1
|
Hosseini M, Voisin V, Chegini A, Varesi A, Cathelin S, Ayyathan DM, Liu ACH, Yang Y, Wang V, Maher A, Grignano E, Reisz JA, D'Alessandro A, Young K, Wu Y, Fiumara M, Ferrari S, Naldini L, Gaiti F, Pai S, Egan G, Schimmer AD, Bader GD, Dick JE, Xie SZ, Trowbridge JJ, Chan SM. Metformin reduces the competitive advantage of Dnmt3a R878H HSPCs. Nature 2025:10.1038/s41586-025-08871-w. [PMID: 40240595 DOI: 10.1038/s41586-025-08871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/05/2025] [Indexed: 04/18/2025]
Abstract
Clonal haematopoiesis arises when a haematopoietic stem cell (HSC) acquires a mutation that confers a competitive advantage over wild-type HSCs, resulting in its clonal expansion. Individuals with clonal haematopoiesis are at increased risk of developing haematologic neoplasms and other age-related inflammatory illnesses1-4. Suppressing the expansion of mutant HSCs may prevent these outcomes; however, such interventions have not yet been identified. The most common clonal haematopoiesis driver mutations are in the DNMT3A gene, with arginine 882 (R882) being a mutation hotspot1-3,5-7. Here we show that mouse haematopoietic stem and progenitor cells (HSPCs) carrying the Dnmt3aR878H/+ mutation, equivalent to human DNMT3AR882H/+, have increased mitochondrial respiration compared with wild-type cells and are dependent on this metabolic reprogramming for their competitive advantage. Treatment with metformin, an anti-diabetic drug that inhibits mitochondrial respiration8, reduced the competitive advantage of Dnmt3aR878H/+ HSCs. Through a multi-omics approach, we found that metformin acts by enhancing methylation potential in Dnmt3aR878H/+ HSPCs and reversing the aberrant DNA CpG methylation and histone H3 K27 trimethylation profiles in these cells. Metformin also reduced the competitive advantage of human DNMT3AR882H HSPCs generated by prime editing. Our findings provide preclinical rationale for investigating metformin as a preventive intervention against DNMT3A R882 mutation-driven clonal haematopoiesis in humans.
Collapse
Affiliation(s)
| | - Veronique Voisin
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Ali Chegini
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Angelica Varesi
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Alex C H Liu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yitong Yang
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Vivian Wang
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Abdula Maher
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Eric Grignano
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Julie A Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kira Young
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Yiyan Wu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Martina Fiumara
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Federico Gaiti
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Shraddha Pai
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Grace Egan
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aaron D Schimmer
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gary D Bader
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - John E Dick
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Steven M Chan
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
2
|
Lamorte D, Calice G, Trino S, Santodirocco M, Caivano A, De Luca L, Laurenzana I. Acute myeloid leukemia-derived extracellular vesicles induced DNA methylation changes responsible for inflammatory program in normal hematopoietic stem progenitor cells. Front Immunol 2025; 16:1569159. [PMID: 40276507 PMCID: PMC12018244 DOI: 10.3389/fimmu.2025.1569159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Introduction Acute Myeloid Leukemia (AML) cells communicate with surrounding normal cells, including hematopoietic stem progenitor cells (HSPCs), in the bone marrow, and modify their fate supporting tumor growth. This communication can be mediated by Extracellular Vesicles (EVs), small vectors carrying a range of tumor molecular information. One of the hallmarks of AML is the aberrant DNA methylation. It is not known if and how AML cells can modify the epigenomic profile of healthy HSPCs. Here, we investigated the DNA methylation profile of HSPCs after exposure to AML derived-EVs. Methods Cord blood derived-HSPCs were treated with AML cell line derived-EVs for 20 hours and then their DNA methylation profile was analyzed by methylation array. We cross-referenced differential methylated genes (dmGs) with differential expressed genes (deGs) obtained by gene expression profile of same EV treated-HSPCs. Gene ontology was performed on dmGs and deGs. To confirm the expression of some genes, digital PCR was applied. Results AML-EVs induced DNA methylation changes in HSPCs after short time exposure, showing 110-890 dmGs. In particular, we reported a DNA hypo-methylation in both promoter and body regions. DmGs showed an enrichment in hematopoietic and immunological processes, inflammation, cell movement and AML pathways. The intersection between dmGs and deGs identified 20 common genes, including DSE, SEMA4A, NFKB1 and MTSS1, whose over-expression could be associated with the hypo-methylation of their gene body, and other ones, such as SLA and CUTA whose down-expression could be associated with the hypo-methylated promoter. These deGs were involved in NF-kB pathway, interleukin mediate Toll like receptor signaling and, of note, in tumor. Conclusion This study is the first proof-of-concept that AML-EVs were able to induce changes in DNA methylation of HSPCs modulating the expression of genes involved in inflammatory processes capable of modifying normal hematopoiesis towards leukemic like processes.
Collapse
Affiliation(s)
- Daniela Lamorte
- Laboratory of Preclinical and Translational Research, IRCCS Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Giovanni Calice
- Laboratory of Preclinical and Translational Research, IRCCS Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Stefania Trino
- Laboratory of Preclinical and Translational Research, IRCCS Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture (PZ), Italy
| | - Michele Santodirocco
- Trasfusional Medicine Department, Puglia Cord Blood Bank (CBB), Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, San Giovanni Rotondo (FG), Italy
| | - Antonella Caivano
- Unit of Clinical Pathology, IRCCS Centro di Riferimento Oncologico della Basilicata CROB, Rionero in Vulture (PZ), Italy
| | - Luciana De Luca
- Unit of Clinical Pathology, IRCCS Centro di Riferimento Oncologico della Basilicata CROB, Rionero in Vulture (PZ), Italy
| | - Ilaria Laurenzana
- Laboratory of Preclinical and Translational Research, IRCCS Centro di Riferimento Oncologico della Basilicata (CROB), Rionero in Vulture (PZ), Italy
| |
Collapse
|
3
|
Fisher RJ, Park K, Lee K, Pinjusic K, Vanasse A, Ennis CS, Ficcaro S, Marto J, Stransky S, Duke-Cohan J, Geethadevi A, Raabe E, Sidoli S, Hicks CW, Keskin DB, Wu CJ, Cole PA, Alani RM. CoREST Complex Inhibition Alters RNA Splicing to Promote Neoantigen Expression and Enhance Tumor Immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.12.627852. [PMID: 39713349 PMCID: PMC11661192 DOI: 10.1101/2024.12.12.627852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Epigenetic complexes tightly regulate gene expression and colocalize with RNA splicing machinery; however, the consequences of these interactions are uncertain. Here, we identify unique interactions of the CoREST repressor complex with RNA splicing factors and their functional consequences in tumorigenesis. Using mass spectrometry, in vivo binding assays, and cryo-EM we find that CoREST complex-splicing factor interactions are direct and perturbed by the CoREST complex inhibitor, corin, leading to extensive changes in RNA splicing in melanoma and other malignancies. Using predictive machine learning models and MHC IP-MS, we identify thousands of corin-induced neopeptides derived from unannotated splice sites which generate immunogenic splice-neoantigens. Furthermore, corin reactivates the response to immune checkpoint blockade and promotes dramatic expansion of cytotoxic T cells in an immune cold melanoma model. CoREST complex inhibition thus represents a unique therapeutic opportunity in cancer which creates tumor-associated neoantigens that enhance the immunogenicity of current therapeutics. Statement of Significance We identify a novel role of the CoREST transcriptional repressor complex in regulating pre-mRNA splicing and find that the small molecule inhibitor, corin, promotes alternative splicing events in cancer leading to neoantigen expression and T cell-mediated immunity. This represents a potential approach to promote immunoreactive neoantigen expression in immune-cold tumors.
Collapse
|
4
|
Kashima E, Sugimoto Y, Nagaharu K, Ohya E, Ikejiri M, Watanabe Y, Kageyama S, Oka K, Tawara I. Venetoclax is effective for chronic myelomonocytic leukemia blastic transformation with RUNX1 mutation. Hematology 2024; 29:2392908. [PMID: 39163269 DOI: 10.1080/16078454.2024.2392908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/10/2024] [Indexed: 08/22/2024] Open
Abstract
Background: Chronic myelomonocytic leukemia is a clonal hematological disorder with an inherent risk of transformation to acute myeloid leukemia. Recently, there has been exponential discovery of molecular abnormalities in patients with chronic myelomonocytic leukemia. Some of these mutations independently contribute to a higher risk of transformation and result in inferior overall survival. Treatment strategies for patients undergoing blastic transformation in chronic myelomonocytic leukemia, especially after progressing on hypomethylating agents, are currently limited.Case presentation: We present a case of a 70-year-old male patient with chronic myelomonocytic leukemia blastic transformation with RUNX1 mutation following azacitidine monotherapy. Notably, he achieved hematological complete remission after the first course of venetoclax plus azacitidine, leading to the disappearance of RUNX1 mutation. We performed serial assessments of molecular analysis by next generation sequencing throughout his clinical course.Conclusion: The presence of RUNX1 mutation is associated with higher response rates to venetoclax-based combination therapies in chronic myelomonocytic leukemia with blastic transformation. Our findings suggest that even after azacitidine monotherapy, venetoclax plus azacitidine is effective in targeting leukemic clones harboring RUNX1 mutations. Furthermore, we emphasize the significance of molecular analysis, including next-generation sequencing, in providing insights into the detailed dynamics of clonal evolution and guiding treatment decisions.
Collapse
Affiliation(s)
- Emiko Kashima
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yuka Sugimoto
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Keiki Nagaharu
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
- Department of Hematology, Yokkaichi Municipal Hospital, Yokkaichi, Japan
| | - Eiko Ohya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
- Department of Hematology, Matsusaka Chuo General Hospital, Matsusaka, Japan
| | - Makoto Ikejiri
- Department of Clinical Laboratory, Mie University Hospital, Tsu, Japan
| | | | | | - Koji Oka
- Department of Hematology, Suzuka Kaisei Hospital, Suzuka, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
5
|
Long G, Li Z, Gao Y, Zhang X, Cheng X, Daniel IE, Zhang L, Wang D, Li Z. Ferroptosis-related alternative splicing signatures as potential biomarkers for predicting prognosis and therapy response in gastric cancer. Heliyon 2024; 10:e34381. [PMID: 39816333 PMCID: PMC11734151 DOI: 10.1016/j.heliyon.2024.e34381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 01/18/2025] Open
Abstract
Ferroptosis is linked to various tumor biological traits, and alternative splicing (AS), a crucial step in mRNA processing, plays a role in the post-transcriptional regulation of ferroptosis-related genes (FRGs). A least absolute shrinkage and selection operator (LASSO) penalized Cox regression analysis was utilized to build a prognostic signature based on 12 AS events (p < 0.05), which was validated in gastric cancer (GC) patients. The high-risk group (n = 203) showed enrichment in cancer and metastasis pathways (p < 0.05). Significant differences existed between the high- and low-risk groups in terms of tumor microenvironment (TME) cell infiltration and immune activities (p < 0.05). The low-risk group (n = 203) was characterized by immune activation and improved prognosis (p < 0.001). Additionally, targeted treatment and immunotherapy were more likely to benefit the low-risk group (p < 0.05). Correlation analysis was performed to detect related splicing factors (SF) (Cor>0.4, FDR<0.05). Furthermore, our functional assay results suggested that high SF3A2 expression might increase ferroptosis resistance and promote cell proliferation. In conclusion, the FRAs model we built has an advantage in predicting GC prognosis. The model's demonstration of variations in the immune microenvironment and drug response could potentially inform decisions regarding treatment strategies.
Collapse
Affiliation(s)
- Gang Long
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Zhiyong Li
- Department of General Surgery, Peking University People's Hospital, Beijing, 100044, China
| | - Yue Gao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Xu Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Xiyang Cheng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Irankunda Eric Daniel
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Lisha Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Dawei Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| | - Zhengtian Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No.23 Post Street, Nangang district, Harbin, 150007, China
| |
Collapse
|
6
|
Wang Q, Duan Y, Zan Z, Yang K, Wang J, Jia F, Tan Y, Wang H, Li L. The Study of SRSF1 Regulates Abnormal Alternative Splicing of BCL2L11 and the Role in Refractory Acute Myeloid Leukemia. Chemotherapy 2024; 69:224-236. [PMID: 38763139 DOI: 10.1159/000539414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
INTRODUCTION Abnormalities in splicing factors, such as mutations or deregulated expression, can lead to aberrant splicing of target genes, potentially contributing to the pathogenesis of acute myeloid leukemia (AML). Despite this, the precise mechanism underlying the abnormal alternative splicing (AS) induced by SRSF1, a splicing factor associated with poor AML prognosis, remains elusive. METHODS Using strict splicing criteria, we globally screened for AS events in NPMc-positive and NPMc-negative AML samples from TCGA. An AS network associated with AML prognosis was then established. Functional assays, including CCK-8, flow cytometry, and Western blot, were conducted on K562 and THP-1 cells overexpressing SRSF1. Cell viability following 72-h Omipalisib treatment was also assessed. To explore the mechanism of SRSF1-induced AS, we created a BCL2L11 miniGene with a site-specific mutation at its branch point. The AS patterns of both wild-type and mutant miniGenes were analyzed following SRSF1 overexpression in HEK-293T, along with the subcellular localization of different spliceosomes. RESULTS SRSF1 was significantly associated with AML prognosis. Notably, its expression was markedly upregulated in refractory AML patients compared to those with a favorable chemotherapy response. Overexpression of SRSF1 promoted THP-1 cell proliferation, suppressed apoptosis, and reduced sensitivity to Omipalisib. Mechanistically, SRSF1 recognized an aberrant branch point within the BCL2L11 intron, promoting the inclusion of a cryptic exon 3, which in turn led to apoptosis arrest. CONCLUSION Overexpression of SRSF1 and the resulting abnormal splicing of BCL2L11 are associated with drug resistance and poor prognosis in AML.
Collapse
Affiliation(s)
- Qirong Wang
- Department of Cell Biology and Genetics, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Yu Duan
- Department of Cell Biology and Genetics, School of Basic Medicine, Shanxi Medical University, Taiyuan, China,
| | - Zhifang Zan
- Department of Cell Biology and Genetics, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Kai Yang
- Department of Cell Biology and Genetics, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Jinjuan Wang
- Department of Cell Biology and Genetics, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| | - Fengfeng Jia
- Taiyuan Technology Transfer Promotion Center, Taiyuan, China
| | - Yanhong Tan
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongwei Wang
- Department of Hematology, the Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Li Li
- Department of Cell Biology and Genetics, School of Basic Medicine, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
7
|
Zhang Z, Huang J, Zhang Z, Shen H, Tang X, Wu D, Bao X, Xu G, Chen S. Application of omics in the diagnosis, prognosis, and treatment of acute myeloid leukemia. Biomark Res 2024; 12:60. [PMID: 38858750 PMCID: PMC11165883 DOI: 10.1186/s40364-024-00600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most frequent leukemia in adults with a high mortality rate. Current diagnostic criteria and selections of therapeutic strategies are generally based on gene mutations and cytogenetic abnormalities. Chemotherapy, targeted therapies, and hematopoietic stem cell transplantation (HSCT) are the major therapeutic strategies for AML. Two dilemmas in the clinical management of AML are related to its poor prognosis. One is the inaccurate risk stratification at diagnosis, leading to incorrect treatment selections. The other is the frequent resistance to chemotherapy and/or targeted therapies. Genomic features have been the focus of AML studies. However, the DNA-level aberrations do not always predict the expression levels of genes and proteins and the latter is more closely linked to disease phenotypes. With the development of high-throughput sequencing and mass spectrometry technologies, studying downstream effectors including RNA, proteins, and metabolites becomes possible. Transcriptomics can reveal gene expression and regulatory networks, proteomics can discover protein expression and signaling pathways intimately associated with the disease, and metabolomics can reflect precise changes in metabolites during disease progression. Moreover, omics profiling at the single-cell level enables studying cellular components and hierarchies of the AML microenvironment. The abundance of data from different omics layers enables the better risk stratification of AML by identifying prognosis-related biomarkers, and has the prospective application in identifying drug targets, therefore potentially discovering solutions to the two dilemmas. In this review, we summarize the existing AML studies using omics methods, both separately and combined, covering research fields of disease diagnosis, risk stratification, prognosis prediction, chemotherapy, as well as targeted therapy. Finally, we discuss the directions and challenges in the application of multi-omics in precision medicine of AML. Our review may inspire both omics researchers and clinical physicians to study AML from a different angle.
Collapse
Affiliation(s)
- Zhiyu Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Jiayi Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
8
|
Nayarisseri A, Bandaru S, Khan A, Sharma K, Bhrdwaj A, Kaur M, Ghosh D, Chopra I, Panicker A, Kumar A, Saravanan P, Belapurkar P, Mendonça Junior FJB, Singh SK. Epigenetic dysregulation in cancers by isocitrate dehydrogenase 2 (IDH2). ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:223-253. [PMID: 38960475 DOI: 10.1016/bs.apcsb.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Recent advances in genome-wide studies have revealed numerous epigenetic regulations brought about by genes involved in cellular metabolism. Isocitrate dehydrogenase (IDH), an essential enzyme, that converts isocitrate into -ketoglutarate (KG) predominantly in the tricarboxylic acid (TCA) cycle, has gained particular importance due to its cardinal role in the metabolic pathway in cells. IDH1, IDH2, and IDH3 are the three isomeric IDH enzymes that have been shown to regulate cellular metabolism. Of particular importance, IDH2 genes are associated with several cancers, including gliomas, oligodendroglioma, and astrocytomas. These mutations lead to the production of oncometabolite D-2-hydroxyglutarate (D-2-HG), which accumulates in cells promoting tumor growth. The enhanced levels of D-2-HG competitively inhibit α-KG dependent enzymes, inhibiting cell TCA cycle, upregulating the cell growth and survival relevant HIF-1α pathway, promoting DNA hypermethylation related epigenetic activity, all of which synergistically contribute to carcinogenesis. The present review discusses epigenetic mechanisms inIDH2 regulation in cells and further its clinical implications.
Collapse
Affiliation(s)
- Anuraj Nayarisseri
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Bioinformatics Research Laboratory, LeGene Biosciences Pvt Ltd, Indore, Madhya Pradesh, India.
| | - Srinivas Bandaru
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Department of Biotechnology, Koneru Lakshmaiah Educational Foundation (KLEF), Green Fields, Vaddeswaram, Andhra Pradesh, India
| | - Arshiya Khan
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Khushboo Sharma
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Anushka Bhrdwaj
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Manmeet Kaur
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Dipannita Ghosh
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Ishita Chopra
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; School of Medicine and Health Sciences, The George Washington University, Washington, DC, United States
| | - Aravind Panicker
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Abhishek Kumar
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India; Department of Biosciences, Acropolis Institute, Indore, Madhya Pradesh, India
| | - Priyadevi Saravanan
- In silico Research Laboratory, Eminent Biosciences, Indore, Madhya Pradesh, India
| | - Pranoti Belapurkar
- Department of Biosciences, Acropolis Institute, Indore, Madhya Pradesh, India
| | | | - Sanjeev Kumar Singh
- Computer Aided Drug Designing and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
9
|
Zhong F, He S, Guo N, Shi L, Zhang L, Jin H, Kong G. A novel immunogenic cell death-related classification indicates the immune landscape and predicts clinical outcome and treatment response in acute myeloid leukemia. Cancer Cell Int 2024; 24:139. [PMID: 38627685 PMCID: PMC11022379 DOI: 10.1186/s12935-024-03326-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 04/12/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Immunogenic cell death (ICD) is closely related to anti-tumor therapy and regulates the tumor microenvironment (TME). This study aims to explore the molecular characteristics of ICD in acute myeloid leukemia (AML) and to analyze the value of ICD-related biomarkers in TME indication, prognosis prediction, and treatment response evaluation in AML. METHODS Single-sample gene set enrichment analysis was used to calculate the ICD score. LASSO regression was used to construct a prognostic risk score model. We also analyzed differences in clinical characteristics, immune landscape, immunotherapy response, and chemotherapy sensitivity between high-risk and low-risk patients. RESULTS This study identified two ICD-related subtypes and found significant heterogeneity in clinical prognosis, TME, and immune landscape between different ICD subtypes. Subsequently, a novel ICD-related prognostic risk score model was developed, which accurately predicted the prognosis of AML patients and was validated in nine AML cohorts. Moreover, there were significant correlations between risk scores and clinicopathological factors, somatic mutations, TME characteristics, immune cell infiltration, immunotherapy response, and chemosensitivity. We further validated the model gene expression in a clinically real-world cohort. CONCLUSIONS The novel ICD-related signatures identified and validated by us can serve as promising biomarkers for predicting clinical outcomes, chemotherapy sensitivity, and immunotherapy response in AML patients, guiding the establishment of personalized and accurate treatment strategies for AML.
Collapse
Affiliation(s)
- Fangmin Zhong
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shuyang He
- Queen Mary School of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Ni Guo
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Luyi Shi
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Linlin Zhang
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Hua Jin
- Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Guangyao Kong
- Department of Hematology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.
- National and Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
10
|
Hosseini M, Voisin V, Chegini A, Varesi A, Cathelin S, Ayyathan DM, Liu AC, Yang Y, Wang V, Maher A, Grignano E, Reisz JA, D’Alessandro A, Young K, Wu Y, Fiumara M, Ferrari S, Naldini L, Gaiti F, Pai S, Schimmer AD, Bader GD, Dick JE, Xie SZ, Trowbridge JJ, Chan SM. Metformin reduces the clonal fitness of Dnmt3a R878H hematopoietic stem and progenitor cells by reversing their aberrant metabolic and epigenetic state. RESEARCH SQUARE 2024:rs.3.rs-3874821. [PMID: 38405837 PMCID: PMC10889081 DOI: 10.21203/rs.3.rs-3874821/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Clonal hematopoiesis (CH) arises when a hematopoietic stem cell (HSC) acquires a mutation that confers a competitive advantage over wild-type (WT) HSCs, resulting in its clonal expansion. Individuals with CH are at an increased risk of developing hematologic neoplasms and a range of age-related inflammatory illnesses1-3. Therapeutic interventions that suppress the expansion of mutant HSCs have the potential to prevent these CH-related illnesses; however, such interventions have not yet been identified. The most common CH driver mutations are in the DNA methyltransferase 3 alpha (DNMT3A) gene with arginine 882 (R882) being a mutation hotspot. Here we show that murine hematopoietic stem and progenitor cells (HSPCs) carrying the Dnmt3a R878H/+ mutation, which is equivalent to human DNMT3A R882H/+, have increased mitochondrial respiration compared with WT cells and are dependent on this metabolic reprogramming for their competitive advantage. Importantly, treatment with metformin, an oral anti-diabetic drug with inhibitory activity against complex I in the electron transport chain (ETC), reduced the fitness of Dnmt3a R878H/+ HSCs. Through a multi-omics approach, we discovered that metformin acts by enhancing the methylation potential in Dnmt3a R878H/+ HSPCs and reversing their aberrant DNA CpG methylation and histone H3K27 trimethylation (H3K27me3) profiles. Metformin also reduced the fitness of human DNMT3A R882H HSPCs generated by prime editing. Our findings provide preclinical rationale for investigating metformin as a preventive intervention against illnesses associated with DNMT3A R882 mutation-driven CH in humans.
Collapse
Affiliation(s)
| | - Veronique Voisin
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - Ali Chegini
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Angelica Varesi
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Alex C.H. Liu
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Yitong Yang
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Vivian Wang
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Abdula Maher
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Eric Grignano
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kira Young
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Yiyan Wu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Martina Fiumara
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Luigi Naldini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
- Vita-Salute San Raffaele University, Milan, 20132, Italy
| | - Federico Gaiti
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Shraddha Pai
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Aaron D. Schimmer
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gary D. Bader
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, Ontario, Canada
| | - John E. Dick
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Steven M. Chan
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Alors-Pérez E, Pedraza-Arevalo S, Blázquez-Encinas R, Moreno-Montilla MT, García-Vioque V, Berbel I, Luque RM, Sainz B, Ibáñez-Costa A, Castaño JP. Splicing alterations in pancreatic ductal adenocarcinoma: a new molecular landscape with translational potential. J Exp Clin Cancer Res 2023; 42:282. [PMID: 37880792 PMCID: PMC10601233 DOI: 10.1186/s13046-023-02858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/09/2023] [Indexed: 10/27/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers worldwide, mainly due to its late diagnosis and lack of effective therapies, translating into a low 5-year 12% survival rate, despite extensive clinical efforts to improve outcomes. International cooperative studies have provided informative multiomic landscapes of PDAC, but translation of these discoveries into clinical advances are lagging. Likewise, early diagnosis biomarkers and new therapeutic tools are sorely needed to tackle this cancer. The study of poorly explored molecular processes, such as splicing, can provide new tools in this regard. Alternative splicing of pre-RNA allows the generation of multiple RNA variants from a single gene and thereby contributes to fundamental biological processes by finely tuning gene expression. However, alterations in alternative splicing are linked to many diseases, and particularly to cancer, where it can contribute to tumor initiation, progression, metastasis and drug resistance. Splicing defects are increasingly being associated with PDAC, including both mutations or dysregulation of components of the splicing machinery and associated factors, and altered expression of specific relevant gene variants. Such disruptions can be a key element enhancing pancreatic tumor progression or metastasis, while they can also provide suitable tools to identify potential candidate biomarkers and discover new actionable targets. In this review, we aimed to summarize the current information about dysregulation of splicing-related elements and aberrant splicing isoforms in PDAC, and to describe their relationship with the development, progression and/or aggressiveness of this dismal cancer, as well as their potential as therapeutic tools and targets.
Collapse
Affiliation(s)
- Emilia Alors-Pérez
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Ricardo Blázquez-Encinas
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - María Trinidad Moreno-Montilla
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Víctor García-Vioque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Inmaculada Berbel
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain
- Reina Sofía University Hospital (HURS), Cordoba, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERObn), Córdoba, Spain
| | - Bruno Sainz
- Department of Cancer Biology, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid, Spain
- Cancer Stem Cells and Fibroinflammatory Microenvironment Group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Area 3, Cancer, Madrid, Spain
- Gastrointestinal Tumours Research Programme, Biomedical Research Network in Cancer (CIBERONC), Madrid, Spain
| | - Alejandro Ibáñez-Costa
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Reina Sofía University Hospital (HURS), Cordoba, Spain.
| | - Justo P Castaño
- Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Cordoba, Spain.
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Cordoba, Spain.
- Reina Sofía University Hospital (HURS), Cordoba, Spain.
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, (CIBERObn), Córdoba, Spain.
| |
Collapse
|
12
|
Abolhasani S, Hejazian SS, Karpisheh V, Khodakarami A, Mohammadi H, Gholizadeh Navashenaq J, Hojjat-Farsangi M, Jadidi-Niaragh F. The role of SF3B1 and NOTCH1 in the pathogenesis of leukemia. IUBMB Life 2023; 75:257-278. [PMID: 35848163 DOI: 10.1002/iub.2660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/18/2022] [Indexed: 11/09/2022]
Abstract
The discovery of new genes/pathways improves our knowledge of cancer pathogenesis and presents novel potential therapeutic options. For instance, splicing factor 3b subunit 1 (SF3B1) and NOTCH1 genetic alterations have been identified at a high frequency in hematological malignancies, such as leukemia, and may be related to the prognosis of involved patients because they change the nature of malignancies in different ways like mediating therapeutic resistance; therefore, studying these gene/pathways is essential. This review aims to discuss SF3B1 and NOTCH1 roles in the pathogenesis of various types of leukemia and the therapeutic potential of targeting these genes or their mutations to provide a foundation for leukemia treatment.
Collapse
Affiliation(s)
- Shiva Abolhasani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Atefeh Khodakarami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden.,The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Zhong FM, Yao FY, Liu J, Li MY, Jiang JY, Cheng Y, Xu S, Li SQ, Zhang N, Huang B, Wang XZ. Splicing factor-mediated regulation patterns reveals biological characteristics and aid in predicting prognosis in acute myeloid leukemia. J Transl Med 2023; 21:6. [PMID: 36611187 PMCID: PMC9824960 DOI: 10.1186/s12967-022-03868-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Alternative splicing (AS) of RNA is a fundamental biological process that shapes protein diversity. Many non-characteristic AS events are involved in the onset and development of acute myeloid leukemia (AML). Abnormal alterations in splicing factors (SFs), which regulate the onset of AS events, affect the process of splicing regulation. Hence, it is important to explore the relationship between SFs and the clinical features and biological processes of patients with AML. METHODS This study focused on SFs of the classical heterogeneous nuclear ribonucleoprotein (hnRNP) family and arginine and serine/arginine-rich (SR) splicing factor family. We explored the relationship between the regulation patterns associated with the expression of SFs and clinicopathological factors and biological behaviors of AML based on a multi-omics approach. The biological functions of SRSF10 in AML were further analyzed using clinical samples and in vitro experiments. RESULTS Most SFs were upregulated in AML samples and were associated with poor prognosis. The four splicing regulation patterns were characterized by differences in immune function, tumor mutation, signaling pathway activity, prognosis, and predicted response to chemotherapy and immunotherapy. A risk score model was constructed and validated as an independent prognostic factor for AML. Overall survival was significantly shorter in the high-risk score group. In addition, we confirmed that SRSF10 expression was significantly up-regulated in clinical samples of AML, and knockdown of SRSF10 inhibited the proliferation of AML cells and promoted apoptosis and G1 phase arrest during the cell cycle. CONCLUSION The analysis of splicing regulation patterns can help us better understand the differences in the tumor microenvironment of patients with AML and guide clinical decision-making and prognosis prediction. SRSF10 can be a potential therapeutic target and biomarker for AML.
Collapse
Affiliation(s)
- Fang-Min Zhong
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China ,grid.260463.50000 0001 2182 8825School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang, 330006 Jiangxi China
| | - Fang-Yi Yao
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Jing Liu
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Mei-Yong Li
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Jun-Yao Jiang
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Ying Cheng
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China ,grid.260463.50000 0001 2182 8825School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang, 330006 Jiangxi China
| | - Shuai Xu
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China ,grid.260463.50000 0001 2182 8825School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang, 330006 Jiangxi China
| | - Shu-Qi Li
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Nan Zhang
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Bo Huang
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Xiao-Zhong Wang
- grid.412455.30000 0004 1756 5980Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China ,grid.260463.50000 0001 2182 8825School of Public Health, Nanchang University, No. 461 BaYi Boulevard, Nanchang, 330006 Jiangxi China
| |
Collapse
|
14
|
Al-Bulushi F, Al-Riyami R, Al-Housni Z, Al-Abri B, Al-Khabori M. Impact of mutations in epigenetic modifiers in acute myeloid leukemia: A systematic review and meta-analysis. Front Oncol 2022; 12:967657. [PMID: 36518313 PMCID: PMC9742486 DOI: 10.3389/fonc.2022.967657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/11/2022] [Indexed: 08/30/2023] Open
Abstract
This is a systematic review and meta-analysis evaluating the prognostic significance of epigenetic mutations on the overall survival (OS) in Acute Myeloid Leukemia (AML). We searched for studies evaluating epigenetic mutations in AML (up to November 2018) in PubMed, Trip database and Cochrane library. Hazard ratio (HR) of outcomes were extracted, and random-effects model was used to pool the results. A total of 10,002 citations were retrieved from the search strategy; 42 articles were identified for the meta-analysis (ASXL1 = 7, TET2 = 8, DNMT3A = 12, IDH =15), with fair to good-quality studies. The pooled HR was 1.88 (95% CI: 1.49-2.36) for ASXL1 mutation, 1.39 (95% CI: 1.18-1.63) for TET2 mutation, 1.35 (95% CI 1.16-1.56) for DNMT3a and 1.54 (95% CI: 1.15-2.06) for IDH mutation. However, there was a substantial heterogeneity in the DNMT3a and IDH studies. In conclusion epigenetic mutations in ASXL1, TET2, DNMT3a and IDH adversely impact OS in patients with AML albeit with considerable heterogeneity and possibly publication bias. Further studies are required to address these limitations.
Collapse
Affiliation(s)
- Fatma Al-Bulushi
- Hematopathology, Oman Medical Specialty Board, Muscat, Oman
- Hematology Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Rahma Al-Riyami
- Internal Medicine, Oman Medical Specialty Board, Muscat, Oman
| | - Zainab Al-Housni
- Hematology Department, Sultan Qaboos University Hospital, Muscat, Oman
| | - Bushra Al-Abri
- Hematopathology, Oman Medical Specialty Board, Muscat, Oman
| | - Murtadha Al-Khabori
- Hematology Department, Sultan Qaboos University Hospital, Muscat, Oman
- College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
15
|
Zalpoor H, Bakhtiyari M, Akbari A, Aziziyan F, Shapourian H, Liaghat M, Zare-Badie Z, Yahyazadeh S, Tarhriz V, Ganjalikhani-Hakemi M. Potential role of autophagy induced by FLT3-ITD and acid ceramidase in acute myeloid leukemia chemo-resistance: new insights. Cell Commun Signal 2022; 20:172. [PMCID: PMC9620650 DOI: 10.1186/s12964-022-00956-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
Acute myeloid leukemia (AML) is a type of leukemia with a poor prognosis and survival characterized by abnormal cell proliferation and differentiation. Despite advances in treatment, AML still has a low complete remission rate, particularly in elderly patients, and recurrences are frequently seen even after complete remissions. The major challenge in treating AML is the resistance of leukemia cells to chemotherapy drugs. Thus, to overcome this issue, it can be crucial to conduct new investigations to explore the mechanisms of chemo-resistance in AML and target them. In this review, the potential role of autophagy induced by FLT3-ITD and acid ceramidase in chemo-resistance in AML patients are analyzed. With regard to the high prevalence of FLT3-ITD mutation (about 25% of AML cases) and high level of acid ceramidase in these patients, we hypothesized that both of these factors could lead to chemo-resistance by inducing autophagy. Therefore, pharmacological targeting of autophagy, FLT3-ITD, and acid ceramidase production could be a promising therapeutic approach for such AML patients to overcome chemo-resistance.
Video abstract
Collapse
Affiliation(s)
- Hamidreza Zalpoor
- grid.412571.40000 0000 8819 4698Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Maryam Bakhtiyari
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran ,grid.412606.70000 0004 0405 433XDepartment of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Abdullatif Akbari
- grid.412571.40000 0000 8819 4698Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Fatemeh Aziziyan
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran ,grid.412266.50000 0001 1781 3962Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hooriyeh Shapourian
- grid.411036.10000 0001 1498 685XDepartment of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Liaghat
- grid.510410.10000 0004 8010 4431Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran ,grid.472315.60000 0004 0494 0825Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Zahra Zare-Badie
- grid.412571.40000 0000 8819 4698Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sheida Yahyazadeh
- grid.411036.10000 0001 1498 685XDepartment of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Vahideh Tarhriz
- grid.412888.f0000 0001 2174 8913Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mazdak Ganjalikhani-Hakemi
- grid.411036.10000 0001 1498 685XDepartment of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
16
|
Park HS, Kim HK, Kim HS, Yang Y, Han HS, Lee KH, Son BR, Kwon J. The new diagnostic criteria for myelodysplasia-related acute myeloid leukemia is useful for predicting clinical outcome: comparison of the 4th and 5th World Health Organization classifications. Ann Hematol 2022; 101:2645-2654. [PMID: 36220882 DOI: 10.1007/s00277-022-05002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/28/2022] [Indexed: 11/24/2022]
Abstract
Mutations in myelodysplasia-related (MR) genes, rather than morphological features, have been included in the diagnostic criteria of the new 5th World Health Organization (WHO) classification for myelodysplastic syndrome (MDS)-associated acute myeloid leukemia (AML). This study compares the clinical relevance of the new criteria with those of the previous version. In a cohort of 135 patients with newly diagnosed AML, the MDS-related AML patients were classified according to the 5th and 4th edition of the WHO classification (AML, myelodysplasia-related [AML-MR5th] and AML with myelodysplasia-related changes [AML-MRC4th], respectively). The median age of the patients was 70.4 years. MR gene mutations were found in 48 patients (35.6%). Sixty-one patients (46.6%) were diagnosed with AML-MRC4th, while 71 patients (53.0%) were diagnosed with AML-MR5th. Patients with AML-MR5th were significantly older with significantly lower treatment response rate, higher recurrence rate, and shorter relapse-free survival after chemotherapy, whereas AML-MRC4th patients did not show any association with the treatment outcome. Overall, the following prognostic factors for survival were identified: age over 75 years, antecedent MDS or MDS/myeloproliferative neoplasm, chromosome 5 or 7 abnormalities, and KRAS and ZSZR2 mutations. The 5th WHO classification is more useful for predicting the treatment response of patients with AML-MR than the previous version. Among the MR genes, ZSZR2 mutations were found to be independent prognostic factors affecting survival.
Collapse
Affiliation(s)
- Hee Sue Park
- Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju, Chungcheongbuk-do, Republic of Korea.,Laboratory Medicine, Chungbuk National University Hospital, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Hee Kyung Kim
- Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Chungcheongbuk-do, Republic of Korea.,Internal Medicine, Chungbuk National University Hospital, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Hong-Sik Kim
- Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Chungcheongbuk-do, Republic of Korea.,Internal Medicine, Chungbuk National University Hospital, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Yaewon Yang
- Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Chungcheongbuk-do, Republic of Korea.,Internal Medicine, Chungbuk National University Hospital, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Hye Sook Han
- Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Chungcheongbuk-do, Republic of Korea.,Internal Medicine, Chungbuk National University Hospital, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Ki Hyeong Lee
- Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Chungcheongbuk-do, Republic of Korea.,Internal Medicine, Chungbuk National University Hospital, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Bo Ra Son
- Laboratory Medicine, Chungbuk National University College of Medicine, Cheongju, Chungcheongbuk-do, Republic of Korea.,Laboratory Medicine, Chungbuk National University Hospital, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Jihyun Kwon
- Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Chungcheongbuk-do, Republic of Korea. .,Internal Medicine, Chungbuk National University Hospital, Cheongju, Chungcheongbuk-do, Republic of Korea.
| |
Collapse
|
17
|
Jurgec S, Jezernik G, Gorenjak M, Büdefeld T, Potočnik U. Meta-Analytic Comparison of Global RNA Transcriptomes of Acute and Chronic Myeloid Leukemia Cells Reveals Novel Gene Candidates Governing Myeloid Malignancies. Cancers (Basel) 2022; 14:cancers14194681. [PMID: 36230605 PMCID: PMC9562668 DOI: 10.3390/cancers14194681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Despite advances in the understanding of genetic risk factors and molecular mechanisms underlying acute myeloid leukemia (AML) and chronic myeloid leukemia (CML), clinical outcomes of current therapies in terms of disease relapse and mortality rate pose a great economic and social burden. To overcome this, the identification of new molecular prognostic biomarkers and pharmacological targets is crucial. Recent studies have suggested that AML and CML may share common pathogenic mechanisms and cellular substrates. To this end, in the present study, global transcriptome profiles of AML and CML at the molecular and cellular level were directly compared using a combination of meta-analysis and modern statistics, and novel candidate genes and specific biological processes associated with the pathogenesis of AML and CML were characterized. Our study significantly improves our current understanding of myeloid leukemia and will help develop new therapeutic targets and biomarkers for disease progression, management and treatment response. Abstract Background: Acute myeloid leukemia (AML) and chronic myeloid leukemia (CML) represent a group of hematological malignancies characterized by the pathogenic clonal expansion of leukemic myeloid cells. The diagnosis and clinical outcome of AML and CML are complicated by genetic heterogeneity of disease; therefore, the identification of novel molecular biomarkers and pharmacological targets is of paramount importance. Methods: RNA-seq-based transcriptome data from a total of five studies were extracted from NCBI GEO repository and subjected to an in-depth bioinformatics analysis to identify differentially expressed genes (DEGs) between AML and CML. A systemic literature survey and functional gene ontology (GO) enrichment analysis were performed for the top 100 DEGs to identify novel candidate genes and biological processes associated with AML and CML. Results: LINC01554, PTMAP12, LOC644936, RPS27AP20 and FAM133CP were identified as novel risk genes for AML and CML. GO enrichment analysis showed that DEGs were significantly associated with pre-RNA splicing, reactive oxygen species and glycoprotein metabolism, the cellular endomembrane system, neutrophil migration and antimicrobial immune response. Conclusions: Our study revealed novel biomarkers and specific biological processes associated with AML and CML. Further studies are required to evaluate their value as molecular targets for managing and treating the myeloid malignancies.
Collapse
Affiliation(s)
- Staša Jurgec
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Gregor Jezernik
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Mario Gorenjak
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tomaž Büdefeld
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Uroš Potočnik
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
- Laboratory for Biochemistry, Molecular Biology and Genomics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia
- Correspondence: ; Tel.: +386-2-2345-854
| |
Collapse
|
18
|
Zhang F, Chen L. Molecular Threat of Splicing Factor Mutations to Myeloid Malignancies and Potential Therapeutic Modulations. Biomedicines 2022; 10:biomedicines10081972. [PMID: 36009519 PMCID: PMC9405558 DOI: 10.3390/biomedicines10081972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
Splicing factors are frequently mutated in myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). These mutations are presumed to contribute to oncogenic transformation, but the underlying mechanisms remain incompletely understood. While no specific treatment option is available for MDS/AML patients with spliceosome mutations, novel targeting strategies are actively explored, leading to clinical trials of small molecule inhibitors that target the spliceosome, DNA damage response pathway, and immune response pathway. Here, we review recent progress in mechanistic understanding of splicing factor mutations promoting disease progression and summarize potential therapeutic strategies, which, if successful, would provide clinical benefit to patients carrying splicing factor mutations.
Collapse
|
19
|
Gregoricchio S, Polit L, Esposito M, Berthelet J, Delestré L, Evanno E, Diop M, Gallais I, Aleth H, Poplineau M, Zwart W, Rosenbauer F, Rodrigues-Lima F, Duprez E, Boeva V, Guillouf C. HDAC1 and PRC2 mediate combinatorial control in SPI1/PU.1-dependent gene repression in murine erythroleukaemia. Nucleic Acids Res 2022; 50:7938-7958. [PMID: 35871293 PMCID: PMC9371914 DOI: 10.1093/nar/gkac613] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/18/2022] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
Although originally described as transcriptional activator, SPI1/PU.1, a major player in haematopoiesis whose alterations are associated with haematological malignancies, has the ability to repress transcription. Here, we investigated the mechanisms underlying gene repression in the erythroid lineage, in which SPI1 exerts an oncogenic function by blocking differentiation. We show that SPI1 represses genes by binding active enhancers that are located in intergenic or gene body regions. HDAC1 acts as a cooperative mediator of SPI1-induced transcriptional repression by deacetylating SPI1-bound enhancers in a subset of genes, including those involved in erythroid differentiation. Enhancer deacetylation impacts on promoter acetylation, chromatin accessibility and RNA pol II occupancy. In addition to the activities of HDAC1, polycomb repressive complex 2 (PRC2) reinforces gene repression by depositing H3K27me3 at promoter sequences when SPI1 is located at enhancer sequences. Moreover, our study identified a synergistic relationship between PRC2 and HDAC1 complexes in mediating the transcriptional repression activity of SPI1, ultimately inducing synergistic adverse effects on leukaemic cell survival. Our results highlight the importance of the mechanism underlying transcriptional repression in leukemic cells, involving complex functional connections between SPI1 and the epigenetic regulators PRC2 and HDAC1.
Collapse
Affiliation(s)
- Sebastian Gregoricchio
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute , Amsterdam , The Netherlands
| | - Lélia Polit
- CNRS UMR8104, Inserm U1016, Université Paris Cité, Cochin Institute , F-75014 Paris , France
| | - Michela Esposito
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | | | - Laure Delestré
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | - Emilie Evanno
- Curie Institute , Inserm U830, F- 75005 Paris, France
| | - M’Boyba Diop
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | | | - Hanna Aleth
- Institute of Molecular Tumor Biology, University of Münster , Münster, Germany
| | - Mathilde Poplineau
- CNRS UMR7258, Inserm U1068, Université Aix Marseille, Paoli-Calmettes Institute , CRCM, F-13009 Marseille , France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, The Netherlands Cancer Institute , Amsterdam , The Netherlands
| | - Frank Rosenbauer
- Institute of Molecular Tumor Biology, University of Münster , Münster, Germany
| | | | - Estelle Duprez
- CNRS UMR7258, Inserm U1068, Université Aix Marseille, Paoli-Calmettes Institute , CRCM, F-13009 Marseille , France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| | - Valentina Boeva
- CNRS UMR8104, Inserm U1016, Université Paris Cité, Cochin Institute , F-75014 Paris , France
- Department of Computer Science and Department of Biology , ETH Zurich, 8092 Zurich , Switzerland
| | - Christel Guillouf
- Inserm U1170, Université Paris-Saclay, Gustave Roussy Cancer Campus , F- 94800 Villejuif, France
- Equipe Labellisée Ligue Nationale Contre le Cancer , France
| |
Collapse
|
20
|
Douet-Guilbert N, Soubise B, Bernard DG, Troadec MB. Cytogenetic and Genetic Abnormalities with Diagnostic Value in Myelodysplastic Syndromes (MDS): Focus on the Pre-Messenger RNA Splicing Process. Diagnostics (Basel) 2022; 12:1658. [PMID: 35885562 PMCID: PMC9320363 DOI: 10.3390/diagnostics12071658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/19/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are considered to be diseases associated with splicing defects. A large number of genes involved in the pre-messenger RNA splicing process are mutated in MDS. Deletion of 5q and 7q are of diagnostic value, and those chromosome regions bear the numbers of splicing genes potentially deleted in del(5q) and del(7q)/-7 MDS. In this review, we present the splicing genes already known or suspected to be implicated in MDS pathogenesis. First, we focus on the splicing genes located on chromosome 5 (HNRNPA0, RBM27, RBM22, SLU7, DDX41), chromosome 7 (LUC7L2), and on the SF3B1 gene since both chromosome aberrations and the SF3B1 mutation are the only genetic abnormalities in splicing genes with clear diagnostic values. Then, we present and discuss other splicing genes that are showing a prognostic interest (SRSF2, U2AF1, ZRSR2, U2AF2, and PRPF8). Finally, we discuss the haploinsufficiency of splicing genes, especially from chromosomes 5 and 7, the important amplifier process of splicing defects, and the cumulative and synergistic effect of splicing genes defects in the MDS pathogenesis. At the time, when many authors suggest including the sequencing of some splicing genes to improve the diagnosis and the prognosis of MDS, a better understanding of these cooperative defects is needed.
Collapse
Grants
- comités 16, 22, 29, 35, 56, 41 and 85 Ligue Régionale contre le cancer (comités 16, 22, 29, 35, 56, 41 and 85)
- 2021-2022 Association Halte au Cancer
- 2020-2022 Association Gaétan Saleün
- 2020-2022 Association connaître et combattre la myélodysplasie
- 2021-2022 le Collectif Agora de Guilers
- 2021-2023 Association Fondation de l'Avenir
- 2021-2023 fonds INNOVEO Brest
Collapse
Affiliation(s)
- Nathalie Douet-Guilbert
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| | - Benoît Soubise
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
| | - Delphine G. Bernard
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| | - Marie-Bérengère Troadec
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France; (B.S.); (D.G.B.)
- CHRU Brest, Service de Génétique, Laboratoire de Génétique Chromosomique, F-29200 Brest, France
- CHRU Brest, Centre de Ressources Biologiques, Site Cytogénétique, F-29200 Brest, France
| |
Collapse
|
21
|
Yan X, Lai B, Zhou X, Yang S, Ge Q, Zhou M, Shi C, Xu Z, Ouyang G. The Differential Expression of CD47 may be Related to the Pathogenesis From Myelodysplastic Syndromes to Acute Myeloid Leukemia. Front Oncol 2022; 12:872999. [PMID: 35433462 PMCID: PMC9008711 DOI: 10.3389/fonc.2022.872999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Myelodysplastic syndrome (MDS) can lead to the development of peripheral blood cytopenia and abnormal cell morphology. MDS has the potential to evolve into AML and can lead to reduced survival. CD47, a member of the immunoglobulin family, is one molecule that is overexpressed in a variety of cancer cells and is associated with clinical features and poor prognosis in a variety of malignancies. In this study, we analyzed the expression and function of CD47 in MDS and AML, and further analyzed its role in other tumors. Our analysis revealed significantly low CD47 expression in MDS and significantly high expression in AML. Further analysis of the function or pathway of CD47 from different perspectives identified a relationship to the immune response, cell growth, and other related functions or pathways. The relationship between CD47 and other tumors was analyzed from four aspects: DNA methyltransferase, TMB, MSI, and tumor cell stemness. Changes in gene expression levels have a known association with aberrant DNA methylation, and this methylation is the main mechanism of tumor suppressor gene silencing and clonal variation during the evolution of MDS to AML. Taken together, our findings support the hypothesis that the differential expression of CD47 might be related to the transformation of MDS to AML.
Collapse
Affiliation(s)
- Xiao Yan
- Haematology Department of Ningbo First Hospital, Ningbo Clinical Research Center for Hematologic Malignancies, Ningbo, China
| | - Binbin Lai
- Haematology Department of Ningbo First Hospital, Ningbo Clinical Research Center for Hematologic Malignancies, Ningbo, China
| | - Xuyan Zhou
- Haematology Department, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Shujun Yang
- Medical Research Center of Ningbo First Hospital, Ningbo, China
| | - Qunfang Ge
- Haematology Department of Ningbo First Hospital, Ningbo Clinical Research Center for Hematologic Malignancies, Ningbo, China
| | - Miao Zhou
- Haematology Department of Ningbo First Hospital, Ningbo Clinical Research Center for Hematologic Malignancies, Ningbo, China
| | - Cong Shi
- Stem Cell Transplantation Laboratory of Ningbo First Hospital, Institute of Hematology of Ningbo First Hospital, Ningbo, China
| | - Zhijuan Xu
- Haematology Department of Ningbo First Hospital, Ningbo Clinical Research Center for Hematologic Malignancies, Ningbo, China
| | - Guifang Ouyang
- Haematology Department of Ningbo First Hospital, Ningbo Clinical Research Center for Hematologic Malignancies, Ningbo, China
| |
Collapse
|
22
|
A geno-clinical decision model for the diagnosis of myelodysplastic syndromes. Blood Adv 2021; 5:4361-4369. [PMID: 34592765 PMCID: PMC8579270 DOI: 10.1182/bloodadvances.2021004755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022] Open
Abstract
We developed a machine learning–based model to assist in the differential diagnosis of myeloid malignancies. Our work also describes genotype-phenotype correlations in different myeloid malignancies.
The differential diagnosis of myeloid malignancies is challenging and subject to interobserver variability. We used clinical and next-generation sequencing (NGS) data to develop a machine learning model for the diagnosis of myeloid malignancies independent of bone marrow biopsy data based on a 3-institution, international cohort of patients. The model achieves high performance, with model interpretations indicating that it relies on factors similar to those used by clinicians. In addition, we describe associations between NGS findings and clinically important phenotypes and introduce the use of machine learning algorithms to elucidate clinicogenomic relationships.
Collapse
|
23
|
Tamura S, Kosako H, Furuya Y, Yamashita Y, Mushino T, Mishima H, Kinoshita A, Nishikawa A, Yoshiura KI, Sonoki T. A Patient with Kabuki Syndrome Mutation Presenting with Very Severe Aplastic Anemia. Acta Haematol 2021; 145:89-96. [PMID: 34515044 DOI: 10.1159/000518227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 06/30/2021] [Indexed: 11/19/2022]
Abstract
Kabuki syndrome (KS) is a rare congenital disorder commonly complicated by humoral immunodeficiency. Patients with KS present with mutation in the histone-lysine N-methyltransferase 2D (KMT2D) gene. Although various KMT2D mutations are often identified in lymphoma and leukemia, those encountered in aplastic anemia (AA) are limited. Herein, we present the case of a 45-year-old Japanese man who developed severe pancytopenia and hypogammaglobulinemia. He did not present with any evident malformations, intellectual disability, or detectable levels of autoantibodies. However, B-cell development was impaired. Therefore, a diagnosis of very severe AA due to a hypoplastic marrow, which did not respond to granulocyte colony-stimulating factor, was made. The patient received umbilical cord blood transplantation but died from a Pseudomonas infection before neutrophil engraftment. Trio whole-exome sequencing revealed a novel missense heterozygous mutation c.15959G >A (p.R5320H) in exon 50 of the KMT2D gene. Moreover, Sanger sequencing of peripheral blood and bone marrow mononuclear cells and a skin biopsy specimen obtained from this patient identified this heterozygous mutation, suggesting that de novo mutation associated with KS occurred in the early embryonic development. Our case showed a novel association between KS mutation and adult-onset AA.
Collapse
Affiliation(s)
- Shinobu Tamura
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Hideki Kosako
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Yoshiaki Furuya
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Yusuke Yamashita
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Toshiki Mushino
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Akira Kinoshita
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Akinori Nishikawa
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Ko-Ichiro Yoshiura
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
24
|
Jäger P, Twarock S, Haas R. Prognostic Parameters in Myeloid Malignancies in a Historical Context - From Microscopy to Individualized Medicine. Curr Drug Targets 2021; 22:202-213. [PMID: 33001011 DOI: 10.2174/1389450121666201001122816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 11/22/2022]
Abstract
With this article, we would like to take the reader on a journey into the world of molecular medicine as it has evolved over the past decades, enabled by advances in genomics. These findings advanced both the development of prognostic parameters and the evolvement of therapy strategies. In this manuscript, we will present haematopoietic diseases as a prime example of this progress because they are relevant not only for their frequency but also for the evident diagnostic and therapeutic progress. The growing understanding of the underlying pathophysiology originates from the cellular pathology as it was described by, e.g., Rudolf Virchow (1821-1902). The identification of specific genomic changes in haematological malignancies and solid tumour diseases provided us with very sensitive tools for diagnostics and prediction of prognosis. Thus, it paved the way for individualized or personalized therapy. In particular, the rapid development of sequencing techniques for the human genome using Next Generation Sequencing (NGS) has contributed to this progress. Recently, artificial intelligence provided us with the tools to analyze the complex interactions of genomic alterations, course of the disease, and further factors of as yet unknown significance. With all these indisputable improvements, we should not neglect the holistic treatment mandate of personalized therapy, i.e., therapy appropriate to the individual. In this context, the treating physician should address relevant co-morbidities, the psychosocial embedding of the patient and his desire for treatment.
Collapse
Affiliation(s)
- Paul Jäger
- Department of Hematology, Oncology and Clinical Immunology, University of Düsseldorf, Medical Faculty, Düsseldorf, Germany
| | - Sören Twarock
- Institute of Pharmacology and Clinical Pharmacology, University of Dusseldorf, Medical Faculty, Düsseldorf, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, University of Düsseldorf, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
25
|
Rahul E, Goel H, Chopra A, Ranjan A, Gupta AK, Meena JP, Bakhshi S, Misra A, Hussain S, Viswanathan GK, Rath GK, Tanwar P. An updated account on molecular heterogeneity of acute leukemia. AMERICAN JOURNAL OF BLOOD RESEARCH 2021; 11:22-43. [PMID: 33796387 PMCID: PMC8010602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The progress in the field of personalized therapy has been the backbone for the improved mortality and morbidity figure in cancer especially with reference to acute leukemia. The same has been supported by evolving research and development in the field of genomics. The newer discoveries of mutations and the account of already discovered mutations have been playing a pivotal role to refine management strategy. Here, in this review, we are giving an account of relevant mutations and their potential role in the pathogenesis of acute leukemia. The article discusses the old and newly discovered mutations in acute myeloid/lymphoblastic leukemia. The various pathways and cross-talks between the mutations have been briefly described to develop insight towards their contributory and consequent role in the neoplastic process. The article is to sensitize the students, clinicians, and researchers towards the recent updates and development in genomics of acute leukemia.
Collapse
Affiliation(s)
- Ekta Rahul
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Harsh Goel
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Anita Chopra
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Amar Ranjan
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Jagdish Prasad Meena
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical SciencesNew Delhi 110029, India
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi 110029, India
| | | | - Showket Hussain
- Division of Molecular Oncology, National Institute of Cancer Prevention & Research I-7Sector-39, Noida 201301, India
| | | | - Goura Kishor Rath
- Department of Radiotherapy, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi, India
| | - Pranay Tanwar
- Laboratory Oncology Unit, Dr.B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical SciencesNew Delhi 110029, India
| |
Collapse
|
26
|
van Dijk AD, Hoff FW, Qiu YH, Chandra J, Jabbour E, de Bont ESJM, Horton TM, Kornblau SM. Loss of H3K27 methylation identifies poor outcomes in adult-onset acute leukemia. Clin Epigenetics 2021; 13:21. [PMID: 33509276 PMCID: PMC7841917 DOI: 10.1186/s13148-021-01011-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 01/11/2021] [Indexed: 12/23/2022] Open
Abstract
Background Acute leukemia is an epigenetically heterogeneous disease. The intensity of treatment is currently guided by cytogenetic and molecular genetic risk classifications; however these incompletely predict outcomes, requiring additional information for more accurate outcome predictions. We aimed to identify potential prognostic implications of epigenetic modification of histone proteins, with a focus on H3K4 and H3K27 methylation marks in relation to mutations in chromatin, splicing and transcriptional regulators in adult-onset acute lymphoblastic and myeloid leukemia. Results Histone 3 lysine 4 di- and trimethylation (H3K4me2, H3K4me3) and lysine 27 trimethylation (H3K27me3) mark expression was evaluated in 241 acute myeloid leukemia (AML), 114 B-cell acute lymphoblastic leukemia (B-ALL) and 14T-cell ALL (T-ALL) patient samples at time of diagnosis using reverse phase protein array. Expression levels of the marks were significantly lower in AML than in B and T-ALL in both bone marrow and peripheral blood, as well as compared to normal CD34+ cells. In AML, greater loss of H3K27me3 was associated with increased proliferative potential and shorter overall survival in the whole patient population, as well as in subsets with DNA methylation mutations. To study the prognostic impact of H3K27me3 in the context of cytogenetic aberrations and mutations, multivariate analysis was performed and identified lower H3K27me3 level as an independent unfavorable prognostic factor in all, as well as in TP53 mutated patients. AML with decreased H3K27me3 demonstrated an upregulated anti-apoptotic phenotype. In ALL, the relative quantity of histone methylation expression correlated with response to tyrosine kinase inhibitor in patients who carried the Philadelphia cytogenetic aberration and prior smoking behavior. Conclusion This study shows that proteomic profiling of epigenetic modifications has clinical implications in acute leukemia and supports the idea that epigenetic patterns contribute to a more accurate picture of the leukemic state that complements cytogenetic and molecular genetic subgrouping. A combination of these variables may offer more accurate outcome prediction and we suggest that histone methylation mark measurement at time of diagnosis might be a suitable method to improve patient outcome prediction and subsequent treatment intensity stratification in selected subgroups.
Collapse
Affiliation(s)
- A D van Dijk
- Department of Pediatric Oncology/Hematology, University Medical Center Groningen, Groningen, The Netherlands.
| | - F W Hoff
- Department of Pediatric Oncology/Hematology, University Medical Center Groningen, Groningen, The Netherlands
| | - Y H Qiu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - J Chandra
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - E Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - E S J M de Bont
- Department of Pediatric Oncology/Hematology, University Medical Center Groningen, Groningen, The Netherlands
| | - T M Horton
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Texas Children's Cancer Center, Houston, TX, USA
| | - S M Kornblau
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Liu Q, Dong J, Li J, Duan Y, Wang K, Kong Q, Zhang H. LINC01255 combined with BMI1 to regulate human mesenchymal stromal senescence and acute myeloid leukemia cell proliferation through repressing transcription of MCP-1. Clin Transl Oncol 2021; 23:1105-1116. [PMID: 33405050 DOI: 10.1007/s12094-020-02505-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/05/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) govern fundamental biochemical and cellular biology processes, for example, participate in chromatin remodeling, imprinting, splicing, transcriptional regulation and translation. Dysregulation of lncRNA expression is act as a feature of various diseases and cancers, including hematopoietic malignancies. However, the clinical relevance of myelodysplastic syndrome (MDS) and acute myeloid leukemia preceded by MDS (MDS-AML) requires further research. Recently, lncRNAs have been demonstrated, which play an important role in hematopoiesis, thus, to further finding more functional lncRNA seemed particularly important. METHODS Western blotting, real-time PCR, RNA-pulldown, RIP (RNA immunoprecipitation), Chromatin immunoprecipitation (ChIP), cellular compartments extraction assays, SA-β-gal staining, lentivirus transfection, cell viability assay and cell proliferation assays were used to examine the relationship between lncRNA LINC01255 and its regulation of p53-p21 pathway in human mesenchymal stromal and acute myeloid leukemia cells. RESULTS LncRNA LINC01255 is highly expressed in bone marrow cells of AML patients, CD34+ cells of MDS-AML patients and AML cell lines and the higher expression of LINC01255 is associated with poor survival rate of AML patients. LINC01255 can interact with BMI1 and repress the transcription of MCP-1 to active p53-p21 pathway, thus inhibiting the senescence of human mesenchymal stromal and proliferation of acute myeloid leukemia cell. CONCLUSIONS We discovered a novel functional lncRNA LINC01255, which can regulate the senescence of human mesenchymal stromal and the proliferation of acute myeloid leukemia cell through inhibiting the transcription of MCP-1.
Collapse
Affiliation(s)
- Q Liu
- Clinical Laboratory, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - J Dong
- Department of Hematology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - J Li
- Department of Hematology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - Y Duan
- Department of Hematology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - K Wang
- Research Service Office, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Q Kong
- Department of Hematology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China
| | - H Zhang
- Department of Hematology, The Second Affiliated Hospital of Shandong First Medical University, No. 706, Taishan Street, Taian, 271000, Shandong, China.
| |
Collapse
|
28
|
Dlamini Z, Shoba B, Hull R. Splicing machinery genomics events in acute myeloid leukaemia (AML): in search for therapeutic targets, diagnostic and prognostic biomarkers. Am J Cancer Res 2020; 10:2690-2704. [PMID: 33042611 PMCID: PMC7539770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukaemia and has the highest mortality rate. Screening for mutations in patients with AML has shown that in many cases genes carrying mutations are involved in the alternate splicing of mRNA. These include members of the Serine Arginine (SR) family of splicing factors, as well as components of the spliceosome. Mutations in associated genes also affect the function of members of the heterogeneous nuclear ribonucleoproteins (hnRNPs). These mutations in splicing factors can lead to changes in the expression of different isoforms whose splicing is controlled by these splicing factors. These different isoforms may have completely different functions, for example, members of the BCl-2 family are alternately spliced to give rise to pro and anti-apoptotic members. Mutations in the splicing factors that control the splicing of these mRNAs can lead to changes in the expression level of these isoforms. In this review we will examine the mechanics of the regulation of the various splice isoforms and how this drives the development of tumors. This information is pertinent for drug discovery, and the splicing factors with the most promise for pharmacological control will be discussed.
Collapse
Affiliation(s)
- Zodwa Dlamini
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| | - Bonginkosi Shoba
- Department of Medical Oncology, University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| | - Rodney Hull
- SAMRC/UP Precision Prevention and Novel Drug Targets for HIV-Associated Cancers Extramural Unit, Pan African Cancer Research Institute, University of Pretoria, Faculty of Health SciencesHatfield 0028, South Africa
| |
Collapse
|
29
|
Clinical presentation and differential splicing of SRSF2, U2AF1 and SF3B1 mutations in patients with acute myeloid leukemia. Leukemia 2020; 34:2621-2634. [PMID: 32358566 DOI: 10.1038/s41375-020-0839-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
Previous studies demonstrated that splicing factor mutations are recurrent events in hematopoietic malignancies with both clinical and functional implications. However, their aberrant splicing patterns in acute myeloid leukemia remain largely unexplored. In this study, we characterized mutations in SRSF2, U2AF1, and SF3B1, the most commonly mutated splicing factors. In our clinical analysis of 2678 patients, splicing factor mutations showed inferior relapse-free and overall survival, however, these mutations did not represent independent prognostic markers. RNA-sequencing of 246 and independent validation in 177 patients revealed an isoform expression profile which is highly characteristic for each individual mutation, with several isoforms showing a strong dysregulation. By establishing a custom differential splice junction usage pipeline, we accurately detected aberrant splicing in splicing factor mutated samples. A large proportion of differentially used junctions were novel, including several junctions in leukemia-associated genes. In SRSF2(P95H) mutants, we further explored the possibility of a cascading effect through the dysregulation of the splicing pathway. Furthermore, we observed a validated impact on overall survival for two junctions overused in SRSF2(P95H) mutants. We conclude that splicing factor mutations do not represent independent prognostic markers. However, they do have genome-wide consequences on gene splicing leading to dysregulated isoform expression of several genes.
Collapse
|
30
|
Pan-cancer analysis identifies mutations in SUGP1 that recapitulate mutant SF3B1 splicing dysregulation. Proc Natl Acad Sci U S A 2020; 117:10305-10312. [PMID: 32332164 DOI: 10.1073/pnas.1922622117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The gene encoding the core spliceosomal protein SF3B1 is the most frequently mutated gene encoding a splicing factor in a variety of hematologic malignancies and solid tumors. SF3B1 mutations induce use of cryptic 3' splice sites (3'ss), and these splicing errors contribute to tumorigenesis. However, it is unclear how widespread this type of cryptic 3'ss usage is in cancers and what is the full spectrum of genetic mutations that cause such missplicing. To address this issue, we performed an unbiased pan-cancer analysis to identify genetic alterations that lead to the same aberrant splicing as observed with SF3B1 mutations. This analysis identified multiple mutations in another spliceosomal gene, SUGP1, that correlated with significant usage of cryptic 3'ss known to be utilized in mutant SF3B1 expressing cells. Remarkably, this is consistent with recent biochemical studies that identified a defective interaction between mutant SF3B1 and SUGP1 as the molecular defect responsible for cryptic 3'ss usage. Experimental validation revealed that five different SUGP1 mutations completely or partially recapitulated the 3'ss defects. Our analysis suggests that SUGP1 mutations in cancers can induce missplicing identical or similar to that observed in mutant SF3B1 cancers.
Collapse
|
31
|
Visconte V, O. Nakashima M, J. Rogers H. Mutations in Splicing Factor Genes in Myeloid Malignancies: Significance and Impact on Clinical Features. Cancers (Basel) 2019; 11:E1844. [PMID: 31766606 PMCID: PMC6966670 DOI: 10.3390/cancers11121844] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 11/16/2022] Open
Abstract
Components of the pre-messenger RNA splicing machinery are frequently mutated in myeloid malignancies. Mutations in LUC7L2, PRPF8, SF3B1, SRSF2, U2AF1, and ZRSR2 genes occur at various frequencies ranging between 40% and 85% in different subtypes of myelodysplastic syndrome (MDS) and 5% and 10% of acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs). In some instances, splicing factor (SF) mutations have provided diagnostic utility and information on clinical outcomes as exemplified by SF3B1 mutations associated with increased ring sideroblasts (RS) in MDS-RS or MDS/MPN-RS with thrombocytosis. SF3B1 mutations are associated with better survival outcomes, while SRSF2 mutations are associated with a shorter survival time and increased AML progression, and U2AF1 mutations with a lower remission rate and shorter survival time. Beside the presence of mutations, transcriptomics technologies have shown that one third of genes in AML patients are differentially expressed, leading to altered transcript stability, interruption of protein function, and improper translation compared to those of healthy individuals. The detection of SF mutations demonstrates the importance of splicing abnormalities in the hematopoiesis of MDS and AML patients given the fact that abnormal splicing regulates the function of several transcriptional factors (PU.1, RUNX1, etc.) crucial in hematopoietic function. This review provides a summary of the significance of the most frequently mutated SF genes in myeloid malignancies and an update on novel targeted therapies in experimental and clinical trial stages.
Collapse
Affiliation(s)
- Valeria Visconte
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Megan O. Nakashima
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Heesun J. Rogers
- Department of Laboratory Medicine, Cleveland Clinic, Cleveland, OH 44195, USA;
| |
Collapse
|
32
|
Comprehensive prognostic scoring systems could improve the prognosis of adult acute myeloid leukemia patients. Int J Hematol 2019; 110:575-583. [PMID: 31440963 DOI: 10.1007/s12185-019-02721-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous malignancy characterized by a dismal outcome. To enable better outcomes, it is necessary to develop individual therapies based on risk stratification. In the present study, we established two new comprehensive prognostic scoring systems (CPSS) for overall survival (OS) and relapse-free survival (RFS) using the Cox proportional hazards regression, CPSS integrated and weighted age, AML type, lactic dehydrogenase (LDH), ECOG score, cytogenetics, and gene mutations. We divided patients into three risk groups-low-, intermediate-, and high-risk-with 1-year OS rates of 100.0%, 82.9%, and 38.2%, respectively (p < 0.0001), and patients undergoing complete remission (CR) were also separated into low-risk, intermediate-risk, and high-risk groups, with 1-year RFS rates of 87.7%, 58.4%, and 30.2%, respectively (p < 0.0001). We conclude that CPSS that integrate clinical characteristics, cytogenetic abnormalities, and gene mutations may improve the stratification of AML patients.
Collapse
|
33
|
Xu L, Durruthy-Durruthy R, Eastburn DJ, Pellegrino M, Shah O, Meyer E, Zehnder J. Clonal Evolution and Changes in Two AML Patients Detected with A Novel Single-Cell DNA Sequencing Platform. Sci Rep 2019; 9:11119. [PMID: 31366893 PMCID: PMC6668401 DOI: 10.1038/s41598-019-47297-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Next-generation sequencing (NGS) is used to detect gene variants in genetically complex cell populations of cancer patient samples. Traditional bulk analysis can only provide average variant allele frequencies of the targeted genes across all sampled cells. It fails to resolve mutational co-occurrences and may miss rare cancer cells. Genome analysis at the single cell level offers the opportunity to more fully resolve clonal architecture. Peripheral blood mononuclear cells were sampled from acute myeloid leukemia patients longitudinally and single-cell DNA sequencing libraries were generated with a novel droplet-based microfluidics approach. Molecular profiling of single nucleotide variants across thousands of cells revealed genetic chimerism in patients after bone marrow transplantation (BMT). Importantly, hierarchical clustering analysis of single nucleotide variants (SNVs) uncovered a distinct oncogenic clone of cells carrying mutated tumor-suppressor and/or oncogene(s). This novel single-cell DNA sequencing approach enabled precise monitoring of engraftment and revealed clonal evolution of oncogenic cells during the progression and treatment of the disease.
Collapse
Affiliation(s)
- Liwen Xu
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | | | | | | | - Omid Shah
- Division of Blood and Marrow Transplantation. Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Everett Meyer
- Division of Blood and Marrow Transplantation. Department of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - James Zehnder
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
34
|
Huang HH, Chen FY, Chou WC, Hou HA, Ko BS, Lin CT, Tang JL, Li CC, Yao M, Tsay W, Hsu SC, Wu SJ, Chen CY, Huang SY, Tseng MH, Tien HF, Chen RH. Long non-coding RNA HOXB-AS3 promotes myeloid cell proliferation and its higher expression is an adverse prognostic marker in patients with acute myeloid leukemia and myelodysplastic syndrome. BMC Cancer 2019; 19:617. [PMID: 31234830 PMCID: PMC6591843 DOI: 10.1186/s12885-019-5822-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 06/12/2019] [Indexed: 12/25/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) represent the majority of cellular transcripts and play pivotal roles in hematopoiesis. However, their clinical relevance in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) remains largely unknown. Here, we investigated the functions of HOXB-AS3, a lncRNA located at human HOXB cluster, in the myeloid cells, and analyzed the prognostic significances in patients with AML and MDS. Methods shRNAs were used to downregulate HOXB-AS3 in the cell lines and the effect was evaluated by quantitative polymerase chain reaction. The proliferation of the cell lines was illustrated by proliferation and BrdU flow assays. Further, we retrospectively analyzed the HOXB-AS3 expression in 193 patients with AML and 157 with MDS by microarray analysis, and evaluated its clinical importance. Results Downregulation of HOXB-AS3 suppressed cell proliferation. Mechanistically, HOXB-AS3 potentiated the expressions of several key factors in cell cycle progression and DNA replication without affecting the expressions of HOX genes. In AML, patients with higher HOXB-AS3 expression had shorter survival than those with lower HOXB-AS3 expression (median overall survival (OS), 17.7 months versus not reached, P < 0.0001; median relapse-free survival, 12.9 months versus not reached, P = 0.0070). In MDS, patients with higher HOXB-AS3 expression also had adverse prognosis compared with those with lower HOXB-AS3 expression (median OS, 14.6 months versus 42.4 months, P = 0.0018). The prognostic significance of HOXB-AS3 expression was validated in the TCGA AML cohort and another MDS cohort from our institute. The subgroup analyses in MDS patients showed that higher HOXB-AS3 expressions could predict poor prognosis only in lower-risk (median OS, 29.2 months versus 77.3 months, P = 0.0194), but not higher-risk group. Conclusions This study uncovers a promoting role of HOXB-AS3 in myeloid malignancies and identifies the prognostic value of HOXB-AS3 expression in AML and MDS patients, particularly in the lower-risk group. Electronic supplementary material The online version of this article (10.1186/s12885-019-5822-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huai-Hsuan Huang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Doctoral Degree Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Fei-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Wen-Chien Chou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Hsin-An Hou
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Bor-Sheng Ko
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Ting Lin
- Taicheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Jih-Luh Tang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Taicheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Chi-Cheng Li
- Taicheng Stem Cell Therapy Center, National Taiwan University, Taipei, Taiwan
| | - Ming Yao
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Woei Tsay
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Szu-Chun Hsu
- Department of Laboratory Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Shang-Ju Wu
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Yuan Chen
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shang-Yi Huang
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Mei-Hsuan Tseng
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwei-Fang Tien
- Division of Hematology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan. .,Doctoral Degree Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan.
| | - Ruey-Hwa Chen
- Doctoral Degree Program in Translational Medicine, National Taiwan University and Academia Sinica, Taipei, Taiwan. .,Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
35
|
Huang R, Liao X, Li J, Wei J, Su X, Lai X, Liu B, Zhu F, Huang Y, Li Q. Genome-scale integrated analysis to identify prospective molecular mechanisms and therapeutic targets in isocitrate dehydrogenase 2 R140Q-mutated acute myeloid leukemia. Oncol Rep 2019; 41:2876-2888. [PMID: 30896832 PMCID: PMC6448125 DOI: 10.3892/or.2019.7075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 03/07/2019] [Indexed: 01/16/2023] Open
Abstract
The aim of the present study was to identify potential molecular mechanisms and therapeutic targets in regards to isocitrate dehydrogenase 2 (IDH2) R140Q-mutated acute myeloid leukemia (AML). An RNA sequencing dataset of IDH2 wild-type and R140Q-mutated adult de novo AML bone marrow samples was obtained from The Cancer Genome Atlas (TCGA) database. The edgeR package was used to screen for the differentially expressed genes (DEGs), and the potential molecular mechanisms and therapeutic targets were identified using Database for Annotation, Visualization, and Integrated Discovery (DAVID) v6.8, Biological Networks Gene Ontology tool, Connectivity Map (CMap), Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) and GeneMANIA. A total of 230 DEGs were identified between the bone marrow tissues of IDH2 R140Q-mutated and wild-type AML patients, of which 31 were significantly associated with overall survival (OS). Functional assessment of DEGs showed significant enrichment in multiple biological processes, including angiogenesis and cell differentiation. STRING and GeneMANIA were used to identify the hub genes of these DEGs. CMap analysis identified 13 potential small-molecule drugs against IDH2 R140Q-mutated adult de novo AML. Genome-wide co-expression network analysis identified several IDH2 R140Q co-expressed genes, of which 56 were significantly associated with AML OS. The difference in IDH2 mRNA expression levels and OS between the IDH2 R140Q-mutated and wild-type AML were not statistically significant in our cohort. In conclusion, we identified several co-expressing genes and potential molecular mechanisms that are instrumental in IDH2 R140Q-mutated adult de novo AML, along with 13 candidate targeted therapeutic drugs.
Collapse
Affiliation(s)
- Rui Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021
| | - Jing Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jiemin Wei
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiayun Su
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiaoxuan Lai
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Beicai Liu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Fangxiao Zhu
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yumei Huang
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qiaochuan Li
- Department of Hematology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
36
|
Shea LK, Uy GL. Choosing induction chemotherapy in therapy-related acute myeloid leukemia. Best Pract Res Clin Haematol 2019; 32:89-97. [DOI: 10.1016/j.beha.2019.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/14/2022]
|
37
|
Clonal dynamics monitoring during clinical evolution in chronic lymphocytic leukaemia. Sci Rep 2019; 9:975. [PMID: 30700761 PMCID: PMC6353992 DOI: 10.1038/s41598-018-37389-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022] Open
Abstract
Chronic lymphocytic leukaemia is the most prevalent leukaemia in Western countries. It is an incurable disease characterized by a highly variable clinical course. Chronic lymphocytic leukaemia is an ideal model for studying clonal heterogeneity and dynamics during cancer progression, response to therapy and/or relapse because the disease usually develops over several years. Here we report an analysis by deep sequencing of sequential samples taken at different times from the affected organs of two patients with 12- and 7-year disease courses, respectively. One of the patients followed a linear pattern of clonal evolution, acquiring and selecting new mutations in response to salvage therapy and/or allogeneic transplantation, while the other suffered loss of cellular tumoral clones during progression and histological transformation.
Collapse
|
38
|
Prognostic value and clinical feature of SF3B1 mutations in myelodysplastic syndromes: A meta-analysis. Crit Rev Oncol Hematol 2019; 133:74-83. [DOI: 10.1016/j.critrevonc.2018.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 07/12/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022] Open
|
39
|
Wang BD, Lee NH. Aberrant RNA Splicing in Cancer and Drug Resistance. Cancers (Basel) 2018; 10:E458. [PMID: 30463359 PMCID: PMC6266310 DOI: 10.3390/cancers10110458] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022] Open
Abstract
More than 95% of the 20,000 to 25,000 transcribed human genes undergo alternative RNA splicing, which increases the diversity of the proteome. Isoforms derived from the same gene can have distinct and, in some cases, opposing functions. Accumulating evidence suggests that aberrant RNA splicing is a common and driving event in cancer development and progression. Moreover, aberrant splicing events conferring drug/therapy resistance in cancer is far more common than previously envisioned. In this review, aberrant splicing events in cancer-associated genes, namely BCL2L1, FAS, HRAS, CD44, Cyclin D1, CASP2, TMPRSS2-ERG, FGFR2, VEGF, AR and KLF6, will be discussed. Also highlighted are the functional consequences of aberrant splice variants (BCR-Abl35INS, BIM-γ, IK6, p61 BRAF V600E, CD19-∆2, AR-V7 and PIK3CD-S) in promoting resistance to cancer targeted therapy or immunotherapy. To overcome drug resistance, we discuss opportunities for developing novel strategies to specifically target the aberrant splice variants or splicing machinery that generates the splice variants. Therapeutic approaches include the development of splice variant-specific siRNAs, splice switching antisense oligonucleotides, and small molecule inhibitors targeting splicing factors, splicing factor kinases or the aberrant oncogenic protein isoforms.
Collapse
Affiliation(s)
- Bi-Dar Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA.
| | - Norman H Lee
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, George Washington University, GW Cancer Center, Washington, DC 20037, USA.
| |
Collapse
|
40
|
Alvarez Argote J, Dasanu CA. ASXL1 mutations in myeloid neoplasms: pathogenetic considerations, impact on clinical outcomes and survival. Curr Med Res Opin 2018; 34:757-763. [PMID: 28027687 DOI: 10.1080/03007995.2016.1276896] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND ASXL1 gene mutations include nonsense, missense, and frameshift mutations. Although their clinical significance is still debated, they may play an important role in the pathogenesis of several hematologic malignancies. METHODS Herein, we offer a comprehensive review on ASXL1 mutations, and link them with survival and clinical outcomes in patients with various myeloid neoplasms. Most relevant publications were identified through searching the PubMed/Medline database for articles published from inception to February 2016. FINDINGS In acute myeloid leukemia (AML), ASXL1 mutations tend to correlate with older age and male gender, and affect predominantly patients with secondary AML. De novo AML patients with ASXL1 mutations had significantly lower complete remission rates after standard high-dose chemotherapy and shorter survival. In chronic myelomonocytic leukemia and low- or intermediate-risk myelodysplastic syndromes, frameshift and nonsense mutations correlated with shorter survival and a higher risk of leukemic transformation. Overall survival was also shorter in primary myelofibrosis in the presence of ASXL1 mutations. CONCLUSIONS Further research on the role of ASXL1 mutations and therapeutic implications in neoplastic myeloid disorders is stringently needed. Given the relatively high prevalence of ASXL1 mutations, larger studies involving patients affected by these mutations will be feasible in the near future.
Collapse
Affiliation(s)
| | - Constantin A Dasanu
- b Lucy Curci Cancer Center, Eisenhower Medical Center, Hematology Oncology , Rancho Mirage , CA , USA
| |
Collapse
|
41
|
Cabezón M, Bargay J, Xicoy B, García O, Borrás J, Tormo M, Marcé S, Pedro C, Valcárcel D, Jiménez MJ, Guàrdia R, Palomo L, Brunet S, Vall-Llovera F, Garcia A, Feliu E, Zamora L. Impact of mutational studies on the diagnosis and the outcome of high-risk myelodysplastic syndromes and secondary acute myeloid leukemia patients treated with 5-azacytidine. Oncotarget 2018; 9:19342-19355. [PMID: 29721207 PMCID: PMC5922401 DOI: 10.18632/oncotarget.25046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are stem cell disorders caused by various gene abnormalities. We performed targeted deep sequencing in 39 patients with high-risk MDS and secondary acute myeloid leukemia (sAML) at diagnosis and follow-up (response and/or relapse), with the aim to define their mutational status, to establish if specific mutations are biomarkers of response to 5-azacytidine (AZA) and/or may have impact on survival. Overall, 95% of patients harbored at least one mutation. TP53, DNMT3A and SRSF2 were the most frequently altered genes. Mutations in TP53 correlated with higher risk features and shorter overall survival (OS) and progression free survival (PFS) in univariate analysis. Patients with SRSF2 mutations were associated with better OS and PFS. Response rate was 55%; but we could not correlate the presence of TET2 and TP53 mutations with AZA response. Patients with sAML presented more variations than patients with high-risk MDS, and usually at relapse the number of mutations increased, supporting the idea that in advanced stages of the disease there is a greater genomic complexity. These results confirm that mutation analysis can add prognostic value to high-risk MDS and sAML patients, not only at diagnosis but also at follow-up.
Collapse
Affiliation(s)
- Marta Cabezón
- Hematology Service, ICO Badalona-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain.,Departament de Medicina, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Joan Bargay
- Hematology Service, Hospital Son Llàtzer, Mallorca, Spain
| | - Blanca Xicoy
- Hematology Service, ICO Badalona-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Olga García
- Josep Carreras Leukemia Research Institute, Campus Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Josep Borrás
- Hematology Service, Hospital Son Llàtzer, Mallorca, Spain
| | - Mar Tormo
- Hematology Service, Hospital Clínic de Valencia, Valencia, Spain
| | - Sílvia Marcé
- Hematology Service, ICO Badalona-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Carme Pedro
- Hematology Service, Hospital del Mar, Barcelona, Spain
| | - David Valcárcel
- Hematology Service, Hospital Vall d'Hebron, Barcelona, Spain
| | - Maria-José Jiménez
- Hematology Service, ICO Badalona-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ramón Guàrdia
- Hematology Service, ICO Girona-Hospital Josep Trueta, Girona, Spain
| | - Laura Palomo
- Josep Carreras Leukemia Research Institute, Campus Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Salut Brunet
- Hematology Service, Hospital de Sant Pau, Barcelona, Spain
| | | | - Antoni Garcia
- Hematology Service, Hospital Arnau de Vilanova, Lleida, Spain
| | - Evarist Feliu
- Hematology Service, ICO Badalona-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Lurdes Zamora
- Hematology Service, ICO Badalona-Hospital Germans Trias i Pujol, Josep Carreras Leukaemia Research Institute, Universitat Autònoma de Barcelona, Badalona, Spain
| | | |
Collapse
|
42
|
Reidel V, Kauschinger J, Hauch RT, Müller-Thomas C, Nadarajah N, Burgkart R, Schmidt B, Hempel D, Jacob A, Slotta-Huspenina J, Höckendorf U, Peschel C, Kern W, Haferlach T, Götze KS, Jilg S, Jost PJ. Selective inhibition of BCL-2 is a promising target in patients with high-risk myelodysplastic syndromes and adverse mutational profile. Oncotarget 2018; 9:17270-17281. [PMID: 29707107 PMCID: PMC5915115 DOI: 10.18632/oncotarget.24775] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/25/2018] [Indexed: 12/03/2022] Open
Abstract
Somatic mutations in genes such as ASXL1, RUNX1, TP53 or EZH2 adversely affect the outcome of patients with myelodysplastic syndromes (MDS). Since selective BCL-2 inhibition is a promising treatment strategy in hematologic malignancies, we tested the therapeutic impact of ABT-199 on MDS patient samples bearing an adverse mutational profile. By gene expression, we found that the level of pro-apoptotic BIM significantly decreased during MDS disease progression in line with an acquired resistance to cell death. Supporting the potential for ABT-199 treatment in MDS, high-risk MDS patient samples specifically underwent cell death in response to ABT-199 even when harbouring mutations in ASXL1, RUNX1, TP53 or EZH2. ABT-199 effectively targeted the stem- and progenitor compartment in advanced MDS harbouring mutations in ASXL1, RUNX1, TP53 or EZH2 and even proved effective in patients harbouring more than one of the defined high-risk mutations. Moreover, we utilized the protein abundance of BCL-2 family members in primary patient samples using flow cytometry as a biomarker to predict ABT-199 treatment response. Our data demonstrate that ABT-199 effectively induces apoptosis in progenitors of high-risk MDS/sAML despite the presence of adverse genetic mutations supporting the notion that pro-apoptotic intervention will hold broad therapeutic potential in high-risk MDS patients with poor prognosis.
Collapse
Affiliation(s)
- Veronika Reidel
- Medizinische Klinik für Hämatologie und Internistische Onkologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Johanna Kauschinger
- Medizinische Klinik für Hämatologie und Internistische Onkologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Richard T Hauch
- Medizinische Klinik für Hämatologie und Internistische Onkologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Catharina Müller-Thomas
- Medizinische Klinik für Hämatologie und Internistische Onkologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Rainer Burgkart
- Klinik für Orthopädie und Sportorthopädie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | | | - Dirk Hempel
- Onkologisches Zentrum Donauwörth, Donauwörth, Germany
| | - Anne Jacob
- Medizinische Klinik für Hämatologie und Internistische Onkologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Julia Slotta-Huspenina
- Institut für Pathologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ulrike Höckendorf
- Medizinische Klinik für Hämatologie und Internistische Onkologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Peschel
- Medizinische Klinik für Hämatologie und Internistische Onkologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Deutsche Konsortium für translationale Krebsforschung (DKTK) of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Katharina S Götze
- Medizinische Klinik für Hämatologie und Internistische Onkologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Deutsche Konsortium für translationale Krebsforschung (DKTK) of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefanie Jilg
- Medizinische Klinik für Hämatologie und Internistische Onkologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Philipp J Jost
- Medizinische Klinik für Hämatologie und Internistische Onkologie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Deutsche Konsortium für translationale Krebsforschung (DKTK) of the German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
43
|
Aziz H, Ping CY, Alias H, Ab Mutalib NS, Jamal R. Gene Mutations as Emerging Biomarkers and Therapeutic Targets for Relapsed Acute Myeloid Leukemia. Front Pharmacol 2017; 8:897. [PMID: 29270125 PMCID: PMC5725465 DOI: 10.3389/fphar.2017.00897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/24/2017] [Indexed: 12/19/2022] Open
Abstract
It is believed that there are key differences in the genomic profile between adult and childhood acute myeloid leukemia (AML). Relapse is the significant contributor of mortality in patients with AML and remains as the leading cause of cancer death among children, posing great challenges in the treatment of AML. The knowledge about the genomic lesions in childhood AML is still premature as most genomic events defined in children were derived from adult cohorts. However, the emerging technologies of next generation sequencing have narrowed the gap of knowledge in the biology of AML by the detection of gene mutations for each sub-type which have led to the improvement in terms of prognostication as well as the use of targeted therapies. In this review, we describe the recent understanding of the genomic landscape including the prevalence of mutation, prognostic impact, and targeted therapies that will provide an insight into the pathogenesis of AML relapse in both adult and childhood cases.
Collapse
Affiliation(s)
- Habsah Aziz
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chow Y Ping
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hamidah Alias
- Department of Paediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Rahman Jamal
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
44
|
Mutations of RNA splicing factors in hematological malignancies. Cancer Lett 2017; 409:1-8. [PMID: 28888996 DOI: 10.1016/j.canlet.2017.08.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/22/2017] [Accepted: 08/28/2017] [Indexed: 01/01/2023]
Abstract
Systematic large-scale cancer genomic studies have produced numerous significant findings. These studies have not only revealed new cancer-promoting genes, but they also have identified cancer-promoting functions of previously known "housekeeping" genes. These studies have identified numerous mutations in genes which play a fundamental role in nuclear precursor mRNA splicing. Somatic mutations and copy number variation in many of the splicing factors which participate in the formation of multiple spliceosomal complexes appear to play a role in many cancers and in particular in myelodysplastic syndromes (MDS). Mutated proteins seem to interfere with the recognition of the authentic splice sites (SS) leading to utilization of suboptimal alternative splicing sites generating aberrantly spliced mRNA isoforms. This short review is focusing on the function of the splice factors involved in the formation of splicing complexes and potential mechanisms which affect usage of the authentic splice site recognition.
Collapse
|
45
|
Simon L, Lavallée VP, Bordeleau ME, Krosl J, Baccelli I, Boucher G, Lehnertz B, Chagraoui J, MacRae T, Ruel R, Chantigny Y, Lemieux S, Marinier A, Hébert J, Sauvageau G. Chemogenomic Landscape of RUNX1-mutated AML Reveals Importance of RUNX1 Allele Dosage in Genetics and Glucocorticoid Sensitivity. Clin Cancer Res 2017; 23:6969-6981. [DOI: 10.1158/1078-0432.ccr-17-1259] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/07/2017] [Accepted: 08/24/2017] [Indexed: 11/16/2022]
|
46
|
Zhou J, Chng WJ. Aberrant RNA splicing and mutations in spliceosome complex in acute myeloid leukemia. Stem Cell Investig 2017; 4:6. [PMID: 28217708 PMCID: PMC5313292 DOI: 10.21037/sci.2017.01.06] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/29/2016] [Indexed: 12/19/2022]
Abstract
The spliceosome, the cellular splicing machinery, regulates RNA splicing of messenger RNA precursors (pre-mRNAs) into maturation of protein coding RNAs. Recurrent mutations and copy number changes in genes encoding spliceosomal proteins and splicing regulatory factors have tumor promoting or suppressive functions in hematological malignancies, as well as some other cancers. Leukemia stem cell (LSC) populations, although rare, are essential contributors of treatment failure and relapse. Recent researches have provided the compelling evidence that link the erratic spicing activity to the LSC phenotype in acute myeloid leukemia (AML). In this article, we describe the diverse roles of aberrant splicing in hematological malignancies, particularly in AML and their contributions to the characteristics of LSC. We review these promising strategies to exploit the addiction of aberrant spliceosomal machinery for anti-leukemic therapy with aim to eradicate LSC. However, given the complexity and plasticity of spliceosome and not fully known functions of splicing in cancer, the challenges facing the development of the therapeutic strategies targeting RAN splicing are highlighted and future directions are discussed too.
Collapse
Affiliation(s)
- Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), Singapore 119228, Singapore
| |
Collapse
|
47
|
Integrating Genomics in Myelodysplastic Syndrome to Predict Outcomes After Allogeneic Hematopoietic Cell Transplantation. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2016; 17:7-13. [PMID: 27771290 DOI: 10.1016/j.clml.2016.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 02/01/2023]
Abstract
Myelodysplastic syndrome (MDS) is a heterogeneous group of clonal hematopoietic neoplastic disorders most commonly occurring in the elderly population; MDS has a tendency to progress to acute leukemia. Although epigenetic therapies have improved the outcomes of MDS patients, allogeneic hematopoietic cell transplantation remains the only curative option. Molecular characterization of MDS using next-generation sequencing has expanded not only the knowledge on MDS but also the depth of understanding of evolution and contribution of recurrent somatic mutations in precursor conditions. Rapidly evolving genomic information on MDS may provide clinicians with better risk stratification tools and may also aid in supplying useful information to allow comprehensive therapeutic decision making for MDS patients. In this concise review, we summarize the current knowledge and understanding of recurrent somatic mutations in MDS and discuss salient genomic information predicting response and influencing therapeutic outcomes in the context of allogeneic hematopoietic cell transplantation, as well as the potential application of these findings into future clinical practice.
Collapse
|
48
|
Spectrum of somatic mutation dynamics in chronic myeloid leukemia following tyrosine kinase inhibitor therapy. Blood 2016; 129:38-47. [PMID: 27733357 DOI: 10.1182/blood-2016-04-708560] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/28/2016] [Indexed: 11/20/2022] Open
Abstract
Somatic mutations commonly detected in a variety of myeloid neoplasms have not been systematically investigated in chronic myeloid leukemia (CML). We performed targeted deep sequencing on a total of 300 serial samples from 100 CML patients; 37 patients carried mutations. Sixteen of these had evidence of mutations originating from preleukemic clones. Using unsupervised hierarchical clustering, we identified 5 distinct patterns of mutation dynamics arising following tyrosine kinase inhibitor (TKI) therapy. This study demonstrates that patterns of mutation acquisition, persistence, and clearance vary but have a number of interesting correlations with clinical outcomes. Mutation burden often persisted despite successful TKI response (pattern 1), providing indirect evidence that these mutations also originated from preleukemic mutations, whereas patients exhibiting mutation clearance (pattern 3) showed mixed clinical outcomes. Unsurprisingly, patients acquiring new mutations during treatment failed TKI therapy (pattern 2). These patterns show that CML mutation dynamics following TKI therapy are markedly distinct from other myeloid neoplasms. In summary, clinical implications of mutation profiles and dynamics in CML should be interpreted with caution.
Collapse
|
49
|
Park CK, Park I, Lee S, Sun CH, Koh Y, Park SH, Kim JE, Yun H, Lee SH. Genomic dynamics associated with malignant transformation in IDH1 mutated gliomas. Oncotarget 2016; 6:43653-66. [PMID: 26524630 PMCID: PMC4791257 DOI: 10.18632/oncotarget.6189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/06/2015] [Indexed: 01/06/2023] Open
Abstract
The genomic mechanism responsible for malignant transformation remains an open question for glioma researchers, where differing conclusions have been drawn based on diverse study conditions. Therefore, it is essential to secure direct evidence using longitudinal samples from the same patient. Moreover, malignant transformation of IDH1-mutated gliomas is of potential interest, as its genomic mechanism under influence of oncometabolite remains unclear, and even higher rate of malignant transformation was reported in IDH1-mutated low grade gliomas than in wild-type IDH1 tumors. We have analyzed genomic data using next-generation sequencing technology for longitudinal samples from 3 patients with IDH1-mutated gliomas whose disease had progressed from a low grade to a high grade phenotype. Comprehensive analysis included chromosomal aberrations as well as whole exome and transcriptome sequencing, and the candidate driver genes for malignant transformation were validated with public database. Integrated analysis of genomic dynamics in clonal evolution during the malignant transformation revealed alterations in the machinery regulating gene expression, including the spliceosome complex (U2AF2), transcription factors (TCF12), and chromatin remodelers (ARID1A). Moreover, consequential expression changes implied the activation of genes associated with the restoration of the stemness of cancer cells. The alterations in genetic regulatory mechanisms may be the key factor for the major phenotypic changes in IDH1 mutated gliomas. Despite being limited to a small number of cases, this analysis provides a direct example of the genomic changes responsible for malignant transformation in gliomas.
Collapse
Affiliation(s)
- Chul-Kee Park
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | | | | | | | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University Hospital, Seoul, Korea
| | - Ja Eun Kim
- Department of Neurosurgery, Seoul National University Hospital, Seoul, Korea
| | | | - Se-Hoon Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
50
|
de Necochea-Campion R, Shouse GP, Zhou Q, Mirshahidi S, Chen CS. Aberrant splicing and drug resistance in AML. J Hematol Oncol 2016; 9:85. [PMID: 27613060 PMCID: PMC5018179 DOI: 10.1186/s13045-016-0315-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/02/2016] [Indexed: 02/08/2023] Open
Abstract
The advent of next-generation sequencing technologies has unveiled a new window into the heterogeneity of acute myeloid leukemia (AML). In particular, recurrent mutations in spliceosome machinery and genome-wide aberrant splicing events have been recognized as a prominent component of this disease. This review will focus on how these factors influence drug resistance through altered splicing of tumor suppressor and oncogenes and dysregulation of the apoptotic signaling network. A better understanding of these factors in disease progression is necessary to design appropriate therapeutic strategies recognizing specific alternatively spliced or mutated oncogenic targets.
Collapse
Affiliation(s)
- Rosalia de Necochea-Campion
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Geoffrey P Shouse
- Division of Hematology/Oncology, Loma Linda University School of Medicine, 11175 Campus Street, Chan Shun Pavilion 11015, Loma Linda, CA, 92354, USA
| | - Qi Zhou
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Saied Mirshahidi
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Chien-Shing Chen
- Biospecimen Laboratory, Loma Linda University Cancer Center, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA. .,Division of Hematology/Oncology, Loma Linda University School of Medicine, 11175 Campus Street, Chan Shun Pavilion 11015, Loma Linda, CA, 92354, USA.
| |
Collapse
|