense shreds of evidence in overcoming these problems, where these promising tools handle desired dosage load of hydrophobic chemotherapeutics to facilitate designing of safe, controlled and effective delivery to specifically at tumor microenvironment. Therefore, encapsulating drugs within the nano-architecture have shown to enhance solubility, bioavailability, drug targeting, where co-administered P-gp inhibitors have additionally combat against developed MDR. Moreover, recent advancement in the stimuli-sensitive delivery of nanocarriers facilitates a tumor-targeted release of the chemotherapeutics to reduce the associated toxicities of chemotherapeutic agents in normal cells. The present article is focused on MDR development strategies in the cancer cell and different nanocarrier-based approaches in circumventing this hurdle to establish an effective therapy against deadliest cancer disease.
Collapse
Affiliation(s)
- Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia.
| | - Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Tan Hui Yin
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Taasjir Kaur
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Gan Wei Jia
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - S Q Lawrence Tan
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - How Weijie
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Eric Koh Sze Yang
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Chin Guan Keat
- Bachelor of Pharmacy student, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Subrat Kumar Bhattamishra
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nagasekhara Molugulu
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa, Bukit Jalil, 57000, Kuala Lumpur, Malaysia; Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Mallikarjuna Rao Pichika
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, 57000, Kuala Lumpur, Malaysia; Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia.
| |
Collapse
|
43
|
Hálfdánarson ÓÖ, Fall K, Ogmundsdottir MH, Lund SH, Steingrímsson E, Ogmundsdottir HM, Zoega H. Proton pump inhibitor use and risk of breast cancer, prostate cancer, and malignant melanoma: An Icelandic population‐based case‐control study. Pharmacoepidemiol Drug Saf 2018; 28:471-478. [DOI: 10.1002/pds.4702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/21/2018] [Accepted: 10/24/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Óskar Ö. Hálfdánarson
- Centre of Public Health Sciences, Faculty of MedicineUniversity of Iceland Reykjavík Iceland
| | - Katja Fall
- Clinical Epidemiology and Biostatistics, School of Medical SciencesÖrebro University Örebro Sweden
- Department of Medical Epidemiology and BiostatisticsKarolinska Institutet Stockholm Sweden
| | - Margret H. Ogmundsdottir
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of MedicineUniversity of Iceland Reykjavik Iceland
| | - Sigrún H. Lund
- Centre of Public Health Sciences, Faculty of MedicineUniversity of Iceland Reykjavík Iceland
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of MedicineUniversity of Iceland Reykjavik Iceland
| | - Helga M. Ogmundsdottir
- Cancer Research Laboratory, BioMedical Center, Faculty of MedicineUniversity of Iceland Reykjavik Iceland
| | - Helga Zoega
- Centre of Public Health Sciences, Faculty of MedicineUniversity of Iceland Reykjavík Iceland
- Medicines Policy Research Unit, Centre for Big Data Research in HealthUniversity of New South Wales Sydney Australia
| |
Collapse
|
44
|
Affiliation(s)
- Michael Forgac
- Michael Forgac: Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
45
|
Whitton B, Okamoto H, Packham G, Crabb SJ. Vacuolar ATPase as a potential therapeutic target and mediator of treatment resistance in cancer. Cancer Med 2018; 7:3800-3811. [PMID: 29926527 PMCID: PMC6089187 DOI: 10.1002/cam4.1594] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 01/10/2023] Open
Abstract
Vacuolar ATPase (V-ATPase) is an ATP-dependent H+ -transporter that pumps protons across intracellular and plasma membranes. It consists of a large multi-subunit protein complex and influences a wide range of cellular processes. This review focuses on emerging evidence for the roles for V-ATPase in cancer. This includes how V-ATPase dysregulation contributes to cancer growth, metastasis, invasion and proliferation, and the potential link between V-ATPase and the development of drug resistance.
Collapse
Affiliation(s)
- Bradleigh Whitton
- Southampton Cancer Research UK CentreUniversity of SouthamptonSouthamptonUK
- Biological SciencesFaculty of Natural and Environmental SciencesUniversity of SouthamptonSouthamptonUK
| | - Haruko Okamoto
- Biological SciencesFaculty of Natural and Environmental SciencesUniversity of SouthamptonSouthamptonUK
| | - Graham Packham
- Southampton Cancer Research UK CentreUniversity of SouthamptonSouthamptonUK
| | - Simon J. Crabb
- Southampton Cancer Research UK CentreUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
46
|
Collins MP, Forgac M. Regulation of V-ATPase Assembly in Nutrient Sensing and Function of V-ATPases in Breast Cancer Metastasis. Front Physiol 2018; 9:902. [PMID: 30057555 PMCID: PMC6053528 DOI: 10.3389/fphys.2018.00902] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 06/21/2018] [Indexed: 12/20/2022] Open
Abstract
V-ATPases are proton pumps that function to acidify intracellular compartments in all eukaryotic cells, and to transport protons across the plasma membrane of certain specialized cells. V-ATPases function in many normal and disease processes, including membrane traffic, protein degradation, pathogen entry, and cancer cell invasion. An important mechanism of regulating V-ATPase activity in vivo is regulated assembly, which is the reversible dissociation of the ATP-hydrolytic V1 domain from the proton-conducting V0 domain. Regulated assembly is highly conserved and occurs in response to various nutrient cues, suggesting that it plays an important role in cellular homeostasis. We have recently found that starvation of mammalian cells for either amino acids or glucose increases V-ATPase assembly on lysosomes, possibly to increase protein degradation (for amino acid homeostasis) or for the utilization of alternative energy sources (during glucose starvation). While regulation of assembly in response to amino acid starvation does not involve PI3K or mTORC1, glucose-regulated assembly involves both PI3K and AMPK. Another important form of V-ATPase regulation is the targeting of the enzyme to different cellular membranes, which is controlled by isoforms of subunit a. We have shown that V-ATPases are localized to the plasma membrane of highly invasive breast cancer cells, where they promote cell migration and invasion. Furthermore, overexpression of the a3 isoform is responsible for plasma membrane targeting of V-ATPases in breast tumor cells leading to their increased invasiveness.
Collapse
Affiliation(s)
- Michael P Collins
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States
| | - Michael Forgac
- Program in Cell, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States.,Department of Developmental, Molecular and Chemical Biology, School of Medicine, Tufts University, Boston, MA, United States
| |
Collapse
|
47
|
Licon-Munoz Y, Fordyce CA, Hayek SR, Parra KJ. V-ATPase-dependent repression of androgen receptor in prostate cancer cells. Oncotarget 2018; 9:28921-28934. [PMID: 29988966 PMCID: PMC6034745 DOI: 10.18632/oncotarget.25641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/04/2018] [Indexed: 12/17/2022] Open
Abstract
Prostate Cancer (PCa) is the most commonly diagnosed cancer and the third leading cause of death for men in the United States. Suppression of androgen receptor (AR) expression is a desirable mechanism to manage PCa. Our studies showed that AR expression was reduced in LAPC4 and LNCaP PCa cell lines treated with nanomolar concentrations of the V-ATPase inhibitor concanamycin A (CCA). This treatment decreased PSA mRNA levels, indicative of reduced AR activity. V-ATPase-dependent repression of AR expression was linked to defective endo-lysosomal pH regulation and reduced AR expression at the transcriptional level. CCA treatment increased the protein level and nuclear localization of the alpha subunit of the transcription factor HIF-1 (HIF-1α) in PCa cells via decreased hydroxylation and degradation of HIF-1α. The addition of iron (III) citrate restored HIF-1α hydroxylation and decreased total HIF-1α levels in PCa cells treated with CCA. Moreover, iron treatment partially rescued CCA-mediated AR repression. Dimethyloxalylglycine (DMOG), which prevents HIF-1α degradation independently of V-ATPase, also decreased AR levels, supporting our hypothesis that HIF-1α serves as a downstream mediator in the V-ATPase-AR axis. We propose a new V-ATPase-dependent mechanism to inhibit androgen receptor expression in prostate cancer cells involving defective endosomal trafficking of iron and the inhibition of HIF-1 α-subunit turnover.
Collapse
Affiliation(s)
- Yamhilette Licon-Munoz
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Colleen A Fordyce
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Summer Raines Hayek
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| | - Karlett J Parra
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, 87131, USA
| |
Collapse
|
48
|
Guedes JP, Pereira CS, Rodrigues LR, Côrte-Real M. Bovine Milk Lactoferrin Selectively Kills Highly Metastatic Prostate Cancer PC-3 and Osteosarcoma MG-63 Cells In Vitro. Front Oncol 2018; 8:200. [PMID: 29915723 PMCID: PMC5994723 DOI: 10.3389/fonc.2018.00200] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer and osteosarcoma are the second most common type of cancer affecting men and the fifth most common malignancy among adolescents, respectively. The use of non-toxic natural or natural-derived products has been one of the current strategies for cancer therapy, owing to the reduced risks of induced-chemoresistance development and the absence of secondary effects. In this perspective, lactoferrin (Lf), a natural protein derived from milk, emerges as a promising anticancer agent due to its well-recognized cytotoxicity and anti-metastatic activity. Here, we aimed to ascertain the potential activity of bovine Lf (bLf) against highly metastatic cancer cells. The bLf effect on prostate PC-3 and osteosarcoma MG-63 cell lines, both displaying plasmalemmal V-ATPase, was studied and compared with the breast cancer MDA-MB-231 and the non-tumorigenic BJ-5ta cell lines. Cell proliferation, cell death, intracellular pH, lysosomal acidification, and extracellular acidification rate were evaluated. Results show that bLf inhibits proliferation, induces apoptosis, intracellular acidification, and perturbs lysosomal acidification only in highly metastatic cancer cell lines. By contrast, BJ-5ta cells are insensitive to bLf. Overall, our results establish a common mechanism of action of bLf against highly metastatic cancer cells exhibiting plasmalemmal V-ATPase. This study opens promising perspectives for further research on the anticancer role of Lf, which ultimately will contribute to its safer and more rational application in the human therapy of these life-threatening cancers.
Collapse
Affiliation(s)
- Joana P Guedes
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Center of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Cátia S Pereira
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
- Center of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Lígia R Rodrigues
- Center of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, Braga, Portugal
| | - Manuela Côrte-Real
- Center of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| |
Collapse
|
49
|
Wakabayashi H, Wakisaka S, Hiraga T, Hata K, Nishimura R, Tominaga M, Yoneda T. Decreased sensory nerve excitation and bone pain associated with mouse Lewis lung cancer in TRPV1-deficient mice. J Bone Miner Metab 2018; 36:274-285. [PMID: 28516219 DOI: 10.1007/s00774-017-0842-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/12/2017] [Indexed: 02/08/2023]
Abstract
Bone pain is one of the most common and life-limiting complications of cancer metastasis to bone. Although the mechanism of bone pain still remains poorly understood, bone pain is evoked as a consequence of sensitization and excitation of sensory nerves (SNs) innervating bone by noxious stimuli produced in the microenvironment of bone metastases. We showed that bone is innervated by calcitonin gene-related protein (CGRP)+ SNs extending from dorsal root ganglia (DRG), the cell body of SNs, in mice. Mice intratibially injected with Lewis lung cancer (LLC) cells showed progressive bone pain evaluated by mechanical allodynia and flinching with increased CGRP+ SNs in bone and augmented SN excitation in DRG as indicated by elevated numbers of pERK- and pCREB-immunoreactive neurons. Immunohistochemical examination of LLC-injected bone revealed that the tumor microenvironment is acidic. Bafilomycin A1, a selective inhibitor of H+ secretion from vacuolar proton pump, significantly alleviated bone pain, indicating that the acidic microenvironment contributes to bone pain. We then determined whether the transient receptor potential vanilloid 1 (TRPV1), a major acid-sensing nociceptor predominantly expressed on SNs, plays a role in bone pain by intratibially injecting LLC cells in TRPV1-deficient mice. Bone pain and SN excitation in the DRG and spinal dorsal horn were significantly decreased in TRPV1 -/- mice compared with wild-type mice. Our results suggest that TRPV1 activation on SNs innervating bone by the acidic cancer microenvironment in bone contributes to SN activation and bone pain. Targeting acid-activated TRPV1 is a potential therapeutic approach to cancer-induced bone pain.
Collapse
Affiliation(s)
- Hiroki Wakabayashi
- Department of Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Orthopaedic Surgery, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Satoshi Wakisaka
- Department of Oral Anatomy and Developmental Biology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toru Hiraga
- Department of Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Histology and Cell Biology, Matsumoto Dental University, 1780 Gobara‑Hirooka, Shiojiri, Nagano, 399‑0781, Japan
| | - Kenji Hata
- Department of Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Riko Nishimura
- Department of Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Makoto Tominaga
- Okazaki Institute of Integrative Bioscience, National Institutes of Natural Sciences, 5-1 Higashiyama Myodaijicho, Okazaki, Aichi, 444-8787, Japan
| | - Toshiyuki Yoneda
- Department of Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Division of Hematology and Oncology, Indiana University School of Medicine, 980 W Walnut St, Indianapolis, IN, 46202, USA.
| |
Collapse
|
50
|
The a3 isoform of subunit a of the vacuolar ATPase localizes to the plasma membrane of invasive breast tumor cells and is overexpressed in human breast cancer. Oncotarget 2018; 7:46142-46157. [PMID: 27323815 PMCID: PMC5216787 DOI: 10.18632/oncotarget.10063] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022] Open
Abstract
The vacuolar (H+)-ATPases (V-ATPases) are a family of ATP-driven proton pumps that acidify intracellular compartments and transport protons across the plasma membrane. Previous work has demonstrated that plasma membrane V-ATPases are important for breast cancer invasion in vitro and that the V-ATPase subunit a isoform a3 is upregulated in and critical for MDA-MB231 and MCF10CA1a breast cancer cell invasion. It has been proposed that subunit a3 is present on the plasma membrane of invasive breast cancer cells and is overexpressed in human breast cancer. To test this, we used an a3-specific antibody to assess localization in breast cancer cells. Subunit a3 localizes to the leading edge of migrating breast cancer cells, but not the plasma membrane of normal breast epithelial cells. Furthermore, invasive breast cancer cells express a3 throughout all intracellular compartments tested, including endosomes, the Golgi, and lysosomes. Moreover, subunit a3 knockdown in MB231 breast cancer cells reduces in vitro migration. This reduction is not enhanced upon addition of a V-ATPase inhibitor, suggesting that a3-containing V-ATPases are critical for breast cancer migration. Finally, we have tested a3 expression in human breast cancer tissue and mRNA prepared from normal and cancerous breast tissue. a3 mRNA was upregulated 2.5-47 fold in all breast tumor cDNA samples tested relative to normal tissue, with expression generally correlated to cancer stage. Furthermore, a3 protein expression was increased in invasive breast cancer tissue relative to noninvasive cancer and normal breast tissue. These studies suggest that subunit a3 plays an important role in invasive human breast cancer.
Collapse
|