1
|
Zuckermann M, He C, Andrews J, Bagchi A, Sloan-Henry R, Bianski B, Xie J, Wang Y, Twarog N, Onar-Thomas A, Ernst KJ, Yang L, Li Y, Zhu X, Ocasio JK, Budd KM, Dalton J, Li X, Chepyala D, Zhang J, Xu K, Hover L, Roach JT, Chan KCH, Hofmann N, McKinnon PJ, Pfister SM, Shelat AA, Rankovic Z, Freeman BB, Chiang J, Jones DTW, Tinkle CL, Baker SJ. Capmatinib is an effective treatment for MET-fusion driven pediatric high-grade glioma and synergizes with radiotherapy. Mol Cancer 2024; 23:123. [PMID: 38849845 PMCID: PMC11157767 DOI: 10.1186/s12943-024-02027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Pediatric-type diffuse high-grade glioma (pHGG) is the most frequent malignant brain tumor in children and can be subclassified into multiple entities. Fusion genes activating the MET receptor tyrosine kinase often occur in infant-type hemispheric glioma (IHG) but also in other pHGG and are associated with devastating morbidity and mortality. METHODS To identify new treatment options, we established and characterized two novel orthotopic mouse models harboring distinct MET fusions. These included an immunocompetent, murine allograft model and patient-derived orthotopic xenografts (PDOX) from a MET-fusion IHG patient who failed conventional therapy and targeted therapy with cabozantinib. With these models, we analyzed the efficacy and pharmacokinetic properties of three MET inhibitors, capmatinib, crizotinib and cabozantinib, alone or combined with radiotherapy. RESULTS Capmatinib showed superior brain pharmacokinetic properties and greater in vitro and in vivo efficacy than cabozantinib or crizotinib in both models. The PDOX models recapitulated the poor efficacy of cabozantinib experienced by the patient. In contrast, capmatinib extended survival and induced long-term progression-free survival when combined with radiotherapy in two complementary mouse models. Capmatinib treatment increased radiation-induced DNA double-strand breaks and delayed their repair. CONCLUSIONS We comprehensively investigated the combination of MET inhibition and radiotherapy as a novel treatment option for MET-driven pHGG. Our seminal preclinical data package includes pharmacokinetic characterization, recapitulation of clinical outcomes, coinciding results from multiple complementing in vivo studies, and insights into molecular mechanism underlying increased efficacy. Taken together, we demonstrate the groundbreaking efficacy of capmatinib and radiation as a highly promising concept for future clinical trials.
Collapse
Affiliation(s)
- Marc Zuckermann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, Germany.
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany.
| | - Chen He
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jared Andrews
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Aditi Bagchi
- Department of Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Roketa Sloan-Henry
- Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Brandon Bianski
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jia Xie
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yingzhe Wang
- Preclinical Pharmacokinetics Shared Resource, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Nathaniel Twarog
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Arzu Onar-Thomas
- Department of Biostatistics, Departments of BiostatisticsSt. Jude Children's Research Hospital, Memphis, 262 Danny Thomas Place, TN, 38105, USA
| | - Kati J Ernst
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Lei Yang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Yong Li
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Xiaoyan Zhu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jennifer K Ocasio
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Kaitlin M Budd
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - James Dalton
- Department of Pathology, Departments of PathologySt. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Xiaoyu Li
- Department of Pathology, Departments of PathologySt. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Divyabharathi Chepyala
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Junyuan Zhang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Ke Xu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Laura Hover
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jordan T Roach
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Kenneth Chun-Ho Chan
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nina Hofmann
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Anang A Shelat
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Burgess B Freeman
- Preclinical Pharmacokinetics Shared Resource, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Jason Chiang
- Department of Pathology, Departments of PathologySt. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Christopher L Tinkle
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Suzanne J Baker
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
- Center Of Excellence in Neuro-Oncology Sciences, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.
| |
Collapse
|
2
|
Buszka K, Ntzifa A, Owecka B, Kamińska P, Kolecka-Bednarczyk A, Zabel M, Nowicki M, Lianidou E, Budna-Tukan J. Liquid Biopsy Analysis as a Tool for TKI-Based Treatment in Non-Small Cell Lung Cancer. Cells 2022; 11:2871. [PMID: 36139444 PMCID: PMC9497234 DOI: 10.3390/cells11182871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 12/03/2022] Open
Abstract
The treatment of non-small cell lung cancer (NSCLC) has recently evolved with the introduction of targeted therapy based on the use of tyrosine kinase inhibitors (TKIs) in patients with certain gene alterations, including EGFR, ALK, ROS1, BRAF, and MET genes. Molecular targeted therapy based on TKIs has improved clinical outcomes in a large number of NSCLC patients with advanced disease, enabling significantly longer progression-free survival (PFS). Liquid biopsy is an increasingly popular diagnostic tool for treating TKI-based NSCLC. The studies presented in this article show that detection and analysis based on liquid biopsy elements such as circulating tumor cells (CTCs), cell-free DNA (cfDNA), exosomes, and/or tumor-educated platelets (TEPs) can contribute to the appropriate selection and monitoring of targeted therapy in NSCLC patients as complementary to invasive tissue biopsy. The detection of these elements, combined with their molecular analysis (using, e.g., digital PCR (dPCR), next generation sequencing (NGS), shallow whole genome sequencing (sWGS)), enables the detection of mutations, which are required for the TKI treatment. Despite such promising results obtained by many research teams, it is still necessary to carry out prospective studies on a larger group of patients in order to validate these methods before their application in clinical practice.
Collapse
Affiliation(s)
- Karolina Buszka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Aliki Ntzifa
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Barbara Owecka
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Paula Kamińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Agata Kolecka-Bednarczyk
- Department of Immunology, Chair of Pathomorphology and Clinical Immunology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Maciej Zabel
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Evi Lianidou
- Analysis of Circulating Tumor Cells Lab, Lab of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Joanna Budna-Tukan
- Department of Histology and Embryology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| |
Collapse
|
3
|
Gupta S, Silveira DA, Hashimoto RF, Mombach JCM. A Boolean Model of the Proliferative Role of the lncRNA XIST in Non-Small Cell Lung Cancer Cells. BIOLOGY 2022; 11:biology11040480. [PMID: 35453680 PMCID: PMC9024590 DOI: 10.3390/biology11040480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/12/2022] [Accepted: 03/13/2022] [Indexed: 12/15/2022]
Abstract
The long non-coding RNA X inactivate-specific transcript (lncRNA XIST) has been verified as an oncogenic gene in non-small cell lung cancer (NSCLC) whose regulatory role is largely unknown. The important tumor suppressors, microRNAs: miR-449a and miR-16 are regulated by lncRNA XIST in NSCLC, these miRNAs share numerous common targets and experimental evidence suggests that they synergistically regulate the cell-fate regulation of NSCLC. LncRNA XIST is known to sponge miR-449a and miR-34a, however, the regulatory network connecting all these non-coding RNAs is still unknown. Here we propose a Boolean regulatory network for the G1/S cell cycle checkpoint in NSCLC contemplating the involvement of these non-coding RNAs. Model verification was conducted by comparison with experimental knowledge from NSCLC showing good agreement. The results suggest that miR-449a regulates miR-16 and p21 activity by targeting HDAC1, c-Myc, and the lncRNA XIST. Furthermore, our circuit perturbation simulations show that five circuits are involved in cell fate determination between senescence and apoptosis. The model thus allows pinpointing the direct cell fate mechanisms of NSCLC. Therefore, our results support that lncRNA XIST is an attractive target of drug development in tumor growth and aggressive proliferation of NSCLC, and promising results can be achieved through tumor suppressor miRNAs.
Collapse
Affiliation(s)
- Shantanu Gupta
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
- Correspondence: (S.G.); (J.C.M.M.); Tel.: +55-11-30916135 (S.G.); +55-55-32209521 (J.C.M.M.)
| | - Daner A. Silveira
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
| | - Ronaldo F. Hashimoto
- Departamento de Ciência da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, São Paulo 05508-090, SP, Brazil;
| | - Jose Carlos M. Mombach
- Departamento de Física, Universidade Federal de Santa Maria, Santa Maria 97105-900, RS, Brazil;
- Correspondence: (S.G.); (J.C.M.M.); Tel.: +55-11-30916135 (S.G.); +55-55-32209521 (J.C.M.M.)
| |
Collapse
|
4
|
Casey DL, Pitter KL, Wexler LH, Slotkin EK, Gupta GP, Wolden SL. TP53 mutations increase radioresistance in rhabdomyosarcoma and Ewing sarcoma. Br J Cancer 2021; 125:576-581. [PMID: 34017087 PMCID: PMC8368014 DOI: 10.1038/s41416-021-01438-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/28/2021] [Accepted: 05/10/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND p53 plays a key role in the DNA repair process and response to ionising radiation. We sought to determine the clinical phenotype of TP53 mutations and p53 pathway alterations in patients with rhabdomyosarcoma (RMS) and Ewing sarcoma (ES) treated with radiation. METHODS Of patients with available genomic sequencing, we identified 109 patients with RMS and ES treated to a total of 286 radiation sites. We compared irradiated tumour control among tumours with TP53 mutations (n = 40) to those that were TP53 wild-type (n = 246). We additionally compared irradiated tumour control among tumours with any p53 pathway alteration (defined as tumours with TP53 mutations or TP53 wild-type tumours identified to have MDM2/4 amplification and/or CDKN2A/B deletion, n = 78) to those without such alterations (n = 208). RESULTS The median follow-up was 26 months from radiation. TP53 mutations were associated with worse irradiated tumour control among the entire cohort (hazard ratio, HR = 2.8, P < 0.0001). Tumours with any p53 pathway alteration also had inferior irradiated tumour control (HR = 2.0, P = 0.003). On multivariable analysis, after controlling for tumour histology, intent of radiation, presence of gross disease, and biologically effective dose, TP53 mutations continued to be associated with a radioresistant phenotype (HR = 7.1, P < 0.0001). CONCLUSIONS Our results show that TP53 mutations are associated with increased radioresistance in RMS and ES. Novel strategies to overcome this radioresistance are important for improved outcomes in p53 disruptive RMS and ES.
Collapse
Affiliation(s)
- Dana L. Casey
- grid.51462.340000 0001 2171 9952Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY USA ,grid.10698.360000000122483208Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.429995.aLineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC USA
| | - Kenneth L. Pitter
- grid.51462.340000 0001 2171 9952Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Leonard H. Wexler
- grid.51462.340000 0001 2171 9952Department of Pediatric Oncology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Emily K. Slotkin
- grid.51462.340000 0001 2171 9952Department of Pediatric Oncology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Gaorav P. Gupta
- grid.10698.360000000122483208Department of Radiation Oncology, University of North Carolina School of Medicine, Chapel Hill, NC USA ,grid.429995.aLineberger Comprehensive Cancer Center, University of North Carolina Hospitals, Chapel Hill, NC USA
| | - Suzanne L. Wolden
- grid.51462.340000 0001 2171 9952Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY USA
| |
Collapse
|
5
|
Xiong W, Friese-Hamim M, Johne A, Stroh C, Klevesath M, Falchook GS, Hong DS, Girard P, El Bawab S. Translational pharmacokinetic-pharmacodynamic modeling of preclinical and clinical data of the oral MET inhibitor tepotinib to determine the recommended phase II dose. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 10:428-440. [PMID: 33818908 PMCID: PMC8129711 DOI: 10.1002/psp4.12602] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/16/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Tepotinib is a highly selective and potent MET inhibitor in development for the treatment of patients with solid tumors. Given the favorable tolerability and safety profiles up to the maximum tested dose in the first‐in‐human (FIH) trial, an efficacy‐driven translational modeling approach was proposed to establish the recommended phase II dose (RP2D). To study the in vivo pharmacokinetics (PKs)/target inhibition/tumor growth inhibition relationship, a subcutaneous KP‐4 pancreatic cell‐line xenograft model in mice with sensitivity to MET pathway inhibition was selected as a surrogate tumor model. Further clinical PK and target inhibition data (derived from predose and postdose paired tumor biopsies) from a FIH study were integrated with the longitudinal PKs and target inhibition profiles from the mouse xenograft study to establish a translational PK/pharmacodynamic (PD) model. Preclinical data showed that tumor regression with tepotinib treatment in KP‐4 xenograft tumors corresponded to 95% target inhibition. We therefore concluded that a PD criterion of sustained, near‐to‐complete (>95%) phospho‐MET inhibition in tumors should be targeted for tepotinib to be effective. Simulations of dose‐dependent target inhibition profiles in human tumors that exceeded the PD threshold in more than 90% of patients established an RP2D of tepotinib 500 mg once daily. This translational mathematical modeling approach supports an efficacy‐driven rationale for tepotinib phase II dose selection of 500 mg once daily. Tepotinib at this dose has obtained regulatory approval for the treatment of patients with non‐small cell lung cancer harboring MET exon 14 skipping.
Collapse
Affiliation(s)
- Wenyuan Xiong
- Merck Institute of Pharmacokinetics (an affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland
| | | | | | | | | | | | | | - Pascal Girard
- Merck Institute of Pharmacokinetics (an affiliate of Merck KGaA, Darmstadt, Germany), Lausanne, Switzerland
| | | |
Collapse
|
6
|
Bensimon A, Koch JP, Francica P, Roth SM, Riedo R, Glück AA, Orlando E, Blaukat A, Aebersold DM, Zimmer Y, Aebersold R, Medová M. Deciphering MET-dependent modulation of global cellular responses to DNA damage by quantitative phosphoproteomics. Mol Oncol 2020; 14:1185-1206. [PMID: 32336009 PMCID: PMC7266272 DOI: 10.1002/1878-0261.12696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/18/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence suggests that interference with growth factor receptor tyrosine kinase (RTK) signaling can affect DNA damage response (DDR) networks, with a consequent impact on cellular responses to DNA-damaging agents widely used in cancer treatment. In that respect, the MET RTK is deregulated in abundance and/or activity in a variety of human tumors. Using two proteomic techniques, we explored how disrupting MET signaling modulates global cellular phosphorylation response to ionizing radiation (IR). Following an immunoaffinity-based phosphoproteomic discovery survey, we selected candidate phosphorylation sites for extensive characterization by targeted proteomics focusing on phosphorylation sites in both signaling networks. Several substrates of the DDR were confirmed to be modulated by sequential MET inhibition and IR, or MET inhibition alone. Upon combined treatment, for two substrates, NUMA1 S395 and CHEK1 S345, the gain and loss of phosphorylation, respectively, were recapitulated using invivo tumor models by immunohistochemistry, with possible utility in future translational research. Overall, we have corroborated phosphorylation sites at the intersection between MET and the DDR signaling networks, and suggest that these represent a class of proteins at the interface between oncogene-driven proliferation and genomic stability.
Collapse
Affiliation(s)
- Ariel Bensimon
- Department of BiologyInstitute of Molecular Systems BiologyETH ZürichSwitzerland
- Present address:
CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Jonas P. Koch
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Paola Francica
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Selina M. Roth
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Rahel Riedo
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Astrid A. Glück
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Eleonora Orlando
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | | | - Daniel M. Aebersold
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Yitzhak Zimmer
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| | - Ruedi Aebersold
- Department of BiologyInstitute of Molecular Systems BiologyETH ZürichSwitzerland
- Faculty of ScienceUniversity of ZürichSwitzerland
| | - Michaela Medová
- Department of Radiation Oncology, InselspitalBern University HospitalUniversity of BernSwitzerland
- Department for BioMedical Research, InselspitalBern University HospitalUniversity of BernSwitzerland
| |
Collapse
|
7
|
Johne A, Scheible H, Becker A, van Lier JJ, Wolna P, Meyring M. Open-label, single-center, phase I trial to investigate the mass balance and absolute bioavailability of the highly selective oral MET inhibitor tepotinib in healthy volunteers. Invest New Drugs 2020; 38:1507-1519. [PMID: 32221754 PMCID: PMC7497692 DOI: 10.1007/s10637-020-00926-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/16/2020] [Indexed: 12/13/2022]
Abstract
Tepotinib (MSC2156119J) is an oral, potent, highly selective MET inhibitor. This open-label, phase I study in healthy volunteers (EudraCT 2013-003226-86) investigated its mass balance (part A) and absolute bioavailability (part B). In part A, six participants received tepotinib orally (498 mg spiked with 2.67 MBq [14C]-tepotinib). Blood, plasma, urine, and feces were collected up to day 25 or until excretion of radioactivity was <1% of the administered dose. In part B, six participants received 500 mg tepotinib orally as a film-coated tablet, followed by an intravenous [14C]-tepotinib tracer dose (53–54 kBq) 4 h later. Blood samples were collected until day 14. In part A, a median of 92.5% (range, 87.1–96.9%) of the [14C]-tepotinib dose was recovered in excreta. Radioactivity was mainly excreted via feces (median, 78.7%; range, 69.4–82.5%). Urinary excretion was a minor route of elimination (median, 14.4% [8.8–17.7%]). Parent compound was the main constituent in excreta (45% [feces] and 7% [urine] of the radioactive dose). M506 was the only major metabolite. In part B, absolute bioavailability was 72% (range, 62–81%) after oral administration of 500 mg tablets (the dose and formulation used in phase II trials). In conclusion, tepotinib and its metabolites are mainly excreted via feces; parent drug is the major eliminated constituent. Oral bioavailability of tepotinib is high, supporting the use of the current tablet formulation in clinical trials. Tepotinib was well tolerated in this study with healthy volunteers.
Collapse
Affiliation(s)
- Andreas Johne
- Global Clinical Development, Merck KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| | - Holger Scheible
- Institute of Drug Metabolism and Pharmacokinetics, Merck KGaA, Grafing, Germany
| | - Andreas Becker
- Global Clinical Development, Merck KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Jan Jaap van Lier
- Pharmaceutical Research Association (PRA), Groningen, The Netherlands
| | - Peter Wolna
- Global Clinical Development, Merck KGaA, Frankfurter Strasse 250, 64293, Darmstadt, Germany
| | - Michael Meyring
- Institute of Drug Metabolism and Pharmacokinetics, Merck KGaA, Grafing, Germany
| |
Collapse
|
8
|
Falchook GS, Kurzrock R, Amin HM, Xiong W, Fu S, Piha-Paul SA, Janku F, Eskandari G, Catenacci DV, Klevesath M, Bruns R, Stammberger U, Johne A, Bladt F, Friese-Hamim M, Girard P, El Bawab S, Hong DS. First-in-Man Phase I Trial of the Selective MET Inhibitor Tepotinib in Patients with Advanced Solid Tumors. Clin Cancer Res 2019; 26:1237-1246. [PMID: 31822497 DOI: 10.1158/1078-0432.ccr-19-2860] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/01/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Tepotinib is an oral, potent, highly selective MET inhibitor. This first-in-man phase I trial investigated the MTD of tepotinib to determine the recommended phase II dose (RP2D). PATIENTS AND METHODS Patients received tepotinib orally according to one of three dose escalation regimens (R) on a 21-day cycle: R1, 30-400 mg once daily for 14 days; R2, 30-315 mg once daily 3 times/week; or R3, 300-1,400 mg once daily. After two cycles, treatment could continue in patients with stable disease until disease progression or unacceptable toxicity. The primary endpoint was incidence of dose-limiting toxicity (DLT) and treatment-emergent adverse events (TEAE). Secondary endpoints included safety, tolerability, pharmacokinetics, pharmacodynamics, and antitumor effects. RESULTS One hundred and forty-nine patients received tepotinib (R1: n = 42; R2: n = 45; R3: n = 62). Although six patients reported DLTs [one patient in R1 (115 mg), three patients in R2 (60, 100, 130 mg), two patients in R3 (1,000, 1,400 mg)], the MTD was not reached at the highest tested dose of 1,400 mg daily. The RP2D of tepotinib was established as 500 mg once daily, supported by translational modeling data as sufficient to achieve ≥95% MET inhibition in ≥90% of patients. Treatment-related TEAEs were mostly grade 1 or 2 fatigue, peripheral edema, decreased appetite, nausea, vomiting, and lipase increase. The best overall response in R3 was partial response in two patients, both with MET overexpression. CONCLUSIONS Tepotinib was well tolerated with clinical activity in MET-dysregulated tumors. The RP2D of tepotinib was established as 500 mg once daily. MET abnormalities can drive tumorigenesis. This first-in-man trial demonstrated that the potent, highly selective MET inhibitor tepotinib can reduce or stabilize tumor burden and is well tolerated at doses up to 1,400 mg once daily. An RP2D of 500 mg once daily, as determined from translational modeling and simulation integrating human population pharmacokinetic and pharmacodynamic data in tumor biopsies, is being used in ongoing clinical trials.
Collapse
Affiliation(s)
| | - Razelle Kurzrock
- University of California San Diego Moores Cancer Center, San Diego, California
| | | | - Wenyuan Xiong
- Merck Institute of Pharmacometrics, Merck Serono SA, Lausanne, Switzerland
| | - Siqing Fu
- MD Anderson Cancer Center, Houston, Texas
| | | | | | | | - Daniel V Catenacci
- The University of Chicago Medical Center & Biological Sciences, Chicago, Illinois
| | | | | | | | | | | | | | - Pascal Girard
- Merck Institute of Pharmacometrics, Merck Serono SA, Lausanne, Switzerland
| | | | | |
Collapse
|
9
|
A novel function of hepatocyte growth factor in the activation of checkpoint kinase 1 phosphorylation in colon cancer cells. Mol Cell Biochem 2017; 436:29-38. [PMID: 28573382 PMCID: PMC5674134 DOI: 10.1007/s11010-017-3075-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/25/2017] [Indexed: 01/02/2023]
Abstract
The ATR/checkpoint kinase 1 (Chk1) pathway plays an essential role in modulating the DNA damage response and homologous recombination. Particularly, Chk1 phosphorylation is related to cancer prognosis and therapeutic resistance. Some receptor tyrosine kinases participate in the regulation of Chk1 phosphorylation; however, the effect of hepatocyte growth factor (HGF) on Chk1 phosphorylation is unknown. In the present study, we demonstrated that HGF moderately activated Chk1 phosphorylation in colon cancer cells by upregulating TopBP1 and RAD51, and promoting TopBP1–ATR complex formation. Furthermore, AKT activity, which was promoted by HGF, served as an important mediator linking HGF/MET signaling and Chk1 phosphorylation. Depleting AKT activity attenuated basal expression of p-Chk1 and HGF-induced Chk1 activation. Moreover, AKT activity directly regulated TopBP1 and RAD51 expression. AKT inhibition suppressed HGF-induced upregulation of TopBP1 and RAD51, and enhanced TopBP1/ATR complex formation. Our results show that HGF was involved in regulating Chk1 phosphorylation, and further demonstrate that AKT activity was responsible for this HGF-induced Chk1 phosphorylation. These findings might potentially result in management of prognosis and therapeutic sensitivity in cancer therapy.
Collapse
|