1
|
Lemos I, Freitas-Dias C, Hipólito A, Ramalho J, Carteni F, Gonçalves LG, Mazzoleni S, Serpa J. Cell-Free DNA (cfDNA) Regulates Metabolic Remodeling in the ES-2 Ovarian Carcinoma Cell Line, Influencing Cell Proliferation, Quiescence, and Chemoresistance in a Cell-of-Origin-Specific Manner. Metabolites 2025; 15:244. [PMID: 40278372 DOI: 10.3390/metabo15040244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Background: The cell-free DNA (cfDNA) is an extracellular fragmented DNA found in body fluids in physiological and pathophysiological contexts. In cancer, cfDNA has been pointed out as a marker for disease diagnosis, staging, and prognosis; however, little is known about its biological role. Methods: The role of cfDNA released by ES-2 ovarian cancer cells was investigated, along with the impact of glucose bioavailability and culture duration in the cfDNA-induced phenotype. The effect of cfDNA on ES-2 cell proliferation was evaluated by proliferation curves, and cell migration was assessed through wound healing. We explored the impact of different cfDNA variants on ES-2 cells' metabolic profile using nuclear magnetic resonance (NMR) spectroscopy and cisplatin resistance through flow cytometry. Moreover, we assessed the protein levels of DNA-sensitive Toll-like receptor 9 (TLR9) by immunofluorescence and its colocalization with lysosome-associated membrane protein 1 (LAMP1). Results: This study demonstrated that despite inducing similar effects, different variants of cfDNA promote different effects on cells derived from the ES-2 cell line. We observed instant reactions of adopting the metabolic profile that brings back the cell functioning of more favorable culture conditions supporting proliferation and resembling the cell of origin of the cfDNA variant, as observed in unselected ES-2 cells. However, as a long-term selective factor, certain cfDNA variants induced quiescence that favors the chemoresistance of a subset of cancer cells. Conclusions: Therefore, different tumoral microenvironments may generate cfDNA variants that will impact cancer cells differently, orchestrating the disease fate.
Collapse
Affiliation(s)
- Isabel Lemos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Catarina Freitas-Dias
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Ana Hipólito
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - José Ramalho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Fabrizio Carteni
- Lab Applied Ecology and System Dynamics, Dipartimento di Agraria, Università di Napoli "Federico II", Portici, 80055 Naples, Italy
| | - Luís G Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Stefano Mazzoleni
- Lab Applied Ecology and System Dynamics, Dipartimento di Agraria, Università di Napoli "Federico II", Portici, 80055 Naples, Italy
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| |
Collapse
|
2
|
Elamin I, Rao MS, Figliozzi RW, Maahs JC, Balish M, Hsia SV, Piovezan Fugolin AP, Fan J. Protocol for Extracting Circulating Cell-Free DNA from Murine Saliva: Insights into Oral and Systemic Disease Research. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.31.645839. [PMID: 40236054 PMCID: PMC11996405 DOI: 10.1101/2025.03.31.645839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Circulating cell-free DNA (cfDNA) consists of small fragments of extracellular DNA from mammalian and bacterial cells found in bodily fluids such as blood and saliva, and it has been strongly recognized as a critical biomarker for various disease diagnoses, prognoses, and therapeutic monitoring. In this study, we present a reproducible protocol for efficiently isolating cfDNA from murine saliva using an innovative swabbing method in conjunction with the QIAamp MinElute ccfDNA Mini Kit. The quantification of isolated cfDNA is detected by a Qubit Fluorometer. Moreover, qualification assessment is conducted through BioAnalyzer analysis. This protocol facilitates research on saliva-derived cfDNA in the context of oral and systemic diseases in murine models.
Collapse
|
3
|
Meshkovska Y, Dzhuraeva B, Godugu C, Pooladanda V, Thatikonda S. Deciphering the interplay: circulating cell-free DNA, signaling pathways, and disease progression in idiopathic pulmonary fibrosis. 3 Biotech 2025; 15:102. [PMID: 40165930 PMCID: PMC11954786 DOI: 10.1007/s13205-025-04272-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lung disease with an unknown etiology and a short survival rate. There is no accurate method of early diagnosis, and it involves computed tomography (CT) or lung biopsy. Since diagnostic methods are not accurate due to their similarity to other lung pathologies, discovering new biomarkers is a key issue for diagnosticians. Currently, the use of ccf-DNA (circulating cell-free deoxyribonucleic acid) is an important focus due to its association with IPF-induced alterations in metabolic pathways, such as amino acid metabolism, energy metabolism, and lipid metabolism pathways. Other biomarkers associated with metabolic changes have been found, and they are related to changes in type II/type I alveolar epithelial cells (AECs I/II), changes in extracellular matrix (ECM), and inflammatory processes. Currently, IPF pathogenetic treatment remains unknown, and the mortality rates are increasing, and the patients are diagnosed at a late stage. Signaling pathways and metabolic dysfunction have a significant role in the disease occurrence, particularly the transforming growth factor-β (TGF-β) signaling pathway, which plays an essential role. TGF-β, Wnt, Hedgehog (Hh), and integrin signaling are the main drivers of fibrosis. These pathways activate the transformation of fibroblasts into myofibroblasts, extracellular matrix (ECM) deposition, and tissue remodeling fibrosis. Therapy targeting diverse signaling pathways to slow disease progression is crucial in the treatment of IPF. Two antifibrotic medications, including pirfenidone and nintedanib, are Food and Drug Administration (FDA)-approved for treatment. ccf-DNA could become a new biomarker for IPF diagnosis to detect the disease at the early stage, while FDA-approved therapies could help to prevent late conditions from forming and decrease mortality rates.
Collapse
Affiliation(s)
- Yeva Meshkovska
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612 USA
| | - Barchinai Dzhuraeva
- Department of Hospital Pediatrics, Moffitt Cancer Center, Tampa, FL 33612 USA
- Department of Hospital Pediatrics with a Course of Neonatology, National Center of Maternal and Child Health, Bishkek, 720017 Kyrgyzstan
| | - Chandraiah Godugu
- Department of Regulatory Toxicology, Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, Telangana 500037 India
| | - Venkatesh Pooladanda
- Vincent Center for Reproductive Biology, Department of Obstetrics and Gynecology, Massachusetts General Hospital, 60 Blossom Street, Thier 9, Boston, MA 02114 USA
- Obstetrics, Gynecology and Reproductive Biology, Harvard Medical School, Boston, MA 02115 USA
| | - Sowjanya Thatikonda
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL 33612 USA
| |
Collapse
|
4
|
Lemos I, Freitas-Dias C, Hipólito A, Ramalho J, Carteni F, Gonçalves LG, Mazzoleni S, Serpa J. Cell-Free DNA (cfDNA) Regulates Metabolic Remodeling, Sustaining Proliferation, Quiescence, and Migration in MDA-MB-231, a Triple-Negative Breast Carcinoma (TNBC) Cell Line. Metabolites 2025; 15:227. [PMID: 40278356 DOI: 10.3390/metabo15040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025] Open
Abstract
Background: The clinical relevance of circulating cell-free DNA (cfDNA) in oncology has gained significant attention, with its potential as a biomarker for cancer diagnosis and monitoring. However, its precise role in cancer biology and progression remains unclear. cfDNA in cancer patients' blood has been shown to activate signaling pathways, such as those mediated by toll-like receptors (TLRs), suggesting its involvement in cancer cell adaptation to the tumor microenvironment. Methods: This impact of cfDNA released from MDA-MB-231, a triple-negative breast cancer (TNBC) cell line was assessed, focusing on glucose availability and culture duration. The impact of cfDNA on the proliferation of MDA-MB-231 cells was investigated using proliferation curves, while cellular migration was evaluated through wound healing assays. The metabolic alterations induced by distinct cfDNA variants in MDA-MB-231 cells were investigated through nuclear magnetic resonance (NMR) spectroscopy, and their effect on cisplatin resistance was evaluated using flow cytometry. Furthermore, the expression levels of DNA-sensitive Toll-like receptor 9 (TLR9) were quantified via immunofluorescence, alongside its colocalization with lysosome-associated membrane protein 1 (LAMP1). Results: This study indicates that cfDNA facilitates metabolic adaptation, particularly under metabolic stress, by modulating glucose and glutamine consumption, key pathways in tumor cell metabolism. Exposure to cfDNA induced distinct metabolic shifts, favoring energy production through oxidative phosphorylation. The anti-cancer activity of cfDNA isolated from conditioned media of cells cultured under stressful conditions is influenced by the culture duration, emphasizing the importance of adaptation and se-lection in releasing cfDNA that can drive pro-tumoral processes. Additionally, cfDNA exposure influenced cell proliferation, quiescence, and migration, processes linked to metastasis and treatment resistance. These findings underscore cfDNA as a key mediator of metabolic reprogramming and adaptive responses in cancer cells, contributing to tumor progression and therapy resistance. Furthermore, the activation of TLR9 signaling suggests a mechanistic basis for cfDNA-induced phenotypic changes. Conclusions: Overall, cfDNA serves as a crucial signaling molecule in the tumor microenvironment, orchestrating adaptive processes that enhance cancer cell survival and progression.
Collapse
Affiliation(s)
- Isabel Lemos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Catarina Freitas-Dias
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Ana Hipólito
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - José Ramalho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Fabrizio Carteni
- Lab Applied Ecology and System Dynamics, Dipartimento di Agraria, Università di Napoli "Federico II", Portici, 80055 Naples, Italy
| | - Luís G Gonçalves
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
| | - Stefano Mazzoleni
- Lab Applied Ecology and System Dynamics, Dipartimento di Agraria, Università di Napoli "Federico II", Portici, 80055 Naples, Italy
| | - Jacinta Serpa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| |
Collapse
|
5
|
Aydın Ş, Özdemir S, Adıgüzel A. The Potential of cfDNA as Biomarker: Opportunities and Challenges for Neurodegenerative Diseases. J Mol Neurosci 2025; 75:34. [PMID: 40080233 PMCID: PMC11906534 DOI: 10.1007/s12031-025-02317-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/06/2025] [Indexed: 03/15/2025]
Abstract
Neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS), are characterized by the progressive and gradual degeneration of neurons. The prevalence and rates of these disorders rise significantly with age. As life spans continue to increase in many countries, the number of cases is expected to grow in the foreseeable future. Early and precise diagnosis, along with appropriate surveillance, continues to pose a challenge. The high heterogeneity of neurodegenerative diseases calls for more accurate and definitive biomarkers to improve clinical therapy. Cell-free DNA (cfDNA), including fragmented DNA released into bodily fluids via apoptosis, necrosis, or active secretion, has emerged as a promising non-invasive diagnostic tool for various disorders including neurodegenerative diseases. cfDNA can serve as an indicator of ongoing cellular damage and mortality, including neuronal loss, and may provide valuable insights into disease processes, progression, and therapeutic responses. This review will first cover the key aspects of cfDNA and then examine recent advances in its potential use as a biomarker for neurodegenerative disorders.
Collapse
Affiliation(s)
- Şeyma Aydın
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey
| | - Selçuk Özdemir
- Department of Genetics, Faculty of Veterinary Medicine, Atatürk University, Erzurum, Turkey.
| | - Ahmet Adıgüzel
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Turkey.
| |
Collapse
|
6
|
Stoljarova-Bibb M, Sadam M, Erg S, Väli M. The effect of commonly employed forensic DNA extraction protocols on ssDNA/dsDNA proportion and DNA integrity. Forensic Sci Int Genet 2025; 76:103210. [PMID: 39708438 DOI: 10.1016/j.fsigen.2024.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
The utilisation of massively parallel sequencing (MPS) in forensic DNA analysis is on the rise, driven by the expansion of targeted MPS panels in the market and the introduction of forensic investigative genetic genealogy. The MPS library preparation process, integral to both whole-genome sequencing (WGS) and targeted MPS panel data generation, is largely based on converting double-stranded DNA (dsDNA) into sequencing libraries. In the current study, we examined the effect of seven routinely used forensic DNA extraction methods on the strandedness (single-stranded or double-stranded) and the fragment size of the DNA extracted from buccal swab, blood, bone and tooth samples. Our findings reveal a variation in the proportion of dsDNA and single-stranded DNA (ssDNA), with the phenol-chloroform and silica column-based extraction methods tested predominantly yielding dsDNA, while the tested Chelex and magnetic bead-based extraction methods predominantly yielded ssDNA. Additionally, fragment size analysis showed that high molecular weight dsDNA was recovered from buccal swab samples with all of the extraction methods except Chelex, which yielded relatively short dsDNA fragments. DNA extracted from tooth samples with tested magnetic bead-based extraction methods resulted in longer dsDNA fragments compared to the silica column-based extraction protocol.
Collapse
Affiliation(s)
| | - Maarja Sadam
- Estonian Forensic Science Institute, Tallinn, Estonia
| | - Silja Erg
- Estonian Forensic Science Institute, Tallinn, Estonia
| | - Marika Väli
- Estonian Forensic Science Institute, Tallinn, Estonia
| |
Collapse
|
7
|
Bennuru S, Kodua F, Dahlstrom E, Nutman TB. Improved Nucleic Acid Amplification Test for the Diagnosis of Onchocerciasis and Its Use for Detection of Circulating Cell-free DNA. J Infect Dis 2025; 231:260-268. [PMID: 39312249 DOI: 10.1093/infdis/jiae462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/19/2024] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND The coendemicity of onchocerciasis with other filariae warrants a better diagnostic tool for elimination efforts that are highly sensitive and specific for use in surveillance and xenomonitoring. METHODS Based on next-generation sequencing data, quantitative polymerase chain reaction (qPCR) assays were designed for 15 highly repeated targets from Onchocerca volvulus (Ov) and 11 from Onchocerca ochengi. The 2 most promising repeats Ov15R and Ov16R from Ov and OoR1 and OoR5 from O. ochengi, were selected for further testing. RESULTS The analytic sensitivity of Ov15R and Ov16R was similar, with limits of detection at 1 fg and specificity approaching 100%. Using DNA obtained previously from skin snips of participants infected with Ov, Ov16R identified 17 additional samples as positive for Ov infections when compared with the gold standard O-150. Although Ov16R failed to detect circulating cell-free DNA (ccfDNA) in the plasma of individuals infected with Ov, 1-mL urine samples were variably positive for ccfDNA. Interestingly, plasma levels of ccfDNA were shown to be easily measurable as early as 12 to 24 hours following treatment. To enable processing of larger volumes of urine for better sensitivity, a chitosan-based filter technique was developed that efficiently captured ccfDNA from 1 to 15 mL of urine. Interestingly, Ov15R, Ov16R, and O-150 map to the same region(s) of the Ov genome, prompting a redesign of the standard O-150 qPCR. This resulted in a new O-150 assay that performs on par with Ov15R/Ov16R. CONCLUSIONS Each of these assays dramatically improve detection of Ov DNA and can easily be configured to field-friendly isothermal formats.
Collapse
Affiliation(s)
- Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Frimpong Kodua
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
- Department of Internal Medicine, Howard University Hospital, Washington DC
| | - Eric Dahlstrom
- Genomics Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
8
|
Neidhöfer C, Klein N, Yürüktümen A, Hattenhauer T, Mispelbaum R, Bode C, Holderried TAW, Hoerauf A, Parčina M. Retrospective analysis of 300 microbial cell-free DNA sequencing results in routine blood stream infection diagnostics. Front Cell Infect Microbiol 2025; 15:1504262. [PMID: 39949721 PMCID: PMC11821936 DOI: 10.3389/fcimb.2025.1504262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Introduction Bloodstream infections are a critical challenge worldwide due to the slow turnaround time of conventional microbiological tests for detecting bacteremia in septic patients. Noscendo GmbH (Duisburg, Germany) has developed the CE/IVD pipeline DISQVER for clinical metagenomics testing based on cell-free DNA (cfDNA) from blood samples to address this issue. Methods We conducted a retrospective study to evaluate the diagnostic utility of this methodological setup in improving treatment decisions since it was introduced into our clinical setting. Between January 2021 and June 2022, the first 300 cases in which DISQVER was applied at our university hospital were collected and analyzed. The results were compared with routine microbiology test results, clinical picture, associated treatment decisions, and clinical course. Results Our findings demonstrate that DISQVER results where no pathogen was reported effectively ruled out bacterial bloodstream infections, whereas positive results varied in their usefulness. While the metagenomic approach proved highly valuable for detecting non-culturable and rare pathogens, its utility was limited in cases where detected microorganisms were commonly associated with the microbiota. Discussion Performing on-site analysis might mitigate delays resulting from logistical challenges and might help optimizing antibiotic stewardship. Once prompt results can be obtained, the relevance of incorporating molecular resistograms will become more pronounced. Further, the specific patient subgroups that most benefit from this analysis must be worked out. Guiding clinicians in identifying the infection focus based on the detected bacteria would significantly improve patient care. Lastly, evidence of filamentous fungi must be diligently followed up.
Collapse
Affiliation(s)
- Claudio Neidhöfer
- Institute of Experimental Hematology and Transfusion Medicine, University Hospital Bonn, Bonn, Germany
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Niklas Klein
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Koblenz, Germany
| | - Aylin Yürüktümen
- Department of Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Tessa Hattenhauer
- Department of Hematology, Oncology, Stem Cell Transplantation, Immune and Cell Therapy, Clinical Immunology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Rebekka Mispelbaum
- Department of Hematology, Oncology, Stem Cell Transplantation, Immune and Cell Therapy, Clinical Immunology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Tobias A. W. Holderried
- Department of Hematology, Oncology, Stem Cell Transplantation, Immune and Cell Therapy, Clinical Immunology and Rheumatology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
9
|
Garb BF, Mohebbi E, Lawas M, Xia S, Maag G, Ahn PH, D’Silva NJ, Rozek LS, Sartor MA. Risk Stratification in HPV-Associated Oropharyngeal Cancer: Limitations of Current Approaches and the Search for Better Solutions. Cancers (Basel) 2025; 17:357. [PMID: 39941727 PMCID: PMC11816258 DOI: 10.3390/cancers17030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/06/2025] [Accepted: 01/10/2025] [Indexed: 02/16/2025] Open
Abstract
The rising incidence of human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) necessitates advancements in risk stratification to optimize treatment outcomes and improve the quality of life for patients. Despite its favorable prognosis compared to HPV-negative OPSCC, current clinical staging and biomarkers, such as p16 status, are limited in their ability to distinguish between high- and low-risk patients within HPV-associated OPSCC. This limitation results in the overtreatment of low-risk patients, exposing them to unnecessary toxicity, and the undertreatment of high-risk patients who require more aggressive interventions. This review critically evaluates current stratification methods, including clinical assessments, de-escalation trials, and candidate molecular biomarkers for risk stratification. Emerging approaches such as immune markers, viral genomic integration patterns, and other molecular markers offer promising avenues for enhanced prognostic accuracy. By integrating advanced risk stratification methods, tailored treatment approaches may one day be developed to balance oncologic efficacy with reduced treatment-related morbidity. This review underscores the need for continued research into predictive biomarkers and adaptive treatment strategies to better address the diverse risk profiles of HPV-associated OPSCC patients.
Collapse
Affiliation(s)
- Bailey Fabiny Garb
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; (B.F.G.)
| | - Elham Mohebbi
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA (L.S.R.)
| | - Maria Lawas
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; (B.F.G.)
| | - Shaomiao Xia
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; (B.F.G.)
| | - Garett Maag
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; (B.F.G.)
| | - Peter H. Ahn
- Department of Radiation Oncology, MedStar Georgetown University Hospital, Washington, DC 20007, USA
| | - Nisha J. D’Silva
- Department of Periodontics and Oral Medicine, University of Michigan, Ann Arbor, MI 48019, USA;
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura S. Rozek
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA (L.S.R.)
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; (B.F.G.)
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
- Biostatistics Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Schreier S, Budchart P, Borwornpinyo S, Adireklarpwong L, Chirappapha P, Triampo W, Lertsithichai P. Rare Cell Population Analysis in Early-Stage Breast Cancer Patients. Breast Cancer (Auckl) 2025; 19:11782234241310596. [PMID: 39803593 PMCID: PMC11724413 DOI: 10.1177/11782234241310596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Background Circulating rare cells participate in breast cancer evolution as systemic components of the disease and thus, are a source of theranostic information. Exploration of cancer-associated rare cells is in its infancy. Objectives We aimed to investigate and classify abnormalities in the circulating rare cell population among early-stage breast cancer patients using fluorescence marker identification and cytomorphology. In addition, we sought to determine the dependency of these markers on the presence of tumors. Design We evaluated the validity of a multi-rare-cell detection platform and demonstrated the utility of a specific rare cell subset as a novel approach to characterize the breast cancer system. Sampling was conducted both before and after tumor resection. Methods Linearity of the Rarmax platform was established using a spike-in approach. The platform includes red blood cell lysis, leukocyte depletion and high-resolution fluorescence image recording. Rare cell analysis was conducted on 28 samples (before and after surgery) from 14 patients with breast cancer, 20 healthy volunteers and 9 noncancer control volunteers. In-depth identification of rare cells, including circulating tumor cells, endothelial-like cells, erythroblasts, and inflammation-associated cells, was performed using a phenotype and morphology-based classification system. Results The platform performed linearly over a range of 5 to 950 spiked cells, with an average recovery of 84.6%. Circulating epithelial and endothelial-like cell subsets have been demonstrated to be associated with or independent of cancer with tumor presence. Furthermore, certain cell profile patterns may be associated with treatment-related adverse effects. The sensitivity in detecting tumor-presence and cancer-associated abnormality before surgery was 43% and 85.7%, respectively, and the specificity was 100% and 96.6%, respectively. Conclusion This study supports the idea of a cancer-associated rare cell abnormality to represent tumor entities as well as systemic cancer. The latter is independent of the apparent clinical cancer.
Collapse
Affiliation(s)
- Stefan Schreier
- School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, Thailand
- MUSC Centre of Excellence in STEM Education, School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, Thailand
- Premise Biosystems Co., Ltd. Bangkok, Thailand
| | | | - Suparerk Borwornpinyo
- Premise Biosystems Co., Ltd. Bangkok, Thailand
- Excellent Center for Drug Discovery, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Lakkana Adireklarpwong
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Prakasit Chirappapha
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wannapong Triampo
- MUSC Centre of Excellence in STEM Education, School of Bioinnovation and Bio-based Product Intelligence, Faculty of Science, Mahidol University, Bangkok, Thailand
- Biophysics Lab, Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Panuwat Lertsithichai
- Department of Surgery, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
11
|
Soleymani S, Naghib SM, Mozafari MR. Circulating Tumor Cells in Cancer Diagnosis, Therapy, and Theranostics Applications: An Overview of Emerging Materials and Technologies. Curr Pharm Des 2025; 31:674-690. [PMID: 39473210 DOI: 10.2174/0113816128328459241009191933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/06/2024] [Indexed: 04/11/2025]
Abstract
In recent years, immunotherapy, namely immune checkpoint inhibitor therapy, has significantly transformed the approach to treating various forms of cancer. Simultaneously, the adoption of clinical oncology has been sluggish due to the exorbitant expense of therapy, the adverse effects experienced by patients, and the inconsistency in treatment response among individuals. As a reaction, individualized methods utilizing predictive biomarkers have arisen as novel strategies for categorizing patients to achieve successful immunotherapy. Recently, the identification and examination of circulating tumor cells (CTCs) have gained attention as predictive indicators for the treatment of cancer patients undergoing chemotherapy and for personalized targeted therapy. CTCs have been found to exhibit immunological checkpoints in several types of solid tumors, which has contributed to our understanding of managing cancer immunotherapy. Circulating tumor cells (CTCs) present in the bloodstream have a crucial function in the formation of metastases. Nevertheless, the practical usefulness of existing CTC tests is mostly restricted by methodological limitations.
Collapse
Affiliation(s)
- Sina Soleymani
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology, Tehran, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
12
|
Solhi R, Pourhamzeh M, Zarrabi A, Hassan M, Mirzaei H, Vosough M. Novel biomarkers for monitoring and management of hepatocellular carcinoma. Cancer Cell Int 2024; 24:428. [PMID: 39719624 DOI: 10.1186/s12935-024-03600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 12/05/2024] [Indexed: 12/26/2024] Open
Abstract
Due to current challenges in the early detection, less than 40% of individuals diagnosed with hepatocellular carcinoma (HCC) are viable candidates for surgical intervention. Therefore, validating and launching of a novel precise diagnostic approach is essential for early diagnosis. Based on developing evidence using circulating tumor cells and their derivatives, circulating miRNAs, and extracellular vesicles (EVs), liquid biopsy may offer a reliable platform for the HCC's early diagnosis. Each liquid biopsy analyte may provide significant areas for diagnosis, prognostic assessment, and treatment monitoring of HCC patients depending on its kind, sensitivity, and specificity. The current review addresses potential clinical applications, current research, and future developments for liquid biopsy in HCC management.
Collapse
Affiliation(s)
- Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Pourhamzeh
- Departments of Pathology and Medicine, UC San Diego, La Jolla, CA, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396, Turkey
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
13
|
Sun T, Yuan J, Zhu Y, Li J, Yang S, Zhou J, Ge X, Qu S, Li W, Li JJ, Li Y. Systematic evaluation of methylation-based cell type deconvolution methods for plasma cell-free DNA. Genome Biol 2024; 25:318. [PMID: 39702273 DOI: 10.1186/s13059-024-03456-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Plasma cell-free DNA (cfDNA) is derived from cellular death in various tissues. Investigating the tissue origin of cfDNA through cell type deconvolution, we can detect changes in tissue homeostasis that occur during disease progression or in response to treatment. Consequently, cfDNA has emerged as a valuable noninvasive biomarker for disease detection and treatment monitoring. Although there are many methylation-based methods for cfDNA cell type deconvolution, a comprehensive and systematic evaluation of these methods has yet to be conducted. RESULTS In this study, we benchmark five methods: MethAtlas, cfNOMe toolkit, CelFiE, CelFEER, and UXM. Utilizing deep whole-genome bisulfite sequencing data from 35 human cell types, we generate in silico cfDNA samples with ground truth cell type proportions to assess the deconvolution performance of the five methods under multiple scenarios. Our findings indicate that multiple factors, including reference marker selection, sequencing depth, and reference atlas completeness, jointly influence the deconvolution performance. Notably, an incomplete reference with missing markers or cell types leads to suboptimal results. We observe performance differences among methods under varying conditions, underscoring the importance of tailoring cfDNA deconvolution analyses. To increase the clinical relevance of our findings, we further evaluate each method's performance in potential clinical applications using real-world datasets. CONCLUSIONS Based on the benchmark results, we propose general guidelines to choose the suitable methods based on sequencing depth of the cfDNA data and completeness of the reference atlas to maximize the performance of methylation-based cfDNA cell type deconvolution.
Collapse
Affiliation(s)
- Tongyue Sun
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jinqi Yuan
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Yacheng Zhu
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Jingqi Li
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Shen Yang
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Junpeng Zhou
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China
| | - Xinzhou Ge
- Department of Statistics, Oregon State University, Corvallis, OR, 97331, USA
| | - Susu Qu
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Jingyi Jessica Li
- Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095, USA.
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, CA, 90095, USA.
- Department of Human Genetics, University of California, Los Angeles, CA, 90095, USA.
- Department of Computational Medicine, University of California, Los Angeles, CA, 90095, USA.
- Department of Biostatistics, University of California, Los Angeles, CA, 90095, USA.
| | - Yumei Li
- School of Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
14
|
Hamidi Sofiani V, Ebrahimian Shiadeh A, Tabarraei A, Nikoo HR, Sadeghi F, Kamrani G, Yahyapour Y, Moradi A. Association of G12D mutation in the KRAS gene with HPV and EBV in gastrointestinal cancer tissues. J Int Med Res 2024; 52:3000605241302302. [PMID: 39673361 PMCID: PMC11645758 DOI: 10.1177/03000605241302302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/07/2024] [Indexed: 12/16/2024] Open
Abstract
OBJECTIVE This study aimed to explore the potential relationship between viral infections and gastrointestinal (GI) malignancies, focusing on the presence of KRAS G12D mutations. Specifically, we investigated the association of viral agents, including human papillomavirus (HPV) and Epstein-Barr virus (EBV), with KRAS G12D mutations in GI cancers to better understand their combined role in cancer development. METHODS This cross-sectional study comprised 92 patients diagnosed with GI cancer and 100 healthy individuals in the control group. All samples were examined to detect the KRAS G12D gene mutation and the existence of HPV and EBV using real-time polymerase chain reaction assays. RESULTS HPV and EBV DNA were detected in 5.4% and 51.4% of gastric cancer samples and in 7.3% and 49.1% of colorectal cancer samples, respectively. Analysis of KRAS G12D in plasma samples revealed heterozygous mutations in 54% of patients with gastric cancer and 35% of patients with colorectal tumors. Among EBV-positive colorectal cancer samples, 1.8% were wild-type, while 47.2% exhibited heterozygous mutations. Among HPV-positive colorectal cancer patients, 1.8% exhibited wild-type KRAS, 5.4% had heterozygous mutations, and 3.2% had homozygous mutations. CONCLUSION This study detected a significant correlation between the presence of viral agents and KRAS G12D mutations.
Collapse
Affiliation(s)
- Vahideh Hamidi Sofiani
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Arefeh Ebrahimian Shiadeh
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabarraei
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hadi Razavi Nikoo
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Farzin Sadeghi
- Department of Medical Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Ghodsieh Kamrani
- Department of Pathology, School of Medicine, Faculty of Medicine and Clinical Research Development Center, Babol University of Medical Sciences, Babol, Iran
| | - Yousef Yahyapour
- Department of Medical Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Abdolvahab Moradi
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
15
|
Sidhom F, Patel S, Desai A, Basu A. High Sensitivity Circulating Tumor-DNA Assays in Renal Cell Carcinoma-Are we there yet? Clin Genitourin Cancer 2024; 22:102235. [PMID: 39536416 DOI: 10.1016/j.clgc.2024.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
As therapeutics in renal cell carcinoma (RCC) continues to advance with approval of novel treatments and recently, adjuvant therapy, the need for highly sensitive tests that go beyond traditional methods to measure disease is becoming more crucial. Tumor informed high sensitivity circulating tumor DNA (ctDNA) assays originally developed for detection of minimal residual disease (MRD) theoretically could be utilized for initial detection of occult disease but also potentially for risk and response assessment in the management of advanced RCC. There are concerns related to the sensitivity of ctDNA based assays in RCC. This article aims to summarize the available evidence for high sensitivity MRD assays in RCC. We included studies with both localized and metastatic stages of RCC. The studies show a varying sensitivity depending on disease settings but a high specificity (∼100%) regardless. Detectable ctDNA appeared to be a significant negative prognostic risk factor for subsequent progressive disease. ctDNA may provide significant lead time allowing physicians to adapt therapy. Several high sensitivity assays with novel analytic approaches are in development for solid tumors including RCC.
Collapse
Affiliation(s)
- Fady Sidhom
- University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center, Birmingham, Alabama, USA
| | - Shefali Patel
- University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center, Birmingham, Alabama, USA
| | - Arpita Desai
- University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
| | - Arnab Basu
- University of Alabama at Birmingham, O'Neal Comprehensive Cancer Center, Birmingham, Alabama, USA.
| |
Collapse
|
16
|
Machado EDA, Land MGP, Schanaider A. PROGNOSTIC MARKERS FOR THROMBOTIC EVENTS IN PATIENTS WITH GASTRIC OR COLORECTAL ADENOCARCINOMAS. ARQUIVOS BRASILEIROS DE CIRURGIA DIGESTIVA : ABCD = BRAZILIAN ARCHIVES OF DIGESTIVE SURGERY 2024; 37:e1833. [PMID: 39699378 DOI: 10.1590/0102-6720202400039e1833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/17/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND The relationship between thrombosis and cancer is based on evidence that cancer promotes prothrombotic changes in the host hemostatic system. The activation of blood coagulation is closely linked to tumor growth and dissemination. AIMS To evaluate whether quantifications of plasma circulation tumor deoxyribonucleic acid (DNA) and thrombin-antithrombin complex could act as predictors for thrombotic events and death in patients with gastric or colorectal adenocarcinomas, while also evaluating the Karnofsky Performance Status. METHODS Eighty-two patients were included in the study and divided into three groups: controls (n=20), gastric adenocarcinomas (n=21), and colorectal adenocarcinomas (n=41). In order to calculate the Karnofsky index, information was collected to measure the patient's ability to perform common daily tasks. The following serum measurements were conducted: complete blood count, platelet count, extracellular deoxyribonucleic acid, and thrombin-antithrombin complex. RESULTS Ten patients (16%) experienced thrombosis during treatment. Patients with thrombin-antithrombin complex levels greater than 0.53 had a five-times higher risk of thrombosis. Lower Karnofsky Performance Status was also a risk factor for the event in this population. Neither thrombin-antithrombin complex nor plasma circulation tumor DNA were predictors of death after multivariate adjustment. Thus, Karnofsky index signaled a better overall survival prognosis for colorectal and gastric adenocarcinoma patients. CONCLUSIONS Thrombin-antithrombin complex acts as a marker for thrombosis in patients with colorectal and gastric adenocarcinomas. We recommend prophylactic anticoagulation when the Karnofsky value is low and/or the thrombin-antithrombin complex concentration is greater than 0.53 ng/ml.
Collapse
Affiliation(s)
| | | | - Alberto Schanaider
- Universidade Federal do Rio de Janeiro, Department of Surgery - Rio de Janeiro (RJ), Brazil
| |
Collapse
|
17
|
Ge Q, Zhang ZY, Li SN, Ma JQ, Zhao Z. Liquid biopsy: Comprehensive overview of circulating tumor DNA (Review). Oncol Lett 2024; 28:548. [PMID: 39319213 PMCID: PMC11420644 DOI: 10.3892/ol.2024.14681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/26/2024] Open
Abstract
Traditional tumor diagnosis methods rely on tissue biopsy, which can be invasive and unsuitable for long-term monitoring of tumor dynamics. The advent of liquid biopsy has notably improved the overall management of patients with cancer. Liquid biopsy techniques primarily involve detection of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA). The present review focuses on ctDNA because of its significance in tumor diagnosis, monitoring and treatment. The use of ctDNA-based liquid biopsy offers several advantages, including non-invasive or minimally invasive collection methods, the ability to conduct repeated assessment and comprehensive insights into tumor biology. It serves crucial roles in disease management by facilitating screening of high-risk patients, dynamically monitoring therapeutic responses and diagnosis. Furthermore, ctDNA can be used to demonstrate pseudo-progression, monitor postoperative tumor status and guide adaptive treatment plans. The present study provides a comprehensive review of ctDNA, exploring its origins, metabolism, detection methods, clinical role and the current challenges associated with its application.
Collapse
Affiliation(s)
- Qian Ge
- Graduate School, Xi'an Medical University, Xi'an, Shaanxi 710000, P.R. China
| | - Zhi-Yun Zhang
- Graduate School, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Suo-Ni Li
- Department of Internal Medicine, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Jie-Qun Ma
- Department of Internal Medicine, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710000, P.R. China
| | - Zheng Zhao
- Department of Internal Medicine, Shaanxi Provincial Cancer Hospital, Xi'an, Shaanxi 710000, P.R. China
| |
Collapse
|
18
|
Rahimi S, Balusamy SR, Perumalsamy H, Ståhlberg A, Mijakovic I. CRISPR-Cas target recognition for sensing viral and cancer biomarkers. Nucleic Acids Res 2024; 52:10040-10067. [PMID: 39189452 PMCID: PMC11417378 DOI: 10.1093/nar/gkae736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Nucleic acid-based diagnostics is a promising venue for detection of pathogens causing infectious diseases and mutations related to cancer. However, this type of diagnostics still faces certain challenges, and there is a need for more robust, simple and cost-effective methods. Clustered regularly interspaced short palindromic repeats (CRISPRs), the adaptive immune systems present in the prokaryotes, has recently been developed for specific detection of nucleic acids. In this review, structural and functional differences of CRISPR-Cas proteins Cas9, Cas12 and Cas13 are outlined. Thereafter, recent reports about applications of these Cas proteins for detection of viral genomes and cancer biomarkers are discussed. Further, we highlight the challenges associated with using these technologies to replace the current diagnostic approaches and outline the points that need to be considered for designing an ideal Cas-based detection system for nucleic acids.
Collapse
Affiliation(s)
- Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul, Republic of Korea
| | - Haribalan Perumalsamy
- Center for Creative Convergence Education, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, South Korea
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Life Sciences, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
19
|
Luo X, Jiang P, Ma J, Li Z, Zhou J, Wei X, A J, Chai J, Lv Y, Cheng P, Cao C, A X. Circulating free DNA as a diagnostic marker for echinococcosis: a systematic review and meta-analysis. Front Microbiol 2024; 15:1413532. [PMID: 39021627 PMCID: PMC11251952 DOI: 10.3389/fmicb.2024.1413532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Echinococcosis is a chronic zoonotic disease caused by tapeworms of the genus Echinococcus. The World Health Organization (WHO) has identified encapsulated disease as one of 17 neglected diseases to be controlled or eliminated by 2050. There is no accurate, early, non-invasive molecular diagnostic method to detect echinococcosis. The feasibility of circulating free DNA as a diagnostic method for echinococcosis has yielded inconclusive results in a number of published studies. However, there has been no systematic evaluation to date assessing the overall performance of these assays. We report here the first meta-analysis assessing the diagnostic accuracy of cfDNA in plasma, serum, and urine for echinococcosis. Methods We systematically searched PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure (CNKI), and WeiPu databases up to 17 January 2024, for relevant studies. All analyses were performed using RevMan 5.3, Meta-DiSc 1.4, Stata 17.0, and R 4.3.1 software. The sensitivity, specificity, and other accuracy indicators of circulating free DNA for the diagnosis of echinococcosis were summarized. Subgroup analyses and meta-regression were performed to identify sources of heterogeneity. Results A total of 7 studies included 218 patients with echinococcosis and 214 controls (156 healthy controls, 32 other disease controls (non-hydatid patients), and 26 non-study-targeted echinococcosis controls were included). Summary estimates of the diagnostic accuracy of cfDNA in the diagnosis of echinococcosis were as follows: sensitivity (SEN) of 0.51 (95% CI: 0.45-0.56); specificity (SPE) of 0.99 (95% CI: 0.97-0.99); positive likelihood ratio (PLR) of 11.82 (95% CI: 6.74-20.74); negative likelihood ratio (NLR) of 0.57 (95% CI: 0.41-0.80); diagnostic ratio (DOR) of 36.63 (95% CI: 13.75-97.59); and area under the curve (AUC) value of 0.98 (95% CI: 0.96-1.00). Conclusion Existing evidence indicates that the combined specificity of circulating cfDNA for echinococcosis is high. However, the combined sensitivity performance is unsatisfactory due to significant inter-study heterogeneity. To strengthen the validity and accuracy of our findings, further large-scale prospective studies are required.Systematic review registrationThe systematic review was registered in the International Prospective Register of Systematic Reviews PROSPERO [CRD42023454158]. https://www.crd.york.ac.uk/PROSPERO/.
Collapse
Affiliation(s)
- Xiaoqin Luo
- Qinghai University, Xining, China
- Department of Clinical Laboratory, Qinghai Provincial People’s Hospital, Xining, China
| | | | | | - Zian Li
- Department of Clinical Laboratory, Qinghai Provincial People’s Hospital, Xining, China
| | - Jianwu Zhou
- Department of Clinical Laboratory, Qinghai Provincial People’s Hospital, Xining, China
| | | | - Jide A
- Department of Clinical Laboratory, Qinghai Provincial People’s Hospital, Xining, China
| | - Jinping Chai
- Department of Clinical Laboratory, Qinghai Provincial People’s Hospital, Xining, China
| | - Yanke Lv
- Qinghai University, Xining, China
| | | | | | - Xiangren A
- Qinghai University, Xining, China
- Department of Clinical Laboratory, Qinghai Provincial People’s Hospital, Xining, China
| |
Collapse
|
20
|
Tan WY, Nagabhyrava S, Ang-Olson O, Das P, Ladel L, Sailo B, He L, Sharma A, Ahuja N. Translation of Epigenetics in Cell-Free DNA Liquid Biopsy Technology and Precision Oncology. Curr Issues Mol Biol 2024; 46:6533-6565. [PMID: 39057032 PMCID: PMC11276574 DOI: 10.3390/cimb46070390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/28/2024] Open
Abstract
Technological advancements in cell-free DNA (cfDNA) liquid biopsy have triggered exponential growth in numerous clinical applications. While cfDNA-based liquid biopsy has made significant strides in personalizing cancer treatment, the exploration and translation of epigenetics in liquid biopsy to clinical practice is still nascent. This comprehensive review seeks to provide a broad yet in-depth narrative of the present status of epigenetics in cfDNA liquid biopsy and its associated challenges. It highlights the potential of epigenetics in cfDNA liquid biopsy technologies with the hopes of enhancing its clinical translation. The momentum of cfDNA liquid biopsy technologies in recent years has propelled epigenetics to the forefront of molecular biology. We have only begun to reveal the true potential of epigenetics in both our understanding of disease and leveraging epigenetics in the diagnostic and therapeutic domains. Recent clinical applications of epigenetics-based cfDNA liquid biopsy revolve around DNA methylation in screening and early cancer detection, leading to the development of multi-cancer early detection tests and the capability to pinpoint tissues of origin. The clinical application of epigenetics in cfDNA liquid biopsy in minimal residual disease, monitoring, and surveillance are at their initial stages. A notable advancement in fragmentation patterns analysis has created a new avenue for epigenetic biomarkers. However, the widespread application of cfDNA liquid biopsy has many challenges, including biomarker sensitivity, specificity, logistics including infrastructure and personnel, data processing, handling, results interpretation, accessibility, and cost effectiveness. Exploring and translating epigenetics in cfDNA liquid biopsy technology can transform our understanding and perception of cancer prevention and management. cfDNA liquid biopsy has great potential in precision oncology to revolutionize conventional ways of early cancer detection, monitoring residual disease, treatment response, surveillance, and drug development. Adapting the implementation of liquid biopsy workflow to the local policy worldwide and developing point-of-care testing holds great potential to overcome global cancer disparity and improve cancer outcomes.
Collapse
Affiliation(s)
- Wan Ying Tan
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Internal Medicine, Norwalk Hospital, Norwalk, CT 06850, USA
- Hematology & Oncology, Neag Comprehensive Cancer Center, UConn Health, Farmington, CT 06030, USA
| | | | - Olivia Ang-Olson
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Paromita Das
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Luisa Ladel
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Internal Medicine, Norwalk Hospital, Norwalk, CT 06850, USA
| | - Bethsebie Sailo
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Linda He
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Anup Sharma
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
| | - Nita Ahuja
- Department of Surgery, Yale School of Medicine, New Haven, CT 06520-8000, USA; (W.Y.T.); (P.D.); (L.L.); (B.S.); (L.H.)
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520-8000, USA
- Biological and Biomedical Sciences Program (BBS), Yale University, New Haven, CT 06520-8084, USA
| |
Collapse
|
21
|
Zheng P, Raj P, Liang L, Wu L, Paidi SK, Kim JH, Barman I. Label-free plasmonic spectral profiling of serum DNA. Biosens Bioelectron 2024; 254:116199. [PMID: 38492362 PMCID: PMC11056035 DOI: 10.1016/j.bios.2024.116199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Genetic and epigenetic modifications are linked to the activation of oncogenes and inactivation of tumor suppressor genes. Likewise, the associated molecular alternations can best inform precision medicine for personalized tumor treatment. Therefore, performing characterization of genetic and epigenetic alternations at the molecular level represents a crucial step in early diagnosis and/or therapeutics of cancer. However, the prevailing methods for DNA analysis involve a series of tedious and complicated steps, in which important genetic and epigenetic information could be lost or altered. To provide a potential approach for non-invasive, direct, and efficient DNA analysis, herein, we present a promising strategy for label-free molecular profiling of serum DNA in its pristine form by fusing surface-enhanced Raman spectroscopy with machine learning on a superior plasmonic nanostructured platform. Using DNA methylation and single-point mutation as two case studies, the presented strategy allows a well-balanced sensitive and specific detection of epigenetic and genetic changes at the single-nucleotide level in serum. We envision the presented label-free strategy could serve as a versatile tool for direct molecular profiling in pristine forms of a wide range of biological markers and aid biomedical diagnostics as well as therapeutics.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Piyush Raj
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Le Liang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States; The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China; Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Lintong Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Santosh Kumar Paidi
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Jeong Hee Kim
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States; The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States.
| |
Collapse
|
22
|
Yu H, Han X, Wang W, Zhang Y, Xiang L, Bai D, Zhang L, Weng Z, Lv K, Song L, Luo W, Yin N, Zhang Y, Feng T, Wang L, Xie G. Modified Unit-Mediated Strand Displacement Reactions for Direct Detection of Single Nucleotide Variants in Active Double-Stranded DNA. ACS NANO 2024; 18:12401-12411. [PMID: 38701333 DOI: 10.1021/acsnano.4c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Accurate identification of single nucleotide variants (SNVs) in key driver genes holds a significant value for disease diagnosis and treatment. Fluorescent probes exhibit tremendous potential in specific, high-resolution, and rapid detection of SNVs. However, additional steps are required in most post-PCR assays to convert double-stranded DNA (dsDNA) products into single-stranded DNA (ssDNA), enabling them to possess hybridization activity to trigger subsequent reactions. This process not only prolongs the complexity of the experiment but also introduces the risk of losing target information. In this study, we proposed two strategies for enriching active double-stranded DNA, involving PCR based on obstructive groups and cleavable units. Building upon this, we explored the impact of modified units on the strand displacement reaction (SDR) and assessed their discriminatory efficacy for mutations. The results showed that detection of low variant allele frequencies (VAF) as low as 0.1% can be achieved. The proposed strategy allowed orthogonal identification of 45 clinical colorectal cancer tissue samples with 100% specificity, and the results were generally consistent with sequencing results. Compared to existing methods for enriching active targets, our approach offers a more diverse set of enrichment strategies, characterized by the advantage of being simple and fast and preserving original information to the maximum extent. The objective of this study is to offer an effective solution for the swift and facile acquisition of active double-stranded DNA. We anticipate that our work will facilitate the practical applications of SDR based on dsDNA.
Collapse
Affiliation(s)
- Hongyan Yu
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiaole Han
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Weitao Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yangli Zhang
- The Center for Clinical Molecular Medical Detection, Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Linguo Xiang
- The Center for Clinical Molecular Medical Detection, Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dan Bai
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Li Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Zhi Weng
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ke Lv
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Lin Song
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Wang Luo
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Na Yin
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yaoyi Zhang
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Tong Feng
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Li Wang
- The Center for Clinical Molecular Medical Detection, Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guoming Xie
- Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
23
|
Guo DZ, Huang A, Wang YC, Zhou S, Wang H, Xing XL, Zhang SY, Cheng JW, Xie KH, Yang QC, Ma CC, Li Q, Chen Y, Su ZX, Fan J, Liu R, Liu XL, Zhou J, Yang XR. Early detection and prognosis evaluation for hepatocellular carcinoma by circulating tumour DNA methylation: A multicentre cohort study. Clin Transl Med 2024; 14:e1652. [PMID: 38741204 DOI: 10.1002/ctm2.1652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Early diagnosis of hepatocellular carcinoma (HCC) can significantly improve patient survival. We aimed to develop a blood-based assay to aid in the diagnosis, detection and prognostic evaluation of HCC. METHODS A three-phase multicentre study was conducted to screen, optimise and validate HCC-specific differentially methylated regions (DMRs) using next-generation sequencing and quantitative methylation-specific PCR (qMSP). RESULTS Genome-wide methylation profiling was conducted to identify DMRs distinguishing HCC tumours from peritumoural tissues and healthy plasmas. The twenty most effective DMRs were verified and incorporated into a multilocus qMSP assay (HepaAiQ). The HepaAiQ model was trained to separate 293 HCC patients (Barcelona Clinic Liver Cancer (BCLC) stage 0/A, 224) from 266 controls including chronic hepatitis B (CHB) or liver cirrhosis (LC) (CHB/LC, 96), benign hepatic lesions (BHL, 23), and healthy controls (HC, 147). The model achieved an area under the curve (AUC) of 0.944 with a sensitivity of 86.0% in HCC and a specificity of 92.1% in controls. Blind validation of the HepaAiQ model in a cohort of 523 participants resulted in an AUC of 0.940 with a sensitivity of 84.4% in 205 HCC cases (BCLC stage 0/A, 167) and a specificity of 90.3% in 318 controls (CHB/LC, 100; BHL, 102; HC, 116). When evaluated in an independent test set, the HepaAiQ model exhibited a sensitivity of 70.8% in 65 HCC patients at BCLC stage 0/A and a specificity of 89.5% in 124 patients with CHB/LC. Moreover, HepaAiQ model was assessed in paired pre- and postoperative plasma samples from 103 HCC patients and correlated with 2-year patient outcomes. Patients with high postoperative HepaAiQ score showed a higher recurrence risk (Hazard ratio, 3.33, p < .001). CONCLUSIONS HepaAiQ, a noninvasive qMSP assay, was developed to accurately measure HCC-specific DMRs and shows great potential for the diagnosis, detection and prognosis of HCC, benefiting at-risk populations.
Collapse
Affiliation(s)
- De-Zhen Guo
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Ao Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Ying-Chao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | | | - Hui Wang
- Singlera Genomics Ltd., Shanghai, China
| | - Xiang-Lei Xing
- Biliary Tract Surgery Department IV, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Shi-Yu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Jian-Wen Cheng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | | | | | | | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Chen
- XiangYa Medical Laboratory, Central South University, Changsha, Hunan, China
| | - Zhi-Xi Su
- Singlera Genomics Ltd., Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Rui Liu
- Singlera Genomics Ltd., Shanghai, China
| | - Xiao-Long Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, P. R. China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University; Key Laboratory of Carcinogenesis and Cancer Invasion (Fudan University), Ministry of Education, Shanghai, China
| |
Collapse
|
24
|
Caggiano C, Morselli M, Qian X, Celona B, Thompson M, Wani S, Tosevska A, Taraszka K, Heuer G, Ngo S, Steyn F, Nestor P, Wallace L, McCombe P, Heggie S, Thorpe K, McElligott C, English G, Henders A, Henderson R, Lomen-Hoerth C, Wray N, McRae A, Pellegrini M, Garton F, Zaitlen N. Tissue informative cell-free DNA methylation sites in amyotrophic lateral sclerosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.08.24305503. [PMID: 38645132 PMCID: PMC11030489 DOI: 10.1101/2024.04.08.24305503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Cell-free DNA (cfDNA) is increasingly recognized as a promising biomarker candidate for disease monitoring. However, its utility in neurodegenerative diseases, like amyotrophic lateral sclerosis (ALS), remains underexplored. Existing biomarker discovery approaches are tailored to a specific disease context or are too expensive to be clinically practical. Here, we address these challenges through a new approach combining advances in molecular and computational technologies. First, we develop statistical tools to select tissue-informative DNA methylation sites relevant to a disease process of interest. We then employ a capture protocol to select these sites and perform targeted methylation sequencing. Multi-modal information about the DNA methylation patterns are then utilized in machine learning algorithms trained to predict disease status and disease progression. We applied our method to two independent cohorts of ALS patients and controls (n=192). Overall, we found that the targeted sites accurately predicted ALS status and replicated between cohorts. Additionally, we identified epigenetic features associated with ALS phenotypes, including disease severity. These findings highlight the potential of cfDNA as a non-invasive biomarker for ALS.
Collapse
Affiliation(s)
- C Caggiano
- Department of Neurology, UCLA, Los Angeles, California
- Institute of Genomic Health, Icahn School of Medicine at Mt Sinai, New York, New York
| | - M Morselli
- Department of Molecular, Cell, and Developmental Biology, UCLA; Los Angeles, California
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - X Qian
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - B Celona
- Cardiovascular Research Institute, UCSF, San Francisco, California
| | - M Thompson
- Department of Neurology, UCLA, Los Angeles, California
- Systems and Synthetic Biology, Centre for Genomic Regulation, Barcelona, Spain
| | - S Wani
- Cardiovascular Research Institute, UCSF, San Francisco, California
| | - A Tosevska
- Department of Molecular, Cell, and Developmental Biology, UCLA; Los Angeles, California
- Department of Internal Medicine III, Division of Rheumatology, Medical University of Vienna, Vienna, Austria
| | - K Taraszka
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - G Heuer
- Computational and Systems Biology Interdepartmental Program, UCLA, Los Angeles, California
| | - S Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - F Steyn
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - P Nestor
- Queensland Brain Institute, Unviversity of Queensland, Brisbane, Australia
- Mater Public Hospital, Brisbane, Australia
| | - L Wallace
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - P McCombe
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - S Heggie
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - K Thorpe
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | | | - G English
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - A Henders
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - R Henderson
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, QLD, Australia
| | - C Lomen-Hoerth
- Department of Neurology, UCSF, San Francisco, California
| | - N Wray
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - A McRae
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - M Pellegrini
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - F Garton
- Institute for Molecular Biology, University of Queensland, Brisbane, Australia
| | - N Zaitlen
- Department of Neurology, UCLA, Los Angeles, California
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
25
|
Mateus Pereira de Souza N, Kimberli Abeg da Rosa D, de Moraes C, Caeran M, Bordin Hoffmann M, Pozzobon Aita E, Prochnow L, Lya Assmann da Motta A, Antonio Corbellini V, Rieger A. Structural characterization of DNA amplicons by ATR-FTIR spectroscopy as a guide for screening metainflammatory disorders in blood plasma. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123897. [PMID: 38266599 DOI: 10.1016/j.saa.2024.123897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/26/2024]
Abstract
Attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopy is a promising rapid, reagent-free, and low-cost technique considered for clinical translation. It allows to characterize biofluids proteome, lipidome, and metabolome at once. Metainflammatory disorders share a constellation of chronic systemic inflammation, oxidative stress, aberrant adipogenesis, and hypoxia, that significantly increased cardiovascular and cancer risk. As a result, these patients have elevated concentration of cfDNA in the bloodstream. Considering this, DNA amplicons were analyzed by ATR-FTIR at 3 concentrations with 1:100 dilution: (IU/mL): 718, 7.18, and 0.0718. The generated IR spectrum was used as a guide for variable selection. The main peaks in the biofingerprint (1800-900 cm-1) give important information about the base, base-sugar, phosphate, and sugar-phosphate transitions of DNA. To validate our method of selecting variables in blood plasma, 38 control subjects and 12 with metabolic syndrome were used. Using the wavenumbers of the peaks in the biofingerprint of the DNA amplicons, was generated a discriminant analysis model with Mahalanobis distance in blood plasma, and 100 % discrimination accuracy was obtained. In addition, the interval 1475-1188 cm-1 showed the greatest sensitivity to variation in the concentration of DNA amplicons, so curve fitting with Gaussian funcion was performed, obtaining adjusted-R2 of 0.993. PCA with Mahalanobis distance in the interval 1475-1188 cm-1 obtained an accuracy of 96 % and PLS-DA modeling in the interval 1475-1088 cm-1 obtained AUC = 0.991 with sensitivity of 95 % and specificity of 100 %. Therefore, ATR-FTIR spectroscopy with variable selection guided by DNA IR peaks is a promising and efficient method to be applied in metainflammatory disorders.
Collapse
Affiliation(s)
| | - Dhuli Kimberli Abeg da Rosa
- Bioprocess Engineering and Biotechnology, State University of Rio Grande do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Caroline de Moraes
- Department of Life Sciences, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Mariana Caeran
- Department of Life Sciences, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Mairim Bordin Hoffmann
- Department of Life Sciences, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Eduardo Pozzobon Aita
- Department of Life Sciences, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Laura Prochnow
- Department of Life Sciences, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Anna Lya Assmann da Motta
- Department of Life Sciences, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Valeriano Antonio Corbellini
- Department of Sciences, Humanities, and Education, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil; Postgraduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil; Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| | - Alexandre Rieger
- Department of Life Sciences, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil; Postgraduate Program in Health Promotion, University of Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil; Postgraduate Program in Environmental Technology, University of Santa Cruz do Sul, Rio Grande do Sul, Brazil.
| |
Collapse
|
26
|
Anees F, Montoya DA, Pisetsky DS, Payne CK. DNA corona on nanoparticles leads to an enhanced immunostimulatory effect with implications for autoimmune diseases. Proc Natl Acad Sci U S A 2024; 121:e2319634121. [PMID: 38442162 PMCID: PMC10945806 DOI: 10.1073/pnas.2319634121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/03/2024] [Indexed: 03/07/2024] Open
Abstract
Autoimmune and inflammatory diseases are highly complex, limiting treatment and the development of new therapies. Recent work has shown that cell-free DNA bound to biological microparticles is linked to systemic lupus erythematosus, a prototypic autoimmune disease. However, the heterogeneity and technical challenges associated with the study of biological particles have hindered a mechanistic understanding of their role. Our goal was to develop a well-controlled DNA-particle model system to understand how DNA-particle complexes affect cells. We first characterized the adsorption of DNA on the surface of polystyrene nanoparticles (200 nm and 2 µm) using transmission electron microscopy, dynamic light scattering, and colorimetric DNA concentration assays. We found that DNA adsorbed on the surface of nanoparticles was resistant to degradation by DNase 1. Macrophage cells incubated with the DNA-nanoparticle complexes had increased production of pro-inflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6). We probed two intracellular DNA sensing pathways, toll-like receptor 9 (TLR9) and cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING), to determine how cells sense the DNA-nanoparticle complexes. We found that the cGAS-STING pathway is the primary route for the interaction between DNA-nanoparticles and macrophages. These studies provide a molecular and cellular-level understanding of DNA-nanoparticle-macrophage interactions. In addition, this work provides the mechanistic information necessary for future in vivo experiments to elucidate the role of DNA-particle interactions in autoimmune diseases, providing a unique experimental framework to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Faisal Anees
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC27708
| | - Diego A. Montoya
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC27708
| | - David S. Pisetsky
- Division of Rheumatology and Immunology, Duke University Medical Center, and Medical Research Service, Durham VA Medical Center, Durham, NC27705
| | - Christine K. Payne
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC27708
| |
Collapse
|
27
|
Walmsley CS, Jonsson P, Cheng ML, McBride S, Kaeser C, Vargas HA, Laudone V, Taylor BS, Kappagantula R, Baez P, Richards AL, Noronha AM, Perera D, Berger M, Solit DB, Iacobuzio-Donahue CA, Scher HI, Donoghue MTA, Abida W, Schram AM. Convergent evolution of BRCA2 reversion mutations under therapeutic pressure by PARP inhibition and platinum chemotherapy. NPJ Precis Oncol 2024; 8:34. [PMID: 38355834 PMCID: PMC10866935 DOI: 10.1038/s41698-024-00526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Reversion mutations that restore wild-type function of the BRCA gene have been described as a key mechanism of resistance to Poly(ADP-ribose) polymerase (PARP) inhibitor therapy in BRCA-associated cancers. Here, we report a case of a patient with metastatic castration-resistant prostate cancer (mCRPC) with a germline BRCA2 mutation who developed acquired resistance to PARP inhibition. Extensive genomic interrogation of cell-free DNA (cfDNA) and tissue at baseline, post-progression, and postmortem revealed ten unique BRCA2 reversion mutations across ten sites. While several of the reversion mutations were private to a specific site, nine out of ten tumors contained at least one mutation, suggesting a powerful clonal selection for reversion mutations in the presence of therapeutic pressure by PARP inhibition. Variable cfDNA shed was seen across tumor sites, emphasizing a potential shortcoming of cfDNA monitoring for PARPi resistance. This report provides a genomic portrait of the temporal and spatial heterogeneity of prostate cancer under the selective pressure of a PARP inhibition and exposes limitations in the current strategies for detection of reversion mutations.
Collapse
Grants
- P30 CA008748 NCI NIH HHS
- Grant funding from ASCO Conquer Cancer Foundation CDA, NCI P30CA008748 CCITLA, Memorial Sloan Kettering Cancer Center Support Grant (P30 CA008748).
- WA has received honoraria from Roche, Medscape, Aptitude Health, Clinical Education Alliance, OncLive/MJH Life Sciences, touchIME, Pfizer, and the MedNet. WA has also received advisory board compensation from Clovis Oncology, ORIC pharmaceuticals, Daiichi Sankyo, AstraZeneca/MedImmune, Pfizer and Laekna Therapeutics, and research funding from AstraZeneca, Zenith Epigenetics, Clovis Oncology, ORIC Pharmaceuticals, Epizyme, Nuvation Bio, Merus, and Transthera.
Collapse
Affiliation(s)
- Charlotte S Walmsley
- Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Philip Jonsson
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Michael L Cheng
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Sean McBride
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | | | - Vincent Laudone
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | | | - Priscilla Baez
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | | | - Dilmi Perera
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Michael Berger
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - David B Solit
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | - Howard I Scher
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | | | - Wassim Abida
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Alison M Schram
- Memorial Sloan Kettering Cancer Center, New York City, NY, USA.
| |
Collapse
|
28
|
Witz A, Dardare J, Betz M, Gilson P, Merlin JL, Harlé A. Tumor-derived cell-free DNA and circulating tumor cells: partners or rivals in metastasis formation? Clin Exp Med 2024; 24:2. [PMID: 38231464 PMCID: PMC10794481 DOI: 10.1007/s10238-023-01278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
The origin of metastases is a topic that has sparked controversy. Despite recent advancements, metastatic disease continues to pose challenges. The first admitted model of how metastases develop revolves around cells breaking away from the primary tumor, known as circulating tumor cells (CTCs). These cells survive while circulating through the bloodstream and subsequently establish themselves in secondary organs, a process often referred to as the "metastatic cascade". This intricate and dynamic process involves various steps, but all the mechanisms behind metastatic dissemination are not yet comprehensively elucidated. The "seed and soil" theory has shed light on the phenomenon of metastatic organotropism and the existence of pre-metastatic niches. It is now established that these niches can be primed by factors secreted by the primary tumor before the arrival of CTCs. In particular, exosomes have been identified as important contributors to this priming. Another concept then emerged, i.e. the "genometastasis" theory, which challenged all other postulates. It emphasizes the intriguing but promising role of cell-free DNA (cfDNA) in metastasis formation through oncogenic formation of recipient cells. However, it cannot be ruled out that all these theories are intertwined. This review outlines the primary theories regarding the metastases formation that involve CTCs, and depicts cfDNA, a potential second player in the metastasis formation. We discuss the potential interrelationships between CTCs and cfDNA, and propose both in vitro and in vivo experimental strategies to explore all plausible theories.
Collapse
Affiliation(s)
- Andréa Witz
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France.
| | - Julie Dardare
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| | - Margaux Betz
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| | - Pauline Gilson
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| | - Jean-Louis Merlin
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| | - Alexandre Harlé
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| |
Collapse
|
29
|
Tseng YH, Pan SW, Feng JY, Su WJ, Huang CYF, Chen YM. Detecting circulating microbial cell-free DNA by next-generation sequencing in patients with Mycobacterium avium complex-lung disease: A pilot study. Tzu Chi Med J 2024; 36:67-75. [PMID: 38406566 PMCID: PMC10887338 DOI: 10.4103/tcmj.tcmj_191_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/22/2023] [Accepted: 09/20/2023] [Indexed: 02/27/2024] Open
Abstract
Objectives Determining a diagnosis for non-Tuberculous mycobacterium (NTM)-lung disease (LD) remains difficult. The value of circulating cell-free DNA (cfDNA) secreted from microbes has been established in the detection of pathogens in septic patients. However, it is unknown whether NTM-derived cfDNA is detectable in plasma from patients with NTM-LD and whether this is associated with the disease status of NTM-LD, especially in patients with Mycobacterium avium complex (MAC)-LD. Materials and Methods In this pilot study, from 2018 to 2019, we enrolled adult patients with MAC-LD at Taipei Veterans General Hospital in Taiwan for the detection of circulating cfDNA. We performed cfDNA extraction from plasma, next-generation sequencing (NGS) for nonhuman cfDNA, and sequence matching to a microbial database and then assessed the association between pathogen cfDNA and MAC-LD. Results Two (40%) plasma samples from MAC-LD patients had detectable MAC-specific cfDNA, namely one instance of DNA polymerase III alpha subunit and one instance of ATP-binding cassette transporters permease. The plasma samples from the three other MAC-LD cases and the one tuberculosis control were negative for either NTM-derived cfDNA or tuberculosis-related cfDNA. In addition to MAC-specific cfDNA, Ralstonia solanacearum, Staphylococcus aureus, and Pasteurella multocida were the most observed bacteria in our patients. The two patients with MAC-cfDNA positivity yielded higher radiographic scores (P = 0.076) and presented a higher number of nonhuman reads than those without MAC-cfDNA positivity (P = 0.083). Conclusion Using NGS method, we demonstrated MAC-cfDNA was detectable in patients with MAC-LD. Further large-scale research is warranted to assess the clinical value of detecting MAC-specific cfDNA in MAC-LD patients.
Collapse
Affiliation(s)
- Yen-Han Tseng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Program in Molecular Medicine, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Wei Pan
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Yih Feng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Juin Su
- Division of Chest Medicine, Department of Internal Medicine, China Medical University Hospital, Taipei Branch, Taipei, Taiwan
| | - Chi-Ying F Huang
- Program in Molecular Medicine, School of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
30
|
Charoensappakit A, Sae-Khow K, Rattanaliam P, Vutthikraivit N, Pecheenbuvan M, Udomkarnjananun S, Leelahavanichkul A. Cell-free DNA as diagnostic and prognostic biomarkers for adult sepsis: a systematic review and meta-analysis. Sci Rep 2023; 13:19624. [PMID: 37949942 PMCID: PMC10638380 DOI: 10.1038/s41598-023-46663-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
Although cell-free DNA (cfDNA) is an emerging sepsis biomarker, the use of cfDNA, especially as diagnostic and prognostic indicators, has surprisingly not been systemically analyzed. Data of adult patients with sepsis that conducted cfDNA measurement within 24 h of the admission was collected from PubMed, ScienceDirect, Scopus, and Cochrane Library until October 2022. The Quality in Prognosis Studies (QUIPS) and Quality Assessment in Diagnostic Studies-2 (QUADAS-2) tools were used to reduce the risk of biased assessment. The mean difference (MD) of cfDNA concentration and the standardized mean difference (SMD) between populations was calculated using Review Manager (RevMan) version 5.4.1 package software. Pooled analysis from 18 included studies demonstrated increased serum cfDNA levels in sepsis when compared with healthy control (SMD = 1.02; 95% confidence interval (CI) 0.46-1.57) or non-sepsis patients in the intensive care unit (ICU) (SMD = 1.03; 95% CI 0.65-1.40), respectively. Meanwhile, a slight decrease in the statistical value was observed when compared with non-sepsis ICU patients with SIRS (SMD = 0.74; 95% 0.41-1.06). The lower cfDNA levels were also observed in sepsis survivors compared to the non-survivors (SMD at 1.43; 95%CI 0.69-2.17) with the pooled area under the receiver operating characteristic curve (AUC) of 0.76 (95% CI 0.64-0.87) for the mortality prediction. Levels of cfDNA showed a pooled sensitivity of 0.81 (95% CI 0.75-0.86) and specificity of 0.72 (95% CI 0.65-0.78) with pooled diagnostic odd ratio (DOR) at 25.03 (95% CI 5.48-114.43) for the identification of sepsis in critically ill conditions. The cfDNA levels were significantly higher in patients with sepsis and being a helpful indicator for the critically ill conditions of sepsis. Nevertheless, results of the test must be interpreted carefully with the context of all clinical situations.
Collapse
Affiliation(s)
- Awirut Charoensappakit
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicines, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kritsanawan Sae-Khow
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicines, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pongpera Rattanaliam
- Department of Clinical Microscopy, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuntanuj Vutthikraivit
- Division of Critical Care Medicine, Department of Internal Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Monvasi Pecheenbuvan
- Division of Critical Care Medicine, Department of Internal Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Suwasin Udomkarnjananun
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Faculty of Medicines, Chulalongkorn University, Bangkok, 10330, Thailand.
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
31
|
Islam MS, Gopalan V, Lam AK, Shiddiky MJA. Current advances in detecting genetic and epigenetic biomarkers of colorectal cancer. Biosens Bioelectron 2023; 239:115611. [PMID: 37619478 DOI: 10.1016/j.bios.2023.115611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in terms of diagnosis and the second in terms of mortality. Recent studies have shown that various proteins, extracellular vesicles (i.e., exosomes), specific genetic variants, gene transcripts, cell-free DNA (cfDNA), circulating tumor DNA (ctDNA), microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and altered epigenetic patterns, can be used to detect, and assess the prognosis of CRC. Over the last decade, a plethora of conventional methodologies (e.g., polymerase chain reaction [PCR], direct sequencing, enzyme-linked immunosorbent assay [ELISA], microarray, in situ hybridization) as well as advanced analytical methodologies (e.g., microfluidics, electrochemical biosensors, surface-enhanced Raman spectroscopy [SERS]) have been developed for analyzing genetic and epigenetic biomarkers using both optical and non-optical tools. Despite these methodologies, no gold standard detection method has yet been implemented that can analyze CRC with high specificity and sensitivity in an inexpensive, simple, and time-efficient manner. Moreover, until now, no study has critically reviewed the advantages and limitations of these methodologies. Here, an overview of the most used genetic and epigenetic biomarkers for CRC and their detection methods are discussed. Furthermore, a summary of the major biological, technical, and clinical challenges and advantages/limitations of existing techniques is also presented.
Collapse
Affiliation(s)
- Md Sajedul Islam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine & Dentistry, Griffith University, Gold Coast Campus, Southport, QLD, 4222, Australia; Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia; Pathology Queensland, Gold Coast University Hospital, Southport, QLD, 4215, Australia
| | - Muhammad J A Shiddiky
- Rural Health Research Institute, Charles Sturt University, Orange, NSW, 2800, Australia.
| |
Collapse
|
32
|
Bennuru S, Kodua F, Drame PM, Dahlstrom E, Nutman TB. A Novel, Highly Sensitive Nucleic Acid Amplification Test Assay for the Diagnosis of Loiasis and its Use for Detection of Circulating Cell-Free DNA. J Infect Dis 2023; 228:936-943. [PMID: 37243712 PMCID: PMC11009493 DOI: 10.1093/infdis/jiad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/25/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
Mass drug administration programs targeting filarial infections depend on diagnostic tools that are sensitive and specific. The coendemicity of Loa loa with other filarial species often hampers the control programs. LL2634 was identified as the most promising target among several highly repeated targets, with sensitivity between 500 ag and 1 fg of genomic DNA. Using DNA from infected individuals, LL2643 quantitative polymerase chain reaction (qPCR) was positive in all individuals. LL2643 was detected in plasma-derived circulating cell-free DNA (ccfDNA) from 48 of 53 microfilariae-positive patients. Detection of ccfDNA in urine was possible, but it occurred rarely among those tested. Importantly, LL2643 ccfDNA became undetectable within 1 month following diethylcarbamazine (DEC) treatment and remained negative for at least a year. LL2643 offers a more sensitive and specific target for detection of L. loa infection and would be easily configurable to a point-of-contact assay. Clinical Trials Registration. NCT00001230 and NCT00090662.
Collapse
Affiliation(s)
- Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Frimpong Kodua
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Papa Makhtar Drame
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Eric Dahlstrom
- Genomics Unit, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Thomas B Nutman
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Temilola DO, Wium M, Paccez J, Salukazana AS, Rotimi SO, Otu HH, Carbone GM, Kaestner L, Cacciatore S, Zerbini LF. Detection of Cancer-Associated Gene Mutations in Urinary Cell-Free DNA among Prostate Cancer Patients in South Africa. Genes (Basel) 2023; 14:1884. [PMID: 37895233 PMCID: PMC10606409 DOI: 10.3390/genes14101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Prostate cancer (PCa) is the most common cause of cancer death among African men. The presence of tumor-specific variations in cell-free DNA (cfDNA), such as mutations, microsatellite instability, and DNA methylation, has been explored as a source of biomarkers for cancer diagnosis. In this study, we investigated the diagnostic role of cfDNA among South African PCa patients. We performed whole exome sequencing (WES) of urinary cfDNA. We identified a novel panel of 31 significantly deregulated somatic mutated genes between PCa and benign prostatic hyperplasia (BPH). Additionally, we performed whole-genome sequencing (WGS) on matching PCa and normal prostate tissue in an independent PCa cohort from South Africa. Our results suggest that the mutations are of germline origin as they were also found in the normal prostate tissue. In conclusion, our study contributes to the knowledge of cfDNA as a biomarker for diagnosing PCa in the South African population.
Collapse
Affiliation(s)
- Dada Oluwaseyi Temilola
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (D.O.T.); (M.W.); (J.P.); (S.C.)
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (D.O.T.); (M.W.); (J.P.); (S.C.)
| | - Juliano Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (D.O.T.); (M.W.); (J.P.); (S.C.)
| | - Azola Samkele Salukazana
- Division of Urology, University of Cape Town, Groote Schuur Hospital, Cape Town 7925, South Africa; (A.S.S.); (L.K.)
| | | | - Hasan H. Otu
- Department of Electrical and Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Giuseppina M. Carbone
- Institute of Oncology Research (IOR), Università della Svizzera italiana, 6900 Bellinzona, Switzerland;
| | - Lisa Kaestner
- Division of Urology, University of Cape Town, Groote Schuur Hospital, Cape Town 7925, South Africa; (A.S.S.); (L.K.)
| | - Stefano Cacciatore
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (D.O.T.); (M.W.); (J.P.); (S.C.)
| | - Luiz Fernando Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (D.O.T.); (M.W.); (J.P.); (S.C.)
| |
Collapse
|
34
|
Kampel L, Feldstein S, Tsuriel S, Hannes V, Carmel Neiderman NN, Horowitz G, Warshavsky A, Leider-Trejo L, Hershkovitz D, Muhanna N. Mutated TP53 in Circulating Tumor DNA as a Risk Level Biomarker in Head and Neck Squamous Cell Carcinoma Patients. Biomolecules 2023; 13:1418. [PMID: 37759818 PMCID: PMC10527516 DOI: 10.3390/biom13091418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/28/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
Circulating tumor DNA (ctDNA) has been suggested as a surrogate biomarker for early detection of cancer recurrence. We aimed to explore the utility of ctDNA as a noninvasive prognostic biomarker in newly diagnosed head and neck squamous cell carcinoma (HNSCC) patients. Seventy HNSCC specimens were analysed for the detection of TP53 genetic alterations utilizing next-generation sequencing (NGS). TP53 mutations were revealed in 55 (79%). Upon detection of a significant TP53 mutation, circulating cell-free DNA was scrutinized for the presence of the tumor-specific mutation. ctDNA was identified at a minimal allele frequency of 0.08% in 21 out of 30 processed plasma samples. Detectable ctDNA correlated with regional spread (N stage ≥ 1, p = 0.011) and poorer 5-year progression-free survival (20%, 95% CI 10.9 to 28.9, p = 0.034). The high-risk worst pattern of invasion (WPOI grade 4-5) and deep invasion were frequently found in patients whose ctDNA was detected (p = 0.087 and p = 0.072, respectively). Detecting mutated TP53 ctDNA was associated with poor progression-free survival and regional metastases, indicating its potential role as a prognostic biomarker. However, ctDNA detectability in early-stage disease and the mechanisms modulating its release into the bloodstream must be further elucidated.
Collapse
Affiliation(s)
- Liyona Kampel
- The Head and Neck Cancer Research Laboratory, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (L.K.); (N.N.C.N.)
- The Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (G.H.); (A.W.)
| | - Sara Feldstein
- The Cancer Research and Pathology Institute, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (S.F.); (S.T.); (V.H.); (L.L.-T.); (D.H.)
| | - Shlomo Tsuriel
- The Cancer Research and Pathology Institute, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (S.F.); (S.T.); (V.H.); (L.L.-T.); (D.H.)
| | - Victoria Hannes
- The Cancer Research and Pathology Institute, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (S.F.); (S.T.); (V.H.); (L.L.-T.); (D.H.)
| | - Narin N. Carmel Neiderman
- The Head and Neck Cancer Research Laboratory, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (L.K.); (N.N.C.N.)
- The Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (G.H.); (A.W.)
| | - Gilad Horowitz
- The Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (G.H.); (A.W.)
- The Cancer Research and Pathology Institute, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (S.F.); (S.T.); (V.H.); (L.L.-T.); (D.H.)
| | - Anton Warshavsky
- The Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (G.H.); (A.W.)
- The Cancer Research and Pathology Institute, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (S.F.); (S.T.); (V.H.); (L.L.-T.); (D.H.)
| | - Leonor Leider-Trejo
- The Cancer Research and Pathology Institute, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (S.F.); (S.T.); (V.H.); (L.L.-T.); (D.H.)
| | - Dov Hershkovitz
- The Cancer Research and Pathology Institute, Tel Aviv Sourasky Medical Center, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (S.F.); (S.T.); (V.H.); (L.L.-T.); (D.H.)
| | - Nidal Muhanna
- The Head and Neck Cancer Research Laboratory, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (L.K.); (N.N.C.N.)
- The Department of Otolaryngology, Head and Neck Surgery and Maxillofacial Surgery, The Sackler School of Medicine, Tel-Aviv University, 6 Weizman St., Tel-Aviv 6423906, Israel; (G.H.); (A.W.)
| |
Collapse
|
35
|
Khurram I, Khan MU, Ibrahim S, Saleem A, Khan Z, Mubeen M, Khawar A, Ali Q. Efficacy of cell-free DNA as a diagnostic biomarker in breast cancer patients. Sci Rep 2023; 13:15347. [PMID: 37715016 PMCID: PMC10504267 DOI: 10.1038/s41598-023-42726-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/14/2023] [Indexed: 09/17/2023] Open
Abstract
Breast cancer is the most prevalent and leading cause of mortality worldwide among women. Cell-free DNA (cfDNA) analysis is an alternative quantitative approach to conventional methods for cancer diagnosis. The current research project aimed to determine the efficacy of cfDNA as a diagnostic biomarker in breast cancer patients in Pakistan. Eighty-four female breast cancer patients were selected as cases, and 152 healthy females as controls. Immunohistochemistry was performed to identify tumor biomarkers along with clinical profiling. cfDNA was extracted from serum using the phenol-chloroform method. The cfDNA level in the serum was estimated using Agarose Gel Electrophoresis and Nanodrop. SPPS version 25.0 was used to perform statistical analyses. The results showed that the cancer biomarkers were significantly associated with breast cancer. The changes in hematological parameters were insignificant, whereas the biochemical parameter variations between the cases and controls were statistically significant. A significant association of cfDNA level with breast cancer was observed. Further cfDNA levels and cancer biomarkers were not statistically significant. A significant correlation was observed between cfDNA and biochemical parameters, except for creatinine, whereas hematological parameters showed no significant correlation.ROC analysis declared cfDNA as an authentic diagnostic marker for breast cancer. It was concluded that the level of cfDNA is significantly increased in breast cancer patients and can be utilized as a diagnostic biomarker.
Collapse
Affiliation(s)
- Iqra Khurram
- Faculty of Allied Health Sciences, University Institute of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Umer Khan
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Saooda Ibrahim
- Faculty of Allied Health Sciences, University Institute of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | - Ayman Saleem
- Faculty of Allied Health Sciences, University Institute of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | - Zaman Khan
- Faculty of Allied Health Sciences, University Institute of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | - Muhammad Mubeen
- Faculty of Allied Health Sciences, University Institute of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | - Arooj Khawar
- Faculty of Allied Health Sciences, University Institute of Medical Lab Technology, The University of Lahore, Lahore, Pakistan
| | - Qurban Ali
- Department of Plant Breeding and Genetics, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
36
|
Viglianisi G, Santonocito S, Polizzi A, Troiano G, Amato M, Zhurakivska K, Pesce P, Isola G. Impact of Circulating Cell-Free DNA (cfDNA) as a Biomarker of the Development and Evolution of Periodontitis. Int J Mol Sci 2023; 24:9981. [PMID: 37373135 PMCID: PMC10298201 DOI: 10.3390/ijms24129981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
In the last few decades, circulating cell-free DNA (cfDNA) has been shown to have an important role in cell apoptosis or necrosis, including in the development and evolution of several tumors and inflammatory diseases in humans. In this regard, periodontitis, a chronic inflammatory disease that can induce the destruction of supporting components of the teeth, could represent a chronic inflammatory stimulus linked to a various range of systemic inflammatory diseases. Recently, a possible correlation between periodontal disease and cfDNA has been shown, representing new important diagnostic-therapeutic perspectives. During the development of periodontitis, cfDNA is released in biological fluids such as blood, saliva, urine and other body fluids and represents an important index of inflammation. Due to the possibility of withdrawing some of these liquids in a non-invasive way, cfDNA could be used as a possible biomarker for periodontal disease. In addition, discovering a proportional relationship between cfDNA levels and the severity of periodontitis, expressed through the disease extent, could open the prospect of using cfDNA as a possible therapeutic target. The aim of this article is to report what researchers have discovered in recent years about circulating cfDNA in the development, evolution and therapy of periodontitis. The analyzed literature review shows that cfDNA has considerable potential as a diagnostic, therapeutic biomarker and therapeutic target in periodontal disease; however, further studies are needed for cfDNA to be used in clinical practice.
Collapse
Affiliation(s)
- Gaia Viglianisi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.V.); (S.S.); (A.P.); (G.I.)
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.V.); (S.S.); (A.P.); (G.I.)
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.V.); (S.S.); (A.P.); (G.I.)
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Mariacristina Amato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.V.); (S.S.); (A.P.); (G.I.)
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| | - Paolo Pesce
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Ospedale S. Martino, 16148 Genoa, Italy
| | - Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, 95124 Catania, Italy; (G.V.); (S.S.); (A.P.); (G.I.)
| |
Collapse
|
37
|
Haque S, Bhushan Raman R, Salam M. Role of Biomarkers in Hepatocellular Carcinoma and Their Disease Progression. LIVER CANCER - GENESIS, PROGRESSION AND METASTASIS 2023. [DOI: 10.5772/intechopen.105856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the third leading and common lethal cancers worldwide. Early detection of tumorigenesis of hepatocellular carcinoma is through ultrasonography, computerized tomography (CT) scans, and magnetic resonance imaging (MRI) scans; however, these methods are not up to the mark, so a search for an efficient biomarker for early diagnosis and treatment of hepatocarcinogenesis is important. Proteomic and genomic approaches aid to develop new promising biomarkers for the diagnosis of HCC at the early stages. These biomarkers not only help in prognosis but also provide better therapeutic intervention against HCC. Among the different biomarker candidates, liquid biopsy [including circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA)] has recently emerged as a noninvasive detection technique for the characterization of circulating cells, providing a strong basis and early diagnosis for the individualized treatment of patients. This review provides the current understanding of HCC biomarkers that predict the risk of HCC recurrence.
Collapse
|
38
|
Bieler J, Kubik S, Macheret M, Pozzorini C, Willig A, Xu Z. Benefits of applying molecular barcoding systems are not uniform across different genomic applications. J Transl Med 2023; 21:305. [PMID: 37147717 PMCID: PMC10163729 DOI: 10.1186/s12967-023-04160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Despite the wide variety of Next Generation Sequencing (NGS)-based methods, it remains challenging to detect mutations present at very low frequencies. This problem is particularly relevant in oncology, where the limiting amount of input material, and its low quality, often limit the performance of the assays. Unique Molecular Identifiers (UMIs) are a molecular barcoding system often coupled with computational methods of noise suppression to improve the reliability of detection of rare variants. Although widely adopted, UMI inclusion imposes additional technical complexity and sequencing cost. Currently, there are no guidelines on UMI usage nor a comprehensive evaluation of their advantage across different applications. METHODS We used DNA sequencing data generated by molecular barcoding and hybridization-based enrichment, from various types and quantities of input material (fresh frozen, formaldehyde-treated and cell-free DNA), to evaluate the performance of variant calling in different clinically relevant contexts. RESULTS Noise suppression achieved by read grouping based on fragment mapping positions ensures reliable variant calling for many experimental designs even without exogenous UMIs. Exogenous barcodes significantly improve performance only when mapping position collisions occur, which is common in cell-free DNA. CONCLUSIONS We demonstrate that UMI usage is not universally beneficial across experimental designs and that it is worthwhile to critically consider the comparative advantage of UMI usage for a given NGS application prior to experimental design.
Collapse
Affiliation(s)
- Jonathan Bieler
- Data Science Department, SOPHiA GENETICS, Rue du Centre 172, CH-1025, Saint Sulpice, Switzerland
| | - Slawomir Kubik
- Data Science Department, SOPHiA GENETICS, Rue du Centre 172, CH-1025, Saint Sulpice, Switzerland
| | - Morgane Macheret
- Data Science Department, SOPHiA GENETICS, Rue du Centre 172, CH-1025, Saint Sulpice, Switzerland
| | - Christian Pozzorini
- Data Science Department, SOPHiA GENETICS, Rue du Centre 172, CH-1025, Saint Sulpice, Switzerland
| | - Adrian Willig
- Data Science Department, SOPHiA GENETICS, Rue du Centre 172, CH-1025, Saint Sulpice, Switzerland
| | - Zhenyu Xu
- Data Science Department, SOPHiA GENETICS, Rue du Centre 172, CH-1025, Saint Sulpice, Switzerland.
| |
Collapse
|
39
|
Xu Y, Yang Y, Wang Y, Su J, Chan T, Zhou J, Gong Y, Wang K, Gu Y, Zhang C, Wu G, Bi L, Qin X, Han J. Molecular fingerprints of nuclear genome and mitochondrial genome for early diagnosis of lung adenocarcinoma. J Transl Med 2023; 21:250. [PMID: 37038181 PMCID: PMC10084603 DOI: 10.1186/s12967-023-04099-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer with high morbidity and mortality rates. Due to the heterogeneity of LUAD, its characteristics remain poorly understood. Exploring the clinical and molecular characteristics of LUAD is challenging but vital for early diagnosis. METHODS This observational and validation study enrolled 80 patients and 13 healthy controls. Nuclear and mtDNA-captured sequencings were performed. RESULTS This study identified a spectrum of nuclear and mitochondrial genome mutations in early-stage lung adenocarcinoma and explored their association with diagnosis. The correlation coefficient for somatic mutations in cfDNA and patient-matched tumor tissues was high in nuclear and mitochondrial genomes. The mutation number of highly mutated genes was evaluated, and the Least Absolute Shrinkage and Selection Operator (LASSO) established a diagnostic model. Receiver operating characteristic (ROC) curve analysis explored the diagnostic ability of the two panels. All models were verified in the testing cohort, and the mtDNA panel demonstrated excellent performance. This study identified somatic mutations in the nuclear and mitochondrial genomes, and detecting mutations in cfDNA displayed good diagnostic performance for early-stage LUAD. Moreover, detecting somatic mutations in the mitochondria may be a better tool for diagnosing early-stage LUAD. CONCLUSIONS This study identified specific and sensitive diagnostic biomarkers for early-stage LUAD by focusing on nuclear and mitochondrial genome mutations. This also further developed an early-stage LUAD-specific mutation gene panel for clinical utility. This study established a foundation for further investigation of LUAD molecular pathogenesis.
Collapse
Affiliation(s)
- Yichun Xu
- National Engineering Research Center for Biochip at Shanghai and Shanghai Biochip Limited Corporation, No.151, Libing Road, Shanghai, 201203, China.
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, China.
| | - Yong Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, No.241, Huaihai West Road, Shanghai, China
| | - Yichao Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Shanghai, China
| | - Jun Su
- National Engineering Research Center for Biochip at Shanghai and Shanghai Biochip Limited Corporation, No.151, Libing Road, Shanghai, 201203, China
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Tianlong Chan
- National Engineering Research Center for Biochip at Shanghai and Shanghai Biochip Limited Corporation, No.151, Libing Road, Shanghai, 201203, China
| | - Jiajing Zhou
- National Engineering Research Center for Biochip at Shanghai and Shanghai Biochip Limited Corporation, No.151, Libing Road, Shanghai, 201203, China
| | - Yi Gong
- National Engineering Research Center for Biochip at Shanghai and Shanghai Biochip Limited Corporation, No.151, Libing Road, Shanghai, 201203, China
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Ke Wang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifeng Gu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Shanghai, China
| | - Congmeng Zhang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Shanghai, China
| | - Guanjin Wu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Shanghai, China
| | - Ling Bi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, No.110, Ganhe Road, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiong Qin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, No.241, Huaihai West Road, Shanghai, China.
| | - Junsong Han
- National Engineering Research Center for Biochip at Shanghai and Shanghai Biochip Limited Corporation, No.151, Libing Road, Shanghai, 201203, China.
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, China.
| |
Collapse
|
40
|
Ren XD, Su N, Sun XG, Li WM, Li J, Li BW, Li RX, Lv J, Xu QY, Kong WL, Huang Q. Advances in liquid biopsy-based markers in NSCLC. Adv Clin Chem 2023; 114:109-150. [PMID: 37268331 DOI: 10.1016/bs.acc.2023.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Lung cancer is the second most-frequently occurring cancer and the leading cause of cancer-associated deaths worldwide. Non-small cell lung cancer (NSCLC), the most common type of lung cancer is often diagnosed in middle or advanced stages and have poor prognosis. Diagnosis of disease at an early stage is a key factor for improving prognosis and reducing mortality, whereas, the currently used diagnostic tools are not sufficiently sensitive for early-stage NSCLC. The emergence of liquid biopsy has ushered in a new era of diagnosis and management of cancers, including NSCLC, since analysis of circulating tumor-derived components, such as cell-free DNA (cfDNA), circulating tumor cells (CTCs), cell-free RNAs (cfRNAs), exosomes, tumor-educated platelets (TEPs), proteins, and metabolites in blood or other biofluids can enable early cancer detection, treatment selection, therapy monitoring and prognosis assessment. There have been great advances in liquid biopsy of NSCLC in the past few years. Hence, this chapter introduces the latest advances on the clinical application of cfDNA, CTCs, cfRNAs and exosomes, with a particular focus on their application as early markers in the diagnosis, treatment and prognosis of NSCLC.
Collapse
Affiliation(s)
- Xiao-Dong Ren
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Ning Su
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Xian-Ge Sun
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Wen-Man Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Jin Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Bo-Wen Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Ruo-Xu Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Jing Lv
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Qian-Ying Xu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Wei-Long Kong
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, P.R. China.
| |
Collapse
|
41
|
Shin J, Jung C. Improving the Accuracy of Single-Nucleotide Variant Diagnosis Using On-Off Discriminating Primers. BIOSENSORS 2023; 13:380. [PMID: 36979592 PMCID: PMC10046569 DOI: 10.3390/bios13030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/05/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Early detection of rare mutations through liquid biopsy can provide real-time information related to cancer diagnosis, prognosis, and treatment outcomes. Cell-free DNA samples used in liquid biopsies contain single-nucleotide variants (SNVs) with a variant allele frequency (VAF) of approximately ≤1%. Droplet digital polymerase chain reaction (ddPCR) is considered the gold standard of sequencing using liquid samples, generating amplicons from samples containing mutations with 0.001-0.005% VAF; however, it requires expensive equipment and time-consuming protocols. Therefore, various PCR methods for discriminating SNVs have been developed; nonetheless, non-specific amplification cannot be avoided even in the absence of mutations, which hampers the accurate diagnosis of SNVs. In this study, we introduce single-nucleotide variant on-off discrimination-PCR (Soo-PCR), a highly accurate and practical method that uses a 3'-end tailing primer for the on-off discrimination of low-abundance mutant-type targets, including SNVs. Soo-PCR minimizes the chance of incorrect judgments owing to its high discriminating power. Cancer markers, such as KRAS G12D, EGFR L858R, and EGFR T790M mutations, containing 0.1% VAF, were clearly detected in under 2 h with a high reliability comparable with that of ddPCR. This new method serves as a practical approach to accurately detect and evaluate low-abundance mutations in a user-friendly manner.
Collapse
|
42
|
Karakousis ND, Chrysavgis L, Papatheodoridi A, Legaki AI, Lembessis P, Cholongitas E, Chatzigeorgiou A, Papatheodoridis G. Significance of Circulating Cell-Free DNA Biomarkers in HBeAg-Negative Chronic Hepatitis B Virus Infection and Their Changes after Treatment Initiation. Pathogens 2023; 12:394. [PMID: 36986316 PMCID: PMC10053129 DOI: 10.3390/pathogens12030394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Chronic hepatitis B virus (HBV) infection is a common chronic liver disease that is closely associated with increased morbidity and mortality. Circulating cell-free DNA (cf-DNA) and global DNA methylation, expressed as circulating levels of 5-methyl-2'-deoxycytidine, are increasingly used to monitor chronic inflammatory diseases of several etiologies. This study attempts to investigate the serum levels of circulating cf-DNA and 5-methyl-2'-deoxycytidine in HBeAg-negative patients with chronic infection (carriers) and chronic hepatitis B (CHB), as well as their changes after treatment initiation in CHB. METHODS Serum samples from a total of 61 HBeAg-negative patients (30 carriers and 31 CHB patients) were included in order to quantify the levels of circulating cf-DNA and 5-methyl-2'-deoxycytidine. In addition, serum samples from 17 CHB patients in complete virological and biochemical remission after initiation of treatment with a nucleos(t)ide analogue were included. RESULTS Circulating cf-DNA concentration was significantly increased after the initiation of treatment (15 vs. 10 ng/mL, p = 0.022). There was a trend in higher mean levels of circulating 5-methyl-2'-deoxycytidine in carriers compared to CHB patients (211.02 vs. 175.66 ng/mL, p = 0.089), as well as a trend in increasing 5-methyl-2'-deoxycytidine levels after treatment initiation in CHB patients compared to pre-treatment levels (215 vs. 173 ng/mL, p = 0.079). CONCLUSIONS Both circulating levels of cf-DNA and 5-methyl-2'-deoxycytidine might be useful biomarkers in order to monitor liver disease activity and response to antiviral treatment in HBeAg-negative chronic HBV patients, but further studies are essential in order to validate these intriguing findings.
Collapse
Affiliation(s)
- Nikolaos D. Karakousis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, 11527 Athens, Greece
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Lampros Chrysavgis
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Alkistis Papatheodoridi
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Clinical Therapeutics, Medical School of National and Kapodistrian University of Athens, “Alexandra” General Hospital of Athens, 11528 Athens, Greece
| | - Aigli-Ioanna Legaki
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Panagiotis Lembessis
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Evangelos Cholongitas
- First Department of Internal Medicine, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, 11527 Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School of National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens “Laiko”, 11527 Athens, Greece
| |
Collapse
|
43
|
Abboud K, Umoru G, Esmail A, Abudayyeh A, Murakami N, Al-Shamsi HO, Javle M, Saharia A, Connor AA, Kodali S, Ghobrial RM, Abdelrahim M. Immune Checkpoint Inhibitors for Solid Tumors in the Adjuvant Setting: Current Progress, Future Directions, and Role in Transplant Oncology. Cancers (Basel) 2023; 15:1433. [PMID: 36900226 PMCID: PMC10000896 DOI: 10.3390/cancers15051433] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
The rationale for administering immune checkpoint inhibitors (ICIs) in the adjuvant setting is to eradicate micro-metastases and, ultimately, prolong survival. Thus far, clinical trials have demonstrated that 1-year adjuvant courses of ICIs reduce the risk of recurrence in melanoma, urothelial cancer, renal cell carcinoma, non-small cell lung cancer, and esophageal and gastroesophageal junction cancers. Overall survival benefit has been shown in melanoma while survival data are still not mature in other malignancies. Emerging data also show the feasibility of utilizing ICIs in the peri-transplant setting for hepatobiliary malignancies. While ICIs are generally well-tolerated, the development of chronic immune-related adverse events, typically endocrinopathies or neurotoxicities, as well as delayed immune-related adverse events, warrants further scrutiny regarding the optimal duration of adjuvant therapy and requires a thorough risk-benefit determination. The advent of blood-based, dynamic biomarkers such as circulating tumor DNA (ctDNA) can help detect minimal residual disease and identify the subset of patients who would likely benefit from adjuvant treatment. In addition, the characterization of tumor-infiltrating lymphocytes, neutrophil-to-lymphocyte ratio, and ctDNA-adjusted blood tumor mutation burden (bTMB) has also shown promise in predicting response to immunotherapy. Until additional, prospective studies delineate the magnitude of overall survival benefit and validate the use of predictive biomarkers, a tailored, patient-centered approach to adjuvant ICIs that includes extensive patient counseling on potentially irreversible adverse effects should be routinely incorporated into clinical practice.
Collapse
Affiliation(s)
- Karen Abboud
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Godsfavour Umoru
- Department of Pharmacy, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Abdullah Esmail
- Section of GI Oncology, Department of Medical Oncology, Houston Methodist Cancer Center, Houston, TX 77030, USA
| | - Ala Abudayyeh
- Section of Nephrology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Naoka Murakami
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Humaid O. Al-Shamsi
- Department of Oncology, Burjeel Cancer Institute, Burjeel Medical City, Abu Dhabi P.O. Box 92510, United Arab Emirates
| | - Milind Javle
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ashish Saharia
- JC Walter Jr Center for Transplantation and Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston, TX 77030, USA
| | - Ashton A. Connor
- JC Walter Jr Center for Transplantation and Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston, TX 77030, USA
| | - Sudha Kodali
- JC Walter Jr Center for Transplantation and Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston, TX 77030, USA
| | - Rafik M. Ghobrial
- JC Walter Jr Center for Transplantation and Sherrie and Alan Conover Center for Liver Disease and Transplantation, Houston, TX 77030, USA
| | - Maen Abdelrahim
- Section of GI Oncology, Department of Medical Oncology, Houston Methodist Cancer Center, Houston, TX 77030, USA
- Cockrell Center of Advanced Therapeutics Phase I Program, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Internal Medicine, Weill Cornell Medical College, New York, NY 14853, USA
| |
Collapse
|
44
|
Wang JJ, Sun N, Lee YT, Kim M, Vagner T, Rohena-Rivera K, Wang Z, Chen Z, Zhang RY, Lee J, Zhang C, Tang H, Widjaja J, Zhang TX, Qi D, Teng PC, Jan YJ, Hou KC, Hamann C, Sandler HM, Daskivich TJ, Luthringer DJ, Bhowmick NA, Pei R, You S, Di Vizio D, Tseng HR, Chen JF, Zhu Y, Posadas EM. Prostate cancer extracellular vesicle digital scoring assay - a rapid noninvasive approach for quantification of disease-relevant mRNAs. NANO TODAY 2023; 48:101746. [PMID: 36711067 PMCID: PMC9879227 DOI: 10.1016/j.nantod.2022.101746] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Optimizing outcomes in prostate cancer (PCa) requires precision in characterization of disease status. This effort was directed at developing a PCa extracellular vesicle (EV) Digital Scoring Assay (DSA) for detecting metastasis and monitoring progression of PCa. PCa EV DSA is comprised of an EV purification device (i.e., EV Click Chip) and reverse-transcription droplet digital PCR that quantifies 11 PCa-relevant mRNA in purified PCa-derived EVs. A Met score was computed for each plasma sample based on the expression of the 11-gene panel using the weighted Z score method. Under optimized conditions, the EV Click Chips outperformed the ultracentrifugation or precipitation method of purifying PCa-derived EVs from artificial plasma samples. Using PCa EV DSA, the Met score distinguished metastatic (n = 20) from localized PCa (n = 20) with an area under the receiver operating characteristic curve of 0.88 (95% CI:0.78-0.98). Furthermore, longitudinal analysis of three PCa patients showed the dynamics of the Met scores reflected clinical behavior even when disease was undetectable by imaging. Overall, a sensitive PCa EV DSA was developed to identify metastatic PCa and reveal dynamic disease states noninvasively. This assay may complement current imaging tools and blood-based tests for timely detection of metastatic progression that can improve care for PCa patients.
Collapse
Affiliation(s)
- Jasmine J. Wang
- Division of Medical Oncology, Department of Medicine,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los
Angeles, CA, USA
- California NanoSystems Institute, Crump Institute for
Molecular Imaging, Department of Molecular and Medical Pharmacology, University of
California, Los Angeles, Los Angeles, CA, USA
| | - Na Sun
- California NanoSystems Institute, Crump Institute for
Molecular Imaging, Department of Molecular and Medical Pharmacology, University of
California, Los Angeles, Los Angeles, CA, USA
- Key Laboratory for Nano-Bio Interface, Suzhou Institute of
Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese
Academy of Sciences, Suzhou, PR China
| | - Yi-Te Lee
- California NanoSystems Institute, Crump Institute for
Molecular Imaging, Department of Molecular and Medical Pharmacology, University of
California, Los Angeles, Los Angeles, CA, USA
| | - Minhyung Kim
- Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Los Angeles, CA, USA
| | - Tatyana Vagner
- Department of Surgery, Cedars-Sinai Medical Center, Los
Angeles, CA, USA
| | | | - Zhili Wang
- Key Laboratory for Nano-Bio Interface, Suzhou Institute of
Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese
Academy of Sciences, Suzhou, PR China
| | - Zijing Chen
- Division of Medical Oncology, Department of Medicine,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ryan Y. Zhang
- California NanoSystems Institute, Crump Institute for
Molecular Imaging, Department of Molecular and Medical Pharmacology, University of
California, Los Angeles, Los Angeles, CA, USA
| | - Junseok Lee
- California NanoSystems Institute, Crump Institute for
Molecular Imaging, Department of Molecular and Medical Pharmacology, University of
California, Los Angeles, Los Angeles, CA, USA
| | - Ceng Zhang
- California NanoSystems Institute, Crump Institute for
Molecular Imaging, Department of Molecular and Medical Pharmacology, University of
California, Los Angeles, Los Angeles, CA, USA
| | - Hubert Tang
- California NanoSystems Institute, Crump Institute for
Molecular Imaging, Department of Molecular and Medical Pharmacology, University of
California, Los Angeles, Los Angeles, CA, USA
| | - Josephine Widjaja
- California NanoSystems Institute, Crump Institute for
Molecular Imaging, Department of Molecular and Medical Pharmacology, University of
California, Los Angeles, Los Angeles, CA, USA
| | - Tiffany X. Zhang
- California NanoSystems Institute, Crump Institute for
Molecular Imaging, Department of Molecular and Medical Pharmacology, University of
California, Los Angeles, Los Angeles, CA, USA
| | - Dongping Qi
- California NanoSystems Institute, Crump Institute for
Molecular Imaging, Department of Molecular and Medical Pharmacology, University of
California, Los Angeles, Los Angeles, CA, USA
| | - Pai-Chi Teng
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los
Angeles, CA, USA
| | - Yu Jen Jan
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los
Angeles, CA, USA
| | - Kuan-Chu Hou
- California NanoSystems Institute, Crump Institute for
Molecular Imaging, Department of Molecular and Medical Pharmacology, University of
California, Los Angeles, Los Angeles, CA, USA
| | - Candace Hamann
- Division of Medical Oncology, Department of Medicine,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Howard M. Sandler
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los
Angeles, CA, USA
- Department of Radiation Oncology, Cedars-Sinai Medical
Center, Los Angeles, CA, USA
| | - Timothy J. Daskivich
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los
Angeles, CA, USA
- Division of Urology, Department of Surgery, Cedars-Sinai
Medical Center, Los Angeles, CA, USA
| | - Daniel J. Luthringer
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los
Angeles, CA, USA
- Department of Pathology and Laboratory Medicine,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Neil A. Bhowmick
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los
Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los
Angeles, CA, USA
| | - Renjun Pei
- Key Laboratory for Nano-Bio Interface, Suzhou Institute of
Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese
Academy of Sciences, Suzhou, PR China
| | - Sungyong You
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los
Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los
Angeles, CA, USA
| | - Dolores Di Vizio
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los
Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Los Angeles, CA, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los
Angeles, CA, USA
- Department of Pathology and Laboratory Medicine,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for
Molecular Imaging, Department of Molecular and Medical Pharmacology, University of
California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School
of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jie-Fu Chen
- Department of Pathology, Memorial Sloan Kettering Cancer
Center, New York, NY, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for
Molecular Imaging, Department of Molecular and Medical Pharmacology, University of
California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School
of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Edwin M. Posadas
- Division of Medical Oncology, Department of Medicine,
Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los
Angeles, CA, USA
| |
Collapse
|
45
|
Khristov V, Lin A, Freedman Z, Staub J, Shenoy G, Mrowczynski O, Rizk E, Zacharia B, Connor J. Tumor-Derived Biomarkers in Liquid Biopsy of Glioblastoma. World Neurosurg 2023; 170:182-194. [PMID: 36347463 DOI: 10.1016/j.wneu.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
There is a pressing clinical need for minimally invasive liquid biopsies to supplement imaging in the treatment of glioblastoma. Diagnostic imaging is often difficult to interpret and the medical community is divided on distinguishing among complete response, partial response, stable disease, and progressive disease. A minimally invasive liquid biopsy would supplement imaging and clinical findings and has the capacity to be helpful in several ways: 1) diagnosis, 2) selection of patients for specific treatments, 3) tracking of treatment response, and 4) prognostic value. The liquid biome is the combination of biological fluids including blood, urine, and cerebrospinal fluid that contain small amounts of tumor cells, DNA/RNA coding material, peptides, and metabolites. Within the liquid biome, 2 broad categories of biomarkers can exist: tumor-derived, which can be directly traced to the tumor, and tumor-associated, which can be traced back to the response of the body to disease. Although tumor-associated biomarkers are promising liquid biopsy candidates, recent advances in biomarker enrichment and detection have allowed concentration on a new class of biomarker: tumor-derived biomarkers. This review focuses on making the distinction between the 2 biomarker categories and highlights promising new direction.
Collapse
Affiliation(s)
- Vladimir Khristov
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA.
| | - Andrea Lin
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Zachary Freedman
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Jacob Staub
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Ganesh Shenoy
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Oliver Mrowczynski
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Elias Rizk
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - Brad Zacharia
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| | - James Connor
- Department of Neurosurgery, Penn State Hershey College of Medicne, Hershey, Pennsylvania, USA
| |
Collapse
|
46
|
Hadipour M, Fasihi Harandi M, Mirhendi H, Yousofi Darani H. Diagnosis of echinococcosis by detecting circulating cell-free DNA and miRNA. Expert Rev Mol Diagn 2023; 23:133-142. [PMID: 36756744 DOI: 10.1080/14737159.2023.2178903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
INTRODUCTION Diagnosis of echinococcosis is difficult and usually performed based on clinical findings, imaging, and serological test. However, all of them have limitations, especially in follow-up approaches. AREAS COVERED Detection of cell-free DNA (cfDNA) and micro-RNA (miRNA) is currently a hot topic for diagnosis of echinococcosis diseases. For detecting cell-free DNA in echinococcosis patient's samples such as sera, some techniques are based on next-generation sequencing (NGS), DNA-deep sequencing, some are based on PCR-based methods, and a few works related to the detection of miRNA for the diagnosis of human echinococcosis. EXPERT OPINION In the detection of cell-free DNA in echinococcosis patient' samples, NGS and DNA-deep sequencing have shown high level of sensitivity, but are not suitable for routine clinical examination as they are expensive and inaccessible in the majority of endemic areas. However, PCR-based methods have shown a sensitivity of about 20-25%. To improve the sensitivity of these tests, improving the DNA extraction method, designing appropriate primers for detecting short-length fragments of circulating DNA, using a higher volume of a serum sample, and application of more sensitive PCR methods are recommended. In the field of miRNA detection, further works are recommended.
Collapse
Affiliation(s)
- Mahboubeh Hadipour
- Department of parasitology and mycology, Faculty of medicine, Isfahan University of Medical sciences, Isfahan, Iran
| | - Majid Fasihi Harandi
- Research center for Hydatid disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Mirhendi
- Department of parasitology and mycology, Faculty of medicine, Isfahan University of Medical sciences, Isfahan, Iran
| | - Hossein Yousofi Darani
- Department of parasitology and mycology, Faculty of medicine, Isfahan University of Medical sciences, Isfahan, Iran
| |
Collapse
|
47
|
Saheera S. Multifaceted role of cardiovascular biomarkers. Indian Heart J 2023; 75:91-97. [PMID: 36736458 PMCID: PMC10123438 DOI: 10.1016/j.ihj.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Cardiovascular diseases, a global health issue, claim the lives of many every year. Lifestyle changes and genetic predisposition are the key drivers for the development of CVDs. In many of the patients, the disease is detected at the end stage making heart transplantation the only treatment option. Hence every attempt should be made to identify the risk at an early stage and initiate preventive measures to improve the quality of their life. Biomarkers are one of the critical factors that aid in the early diagnosis of CVDs. More specific and highly sensitive biomarkers have been discovered lately and have been employed for prognosis and diagnosis of CVDs. The present review briefs about the various categories of cardiovascular biomarkers with emphasis on novel biomarkers and discusses the biomarkers employed for different purposes in CVDs. The biomarkers have also helped in identifying COVID-19 patients with increased risk for developing cardiovascular complications. Being non-invasive makes biomarkers advantageous over other methods for evaluating the pathophysiological status of CVDs.
Collapse
Affiliation(s)
- Sherin Saheera
- Department of Cardiovascular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01655, USA.
| |
Collapse
|
48
|
Machado Carvalho JV, Dutoit V, Corrò C, Koessler T. Promises and Challenges of Predictive Blood Biomarkers for Locally Advanced Rectal Cancer Treated with Neoadjuvant Chemoradiotherapy. Cells 2023; 12:413. [PMID: 36766755 PMCID: PMC9913546 DOI: 10.3390/cells12030413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
The treatment of locally advanced rectal cancer (LARC) requires a multimodal approach combining neoadjuvant radiotherapy or chemoradiotherapy (CRT) and surgery. Predicting tumor response to CRT can guide clinical decision making and improve patient care while avoiding unnecessary toxicity and morbidity. Circulating biomarkers offer both the advantage to be easily accessed and followed over time. In recent years, biomarkers such as proteins, blood cells, or nucleic acids have been investigated for their predictive value in oncology. We conducted a comprehensive literature review with the aim to summarize the status of circulating biomarkers predicting response to CRT in LARC. Forty-nine publications, of which forty-seven full-text articles, one review and one systematic review, were retrieved. These studies evaluated circulating markers (CEA and CA 19-9), inflammatory biomarkers (CRP, albumin, and lymphocytes), hematologic markers (hemoglobin and thrombocytes), lipids and circulating nucleic acids (cell-free DNA [cfDNA], circulating tumor DNA [ctDNA], and microRNA [miRNA]). Post-CRT CEA levels had the most consistent association with tumor response, while cfDNA integrity index, MGMT promoter methylation, ERCC-1, miRNAs, and miRNA-related SNPs were identified as potential predictive markers. Although circulating biomarkers hold great promise, inconsistent results, low statistical power, and low specificity and sensibility prevent them from reliably predicting tumor response following CRT. Validation and standardization of methods and technologies are further required to confirm results.
Collapse
Affiliation(s)
- Joao Victor Machado Carvalho
- Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Swiss Cancer Center Léman, 1005 Lausanne, Switzerland
- Department of Oncology, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Valérie Dutoit
- Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Swiss Cancer Center Léman, 1005 Lausanne, Switzerland
| | - Claudia Corrò
- Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Swiss Cancer Center Léman, 1005 Lausanne, Switzerland
- Department of Oncology, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Thibaud Koessler
- Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Swiss Cancer Center Léman, 1005 Lausanne, Switzerland
- Department of Oncology, Geneva University Hospital, 1205 Geneva, Switzerland
| |
Collapse
|
49
|
Bryzgunova O, Bondar A, Ruzankin P, Tarasenko A, Zaripov M, Kabilov M, Laktionov P. Locus-Specific Bisulfate NGS Sequencing of GSTP1, RNF219, and KIAA1539 Genes in the Total Pool of Cell-Free and Cell-Surface-Bound DNA in Prostate Cancer: A Novel Approach for Prostate Cancer Diagnostics. Cancers (Basel) 2023; 15:cancers15020431. [PMID: 36672380 PMCID: PMC9856824 DOI: 10.3390/cancers15020431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
The locus-specific methylation of three genes (GSTP1, RNF219, and KIAA1539, also known as FAM214B) in the total pool of blood cell-free DNA, including cell-free DNA from plasma and cell-surface-bound DNA, of patients with prostate cancer and healthy donors was studied on the MiSeq platform. Our study found a higher methylation index of loci for total cell-free DNA compared with cell-free DNA. For total cell-free DNA, the methylation of GSTP1 in each of the 11 positions provided a complete separation of cancer patients from healthy donors, whereas for cell-free DNA, there were no positions in the three genes allowing for such separation. Among the prostate cancer patients, the minimum proportion of GSTP1 genes methylated in any of the 17 positions was 12.1% of the total circulated DNA fragments, and the minimum proportion of GSTP1 genes methylated in any of the 11 diagnostically specific positions was 8.4%. Total cell-free DNA was shown to be more convenient and informative as a source of methylated DNA molecules circulating in the blood than cell-free DNA.
Collapse
Affiliation(s)
- Olga Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-363-51-44; Fax: +7-383-363-51-53
| | - Anna Bondar
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Pavel Ruzankin
- Sobolev Institute of Mathematics, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Mathematics and Mechanics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anton Tarasenko
- Sobolev Institute of Mathematics, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Mathematics and Mechanics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marat Zaripov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Marsel Kabilov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Pavel Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
50
|
Cell-Free DNA as a New Biomarker of IVF Success, Independent of Any Infertility Factor, Including Endometriosis. Diagnostics (Basel) 2023; 13:diagnostics13020208. [PMID: 36673018 PMCID: PMC9858053 DOI: 10.3390/diagnostics13020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
Cell-free DNA fragments detected in blood and in other biological fluids are released from apoptotic/necrotic cells. In this study, we analyzed cfDNA levels in follicular fluid (FF) samples from patients with infertility. Samples were collected from 178 infertile women and cfDNA was extracted and quantified by qPCR, using ALU115 and ALU247 primers, and statistical correlations were performed. We found that cfDNA concentration was significantly higher in FF pools from women aged 35 and over than in women under 35 years of age (p = 0.017). We also found that q247 cfDNA levels were significantly higher in women with an associated female factor, such as endometriosis, PCOS and POF, compared with women with no specific cause of infertility (p = 0.033). The concentration of cfDNA did not vary significantly in each group of women with an associated female factor. The concentration of cfDNA was significantly higher in the FF of women that obtained embryos with a high fragmentation rate, compared to embryos with a low fragmentation rate (p = 0.007). Finally, we found that women who did not become pregnant during IVF treatments had higher q247 cfDNA levels (p = 0.043). The quantification of cfDNA could be an important biomarker of follicular micro-environment quality to predict embryo quality and the success of IVF, making them more specific and effective.
Collapse
|