1
|
Farkas SA, Qvick A, Helenius G, Lillsunde-Larsson G. Pathological variants in HPV-independent vulvar tumours. Sci Rep 2025; 15:1486. [PMID: 39789097 PMCID: PMC11718117 DOI: 10.1038/s41598-024-84688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025] Open
Abstract
Vulvar cancer is a rare gynaecological disease that can be caused by infection with human papillomavirus (HPV). The mutational frequencies and landscape for HPV-associated and HPV-independent vulvar tumor development are supposedly two distinctly different pathways and more detailed knowledge on target biological mechanisms for individualized future treatments is needed. The study included formalin-fixed paraffin-embedded (FFPE) samples from 32 cancer patients (16 HPV-negative and 16 HPV-associated), treated in Örebro, Sweden from 1988 to 2008. The Oncomine™ Comprehensive Assay v3 was used to detect variants across 161 different tumor relevant genes. Data analysis included quality assessment followed by variant analysis of DNA with the Oncomine Comprehensive v3 workflow and with a custom filter using the VarSome Clinical software. The RNA-analysis was performed with the Oncomine Comprehensive v3 workflow. Totally, 94% of DNA libraries and 81% of RNA libraries were of adequate quality for further downstream analysis. With the Oncomine™ filter chain there was an increased number of variants in the HPV-negative group (2.5 variants) compared to the HPV-associated group (1.5 variants). Using custom filter and the Varsome Clinical software; additional single nucleotide variants (SNV) were detected where the vast majority were classified as likely benign/benign. HPV-negative tumors had a larger fraction of variants of unknown significance (VUS), and likely pathogenic/pathogenic compared to the HPV-associated tumours. The top 10 frequently mutated genes in HPV-indepentent tumors were TP53, POLE, PTCH1, BRCA2, CREBBP, NOTCH2, ARID1A, CDKN2A, MSH2, and NOTCH1. Three fusion genes were detected; TBL1XR1(1)::PIK3CA(2) (n = 2) and NF1(5)::PSMD11(2) (n = 1). Copy number variations (CNV) were more common in HPV-associated tumors (n = 13/16, 81%) compared to HPV-negative tumors (n = 9/14, 64%). The most frequent CNV was found in the cMYC gene, followed by CDK2 (n = 5) and CDK4 (n = 4). The main outcome of this study show that vulvar cancer harbour genetic variations of different types and specifically, HPV-independent tumours are molecularly very heterogeneous and harboured more SNVs while HPV-associated tumors more frequently presented with gene amplifications. The PI3K/AKT/mTOR1 pathway was affected in both the groups as well as the cell cycle regulation pathway. Similarly, the DNA repair gene POLE was found mutated in both vulvar cancer groups.
Collapse
Affiliation(s)
- Sanja A Farkas
- Department of Laboratory Medicine, Clinical Pathology and Genetics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Alvida Qvick
- Clinical Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Gabriella Lillsunde-Larsson
- Department of Laboratory Medicine, Clinical Pathology and Genetics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- School of Health Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
2
|
Chen XJ, Guo CH, Yang Y, Wang ZC, Liang YY, Cai YQ, Cui XF, Fan LS, Wang W. HPV16 integration regulates ferroptosis resistance via the c-Myc/miR-142-5p/HOXA5/SLC7A11 axis during cervical carcinogenesis. Cell Biosci 2024; 14:129. [PMID: 39420439 PMCID: PMC11484211 DOI: 10.1186/s13578-024-01309-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Ferroptosis, a newly identified form of regulated cell death triggered by small molecules or specific conditions, plays a significant role in virus-associated carcinogenesis. However, whether tumours arising after high-risk HPV integration are associated with ferroptosis is unexplored and remains enigmatic. METHODS High-risk HPV16 integration was analysed by high-throughput viral integration detection (HIVID). Ferroptosis was induced by erastin, and the levels of ferroptosis were assessed through the measurement of lipid-reactive oxygen species (ROS), malondialdehyde (MDA), intracellular Fe2+ level and transmission electron microscopy (TEM). Additionally, clinical cervical specimens and an in vivo xenograft model were utilized for the study. RESULTS Expression of HPV16 integration hot spot c-Myc negatively correlates with ferroptosis during the progression of cervical squamous cell carcinoma (CSCC). Further investigation revealed that the upregulated oncogene miR-142-5p in HPV16-integrated CSCC cells served as a critical downstream effector of c-Myc in its target network. Inhibiting miR-142-5p significantly decreased the ferroptosis-suppressing effect mediated by c-Myc. Through a combination of computational and experimental approaches, HOXA5 was identified as a key downstream target gene of miR-142-5p. Overexpression of miR-142-5p suppressed HOXA5 expression, leading to decreased accumulation of intracellular Fe2+ and lipid peroxides (ROS and MDA). HOXA5 increased the sensitivity of CSCC cells to erastin-induced ferroptosis via transcriptional downregulation of SLC7A11, a negative regulator of ferroptosis. Importantly, c-Myc knockdown increased the anti-tumour activity of erastin by promoting ferroptosis both in vitro and in vivo. CONCLUSIONS Collectively, these data indicate that HPV16 integration hot spot c-Myc plays a novel and indispensable role in ferroptosis resistance by regulating the miR-142-5p/HOXA5/SLC7A11 signalling axis and suggest a potential therapeutic approach for HPV16 integration-related CSCC.
Collapse
Affiliation(s)
- Xiao-Jing Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
- Department of Gynecology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, People's Republic of China
| | - Chu-Hong Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Yang Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
- Department of Obstetrics and Gynecology, Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, 511699, People's Republic of China
| | - Zi-Ci Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Yun-Yi Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Yong-Qi Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Xiao-Feng Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China
| | - Liang-Sheng Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China.
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Road, Yuexiu District, Guangzhou, 510120, People's Republic of China.
- Department of Gynecology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204, People's Republic of China.
| |
Collapse
|
3
|
Catalán-Castorena O, Garibay-Cerdenares OL, Illades-Aguiar B, Rodríguez-Ruiz HA, Zubillaga-Guerrero MI, Leyva-Vázquez MA, Encarnación-Guevara S, Alarcón-Romero LDC. The role of HR-HPV integration in the progression of premalignant lesions into different cancer types. Heliyon 2024; 10:e34999. [PMID: 39170128 PMCID: PMC11336306 DOI: 10.1016/j.heliyon.2024.e34999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/23/2024] Open
Abstract
High-risk human papillomavirus (HR-HPV) is associated with the development of different types of cancer, such as cervical, head and neck (including oral, laryngeal, and oropharyngeal), vulvar, vaginal, penile, and anal cancers. The progression of premalignant lesions to cancer depends on factors associated with the host cell and the different epithelia infected by HPV, such as basal cells of the flat epithelium and the cells of the squamocolumnar transformation zone (STZ) found in the uterine cervix and the anal canal, which is rich in heparan sulfate proteoglycans and integrin-like receptors. On the other hand, factors associated with the viral genotype, infection with multiple viruses, viral load, viral persistence, and type of integration determine the viral breakage pattern and the sites at which the virus integrates into the host cell genome (introns, exons, intergenic regions), inducing the loss of function of tumor suppressor genes and increasing oncogene expression. This review describes the role of viral integration and the molecular mechanisms induced by HR-HPV in different types of tissues. The purpose of this review is to identify the common factors associated with the role of integration events in the progression of premalignant lesions in different types of cancer.
Collapse
Affiliation(s)
- Oscar Catalán-Castorena
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Olga Lilia Garibay-Cerdenares
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
- CONAHCyT-Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Berenice Illades-Aguiar
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Hugo Alberto Rodríguez-Ruiz
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Ma. Isabel Zubillaga-Guerrero
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | - Marco Antonio Leyva-Vázquez
- Molecular Biomedicine Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| | | | - Luz del Carmen Alarcón-Romero
- Research in Cytopathology and Histochemical Laboratory, Faculty of Chemical and Biological Sciences, Autonomous University of Guerrero, Chilpancingo, Guerrero, 39089, Mexico
| |
Collapse
|
4
|
Zhao Q, Yang S, Hao S, Chen Z, Tang L, Wu Z, Wu J, Xu M, Ma Z, Zhou L, Xu J, Qin Q. Identification of transcriptionally-active human papillomavirus integrants through nanopore sequencing reveals viable targets for gene therapy against cervical cancer. J Med Virol 2024; 96:e29769. [PMID: 38932482 DOI: 10.1002/jmv.29769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
Integration of the human papillomavirus (HPV) genome into the cellular genome is a key event that leads to constitutive expression of viral oncoprotein E6/E7 and drives the progression of cervical cancer. However, HPV integration patterns differ on a case-by-case basis among related malignancies. Next-generation sequencing technologies still face challenges for interrogating HPV integration sites. In this study, utilizing Nanopore long-read sequencing, we identified 452 and 108 potential integration sites from the cervical cancer cell lines (CaSki and HeLa) and five tissue samples, respectively. Based on long Nanopore chimeric reads, we were able to analyze the methylation status of the HPV long control region (LCR), which controls oncogene E6/E7 expression, and to identify transcriptionally-active integrants among the numerous integrants. As a proof of concept, we identified an active HPV integrant in between RUNX2 and CLIC5 on chromosome 6 in the CaSki cell line, which was supported by ATAC-seq, H3K27Ac ChIP-seq, and RNA-seq analysis. Knockout of the active HPV integrant, by the CRISPR/Cas9 system, dramatically crippled cell proliferation and induced cell senescence. In conclusion, identifying transcriptionally-active HPV integrants with Nanopore sequencing can provide viable targets for gene therapy against HPV-associated cancers.
Collapse
Affiliation(s)
- Qianqian Zhao
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
- Computational Systems Biology Laboratory, Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | - Shuaibing Yang
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Shijia Hao
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Zejia Chen
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Lihua Tang
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Zhaoting Wu
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jiaxin Wu
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Mingqian Xu
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
| | - Zebiao Ma
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Li Zhou
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Jianzhen Xu
- Computational Systems Biology Laboratory, Department of Bioinformatics, Shantou University Medical College, Shantou, China
| | - Qingsong Qin
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, China
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, China
- International Science and Technology Collaboration Center for Emerging Infectious Diseases, Shantou University Medical College, Shantou, China
| |
Collapse
|
5
|
Mutetwa T, Liu Y, Silvera R, Evans M, Yurich M, Tripodi J, Leonard I, Houldsworth J, Gümüş Z, Bowcock AM, Sigel K, Gaisa M, Polak P. Host Nuclear Genome Copy Number Variations Identify High-Risk Anal Precancers in People Living With HIV. J Acquir Immune Defic Syndr 2024; 96:190-195. [PMID: 38630441 PMCID: PMC11108747 DOI: 10.1097/qai.0000000000003409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/07/2023] [Indexed: 05/22/2024]
Abstract
BACKGROUND People living with HIV (PLWH) have substantially increased incidence of anal precancer and cancer. There are very little data regarding genomic disturbances in anal precancers among PLWH. In this study, specific chromosomal variants were identified in anal squamous intraepithelial lesions. METHODS Overall, 63 anal biopsy specimens (27 low-grade intraepithelial lesions [LSIL] and 36 high-grade intraepithelial lesions [HSIL]) were collected from PLWH obtained as part of anal cancer screening in our NYC-based health system. Data on patient demographics, anal cytological, and high-risk human papillomavirus (HR-HPV) diagnoses were collected. Specimens were tested for a panel of chromosomal alterations associated with HPV-induced oncogenesis using fluorescence in situ hybridization, and analyses compared the associations of these alterations with clinical characteristics. RESULTS Gains of 3q26, 5p15, 20q13, and cen7 were detected in 42%, 31%, 31%, and 19% of HSIL compared with 7%, 0%, 4%, and 0% of LSIL, respectively. If at least 1 abnormality was observed, 89% had a 3q26 gain. In lesions with 5p15 gains, 20q13 gains co-occurred in 91% of cases, while cen7 gain only co-occurred with the other 3 alterations. The sensitivity and specificity of any alteration to predict HSIL were 47% (95% CI: 30%-65%) and 93% (95% CI: 76%-99%), respectively. CONCLUSIONS Genomic alterations seen in HPV-associated cancers may help distinguish anal LSIL from HSIL. 3q26 amplification may be an early component of anal carcinogenesis, preceding 5p16, 20q13, and/or chr7. IMPACT Insights into potential genomic biomarkers for discriminating high-risk anal precancers are shared.
Collapse
Affiliation(s)
- Tinaye Mutetwa
- Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuxin Liu
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Richard Silvera
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michelle Evans
- Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Yurich
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph Tripodi
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Issa Leonard
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jane Houldsworth
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zeynep Gümüş
- Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anne M. Bowcock
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keith Sigel
- Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Gaisa
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paz Polak
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Yu L, Majerciak V, Lobanov A, Mirza S, Band V, Liu H, Cam M, Hughes SH, Lowy DR, Zheng ZM. HPV oncogenes expressed from only one of multiple integrated HPV DNA copies drive clonal cell expansion in cervical cancer. mBio 2024; 15:e0072924. [PMID: 38624210 PMCID: PMC11077993 DOI: 10.1128/mbio.00729-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
The integration of HPV DNA into human chromosomes plays a pivotal role in the onset of papillomavirus-related cancers. HPV DNA integration often occurs by linearizing the viral DNA in the E1/E2 region, resulting in the loss of a critical viral early polyadenylation signal (PAS), which is essential for the polyadenylation of the E6E7 bicistronic transcripts and for the expression of the viral E6 and E7 oncogenes. Here, we provide compelling evidence that, despite the presence of numerous integrated viral DNA copies, virus-host fusion transcripts originate from only a single integrated HPV DNA in HPV16 and HPV18 cervical cancers and cervical cancer-derived cell lines. The host genomic elements neighboring the integrated HPV DNA are critical for the efficient expression of the viral oncogenes that leads to clonal cell expansion. The fusion RNAs that are produced use a host RNA polyadenylation signal downstream of the integration site, and almost all involve splicing to host sequences. In cell culture, siRNAs specifically targeting the host portion of the virus-host fusion transcripts effectively silenced viral E6 and E7 expression. This, in turn, inhibited cell growth and promoted cell senescence in HPV16+ CaSki and HPV18+ HeLa cells. Showing that HPV E6 and E7 expression from a single integration site is instrumental in clonal cell expansion sheds new light on the mechanisms of HPV-induced carcinogenesis and could be used for the development of precision medicine tailored to combat HPV-related malignancies. IMPORTANCE Persistent oncogenic HPV infections lead to viral DNA integration into the human genome and the development of cervical, anogenital, and oropharyngeal cancers. The expression of the viral E6 and E7 oncogenes plays a key role in cell transformation and tumorigenesis. However, how E6 and E7 could be expressed from the integrated viral DNA which often lacks a viral polyadenylation signal in the cancer cells remains unknown. By analyzing the integrated HPV DNA sites and expressed HPV RNAs in cervical cancer tissues and cell lines, we show that HPV oncogenes are expressed from only one of multiple chromosomal HPV DNA integrated copies. A host polyadenylation signal downstream of the integrated viral DNA is used for polyadenylation and stabilization of the virus-host chimeric RNAs, making the oncogenic transcripts targetable by siRNAs. This observation provides further understanding of the tumorigenic mechanism of HPV integration and suggests possible therapeutic strategies for the development of precision medicine for HPV cancers.
Collapse
Affiliation(s)
- Lulu Yu
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource (CCBR), National Cancer Institute, Bethesda, Maryland, USA
| | - Sameer Mirza
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Haibin Liu
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource (CCBR), National Cancer Institute, Bethesda, Maryland, USA
| | - Stephen H. Hughes
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Douglas R. Lowy
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
7
|
Yu J, Kim RD. Progress in the treatment of anal cancer: an overview of the latest investigational drugs. Expert Opin Investig Drugs 2024; 33:145-157. [PMID: 38275174 DOI: 10.1080/13543784.2024.2311191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Anal cancer, a rare malignancy accounting for 2.5-3.0% of gastrointestinal cancers, primarily manifests as squamous cell carcinoma associated with HPV. Recent years have witnessed significant advancements in managing squamous cell carcinoma of the anus (SCCA), particularly with the introduction of immune checkpoint inhibitors (ICIs) and randomized data on front-line chemotherapy. AREAS COVERED This review discusses the current standard treatments for both early and advanced SCCA, based on published data. The authors then describe the new approaches, focusing on ICI combinations, targeted agents, T-cell adoptive therapy, and HPV-therapeutic vaccines. EXPERT OPINION The current standard treatment for SCCA includes front-line carboplatin and paclitaxel, with pembrolizumab and nivolumab as later-line options. While modified DCF has shown promise in single-arm studies, its role as a front-line therapy requires confirmation through randomized data. We eagerly anticipate the results of phase 3 trials investigating the front-line chemo-immunotherapy for metastatic SCCA and ICI consolidation following chemoradiation for early-stage SCCA. Novel approaches like T-cell adoptive therapy, HPV-therapeutic vaccines, and bifunctional antibodies combined with HPV vaccines are in early-stage trials for HPV-mediated tumors, including HPV-positive SCCA. These approaches targeting HPV epitopes may eventually gain tumor-agnostic approval, although their role in SCCA may take time to establish.
Collapse
Affiliation(s)
- James Yu
- Division of Hematology and Medical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, U.S.A
| | - Richard D Kim
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute University of South Florida College of Medicine, Tampa, FL, U.S.A
| |
Collapse
|
8
|
Hamza A, Masliah-Planchon J, Neuzillet C, Lefèvre JH, Svrcek M, Vacher S, Bourneix C, Delaye M, Goéré D, Dartigues P, Samalin E, Hilmi M, Lazartigues J, Girard E, Emile JF, Rigault E, Dangles-Marie V, Rioux-Leclercq N, de la Fouchardière C, Tougeron D, Casadei-Gardini A, Mariani P, Peschaud F, Cacheux W, Lièvre A, Bièche I. Pathogenic alterations in PIK3CA and KMT2C are frequent and independent prognostic factors in anal squamous cell carcinoma treated with salvage abdominoperineal resection. Int J Cancer 2024; 154:504-515. [PMID: 37908048 DOI: 10.1002/ijc.34781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/26/2023] [Accepted: 09/21/2023] [Indexed: 11/02/2023]
Abstract
The management of anal squamous cell carcinoma (ASCC) has yet to experience the transformative impact of precision medicine. Conducting genomic analyses may uncover novel prognostic biomarkers and offer potential directions for the development of targeted therapies. To that end, we assessed the prognostic and theragnostic implications of pathogenic variants identified in 571 cancer-related genes from surgical samples collected from a homogeneous, multicentric French cohort of 158 ASCC patients who underwent abdominoperineal resection treatment. Alterations in PI3K/AKT/mTOR, chromatin remodeling, and Notch pathways were frequent in HPV-positive tumors, while HPV-negative tumors often harbored variants in cell cycle regulation and genome integrity maintenance genes (e.g., frequent TP53 and TERT promoter mutations). In patients with HPV-positive tumors, KMT2C and PIK3CA exon 9/20 pathogenic variants were associated with worse overall survival in multivariate analysis (Hazard ratio (HR)KMT2C = 2.54, 95%CI = [1.25,5.17], P value = .010; HRPIK3CA = 2.43, 95%CI = [1.3,4.56], P value = .006). Alterations with theragnostic value in another cancer type was detected in 43% of patients. These results suggest that PIK3CA and KMT2C pathogenic variants are independent prognostic factors in patients with ASCC with HPV-positive tumors treated by abdominoperineal resection. And, importantly, the high prevalence of alterations bearing potential theragnostic value strongly supports the use of genomic profiling to allow patient enrollment in precision medicine clinical trials.
Collapse
Affiliation(s)
- Abderaouf Hamza
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | | | - Cindy Neuzillet
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Jérémie H Lefèvre
- Department of Digestive Surgery, Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Saint Antoine, Paris, France
| | - Magali Svrcek
- Department of Pathology, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, France
| | - Sophie Vacher
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Christine Bourneix
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
| | - Matthieu Delaye
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Diane Goéré
- Department of Digestive Surgery, Gustave Roussy Institute, Villejuif, France
| | - Peggy Dartigues
- Department of Pathology, Gustave Roussy Institute, Villejuif, France
| | - Emmanuelle Samalin
- Department of Medical Oncology, Institut du Cancer de Montpellier, Montpellier, France
| | - Marc Hilmi
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Julien Lazartigues
- Department of Medical Oncology, Institut Curie, PSL Research University, Saint-Cloud, France
| | - Elodie Girard
- INSERM U900 Research Unit, Institut Curie, PSL Research University, Paris, France
| | - Jean-François Emile
- Department of Pathology, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, UVSQ, BECCOH, Hôpital Ambroise-Paré, Boulogne-Billancourt, France
| | - Eugénie Rigault
- Department of Gastroenterology, Rennes University Hospital, Rennes, France
| | - Virginie Dangles-Marie
- Laboratory of preclinical investigation, Translational Research Department, Institut Curie, PSL Research University, Paris, France
- Faculty of Pharmaceutical and Biological Sciences, Paris Cité University, Paris, France
| | | | | | - David Tougeron
- Department of Gastroenterology and Hepatology, Poitiers University Hospital, Poitiers, France
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Pascale Mariani
- Department of Surgery, Institut Curie, PSL Research University, Paris, France
| | - Frédérique Peschaud
- Department of Digestive and Oncologic Surgery, Ambroise Paré Hospital, Versailles Saint-Quentin University, Paris Saclay University, Boulogne-Billancourt, France
| | - Wulfran Cacheux
- Department of Medical Oncology, Hôpital Privé Pays de Savoie, Annemasse, France
| | - Astrid Lièvre
- Department of Gastroenterology, Rennes University Hospital, Rennes, France
- Rennes 1 University, Inserm U1242, COSS (Chemistry Oncogenesis Stress Signaling), Rennes, France
| | - Ivan Bièche
- Department of Genetics, Institut Curie, PSL Research University, Paris, France
- Faculty of Pharmaceutical and Biological Sciences, Paris Cité University, INSERM U1016, Paris, France
| |
Collapse
|
9
|
da Silva LL, Teles AM, Santos JMO, Souza de Andrade M, Medeiros R, Faustino-Rocha AI, Oliveira PA, dos Santos APA, Ferreira Lopes F, Braz G, Brito HO, da Costa RMG. Malignancy Associated with Low-Risk HPV6 and HPV11: A Systematic Review and Implications for Cancer Prevention. Cancers (Basel) 2023; 15:4068. [PMID: 37627099 PMCID: PMC10452364 DOI: 10.3390/cancers15164068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
High-risk human papillomavirus (HPV) is etiologically related to cervical cancer, other anogenital cancers and oropharyngeal carcinomas. Low-risk HPV, especially HPV6 and HPV11, cause genital warts and laryngeal papillomas. However, the accumulating data suggests that HPV6 and HPV11 may cause malignant lesions at non-cervical anatomic sites. This review aims to estimate the proportions of single and dual HPV6/11 infections in multiple cancers reported in the last 10 years in the Cochrane, Embasa and PubMed databases. Secondly, the genomes of HPV6/11 were compared with the most common high-risk genotype, HPV16, to determine the similarities and differences. A total of 11 articles were selected, including between one and 334 HPV+ cancer patients. The frequencies of single or dual HPV6/11 infections ranged between 0-5.5% for penile and 0-87.5% for laryngeal cancers and were null for vulvar, vaginal and oral cancers. The genomic similarities between HPV6/11 and HPV16 mainly involved the E7 gene, indicating a limited ability to block cell differentiation. The presence of single or dual HPV6/11 infections in variable proportions of penile and laryngeal cancers support the vaccination strategies that cover these genotypes, not only for preventing genital warts but also for cancer prevention. Other risk factors and co-carcinogens are likely to participate in epithelial carcinogenesis associated with low-risk HPV.
Collapse
Affiliation(s)
- Leandro Lima da Silva
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil (A.P.A.d.S.); (H.O.B.)
| | - Amanda Mara Teles
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil (A.P.A.d.S.); (H.O.B.)
- Post-Graduate Program in Animal Health, State University of Maranhão, São Luís 65099-110, MA, Brazil
| | - Joana M. O. Santos
- Molecular Oncology and Viral Pathology Group, Portuguese Institute of Oncology of Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Institute of Oncology of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Marcelo Souza de Andrade
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil (A.P.A.d.S.); (H.O.B.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Portuguese Institute of Oncology of Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Institute of Oncology of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
| | - Ana I. Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.I.F.-R.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.I.F.-R.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Ana Paula Azevedo dos Santos
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil (A.P.A.d.S.); (H.O.B.)
- Post-Graduate Program in Health Sciences, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil
| | - Fernanda Ferreira Lopes
- Post-Graduate Program in Odontology, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil;
| | - Geraldo Braz
- Post-Graduate Program in Computing Sciences, Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil;
| | - Haissa O. Brito
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil (A.P.A.d.S.); (H.O.B.)
| | - Rui M. Gil da Costa
- Post-Graduate Program in Adult Health (PPGSAD), Federal University of Maranhão (UFMA), São Luís 65080-805, MA, Brazil (A.P.A.d.S.); (H.O.B.)
- Molecular Oncology and Viral Pathology Group, Portuguese Institute of Oncology of Porto Research Center (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Institute of Oncology of Porto (IPO-Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal; (A.I.F.-R.)
- Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Laboratory for Process Engineering, Environment, Biotechnology and Energy (LEPABE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| |
Collapse
|
10
|
Debernardi A, Meurisse A, Prétet JL, Guenat D, Monnien F, Spehner L, Vienot A, Roncarati P, André T, Abramowitz L, Molimard C, Mougin C, Herfs M, Kim S, Borg C. Prognostic role of HPV integration status and molecular profile in advanced anal carcinoma: An ancillary study to the epitopes-HPV02 trial. Front Oncol 2022; 12:941676. [PMID: 36313663 PMCID: PMC9614213 DOI: 10.3389/fonc.2022.941676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/20/2022] [Indexed: 02/25/2025] Open
Abstract
Squamous Cell Carcinoma of the Anal canal (SCCA) is a rare disease associated with a Human Papillomavirus (HPV) infection in most cases, predominantly the HPV16 genotype. About 15% of SCCA are diagnosed in metastatic stage and some will relapse after initial chemoradiotherapy (CRT). Treatment of patients by Docetaxel, Cisplatin and 5-fluorouracil (DCF) has been recently shown to improve their complete remission and progression-free survival. The aim of this retrospective study was to explore the impact of HPV infection, HPV DNA integration, TERT promoter mutational status and somatic mutations of oncogenes on both progression-free (PFS) and overall survivals (OS) of patients treated by DCF. Samples obtained from 49 patients included in the Epitopes-HPV02 clinical trial, diagnosed with metastatic or non-resectable local recurrent SCCA treated by DCF, were used for analyses. Median PFS and OS were not associated with HPV status. Patients with episomal HPV had an improved PFS compared with SCCA patients with integrated HPV genome (p=0.07). TERT promoter mutations were rarely observed and did not specifically distribute in a subset of SCCA and did not impact DCF efficacy. Among the 42 genes investigated, few gene alterations were observed, and were in majority amplifications (68.4%), but none were significantly correlated to PFS. As no biomarker is significantly associated with patients' survival, it prompts us to include every patient failing CRT or with metastatic disease in DCF strategy.
Collapse
Affiliation(s)
- Alice Debernardi
- EA3181, University of Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon, France
| | - Aurélia Meurisse
- Methodology and Quality of Life in Oncology Unit, University Hospital of Besançon, Besançon, France
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, Besançon, France
| | - Jean-Luc Prétet
- EA3181, University of Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon, France
- Papillomavirus National Reference Center, University Hospital, Besançon, France
| | - David Guenat
- EA3181, University of Bourgogne Franche-Comté, LabEx LipSTIC ANR-11-LABX-0021, Besançon, France
- Molecular Biology and Microbiology Department, Anamed SA Laboratory, Lausanne, Switzerland
| | - Franck Monnien
- Department of Pathology, University Hospital of Besançon, Besançon, France
| | - Laurie Spehner
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, Besançon, France
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Angélique Vienot
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, Besançon, France
- Department of Medical Oncology, University Hospital of Besançon, Besançon, France
| | - Patrick Roncarati
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Thierry André
- Department of Medical Oncology, University Hospital Saint Antoine, Paris, France
| | - Laurent Abramowitz
- Division of Gastroenterology and Hepatology and Proctology, University Hospital Bichat, Paris, France
- Ramsay GDS, Blomet Clinic, Paris, France
| | - Chloé Molimard
- Department of Anatomopathology, University Hospital of Besançon, Besançon, France
| | - Christiane Mougin
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, Besançon, France
- Papillomavirus National Reference Center, University Hospital, Besançon, France
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Stefano Kim
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, Besançon, France
- Clinical investigation center, CIC-1403 University Hospital of Besançon, Besançon, France
- Department of Medical Oncology, Sanatorio Allende, Cordoba, Argentina
| | - Christophe Borg
- INSERM, EFS BFC, UMR1098 RIGHT, University of Bourgogne Franche-Comté, Besançon, France
- Molecular Biology and Microbiology Department, Anamed SA Laboratory, Lausanne, Switzerland
- Clinical investigation center, CIC-1403 University Hospital of Besançon, Besançon, France
| |
Collapse
|
11
|
Li CL, Yeh SH, Chen PJ. Circulating Virus–Host Chimera DNAs in the Clinical Monitoring of Virus-Related Cancers. Cancers (Basel) 2022; 14:cancers14102531. [PMID: 35626135 PMCID: PMC9139492 DOI: 10.3390/cancers14102531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cell-free tumor DNA (ctDNA), the DNA released into circulation from tumors, is a promising tumor marker with versatile applications. The associations of the amount, somatic mutation frequency, and epigenetic modifications of ctDNA with the tumor burden, tumor behavior, and prognosis have been widely investigated in different types of tumors. However, there are still some challenging issues to be resolved before ctDNA can complement or even replace current serum tumor markers. We propose employing exogenous viral DNA integration that produces unique virus–host chimera DNA (vh-DNA) at junction sites. Cell-free vh-DNA may become a new biomarker because it overcomes background interference detection problems, takes advantage of virus tropism to localize the tumor, and acts as a universal marker for monitoring clonal expansion or tumor loads in tumors related to oncogenic viruses. Abstract The idea of using tumor-specific cell-free DNA (ctDNA) as a tumor biomarker has been widely tested and validated in various types of human cancers and different clinical settings. ctDNA can reflect the presence or size of tumors in a real-time manner and can enable longitudinal monitoring with minimal invasiveness, allowing it to be applied in treatment response assessment and recurrence monitoring for cancer therapies. However, tumor detection by ctDNA remains a great challenge due to the difficulty in enriching ctDNA from a large amount of homologous non-tumor cell-free DNA (cfDNA). Only ctDNA with nonhuman sequences (or rearrangements) can be selected from the background of cfDNA from nontumor DNAs. This is possible for several virus-related cancers, such as hepatitis B virus (HBV)-related HCC or human papillomavirus (HPV)-related cervical or head and neck cancers, which frequently harbor randomly integrated viral DNA. The junction fragments of the integrations, namely virus–host chimera DNA (vh-DNA), can represent the signatures of individual tumors and are released into the blood. Such ctDNA can be enriched by capture with virus-specific probes and therefore exploited as a circulating biomarker to track virus-related cancers in clinical settings. Here, we review virus integrations in virus-related cancers to evaluate the feasibility of vh-DNA as a cell-free tumor marker and update studies on the development of detection and applications. vh-DNA may be a solution to the development of specific markers to manage virus-related cancers in the future.
Collapse
Affiliation(s)
- Chiao-Ling Li
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - Shiou-Hwei Yeh
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
- Center for Genomic Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Correspondence: (S.-H.Y.); (P.-J.C.)
| | - Pei-Jer Chen
- Center for Genomic Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Correspondence: (S.-H.Y.); (P.-J.C.)
| |
Collapse
|
12
|
Powell SF, Vu L, Spanos WC, Pyeon D. The Key Differences between Human Papillomavirus-Positive and -Negative Head and Neck Cancers: Biological and Clinical Implications. Cancers (Basel) 2021; 13:5206. [PMID: 34680354 PMCID: PMC8533896 DOI: 10.3390/cancers13205206] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/17/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a unique malignancy associated with two distinct risk factors: exposure to typical carcinogens and infection of human papillomavirus (HPV). HPV encodes the potent oncoproteins E6 and E7, which bypass many important oncogenic processes and result in cancer development. In contrast, HPV-negative HNSCC is developed through multiple mutations in diverse oncogenic driver genes. While the risk factors associated with HPV-positive and HPV-negative HNSCCs are discrete, HNSCC patients still show highly complex molecular signatures, immune infiltrations, and treatment responses even within the same anatomical subtypes. Here, we summarize the current understanding of biological mechanisms, treatment approaches, and clinical outcomes in comparison between HPV-positive and -negative HNSCCs.
Collapse
Affiliation(s)
- Steven F. Powell
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD 57104, USA;
| | - Lexi Vu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
| | - William C. Spanos
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, SD 57104, USA;
| | - Dohun Pyeon
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
| |
Collapse
|