1
|
Dvorska D, Mazurakova A, Lackova L, Sebova D, Kajo K, Samec M, Brany D, Svajdlenka E, Treml J, Mersakova S, Strnadel J, Adamkov M, Lasabova Z, Biringer K, Mojzis J, Büsselberg D, Smejkal K, Kello M, Kubatka P. Aronia melanocarpa L. fruit peels show anti-cancer effects in preclinical models of breast carcinoma: The perspectives in the chemoprevention and therapy modulation. Front Oncol 2024; 14:1463656. [PMID: 39435289 PMCID: PMC11491292 DOI: 10.3389/fonc.2024.1463656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/17/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Within oncology research, there is a high effort for new approaches to prevent and treat cancer as a life-threatening disease. Specific plant species that adapt to harsh conditions may possess unique properties that may be utilized in the management of cancer. Hypothesis Chokeberry fruit is rich in secondary metabolites with anti-cancer activities potentially useful in cancer prevention and treatment. Aims of the study and Methods Based on mentioned hypothesis, the main goal of our study was to evaluate the antitumor effects of dietary administered Aronia melanocarpa L. fruit peels (in two concentrations of 0.3 and 3% [w/w]) in the therapeutic syngeneic 4T1 mouse adenocarcinoma model, the chemopreventive model of chemically induced mammary carcinogenesis in rats, a cell antioxidant assay, and robust in vitro analyses using MCF-7 and MDA-MB-231 cancer cells. Results The dominant metabolites in the A. melanocarpa fruit peel extract tested were phenolic derivatives classified as anthocyanins and procyanidins. In a therapeutic model, aronia significantly reduced the volume of 4T1 tumors at both higher and lower doses. In the same tumors, we noted a significant dose-dependent decrease in the mitotic activity index compared to the control. In the chemopreventive model, the expression of Bax was significantly increased by aronia at both doses. Additionally, aronia decreased Bcl-2 and VEGF levels, increasing the Bax/Bcl-2 ratio compared to the control group. The cytoplasmic expression of caspase-3 was significantly enhanced when aronia was administered at a higher dosage, in contrast to both the control group and the aronia group treated with a lower dosage. Furthermore, the higher dosage of aronia exhibited a significant reduction in the expression of the tumor stem cell marker CD133 compared to the control group. In addition, the examination of aronia`s epigenetic impact on tumor tissue through in vivo analyses revealed significant alterations in histone chemical modifications, specifically H3K4m3 and H3K9m3, miRNAs expression (miR155, miR210, and miR34a) and methylation status of tumor suppressor genes (PTEN and TIMP3). In vitro studies utilizing a methanolic extract of A.melanocarpa demonstrated significant anti-cancer properties in the MCF-7 and MDA-MB-231 cell lines. Various analyses, including Resazurin, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential, were conducted in this regard. Additionally, the aronia extract enhanced the responsiveness to epirubicin in both cancer cell lines. Conclusion This study is the first to analyze the antitumor effect of A. melanocarpa in selected models of experimental breast carcinoma in vivo and in vitro. The utilization of the antitumor effects of aronia in clinical practice is still minimal and requires precise and long-term clinical evaluations. Individualized cancer-type profiling and patient stratification are crucial for effectively implementing plant nutraceuticals within targeted anti-cancer strategies in clinical oncology.
Collapse
Affiliation(s)
- Dana Dvorska
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Alena Mazurakova
- Department of Anatomy, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Lenka Lackova
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dominika Sebova
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, Bratislava, Slovakia
| | - Marek Samec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Dusan Brany
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Emil Svajdlenka
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Jakub Treml
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Sandra Mersakova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Strnadel
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Zora Lasabova
- Department of Molecular Biology and Genomics, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Kamil Biringer
- Clinic of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine in Qatar, Qatar Foundation, Doha, Qatar
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, Košice, Slovakia
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
2
|
Speciale A, Molonia MS, Muscarà C, Cristani M, Salamone FL, Saija A, Cimino F. An overview on the cellular mechanisms of anthocyanins in maintaining intestinal integrity and function. Fitoterapia 2024; 175:105953. [PMID: 38588905 DOI: 10.1016/j.fitote.2024.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
Structural and functional changes of the intestinal barrier, as a consequence of a number of (epi)genetic and environmental causes, have a main role in penetrations of pathogens and toxic agents, and lead to the development of inflammation-related pathological conditions, not only at the level of the GI tract but also in other extra-digestive tissues and organs. Anthocyanins (ACNs), a subclass of polyphenols belonging to the flavonoid group, are well known for their health-promoting properties and are widely distributed in the human diet. There is large evidence about the correlation between the human intake of ACN-rich products and a reduction of intestinal inflammation and dysfunction. Our review describes the more recent advances in the knowledge of cellular and molecular mechanisms through which ACNs can modulate the main mechanisms involved in intestinal dysfunction and inflammation, in particular the inhibition of the NF-κB, JNK, MAPK, STAT3, and TLR4 proinflammatory pathways, the upregulation of the Nrf2 transcription factor and the expression of tight junction proteins and mucins.
Collapse
Affiliation(s)
- Antonio Speciale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Maria Sofia Molonia
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy; "Prof. Antonio Imbesi" Foundation, University of Messina, Messina 98100, Italy.
| | - Claudia Muscarà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Federica Lina Salamone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Antonella Saija
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| | - Francesco Cimino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno D'Alcontres 31, Messina 98166, Italy.
| |
Collapse
|
3
|
Wang G, Su H, Guo Z, Li H, Jiang Z, Cao Y, Li C. Rubus Occidentalis and its bioactive compounds against cancer: From molecular mechanisms to translational advances. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155029. [PMID: 38417241 DOI: 10.1016/j.phymed.2023.155029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/05/2023] [Accepted: 08/15/2023] [Indexed: 03/01/2024]
Abstract
BACKGROUND Cancer ranks as the second leading cause of death globally, imposing a significant public health burden. The rise in cancer resistance to current therapeutic agents underscores the potential role of phytotherapy. Black raspberry (BRB, Rubus Occidentalis) is a fruit rich in anthocyanins, ellagic acid, and ellagitannins. Accumulating evidence suggests that BRB exhibits promising anticancer effects, positioning it as a viable candidate for phytotherapy. PURPOSE This article aims to review the existing research on BRB regarding its role in cancer prevention and treatment. It further analyzes the effective components of BRB, their metabolic pathways, and the potential mechanisms underlying the fruit's anticancer effects. METHODS Ovid MEDLINE, EMBASE, Web of Science, and CENTRAL were searched through the terms of Black Raspberry, Raspberry, and Rubus Occidentali up to January 2023. Two reviewers performed the study selection by screening the title and abstract. Full texts of potentially eligible studies were retrieved to access the details. RESULTS Out of the 767 articles assessed, 73 papers met the inclusion criteria. Among them, 63 papers investigated the anticancer mechanisms, while 10 conducted clinical trials focusing on cancer treatment or prevention. BRB was found to influence multiple cancer hallmarks by targeting various pathways. Decomposition of free radicals and regulation of estrogen metabolism, BRB can reduce DNA damage caused by reactive oxygen species. BRB can also enhance the function of nucleotide excision repair to repair DNA lesions. Through regulation of epigenetics, BRB can enhance the expression of tumor suppressor genes, inducing cell cycle arrest, and promoting apoptosis and pyroptosis. BRB can reduce the energy and nutrients supply to the cancer nest by inhibiting glycolysis and reducing angiogenesis. The immune and inflammatory microenvironment surrounding cancer cells can also be ameliorated by BRB, inhibiting cancer initiation and progression. However, the limited bioavailability of BRB diminishes its anticancer efficacy. Notably, topical applications of BRB, such as gels and suppositories, have demonstrated significant clinical benefits. CONCLUSION BRB inhibits cancer initiation, progression, and metastasis through diverse anticancer mechanisms while exhibiting minimal side effects. Given its potential, BRB emerges as a promising phototherapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Guanru Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China
| | - Hengpei Su
- College of Materials Science and Engineering, Sichuan University, No.29, Jiuyanqiao Wangjiang Rd., Chengdu 610064, China
| | - Zijian Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China
| | - Honglin Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China
| | - Zhishen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China.
| | - Chunjie Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China; Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, No.14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China.
| |
Collapse
|
4
|
Dietary Supplementation with Black Raspberries Altered the Gut Microbiome Composition in a Mouse Model of Colitis-Associated Colorectal Cancer, although with Differing Effects for a Healthy versus a Western Basal Diet. Nutrients 2022; 14:nu14245270. [PMID: 36558431 PMCID: PMC9786988 DOI: 10.3390/nu14245270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
Black raspberries (BRB) are rich in anthocyanins with purported anti-inflammatory properties. However, it is not known whether dietary supplementation would ameliorate Western-diet enhanced gut inflammation and colon tumorigenesis. We employed a mouse model of colitis-associated colorectal cancer (CAC) to determine the effects of dietary supplementation with 5 to 10% (w/w) whole, freeze-dried BRB in male C57BL/6J mice fed either a standard healthy diet (AIN93G) or the total Western diet (TWD). In a pilot study, BRB suppressed colitis and colon tumorigenesis while also shifting the composition of the fecal microbiome in favor of taxa with purported health benefits, including Bifidobacterium pseudolongum. In a follow-up experiment using a 2 × 2 factorial design with AIN and TWD basal diets with and without 10% (w/w) BRB, supplementation with BRB reduced tumor multiplicity and increased colon length, irrespective of the basal diet, but it did not apparently affect colitis symptoms, colon inflammation or mucosal injury based on histopathological findings. However, BRB intake increased alpha diversity, altered beta diversity and changed the relative abundance of Erysipelotrichaceae, Bifidobacteriaceae, Streptococcaceae, Rikenellaceae, Ruminococcaceae and Akkermansiaceae, among others, of the fecal microbiome. Notably, changes in microbiome profiles were inconsistent with respect to the basal diet consumed. Overall, these studies provide equivocal evidence for in vivo anti-inflammatory effects of BRB on colitis and colon tumorigenesis; yet, BRB supplementation led to dynamic changes in the fecal microbiome composition over the course of disease development.
Collapse
|
5
|
Vieujean S, Caron B, Haghnejad V, Jouzeau JY, Netter P, Heba AC, Ndiaye NC, Moulin D, Barreto G, Danese S, Peyrin-Biroulet L. Impact of the Exposome on the Epigenome in Inflammatory Bowel Disease Patients and Animal Models. Int J Mol Sci 2022; 23:7611. [PMID: 35886959 PMCID: PMC9321337 DOI: 10.3390/ijms23147611] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel diseases (IBD) are chronic inflammatory disorders of the gastrointestinal tract that encompass two main phenotypes, namely Crohn's disease and ulcerative colitis. These conditions occur in genetically predisposed individuals in response to environmental factors. Epigenetics, acting by DNA methylation, post-translational histones modifications or by non-coding RNAs, could explain how the exposome (or all environmental influences over the life course, from conception to death) could influence the gene expression to contribute to intestinal inflammation. We performed a scoping search using Medline to identify all the elements of the exposome that may play a role in intestinal inflammation through epigenetic modifications, as well as the underlying mechanisms. The environmental factors epigenetically influencing the occurrence of intestinal inflammation are the maternal lifestyle (mainly diet, the occurrence of infection during pregnancy and smoking); breastfeeding; microbiota; diet (including a low-fiber diet, high-fat diet and deficiency in micronutrients); smoking habits, vitamin D and drugs (e.g., IBD treatments, antibiotics and probiotics). Influenced by both microbiota and diet, short-chain fatty acids are gut microbiota-derived metabolites resulting from the anaerobic fermentation of non-digestible dietary fibers, playing an epigenetically mediated role in the integrity of the epithelial barrier and in the defense against invading microorganisms. Although the impact of some environmental factors has been identified, the exposome-induced epimutations in IBD remain a largely underexplored field. How these environmental exposures induce epigenetic modifications (in terms of duration, frequency and the timing at which they occur) and how other environmental factors associated with IBD modulate epigenetics deserve to be further investigated.
Collapse
Affiliation(s)
- Sophie Vieujean
- Hepato-Gastroenterology and Digestive Oncology, University Hospital CHU of Liège, 4000 Liege, Belgium;
| | - Bénédicte Caron
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Vincent Haghnejad
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| | - Jean-Yves Jouzeau
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Patrick Netter
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Anne-Charlotte Heba
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - Ndeye Coumba Ndiaye
- NGERE (Nutrition-Genetics and Exposure to Environmental Risks), National Institute of Health and Medical Research, University of Lorraine, F-54000 Nancy, France; (A.-C.H.); (N.C.N.)
| | - David Moulin
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
| | - Guillermo Barreto
- CNRS (French National Centre for Scientific Research), Laboratoire IMoPA, Université de Lorraine, UMR 7365, F-54000 Nancy, France; (J.-Y.J.); (P.N.); (D.M.); (G.B.)
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Universidad de la Salud del Estado de Puebla, Puebla 72000, Mexico
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele and University Vita-Salute San Raffaele, 20132 Milan, Italy;
| | - Laurent Peyrin-Biroulet
- Department of Gastroenterology NGERE (INSERM U1256), Nancy University Hospital, University of Lorraine, Vandœuvre-lès-Nancy, F-54052 Nancy, France; (B.C.); (V.H.)
| |
Collapse
|
6
|
Dong A, Pan X, Lin CW, Huang YW, Krause H, Pan P, Baim A, Thomas MJ, Chen X, Yu J, Michaelis L, Liu P, Wang LS, Atallah E. A Pilot Clinical Study to Investigate the Hypomethylating Properties of Freeze-dried Black Raspberries in Patients with Myelodysplastic Syndrome or Myeloproliferative Neoplasm. J Cancer Prev 2022; 27:129-138. [PMID: 35864858 PMCID: PMC9271408 DOI: 10.15430/jcp.2022.27.2.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/09/2022] Open
Abstract
Myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are bone marrow disorders characterized by cytopenias and progression to acute myeloid leukemia. Hypomethylating agents (HMAs) are Food and Drug Administration-approved therapies for MDS and MDS/MPN patients. HMAs have improved patients' survival and quality of life when compared with other therapies. Although HMAs are effective in MDS and MDS/MPN patients, they are associated with significant toxicities that place a large burden on patients. Our goal is to develop a safer and more effective HMA from natural products. We previously reported that black raspberries (BRBs) have hypomethylating effects in the colon, blood, spleen, and bone marrow of mice. In addition, BRBs exert hypomethylating effects in patients with colorectal cancer and familial adenomatous polyposis. In the current study, we conducted a pilot clinical trial to evaluate the hypomethylating effects of BRBs in patients with low-risk MDS or MDS/MPN. Peripheral blood mononuclear cells (PBMCs) were isolated before and after three months of BRB intervention. CD45+ cells were isolated from PBMCs for methylation analysis using a reduced-representation bisulfite sequencing assay. Each patient served as their own matched control, with their measurements assessed before intervention providing a baseline for post-intervention results. Clinically, our data showed that BRBs were well-tolerated with no side effects. When methylation data was combined, BRBs significantly affected methylation levels of 477 promoter regions. Pathway analysis suggests that BRB-induced intragenic hypomethylation drives leukocyte differentiation. A randomized, placebo-controlled clinical trial of BRB use in low-risk MDS or MDS/MPN patients is warranted.
Collapse
Affiliation(s)
- Athena Dong
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaoqing Pan
- Department of Mathematics, Shanghai Normal University, Shanghai, China
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hayden Krause
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Pan Pan
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Arielle Baim
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael J Thomas
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiao Chen
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Laura Michaelis
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ehab Atallah
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
7
|
Kubatka P, Kello M, Kajo K, Samec M, Liskova A, Jasek K, Koklesova L, Kuruc T, Adamkov M, Smejkal K, Svajdlenka E, Solar P, Pec M, Büsselberg D, Sadlonova V, Mojzis J. Rhus coriaria L. (Sumac) Demonstrates Oncostatic Activity in the Therapeutic and Preventive Model of Breast Carcinoma. Int J Mol Sci 2020; 22:ijms22010183. [PMID: 33375383 PMCID: PMC7795985 DOI: 10.3390/ijms22010183] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/13/2022] Open
Abstract
Comprehensive scientific data provide evidence that isolated phytochemicals or whole plant foods may beneficially modify carcinogenesis. The aim of this study was to evaluate the oncostatic activities of Rhus coriaria L. (sumac) using animal models (rat and mouse), and cell lines of breast carcinoma. R. coriaria (as a powder) was administered through the diet at two concentrations (low dose: 0.1% (w/w) and high dose: 1 % (w/w)) for the duration of the experiment in a syngeneic 4T1 mouse and chemically-induced rat mammary carcinoma models. After autopsy, histopathological and molecular analyses of tumor samples in rodents were performed. Moreover, in vitro analyses using MCF-7 and MDA-MB-231 cells were conducted. The dominant metabolites present in tested R. coriaria methanolic extract were glycosides of gallic acid (possible gallotannins). In the mouse model, R. coriaria at a higher dose (1%) significantly decreased tumor volume by 27% when compared to controls. In addition, treated tumors showed significant dose-dependent decrease in mitotic activity index by 36.5% and 51% in comparison with the control group. In the chemoprevention study using rats, R. coriaria at a higher dose significantly reduced the tumor incidence by 20% and in lower dose non-significantly reduced tumor frequency by 29% when compared to controls. Evaluations of the mechanism of oncostatic action using valid clinical markers demonstrated several positive alterations in rat tumor cells after the treatment with R. coriaria. In this regard, histopathological analysis of treated tumor specimens showed robust dose-dependent decrease in the ratio of high-/low-grade carcinomas by 66% and 73% compared to controls. In treated rat carcinomas, we found significant caspase-3, Bax, and Bax/Bcl-2 expression increases; on the other side, a significant down-regulation of Bcl-2, Ki67, CD24, ALDH1, and EpCam expressions and MDA levels. When compared to control specimens, evaluation of epigenetic alterations in rat tumor cells in vivo showed significant dose-dependent decrease in lysine methylation status of H3K4m3 and H3K9m3 and dose-dependent increase in lysine acetylation in H4K16ac levels (H4K20m3 was not changed) in treated groups. However, only in lower dose of sumac were significant decreases in the expression of oncogenic miR210 and increase of tumor-suppressive miR145 (miR21, miR22, and miR155 were not changed) observed. Finally, only in lower sumac dose, significant decreases in methylation status of three out of five gene promoters-ATM, PTEN, and TIMP3 (PITX2 and RASSF1 promoters were not changed). In vitro evaluations using methanolic extract of R. coriaria showed significant anticancer efficacy in MCF-7 and MDA-MB-231 cells (using Resazurin, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential analyses). In conclusion, sumac demonstrated significant oncostatic activities in rodent models of breast carcinoma that were validated by mechanistic studies in vivo and in vitro.
Collapse
Affiliation(s)
- Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
- Division of Oncology, Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, 036 01 Martin, Slovakia;
- Correspondence: (P.K.); (V.S.); (J.M.)
| | - Martin Kello
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, 040 11 Košice, Slovakia; (M.K.); (T.K.)
| | - Karol Kajo
- Department of Pathology, St. Elisabeth Oncology Institute, 812 50 Bratislava, Slovakia;
- Biomedical Research Center, Slovak Academy of Sciences, 845 05 Bratislava, Slovakia
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Alena Liskova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Karin Jasek
- Division of Oncology, Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, 036 01 Martin, Slovakia;
| | - Lenka Koklesova
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia; (M.S.); (A.L.); (L.K.)
| | - Tomas Kuruc
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, 040 11 Košice, Slovakia; (M.K.); (T.K.)
| | - Marian Adamkov
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic; (K.S.); (E.S.)
| | - Emil Svajdlenka
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, 612 42 Brno, Czech Republic; (K.S.); (E.S.)
| | - Peter Solar
- Department of Medical Biology, Faculty of Medicine, P. J. Šafárik University, 040 11 Kosice, Slovakia;
| | - Martin Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia;
| | - Dietrich Büsselberg
- Weill Cornell Medicine in Qatar, Qatar Foundation-Education City, 24144 Doha, Qatar;
| | - Vladimira Sadlonova
- Department of Microbiology and Immunology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
- Correspondence: (P.K.); (V.S.); (J.M.)
| | - Jan Mojzis
- Department of Pharmacology, Faculty of Medicine, P. J. Šafárik University, 040 11 Košice, Slovakia; (M.K.); (T.K.)
- Correspondence: (P.K.); (V.S.); (J.M.)
| |
Collapse
|
8
|
Lavefve L, Howard LR, Carbonero F. Berry polyphenols metabolism and impact on human gut microbiota and health. Food Funct 2020; 11:45-65. [PMID: 31808762 DOI: 10.1039/c9fo01634a] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Berries are rich in phenolic compounds such as phenolic acids, flavonols and anthocyanins. These molecules are often reported as being responsible for the health effects attributed to berries. However, their poor bioavailability, mostly influenced by their complex chemical structures, raises the question of their actual direct impact on health. The products of their metabolization, however, may be the most bioactive compounds due to their ability to enter the blood circulation and reach the organs. The main site of metabolization of the complex polyphenols to smaller phenolic compounds is the gut through the action of microorganisms, and reciprocally polyphenols and their metabolites can also modulate the microbial populations. In healthy subjects, these modulations generally lead to an increase in Bifidobacterium, Lactobacillus and Akkermansia, therefore suggesting a prebiotic-like effect of the berries or their compounds. Finally, berries have been demonstrated to alleviate symptoms of gut inflammation through the modulation of pro-inflammatory cytokines and have chemopreventive effects towards colon cancer through the regulation of apoptosis, cell proliferation and angiogenesis. This review recapitulates the knowledge available on the interactions between berries polyphenols, gut microbiota and gut health and identifies knowledge gaps for future research.
Collapse
Affiliation(s)
- Laura Lavefve
- Department of Food Science, University of Arkansas, USA
| | | | | |
Collapse
|
9
|
Huang YW, Mo YY, Echeveste CE, Oshima K, Zhang J, Yearsley M, Lin CW, Yu J, Liu P, Du M, Sun C, Xiao J, Wang LS. Black raspberries attenuate colonic adenoma development in Apc Min mice: Relationship to hypomethylation of promoters and gene bodies. FOOD FRONTIERS 2020; 1:234-242. [PMID: 34557678 PMCID: PMC8457619 DOI: 10.1002/fft2.45] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Recent studies have suggested that in addition to promoter region, DNA methylation in intragenic and intergenic regions also changes during physiological processes and disease. The current study showed that feeding of black raspberries (BRBs) to Apc Min mice suppressed colon and intestinal tumors. MBDCap-seq suggested that dietary BRBs hypomethylated promoter, intragenic, and intergenic regions. Annotation of those regions highlighted genes in pathways involved in immune regulation, inflammatory signaling, production of nitric oxide and reactive oxygen species, and progression of colorectal cancer. BRB phytochemicals (e.g., ellagic acid, anthocyanins, oligosaccharides) and their gut bacterial metabolites (e.g., urolithin, protocatechuic acid, short-chain fatty acids) inhibited DNMT1 and DNMT3B activities in a cell-free assay. Our results suggest that BRBs' hypomethylating activities result from the combined effects of multiple BRB phytochemicals and their gut bacterial metabolites. Because similar substances are found in many plant products, our results with BRBs might also apply to commonly consumed fruits and vegetables.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yue Yang Mo
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Carla Elena Echeveste
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | - Jianying Zhang
- Division of Biostatistics, Department of Science of Informatics, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - Martha Yearsley
- Department of Pathology, The Ohio State University, Columbus, Ohio
| | - Chien-Wei Lin
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, California
| | - Pengyuan Liu
- Center of Systems Molecular Medicine, Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Sir Run Run Shaw Hospital and Institute of Translational MedicineZhejiang University, Zhejiang, China
| | - Ming Du
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology / Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology / The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou, China
| | - Jianbo Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical SciencesUniversity of Macau, Taipa, Macau, China
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
10
|
Peiffer DS. Modulation of the host microbiome by black raspberries or their components and the therapeutic implications in cancer. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.40] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Daniel S Peiffer
- Health Sciences Division Loyola University Chicago Maywood Illinois
| |
Collapse
|
11
|
May S, Parry C, Parry L. Berry chemoprevention: Do berries decrease the window of opportunity for tumorigenesis. FOOD FRONTIERS 2020. [DOI: 10.1002/fft2.32] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Stephanie May
- European Cancer Stem Cell Research Institute School of Biosciences Cardiff University Cardiff UK
| | - Connor Parry
- European Cancer Stem Cell Research Institute School of Biosciences Cardiff University Cardiff UK
| | - Lee Parry
- European Cancer Stem Cell Research Institute School of Biosciences Cardiff University Cardiff UK
| |
Collapse
|
12
|
Huang YW, Echeveste CE, Oshima K, Zhang J, Yearsley M, Yu J, Wang LS. Anti-colonic Inflammation by Black Raspberries through Regulating Toll-like Receptor-4 Signaling in Interlukin-10 Knockout Mice. J Cancer Prev 2020; 25:119-125. [PMID: 32647653 PMCID: PMC7337002 DOI: 10.15430/jcp.2020.25.2.119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 11/23/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the colon, with a steadily rising prevalence in Western and newly industrialized countries. UC patients have a cancer incidence as high as 10% after 20 years of the disease. Although the importance of fruits and vegetables in defense against UC is beginning to be appreciated, the mechanisms remain largely unclear. In the current study, we reported that dietary black raspberries (BRBs) decreased colonic inflammation in the mucosa and submucosa of interleukin (IL)-10 knockout (KO) mice. We then used colon, spleen, and plasma from those mice to investigate whether BRBs exert their anti-inflammatory effects by correcting dysregulated toll-like receptor (TLR)-4 signaling to downregulate prostaglandin E2 (PGE2). Other studies reported that spleen is the reservoir of macrophages and depletion of macrophages in IL-10 KO mice prevents the development of colitis. Our results showed that BRBs decreased the percentages of macrophages in spleens of IL-10 KO mice. Moreover, mechanistically, the BRB diet corrected dysregulated TLR-4 signaling in cells from the colon and spleen, decreased PGE2 and prostaglandin I2, and increased 15-lipoxygenase and its product, 13-S-hydroxyoctadecadienoic acid, in plasma of IL-10 KO mice. Therefore, we have elucidated one of the anti-inflammatory mechanisms of BRBs, and have identified biomarkers that could be indicators of response in UC patients treated with them. Our findings with BRBs could well apply to many other commonly consumed fruits and vegetables.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Department of Obstetrics and Gynecology, MD, USA
| | - Carla Elena Echeveste
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Kiyoko Oshima
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jianying Zhang
- Division of Biostatistics, Department of Science of Informatics, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Martha Yearsley
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, CA, USA
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
13
|
Chemopreventive and Therapeutic Efficacy of Cinnamomum zeylanicum L. Bark in Experimental Breast Carcinoma: Mechanistic In Vivo and In Vitro Analyses. Molecules 2020; 25:molecules25061399. [PMID: 32204409 PMCID: PMC7144360 DOI: 10.3390/molecules25061399] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Comprehensive oncology research suggests an important role of phytochemicals or whole plant foods in the modulation of signaling pathways associated with anticancer action. The goal of this study is to assess the anticancer activities of Cinnamomum zeylanicum L. using rat, mouse, and cell line breast carcinoma models. C. zeylanicum (as bark powder) was administered in the diet at two concentrations of 0.1% (w/w) and 1% (w/w) during the whole experiment in chemically induced rat mammary carcinomas and a syngeneic 4T1 mouse model. After autopsy, histopathological and molecular evaluations of mammary gland tumors in rodents were carried out. Moreover, in vitro analyses using MCF-7 and MDA-MB-231 cells were performed. The dominant metabolites present in the tested C. zeylanicum essential oil (with relative content over 1%) were cinnamaldehyde, cinnamaldehyde dimethyl acetal, cinnamyl acetate, eugenol, linalool, eucalyptol, limonene, o-cymol, and α-terpineol. The natural mixture of mentioned molecules demonstrated significant anticancer effects in our study. In the mouse model, C. zeylanicum at a higher dose (1%) significantly decreased tumor volume by 44% when compared to controls. In addition, treated tumors showed a significant dose-dependent decrease in mitotic activity index by 29% (0.1%) and 45.5% (1%) in comparison with the control group. In rats, C. zeylanicum in both doses significantly reduced the tumor incidence by 15.5% and non-significantly suppressed tumor frequency by more than 30% when compared to controls. An evaluation of the mechanism of anticancer action using valid oncological markers showed several positive changes after treatment with C. zeylanicum. Histopathological analysis of treated rat tumor specimens showed a significant decrease in the ratio of high-/low-grade carcinomas compared to controls. In treated rat carcinomas, we found caspase-3 and Bax expression increase. On the other hand, we observed a decrease in Bcl-2, Ki67, VEGF, and CD24 expressions and MDA levels. Assessment of epigenetic changes in rat tumor cells in vivo showed a significant decrease in lysine methylation status of H3K4m3 and H3K9m3 in the high-dose treated group, a dose-dependent increase in H4K16ac levels (H4K20m3 was not changed), down-regulations of miR21 and miR155 in low-dose cinnamon groups (miR22 and miR34a were not modulated), and significant reduction of the methylation status of two out of five gene promoters-ATM and TIMP3 (PITX2, RASSF1, PTEN promoters were not changed). In vitro study confirmed results of animal studies, in that the essential oil of C. zeylanicum displayed significant anticancer efficacy in MCF-7 and MDA-MB-231 cells (using MTS, BrdU, cell cycle, annexin V/PI, caspase-3/7, Bcl-2, PARP, and mitochondrial membrane potential analyses). As a conclusion, C. zeylanicum L. showed chemopreventive and therapeutic activities in animal breast carcinoma models that were also significantly confirmed by mechanistic evaluations in vitro and in vivo.
Collapse
|
14
|
Guo J, Yang Z, Zhou H, Yue J, Mu T, Zhang Q, Bi X. Upregulation of DKK3 by miR‐483‐3p plays an important role in the chemoprevention of colorectal cancer mediated by black raspberry anthocyanins. Mol Carcinog 2019; 59:168-178. [DOI: 10.1002/mc.23138] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Jun Guo
- College of Life ScienceLiaoning UniversityShenyang China
| | - Zhe Yang
- College of Life ScienceLiaoning UniversityShenyang China
| | - Hongrui Zhou
- College of Life ScienceLiaoning UniversityShenyang China
| | - Jiaxin Yue
- College of Life ScienceLiaoning UniversityShenyang China
| | - Teng Mu
- College of Life ScienceLiaoning UniversityShenyang China
| | - Qiuhua Zhang
- Department of PharmacologyLiaoning University of Traditional Chinese MedicineShenyang China
| | - Xiuli Bi
- College of Life ScienceLiaoning UniversityShenyang China
- Research Center for Computer Simulating and Information Processing of Bio‐macromolecules of Liaoning ProvinceLiaoning UniversityShenyang China
| |
Collapse
|
15
|
DNA Methylation Status in Cancer Disease: Modulations by Plant-Derived Natural Compounds and Dietary Interventions. Biomolecules 2019; 9:biom9070289. [PMID: 31323834 PMCID: PMC6680848 DOI: 10.3390/biom9070289] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/24/2022] Open
Abstract
The modulation of the activity of DNA methyltransferases (DNMTs) represents a crucial epigenetic mechanism affecting gene expressions or DNA repair mechanisms in the cells. Aberrant modifications in the function of DNMTs are a fundamental event and part of the pathogenesis of human cancer. Phytochemicals, which are biosynthesized in plants in the form of secondary metabolites, represent an important source of biomolecules with pleiotropic effects and thus provide a wide range of possible clinical applications. It is well documented that phytochemicals demonstrate significant anticancer properties, and in this regard, rapid development within preclinical research is encouraging. Phytochemicals affect several epigenetic molecular mechanisms, including DNA methylation patterns such as the hypermethylation of tumor-suppressor genes and the global hypomethylation of oncogenes, that are specific cellular signs of cancer development and progression. This review will focus on the latest achievements in using plant-derived compounds and plant-based diets targeting epigenetic regulators and modulators of gene transcription in preclinical and clinical research in order to generate novel anticancer drugs as sensitizers for conventional therapy or compounds suitable for the chemoprevention clinical setting in at-risk individuals. In conclusion, indisputable anticancer activities of dietary phytochemicals linked with proper regulation of DNA methylation status have been described. However, precisely designed and well-controlled clinical studies are needed to confirm their beneficial epigenetic effects after long-term consumption in humans.
Collapse
|
16
|
Chen T, Shi N, Afzali A. Chemopreventive Effects of Strawberry and Black Raspberry on Colorectal Cancer in Inflammatory Bowel Disease. Nutrients 2019; 11:E1261. [PMID: 31163684 PMCID: PMC6627270 DOI: 10.3390/nu11061261] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) remains the third most common cause of cancer-related death in the United States and the fourth globally with a rising incidence. Inflammatory bowel disease (IBD) is a chronic immunologically mediated disease that imposes a significant associated health burden, including the increased risk for colonic dysplasia and CRC. Carcinogenesis has been attributed to chronic inflammation and associated with oxidative stress, genomic instability, and immune effectors as well as the cytokine dysregulation and activation of the nuclear factor kappa B (NFκB) signaling pathway. Current anti-inflammation therapies used for IBD treatment have shown limited effects on CRC chemoprevention, and their long-term toxicity has limited their clinical application. However, natural food-based prevention approaches may offer significant cancer prevention effects with very low toxicity profiles. In particular, in preclinical and clinical pilot studies, strawberry and black raspberry have been widely selected as food-based interventions because of their potent preventive activities. In this review, we summarize the roles of strawberry, black raspberry, and their polyphenol components on CRC chemoprevention in IBD.
Collapse
Affiliation(s)
- Tong Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Ni Shi
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA.
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Anita Afzali
- Division of Gastroenterology, Hepatology and Nutrition, The Ohio State University, Columbus, OH 43210, USA.
- Inflammatory Bowel Disease Center, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
17
|
Huang YW, Chen JH, Rader JS, Aguilera-Barrantes I, Wang LS. Preventive Effects by Black Raspberries of Endometrial Carcinoma Initiation and Promotion Induced by a High-Fat Diet. Mol Nutr Food Res 2019; 63:e1900013. [PMID: 30951235 DOI: 10.1002/mnfr.201900013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 03/18/2019] [Indexed: 11/11/2022]
Abstract
SCOPE The chemopreventive effects of black raspberries (BRBs) have not been studied in endometrial tumorigenesis. Here, they are examined in a mouse model of endometrial cancer. METHODS AND RESULTS Wild-type and Pten heterozygous (+/-) female mice are weaned at 3 weeks and fed with four AIN-93G diets: 93G; 93G+5% BRBs powder; high-fat (HF); and HF+5% BRBs. Body weight and diet consumption are recorded weekly until the mice are euthanized at 28 weeks of age. Mice fed with HF diets are found to significantly gain body weight over time. BRBs are not found to affect the development of obesity. Mice in the HF+BRBs group consume less food than the HF-only mice. HF+BRBs diets suppress uterine tumor initiation and promotion more than the HF-only diet by inhibiting cell proliferation. It also reduces HF-induced levels of plasma leptin and 17β-estradiol (E2). Urolithin A, a metabolite of BRBs, suppresses cell proliferation induced by leptin and E2. CONCLUSION BRBs are preventive in HF-mediated uterine tumorigenesis because they suppress cell growth and plasma leptin and E2 levels.
Collapse
Affiliation(s)
- Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Jo-Hsin Chen
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Janet S Rader
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Li-Shu Wang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| |
Collapse
|
18
|
Chen L, Jiang B, Zhong C, Guo J, Zhang L, Mu T, Zhang Q, Bi X. Chemoprevention of colorectal cancer by black raspberry anthocyanins involved the modulation of gut microbiota and SFRP2 demethylation. Carcinogenesis 2018; 39:471-481. [PMID: 29361151 DOI: 10.1093/carcin/bgy009] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 01/13/2018] [Indexed: 12/12/2022] Open
Abstract
Freeze-dried black raspberry (BRB) powder is considered as a potential cancer chemopreventive agent. In this study, we fed azoxymethane (AOM)/dextran sodium sulfate (DSS)-treated C57BL/6J mice with a diet containing BRB anthocyanins for 12 weeks, and this led to a reduction in colon carcinogenesis. These animals had consistently lower tumor multiplicity compared with AOM/DSS-treated mice not receiving BRB anthocyanins. In AOM/DSS-treated mice, the number of pathogenic bacteria, including Desulfovibrio sp. and Enterococcus spp., was increased significantly, whereas probiotics such as Eubacterium rectale, Faecalibacterium prausnitzii and Lactobacillus were dramatically decreased, but BRB anthocyanins supplement could reverse this imbalance in gut microbiota. BRB anthocyanins also caused the demethylation of the SFRP2 gene promoter, resulting in increased expression of SFRP2, both at the mRNA and protein levels. Furthermore, the expression levels of DNMT31 and DNMT3B, as well as of p-STAT3 were downregulated by BRB anthocyanins in these animals. Taken together, these results suggested that BRB anthocyanins could modulate the composition of gut commensal microbiota, and changes in inflammation and the methylation status of the SFRP2 gene may play a central role in the chemoprevention of CRC.
Collapse
Affiliation(s)
- Lili Chen
- Department of Biotechnology, College of Life Science, Liaoning University, Shenyang, China
| | - Bowen Jiang
- Department of Biotechnology, College of Life Science, Liaoning University, Shenyang, China
| | - Chunge Zhong
- Department of Biotechnology, College of Life Science, Liaoning University, Shenyang, China
| | - Jun Guo
- Department of Biotechnology, College of Life Science, Liaoning University, Shenyang, China
| | - Lihao Zhang
- Department of Biotechnology, College of Life Science, Liaoning University, Shenyang, China
| | - Teng Mu
- Department of Biotechnology, College of Life Science, Liaoning University, Shenyang, China
| | - Qiuhua Zhang
- Department of Pharmacology, Liaoning University of Traditional Chinese Medicine, Shenyang, PR China
| | - Xiuli Bi
- Department of Biotechnology, College of Life Science, Liaoning University, Shenyang, China.,Department of Biotechnology, Research Center for Computer Simulating and Information Processing of Bio-macromolecules of Liaoning Province, Liaoning University, Shenyang, China
| |
Collapse
|
19
|
Kresty LA, Fromkes JJ, Frankel WL, Hammond CD, Seeram NP, Baird M, Stoner GD. A phase I pilot study evaluating the beneficial effects of black raspberries in patients with Barrett's esophagus. Oncotarget 2018; 9:35356-35372. [PMID: 30450163 PMCID: PMC6219678 DOI: 10.18632/oncotarget.10457] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/23/2016] [Indexed: 12/11/2022] Open
Abstract
Black raspberries inhibit a broad range of cancers in preclinical models which has led to clinical evaluations targeting premalignant lesions of the colon, oral cavity and esophagus. A phase I pilot study was conducted in twenty Barrett's esophagus (BE) patients to investigate the effect of lyophilized black raspberries (LBR) on urinary metabolites and markers of lipid peroxidation, DNA damage and tissue markers of cellular proliferation, detoxification, and inflammation. Surveys, biopsies, blood and urine samples were collected before and after 6 months of LBR treatment (32 or 45 g). LBR significantly reduced urinary excretion of 8-epi-prostaglandin F2α, a marker of lipid peroxidation linked to oxidative stress and free radical damage. Urinary levels of the ellagitannin metabolites, urolithin A-glucuronide, urolithin A-sulfate and dimethylellagic acid glucuronide were significantly increased following 12 and 26 weeks of LBR consumption and may prove useful as indicators of compliance in future clinical studies. Immunohistochemical staining of BE biopsies following LBR treatment showed significant increases in mean GST-pi levels, with 55.6% of subjects responding favorably. In summary, LBR significantly decreased urinary lipid peroxidation levels and significantly increased GST-pi, a marker of detoxification, in BE epithelium. Still, LBR may need to be formulated differently, administered at higher concentrations or multiple times a day to increase efficacy.
Collapse
Affiliation(s)
- Laura A Kresty
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John J Fromkes
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Wendy L Frankel
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Cynthia D Hammond
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Navindra P Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, USA
| | - Maureen Baird
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Gary D Stoner
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
20
|
Farzaei MH, El-Senduny FF, Momtaz S, Parvizi F, Iranpanah A, Tewari D, Naseri R, Abdolghaffari AH, Rezaei N. An update on dietary consideration in inflammatory bowel disease: anthocyanins and more. Expert Rev Gastroenterol Hepatol 2018; 12:1007-1024. [PMID: 30136591 DOI: 10.1080/17474124.2018.1513322] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic idiopathic inflammatory disorder. A wealth of data pointed out that various aspects of chronic inflammation may be affected by several specific dietary factors. This paper calls attention to anthocyanins enriched plant food and anthocyanin dietary supplements, whose role in the management of IBD and its associated oncogenesis deems crucial. Area covered: We updated the most relevant dietary anthocyanins with potential anti-colitis and preventive effect on inflammatory associated colorectal cancer based on the recent animal and human researches along with revealing the major cellular and molecular mechanisms of action. Mounting evidence reported that anthocyanins enriched plant foods perform their protective role on IBD and inflammatory-induced colorectal cancer via different cellular transduction signaling pathways, including inflammatory transcription factors, SAPK/JNK and p38 MAPK cascade, JAK/STAT signaling, NF-kB/pERK/MAPK, Wnt signaling pathway, Nrf2 cytoprotective pathway as well as AMPK pathway and autophagy. Expert commentary: Combination of anthocyanins enriched dietary supplements with existing medications can provide new therapeutic options for IBD patients. Further, well-designed randomized control trials (RCTs) are essential to evaluate the role of anthocyanins enriched medicinal foods as well as isolated anthocyanin components as promising preventive and therapeutic dietary agents for IBD and its associated oncogenesis.
Collapse
Affiliation(s)
- Mohammad Hosein Farzaei
- a Pharmaceutical Sciences Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Fardous F El-Senduny
- b Biochemistry division, Chemistry Department , Mansoura University , Mansoura , Egypt
| | - Saeideh Momtaz
- c Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center , Tehran University of Medical Sciences , Tehran , Iran
- d Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Fatemeh Parvizi
- e Medical Biology Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Amin Iranpanah
- f Students research Committee, Faculty of Pharmacy , Kermanshah University of Medical Sciences , Kermanshah , Iran
- g PhytoPharmacology Interest Group (PPIG) , Universal Scientific Education and Research Network (USERN) , Kermanshah , Iran
| | - Devesh Tewari
- h Department of Pharmaceutical Sciences, Faculty of Technology, Bhimtal Campus , Kumaun University , Nainital , Uttarakhand , India
| | - Rozita Naseri
- a Pharmaceutical Sciences Research Center , Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Amir Hossein Abdolghaffari
- c Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center , Tehran University of Medical Sciences , Tehran , Iran
- d Department of Toxicology and Pharmacology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center , Tehran University of Medical Sciences , Tehran , Iran
- i Department of Pharmacology, Pharmaceutical Sciences Branch , Islamic Azad University , Tehran , Iran
- j Gastrointestinal Pharmacology Interest Group (GPIG) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Nima Rezaei
- k Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
- l Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
- m Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| |
Collapse
|
21
|
Bibi S, Du M, Zhu MJ. Dietary Red Raspberry Reduces Colorectal Inflammation and Carcinogenic Risk in Mice with Dextran Sulfate Sodium-Induced Colitis. J Nutr 2018; 148:667-674. [PMID: 29897487 PMCID: PMC7263837 DOI: 10.1093/jn/nxy007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/29/2017] [Accepted: 01/09/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Ulcerative colitis causes recurring intestinal mucosal injury and sustained inflammation, increasing the likelihood of colorectal cancer (CRC) development. Dietary red raspberry (RB) is a rich source of phytonutrients known to have anti-inflammatory activity; however, the role of RB on CRC prevention in chronic colitis has not been examined. OBJECTIVE This study examined the effects of dietary RB supplementation on inflammation, epithelium repair, and oncogenic signaling in dextran sulfate sodium (DSS)-induced chronic colitis in mice. METHODS Six-week-old male C57BL/6J mice were fed a control or RB (5% of dry feed weight; n = 12/group) diet for 10 wk. Starting from the fourth week, mice were administered 2 repeated cycles of 1% DSS (7-d DSS treatment plus 14-d recovery) and were monitored daily for disease activity index (DAI) score. Colonic tissues were collected at the end of the study for histochemical, immunohistochemical, and biochemical analysis of inflammation, differentiation and proliferation markers. RESULTS RB supplementation reduced the DAI score and histologic damage (by 38.9%; P ≤ 0.01), expression of inflammatory mediators (by 20-70%; P ≤ 0.01), infiltration of CD4 T cells (by 50%; P ≤ 0.05), and α4β7 integrin and related adhesion molecules (by 33.3%; P ≤ 0.01). Furthermore, RB supplementation facilitated epithelium repair, as evidenced by enhanced goblet cell density, expression of transcription factors including Kruppel-like factor 4 (Klf4) and Hairy and enhancer of split 1 (Hes1), terminal differentiation markers, mucin 2 (Muc2), and intestinal alkaline phosphatase (by 20-200%; P ≤ 0.01). Conversely, proliferating cell nuclear antigen (by 70%; P ≤ 0.01), β-catenin, and signal transducer and activator of transcription 3 (STAT3) signaling (by 19-33%; P ≤ 0.05) were reduced by RB supplementation. In addition, RB supplementation enhanced p53 stability (by 53%) and reduced oncogenic gene expression (by 50-60%). CONCLUSION RB supplementation reduced DAI score and the risk of CRC development during recurring colitis in mice, suggesting that RB is a possible dietary supplement for patients with ulcerative colitis and related gut inflammatory diseases.
Collapse
Affiliation(s)
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA
| | - Mei-Jun Zhu
- School of Food Science,Address correspondence to MJZ (e-mail:)
| |
Collapse
|
22
|
Zhu J, Ren J, Tang L. Genistein inhibits invasion and migration of colon cancer cells by recovering WIF1 expression. Mol Med Rep 2018; 17:7265-7273. [PMID: 29568950 DOI: 10.3892/mmr.2018.8760] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 11/07/2017] [Indexed: 11/05/2022] Open
Abstract
Colon cancer is characterized by invasion and migration. DNA methylation of CpG islands in tumor suppressor genes is considered to be an epigenetic mechanism underlying cancer development. Epigenetic silencing of a gene may be reversed by drugs, including genistein. The present study aimed to determine the effect of genistein on Wnt inhibitory factor 1 (WIF1) and invasion, and migration of colon cancer cells. The viability of HT29 colon cancer cells was suppressed by genistein in a dose dependent manner. Following 72 h of treatment with 10, 20 and 60 µmol/l genistein, increased demethylation of WIF1 was induced in a dose‑dependent manner. Additionally, the invasive/migratory abilities of cells treated with genistein decreased in a dose‑dependent manner. Reverse transcription‑quantitative polymerase chain reaction and western blot analyses were performed to identify the mRNA and protein expression levels of invasion/migration‑associated factors. Following treatment with genistein, matrix metalloproteinase (MMP) 2 and MMP9 expression levels decreased, whereas the expression of metalloproteinase inhibitor 1 and E‑cadherin increased significantly. In addition, the expression levels of proto‑oncogene Wnt‑1 (Wnt‑1)/β‑catenin pathway‑associated factors, β‑catenin, c‑Myc proto‑oncogene protein and cyclin D1 decreased in a dose‑dependent manner following treatment with genistein. The invasive/migratory abilities of cells transfected with WIF1‑small interfering (si) RNA, and those transfected with WIF1‑siRNA and treated with genistein, increased notably compared with the control group. The present study demonstrated that genistein was able to inhibit the cell invasion and migration of colon cancer cells by inducing demethylation, and recovering the activity of WIF1 by altering the expression of invasion‑associated factors, and components of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Gastrointestinal Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Jun Ren
- Department of Gastrointestinal Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| | - Liming Tang
- Department of Gastrointestinal Surgery, Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
23
|
Pan P, Peiffer DS, Huang YW, Oshima K, Stoner GD, Wang LS. Inhibition of the development of N-nitrosomethylbenzylamine-induced esophageal tumors in rats by strawberries and aspirin, alone and in combination. JOURNAL OF BERRY RESEARCH 2018; 8:137-146. [PMID: 29977412 PMCID: PMC6029707 DOI: 10.3233/jbr-170291] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of two subtypes of esophageal cancer, with high incidence and mortality rates in developing countries. OBJECTIVE The current study investigated the potential chemoprotective effects of strawberries and aspirin against the development of rat esophageal papillomas, the precursors to ESCC. METHODS Using a prevention model, we administered study diets to rats before, during, and after N-nitrosomethylbenzylamine (NMBA) treatment. The effects of the four diets were evaluated: the control diet, 5% strawberry powder in the control diet, 0.01% aspirin in the drinking water, and the combination of strawberries and aspirin. At week 25, we euthanized all the rats and collected their esophagi to quantify tumor incidence, multiplicity, and burden, as well as for molecular analysis. RESULTS Both strawberries and aspirin significantly decreased esophageal tumor multiplicity, with the combination causing the most robust suppression. Aspirin alone and the combination decreased the total tumor burden in the esophagus. None of the diets had a significant effect on tumor incidence or the expression of COX-1 and COX-2. Strawberries and aspirin, alone and in combination, significantly suppressed squamous epithelial cell proliferation (PCNA). CONCLUSIONS Strawberries, aspirin, and their combination exhibit chemoprotective effects against NMBA-induced esophageal tumors in rats.
Collapse
Affiliation(s)
- Pan Pan
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel S. Peiffer
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
- Current: Stritch School of Medicine, Loyola University Chicago, Chicago, IL, USA
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kiyoko Oshima
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
- Current: Department of Pathology, John Hopkins University, Baltimore, MD, USA
| | - Gary D. Stoner
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
- Corresponding authors. Gary D. Stoner, Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA. and Li-Shu Wang, Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, RM C4930, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA. Tel.: +1 414 955 2827; Fax: +1 414 955 6059;
| | - Li-Shu Wang
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
- Corresponding authors. Gary D. Stoner, Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA. and Li-Shu Wang, Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin, RM C4930, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA. Tel.: +1 414 955 2827; Fax: +1 414 955 6059;
| |
Collapse
|
24
|
Pan P, Lam V, Salzman N, Huang YW, Yu J, Zhang J, Wang LS. Black Raspberries and Their Anthocyanin and Fiber Fractions Alter the Composition and Diversity of Gut Microbiota in F-344 Rats. Nutr Cancer 2017; 69:943-951. [PMID: 28718724 DOI: 10.1080/01635581.2017.1340491] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Natural compounds can alter the diversity and composition of the gut microbiome, potentially benefiting our health. We previously demonstrated chemopreventive effects of black raspberries (BRBs) in colorectal cancer, which is associated with gut dysbiosis. To investigate the effects of whole BRBs and their fractions on gut microbiota, we fed F-344 rats a control diet, 5% BRBs, the BRB anthocyanin fraction, or the BRB residue fraction for 6 weeks. Feces were collected at baseline and at weeks 3 and 6, and bacterial sequence counts were analyzed. We observed distinct patterns of microbiota from different diet groups. Beta diversity analysis suggested that all diet groups exerted time-dependent changes in the bacterial diversity. Hierarchical clustering analysis revealed that post-diet fecal microbiota was segregated from baseline fecal microbiota within each diet. It is interesting to note that fractions of BRBs induced different changes in gut bacteria compared to whole BRBs. The abundance of specific microbial species known to have anti-inflammatory effects, such as Akkermansia and Desulfovibrio, was increased by whole BRBs and their residue. Further, butyrate-producing bacteria, e.g., Anaerostipes, were increased by whole BRBs. Our results suggest that whole BRBs and their fractions alter the gut microbiota in ways that could significantly influence human health.
Collapse
Affiliation(s)
- Pan Pan
- a Department of Medicine , Division of Hematology and Oncology, Medical College of Wisconsin , Milwaukee , Wisconsin , USA
| | - Vy Lam
- b Division of Cardiothoracic Surgery , Medical College of Wisconsin , Milwaukee , Wisconsin , USA
| | - Nita Salzman
- c Department of Pediatrics/Gastroenterology , Medical College of Wisconsin , Milwaukee , Wisconsin , USA
| | - Yi-Wen Huang
- d Department of Obstetrics and Gynecology , Medical College of Wisconsin , Milwaukee , Wisconsin , USA
| | - Jianhua Yu
- e Division of Hematology, Department of Internal Medicine , College of Medicine, The Ohio State University , Columbus , Ohio , USA
| | - Jianying Zhang
- f Center for Biostatistics , The Ohio State University , Columbus , Ohio , USA
| | - Li-Shu Wang
- a Department of Medicine , Division of Hematology and Oncology, Medical College of Wisconsin , Milwaukee , Wisconsin , USA
| |
Collapse
|
25
|
Braicu C, Mehterov N, Vladimirov B, Sarafian V, Nabavi SM, Atanasov AG, Berindan-Neagoe I. Nutrigenomics in cancer: Revisiting the effects of natural compounds. Semin Cancer Biol 2017; 46:84-106. [PMID: 28676460 DOI: 10.1016/j.semcancer.2017.06.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/04/2017] [Accepted: 06/23/2017] [Indexed: 01/06/2023]
Abstract
Nutrigenomics effects have an important role in the manipulation of dietary components for human benefit, particularly in cancer prevention or treatment. The impact of dietary components, including phytochemicals, is largely studied by nutrigenomics, looking at the gene expression and molecular mechanisms interacting with bioactive compounds and nutrients, based on new 'omics' technologies. The high number of preclinical studies proves the relevant role of nutrigenomics in cancer management. By deciphering the network of nutrient-gene connections associated with cancer, relevant data will be transposed as therapeutic interventions for this devastating pathology and for fulfilling the concept of personalized nutrition. All these are presented under the nutrigenomics canopy for a better comprehension of the relation between ingested phytochemicals and chemoprevention or chemotherapy. The profits from the nutrigenomics progress, with a particular focus on the coding and noncoding genes related to the exposure of natural compounds need to be validated. A precise attention receives the evaluation of the role of natural compounds in tandem with conventional therapy using genomic approaches, with emphasis on the capacity to inhibit drug resistance mechanisms. All these relevant nutrigenomics aspects are summarized in the present review paper. It is concluded that further nutrigenomics studies are required to improve our understanding related to the complex mechanisms of action of the natural compounds and for their appropriate application as gears in cancer therapy.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania
| | - Nikolay Mehterov
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria; Technological Center for Emergency Medicine, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria; Center of Plant Systems Biology and Biotechnology, 139, Ruski Blvd., Plovdiv 4000, Bulgaria
| | - Boyan Vladimirov
- Department of Maxillofacial Surgery, Faculty of Dental Medicine, Medical University-Plovdiv, 3 Hristo Botev Blvd., Plovdiv 4000, Bulgaria; Clinic of Maxillofacial Surgery, University Hospital St. George, 66 Peshtersko Shosse Blvd., Plovdiv 4002, Bulgaria
| | - Victoria Sarafian
- Department of Medical Biology, Faculty of Medicine, Medical University-Plovdiv, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria; Technological Center for Emergency Medicine, 15-А Vassil Aprilov Blvd., Plovdiv 4000, Bulgaria
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Sheikh Bahaei St., P.O. Box 19395, 5487 Tehran, Iran
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, Vienna 1090, Austria; Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Postępu 36A Street, 05-552, Jastrzebiec, Poland; Department of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania; MEDFUTURE -Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 40015, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republici 34 Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
26
|
Bishayee A, Haskell Y, Do C, Siveen KS, Mohandas N, Sethi G, Stoner GD. Potential Benefits of Edible Berries in the Management of Aerodigestive and Gastrointestinal Tract Cancers: Preclinical and Clinical Evidence. Crit Rev Food Sci Nutr 2017; 56:1753-75. [PMID: 25781639 DOI: 10.1080/10408398.2014.982243] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epidemiological reports as well as experimental studies have demonstrated the significant health benefits provided by regular berry consumption. Berries possess both prophylactic and therapeutic potential against several chronic illnesses, such as cardiovascular, neurodegenerative, and neoplastic diseases. Berries owe their health benefits to phytoconstituents, such as polyphenolic anthocyanins, ellagic acid, and a diverse array of phytochemicals bestowed with potent antioxidant and anti-inflammatory effects as well as the ability to engage a multitude of signaling pathways. This review highlights the principal chemical constituents present in berries and their primary molecular targets. The article presents and critically analyzes the chemopreventive and therapeutic potential of berry extracts, fractions, and bioactive components on various cancers of the gastrointestinal tract (GIT), including esophageal, stomach, intestinal, and colorectal cancers as well as cancers of the upper aerodigestive tract, such as oral cancer. The current status of clinical studies evaluating berry products in several aforementioned cancers is presented. Various emerging issues including dose-ranging and dosage forms, the role of synergy and the usage of combination therapy as well as other relevant areas essential for the development of berry phytoconstituents as mainstream chemopreventive and therapeutic agents against aerodigestive and GIT cancers are critically discussed.
Collapse
Affiliation(s)
- Anupam Bishayee
- a Department of Pharmaceutical Sciences , College of Pharmacy, Larkin Health Sciences Institute , Miami , Florida USA
| | - Yennie Haskell
- b Department of Pharmaceutical Sciences , College of Pharmacy, Northeast Ohio Medical University , Rootstown , Ohio USA
| | - Chau Do
- b Department of Pharmaceutical Sciences , College of Pharmacy, Northeast Ohio Medical University , Rootstown , Ohio USA
| | - Kodappully Sivaraman Siveen
- c Department of Pharmacology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore
| | - Nima Mohandas
- d School of Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University , Western Australia , Australia
| | - Gautam Sethi
- c Department of Pharmacology , Yong Loo Lin School of Medicine, National University of Singapore , Singapore.,d School of Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University , Western Australia , Australia
| | - Gary D Stoner
- e Division of Hematology and Oncology , Department of Medicine, Medical College of Wisconsin , Milwaukee , Wisconsin USA
| |
Collapse
|
27
|
Pan P, W Skaer C, Wang HT, Oshima K, Huang YW, Yu J, Zhang J, M Yearsley M, A Agle K, R Drobyski W, Chen X, Wang LS. Loss of free fatty acid receptor 2 enhances colonic adenoma development and reduces the chemopreventive effects of black raspberries in ApcMin/+ mice. Carcinogenesis 2016; 38:86-93. [PMID: 27866157 DOI: 10.1093/carcin/bgw122] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 12/17/2022] Open
Abstract
We previously showed that black raspberries (BRBs) have beneficial effects in human colorectal cancer and a mouse model of colorectal cancer (ApcMin/+). The current study investigated the role of free fatty acid receptor 2 (FFAR2) in colon carcinogenesis and whether the FFAR2 signaling pathway contributes to BRB-mediated chemoprevention in mice. FFAR2 (also named GPR43) is a member of the G-protein-coupled receptor family that is expressed in leukocytes and colon. ApcMin/+ and ApcMin/+-FFAR2-/- mice were given a control diet or the control diet supplemented with 5% BRBs for 8 weeks. FFAR2 deficiency promoted colonic polyp development, with 100% incidence and increased polyp number and size. The ApcMin/+ mice developed colonic tubular adenoma, whereas the ApcMin/+-FFAR2-/- mice developed colonic tubular adenoma with high-grade dysplasia. FFAR2 deficiency also enhanced the cAMP-PKA-CREB-HDAC pathway, downstream of FFAR2 signaling, and increased activation of the Wnt pathway, and raised the percentage of GR-1+ neutrophils in colonic lamina propria (LP) and increased infiltration of GR-1+ neutrophils into colonic polyps. BRBs suppressed colonic polyp development and inhibited the cAMP-PKA-CREB-HDAC and Wnt pathways in the ApcMin/+ mice but not the ApcMin/+-FFAR2-/- mice. They also increased the percentage of GR-1+ neutrophils and cytokine secretion in colonic LP and decreased the infiltration of GR-1+ neutrophils and IL-1β expression in colon polyps of ApcMin/+ mice but not ApcMin/+-FFAR2-/- mice. These results suggest that loss of FFAR2 drives colon tumorigenesis and that BRBs require functional FFAR2 to be chemopreventive. BRBs have the potential to modulate the host immune system, thereby enhancing the antitumor immune microenvironment.
Collapse
Affiliation(s)
- Pan Pan
- Division of Hematology and Oncology, Department of Medicine
| | | | | | | | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine
| | | | - Martha M Yearsley
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
28
|
Kristo AS, Klimis-Zacas D, Sikalidis AK. Protective Role of Dietary Berries in Cancer. Antioxidants (Basel) 2016; 5:antiox5040037. [PMID: 27775562 PMCID: PMC5187535 DOI: 10.3390/antiox5040037] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 09/24/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022] Open
Abstract
Dietary patterns, including regular consumption of particular foods such as berries as well as bioactive compounds, may confer specific molecular and cellular protection in addition to the overall epidemiologically observed benefits of plant food consumption (lower rates of obesity and chronic disease risk), further enhancing health. Mounting evidence reports a variety of health benefits of berry fruits that are usually attributed to their non-nutritive bioactive compounds, mainly phenolic substances such as flavonoids or anthocyanins. Although it is still unclear which particular constituents are responsible for the extended health benefits, it appears that whole berry consumption generally confers some anti-oxidant and anti-inflammatory protection to humans and animals. With regards to cancer, studies have reported beneficial effects of berries or their constituents including attenuation of inflammation, inhibition of angiogenesis, protection from DNA damage, as well as effects on apoptosis or proliferation rates of malignant cells. Berries extend effects on the proliferation rates of both premalignant and malignant cells. Their effect on premalignant cells is important for their ability to cause premalignant lesions to regress both in animals and in humans. The present review focuses primarily on in vivo and human dietary studies of various berry fruits and discusses whether regular dietary intake of berries can prevent cancer initiation and delay progression in humans or ameliorate patients’ cancer status.
Collapse
Affiliation(s)
- Aleksandra S Kristo
- Department of Nutrition and Dietetics, Istanbul Yeni Yuzyil University, Yilanli Ayasma Caddesi No. 26, Istanbul 34010, Turkey.
| | | | - Angelos K Sikalidis
- Department of Nutrition and Dietetics, Istanbul Yeni Yuzyil University, Yilanli Ayasma Caddesi No. 26, Istanbul 34010, Turkey.
| |
Collapse
|
29
|
Martin DA, Bolling BW. A review of the efficacy of dietary polyphenols in experimental models of inflammatory bowel diseases. Food Funct 2016; 6:1773-86. [PMID: 25986932 DOI: 10.1039/c5fo00202h] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Crohn's disease and ulcerative colitis presently have no cure and are treated with anti-inflammatory drugs or monoclonal antibodies targeting pro-inflammatory cytokines. A variety of rodent models have been used to model chronic and acute colitis. Dietary polyphenols in foods and botanicals are of considerable interest for prevention and treatment of colitis. Many dietary polyphenols have been utilized for prevention of colitis in rodent models. Berries, green tea polyphenols, curcumin, and stilbenes have been the most extensively tested polyphenols in rodent models of colitis. The majority of polyphenols tested have inhibited colitis in rodents, but increasing doses of EGCG and green tea, isoflavones, flaxseed, and α-mangostin have exacerbated colitis. Few studies have examined combination of polyphenols or other bioactives for inhibition of colitis. Translating polyphenol doses used in rodent models of colitis to human equivalent doses reveals that supplemental doses are most likely required to inhibit colitis from a single polyphenol treatment. The ability to translate polyphenol treatments in rodent models is likely to be limited by species differences in xenobiotic metabolism and microbiota. Given these limitations, data from polyphenols in rodent models suggests merit for pursuing additional clinical studies for prevention of colitis.
Collapse
Affiliation(s)
- Derek A Martin
- Department of Food Science, University of Wisconsin-Madison, 1605 Linden Dr, Madison, WI 53706, USA.
| | | |
Collapse
|
30
|
Afrin S, Giampieri F, Gasparrini M, Forbes-Hernandez TY, Varela-López A, Quiles JL, Mezzetti B, Battino M. Chemopreventive and Therapeutic Effects of Edible Berries: A Focus on Colon Cancer Prevention and Treatment. Molecules 2016; 21:169. [PMID: 26840292 PMCID: PMC6273426 DOI: 10.3390/molecules21020169] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 12/15/2022] Open
Abstract
Colon cancer is one of the most prevalent diseases across the world. Numerous epidemiological studies indicate that diets rich in fruit, such as berries, provide significant health benefits against several types of cancer, including colon cancer. The anticancer activities of berries are attributed to their high content of phytochemicals and to their relevant antioxidant properties. In vitro and in vivo studies have demonstrated that berries and their bioactive components exert therapeutic and preventive effects against colon cancer by the suppression of inflammation, oxidative stress, proliferation and angiogenesis, through the modulation of multiple signaling pathways such as NF-κB, Wnt/β-catenin, PI3K/AKT/PKB/mTOR, and ERK/MAPK. Based on the exciting outcomes of preclinical studies, a few berries have advanced to the clinical phase. A limited number of human studies have shown that consumption of berries can prevent colorectal cancer, especially in patients at high risk (familial adenopolyposis or aberrant crypt foci, and inflammatory bowel diseases). In this review, we aim to highlight the findings of berries and their bioactive compounds in colon cancer from in vitro and in vivo studies, both on animals and humans. Thus, this review could be a useful step towards the next phase of berry research in colon cancer.
Collapse
Affiliation(s)
- Sadia Afrin
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Massimiliano Gasparrini
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Tamara Y Forbes-Hernandez
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., Armilla 18100, Spain.
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, Armilla, Avda. del Conocimiento s.n., Armilla 18100, Spain.
| | - Bruno Mezzetti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Via Ranieri 65, Ancona 60131, Italy.
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, Ancona 60131, Italy.
- Centre for Nutrition & Health, Universidad Europea del Atlantico (UEA), Santander 39011, Spain.
| |
Collapse
|
31
|
Kresty LA, Mallery SR, Stoner GD. Black raspberries in cancer clinical trials: Past, present and future. JOURNAL OF BERRY RESEARCH 2016; 6:251-261. [PMID: 27594930 PMCID: PMC5008867 DOI: 10.3233/jbr-160125] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Black raspberries (BRB) inhibit a broad range of cancers in preclinical models, including in vivo models of oral, esophageal, colon, breast and skin cancer. Promising preclinical results have led to clinical evaluations in cancer patients or patients at increased risk for cancer development. OBJECTIVE To summarize clinical investigations targeting cancer or precancerous lesions with BRB and discuss future directions. METHODS A thorough literature search was conducted through December 1, 2015 to identify all published studies evaluating BRB in cancer focused clinical trials. RESULTS Research investigating BRB in clinical settings report positive effects on preneoplastic lesions or cancers of the oral cavity, esophagus and colon. BRB treatment resulted in: histologic regression of oral intraepithelial neoplasia associated with improved histologic grade and significantly reduced loss of heterozygosity at tumor suppressor gene loci, modulated genes linked to RNA processing and growth factor recycling; in the colon, BRB inhibited FAP-associated polyp progression, demethylated tumor suppressor genes and improved plasma cytokine profiles; in Barrett's patients, BRB consumption increased tissue levels of GST-pi and decreased 8-isoprostane, a marker of lipid peroxidation/oxidative stress. CONCLUSIONS The precise dose, duration and optimum mode of BRB delivery for cancer inhibition remains to be fully elucidated. Common themes across studies support that BRB are anti-proliferative, anti- inflammatory, reduce oxidative stress and restore tumor suppressive activity. Future directions are included in the conclusions section.
Collapse
Affiliation(s)
- Laura A. Kresty
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
- Corresponding author: Laura A. Kresty, Medical College of Wisconsin, Division of Hematology & Oncology, Department of Medicine, TBRC #3910, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA. Tel.: +1 414 955 2673;
| | - Susan R. Mallery
- Division of Oral and Maxillofacial Pathology and Radiology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Gary D. Stoner
- Department of Medicine, Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
32
|
Pan P, Skaer CW, Wang HT, Stirdivant SM, Young MR, Oshima K, Stoner GD, Lechner JF, Huang YW, Wang LS. Black raspberries suppress colonic adenoma development in ApcMin/+ mice: relation to metabolite profiles. Carcinogenesis 2015; 36:1245-53. [PMID: 26246425 DOI: 10.1093/carcin/bgv117] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/31/2015] [Indexed: 12/24/2022] Open
Abstract
Freeze-dried black raspberries (BRBs) have demonstrated chemopreventive effects in a dietary intervention trial with human colorectal cancer patients. The aim of this study was to investigate BRB-caused metabolite changes using the Apc(Min/+) mouse as a model of human colorectal cancer. Wild-type (WT) mice were fed control diet, and Apc(Min/+) mice were fed either control diet or control diet supplemented with 5% BRBs for 8 weeks. Colonic and intestinal polyp size and number were measured. A non-targeted metabolomic analysis was conducted on colonic mucosa, liver and fecal specimens. Eight weeks of BRB treatment significantly decreased intestinal and colonic polyp number and size in Apc(Min/+) mice. The apc gene mutation significantly changed 52 metabolites in colonic mucosa associated with increased amino acid and decreased lipid metabolites, as well as 39 liver and 8 fecal metabolites. BRBs significantly reversed 23 apc-regulated metabolites, including 13 colonic mucosa, 8 liver and 2 fecal metabolites that were involved in amino acid, glutathione, lipid and nucleotide metabolism. Of these, changes in eight metabolites were linearly correlated with decreased colonic polyp number and size in BRB-treated Apc(Min/+) mice. Elevated levels of putrescine and linolenate in Apc(Min/+) mice were significantly decreased by BRBs. Ornithine decarboxylase expression, the key enzyme in putrescine generation, was fully suppressed by BRBs. These results suggest that BRBs produced beneficial effects against colonic adenoma development in Apc(Min/+) mice and modulated multiple metabolic pathways. The metabolite changes produced by BRBs might potentially reflect the BRB-mediated chemopreventive effects in colorectal cancer patients.
Collapse
Affiliation(s)
| | | | | | | | - Matthew R Young
- Division of Cancer Prevention, National Cancer Institute, Frederick, MD 20850, USA
| | | | | | | | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
33
|
Guo Y, Lee JH, Shu L, Huang Y, Li W, Zhang C, Yang AY, Boyanapalli SS, Perekatt A, Hart RP, Verzi M, Kong ANT. Association of aberrant DNA methylation in Apc(min/+) mice with the epithelial-mesenchymal transition and Wnt/β-catenin pathways: genome-wide analysis using MeDIP-seq. Cell Biosci 2015; 5:24. [PMID: 26101583 PMCID: PMC4476183 DOI: 10.1186/s13578-015-0013-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/11/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Aberrant DNA methylation at the 5-carbon on cytosine residues (5mC) in CpG dinucleotides is probably the most extensively characterized epigenetic modification in colon cancer. It has been suggested that the loss of adenomatous polyposis coli (APC) function initiates tumorigenesis and that additional genetic and epigenetic events are involved in colon cancer progression. We aimed to study the genome-wide DNA methylation profiles of intestinal tumorigenesis in Apc(min/+) mice. RESULTS Methylated DNA immunoprecipitation (MeDIP) followed by next-generation sequencing was used to determine the global profile of DNA methylation changes in Apc(min/+) mice. DNA was extracted from adenomatous polyps from Apc(min/+) mice and from normal intestinal tissue from age-matched Apc(+/+) littermates, and the MeDIP-seq assay was performed. Ingenuity Pathway Analysis (IPA) software was used to analyze the data for gene interactions. A total of 17,265 differentially methylated regions (DMRs) displayed a ≥ 2-fold change (log2) in methylation in Apc(min/+) mice; among these DMRs, 9,078 (52.6 %) and 8,187 (47.4 %) exhibited increased and decreased methylation, respectively. Genes with altered methylation patterns were mainly mapped to networks and biological functions associated with cancer and gastrointestinal diseases. Among these networks, several canonical pathways, such as the epithelial-mesenchymal transition (EMT) and Wnt/β-catenin pathways, were significantly associated with genome-wide methylation changes in polyps from Apc(min/+) mice. The identification of certain differentially methylated molecules in the EMT and Wnt/β-catenin pathways, such as APC2 (adenomatosis polyposis coli 2), SFRP2 (secreted frizzled-related protein 2), and DKK3 (dickkopf-related protein 3), was consistent with previous publications. CONCLUSIONS Our findings indicated that Apc(min/+) mice exhibited extensive aberrant DNA methylation that affected certain signaling pathways, such as the EMT and Wnt/β-catenin pathways. The genome-wide DNA methylation profile of Apc(min/+) mice is informative for future studies investigating epigenetic gene regulation in colon tumorigenesis and the prevention of colon cancer.
Collapse
Affiliation(s)
- Yue Guo
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Gyeonggi-do, 463-400 South Korea
| | - Limin Shu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Ying Huang
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Wenji Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Chengyue Zhang
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Anne Yuqing Yang
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Sarandeep Ss Boyanapalli
- Graduate Program in Pharmaceutical Science, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA.,Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| | - Ansu Perekatt
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Michael Verzi
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854 USA
| | - Ah-Ng Tony Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Room 228, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA
| |
Collapse
|
34
|
Abstract
The colorectal mucosal epithelium is composed of rapidly proliferating crypt cells derived by clonal expansion from stem cells. The aging human colorectal mucosa develops aberrant patterns of DNA methylation that may contribute to its increasing vulnerability to cancer. Various types of evidence suggest that age-dependent loss of global methylation, together with hypermethylation of CpG islands associated with cancer-related genes, may be influenced by nutritional and metabolic factors. Folates are essential for the maintenance of normal DNA methylation, and folate metabolism is known to modify epigenetic mechanisms under experimental conditions. Human intervention trials and cross-sectional studies suggest a role for folates and other nutritional and metabolic factors as determinants of colorectal mucosal DNA methylation. Future studies should focus on the possibility that folic acid fortification may exert unforeseen effects on the human gastrointestinal epigenome. Naturally occurring DNA methyltransferase inhibitors in plant foods may be useful for the manipulation of epigenetic profiles in health and disease.
Collapse
Affiliation(s)
- Ian T Johnson
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich, NR4 7UA, UK
| | | |
Collapse
|
35
|
Shukla S, Meeran SM. Epigenetics of cancer stem cells: Pathways and therapeutics. Biochim Biophys Acta Gen Subj 2014; 1840:3494-3502. [PMID: 25240776 DOI: 10.1016/j.bbagen.2014.09.017] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Epigenetic alterations including DNA methylation and histone modifications are the key factors in the differentiation of stem cells into different tissue subtypes. The generation of cancer stem cells (CSCs) in the process of carcinogenesis may also involve similar kind of epigenetic reprogramming where, in contrast, it leads to the loss of expression of genes specific to the differentiated state and regaining of stem cell-specific characteristics. The most important predicament with treatment of cancers includes the non-responsive quiescent CSC. SCOPE OF REVIEW The distinctive capabilities of the CSCs make cancer treatment even more difficult as this population of cells tends to remain quiescent for longer intervals and then gets reactivated leading to tumor relapse. Therefore, the current review is aimed to focus on recent advances in understanding the relation of epigenetic reprogramming to the generation, self-renewal and proliferation of CSCs. MAJOR CONCLUSION CSC-targeted therapeutic approaches would improve the chances of patient survival by reducing the frequency of tumor relapse. Differentiation therapy is an emerging therapeutic approach in which the CSCs are induced to differentiate from their quiescent state to a mature differentiated form, through activation of differentiation-related signalling pathways, miRNA-mediated alteration and epigenetic differentiation therapy. Thus, understanding the origin of CSC and their epigenetic regulation is crucial to develop treatment strategy against not only for the heterogeneous population of cancer cells but also to CSCs. GENERAL SIGNIFICANCE Characterizing the epigenetic marks of CSCs and the associated signalling cascades might help in developing therapeutic strategies against chemo-resistant cancers.
Collapse
Affiliation(s)
- Samriddhi Shukla
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Syed Musthapa Meeran
- Laboratory of Cancer Epigenetics, Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.
| |
Collapse
|