1
|
Khulan B, Ye K, Shi MK, Waldman S, Marsh A, Siddiqui T, Okorozo A, Desai A, Patel D, Dobkin J, Sadoughi A, Shah C, Gera S, Peter Y, Liao W, Vijg J, Spivack SD. Normal bronchial field basal cells show persistent methylome-wide impact of tobacco smoking, including in known cancer genes. Epigenetics 2025; 20:2466382. [PMID: 39980243 PMCID: PMC11849931 DOI: 10.1080/15592294.2025.2466382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Lung carcinogenesis is causally linked to cigarette smoking, in part by epigenetic changes. We tested whether accumulated epigenetic change in smokers is apparent in bronchial basal cells as cells of origin of squamous cell carcinoma. Using an EM-seq platform covering 53.8 million CpGs (96% of the entire genome) at an average of 7.5 sequencing reads per CpG site at a single base resolution, we evaluated cytology-normal basal cells bronchoscopically brushed from the in situ tobacco smoke-exposed 'bronchial epithelial field' and isolated by short-term primary culture from 54 human subjects. We found that mean methylation was globally lower in ever (former and current) smokers versus never smokers (p = 0.0013) across promoters, CpG shores, exons, introns, 3'-UTRs, and intergenic regions, but not in CpG islands. Among 6mers with dinucleotides flanking CpG, those containing CGCG showed no effect from smoking, while those flanked with TT and AA displayed the strongest effects. At the gene level, smoking-related differences in methylation level were observed in CDKL1, ARTN, EDC3, CYP1B1, FAM131A, and MAGI2. Among candidate cancer genes, smoking reduced the methylation level in KRAS, ROS1, CDKN1A, CHRNB4, and CADM1. We conclude that smoking reduces long-term epigenome-wide methylation in bronchial stem cells, is impacted by the flanking sequence, and persists indefinitely beyond smoking cessation.
Collapse
Affiliation(s)
- Batbayar Khulan
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kenny Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Miao Kevin Shi
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Spencer Waldman
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ava Marsh
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Taha Siddiqui
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aham Okorozo
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aditi Desai
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dhruv Patel
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jay Dobkin
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ali Sadoughi
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chirag Shah
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Shweta Gera
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yakov Peter
- Department of Biology, Lander College, Touro University, NY, USA
| | - Will Liao
- New York Genome Center, New York, NY, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Simon D. Spivack
- Department of Pulmonary Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
2
|
Li B, Li X, Jiang Z, Zhou D, Feng Y, Chen G, Li N. LncRNA XIST modulates miR-328-3p ectopic expression in lung injury induced by tobacco-specific lung carcinogen NNK both in vitro and in vivo. Br J Pharmacol 2024; 181:2509-2527. [PMID: 38589338 DOI: 10.1111/bph.16373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND AND PURPOSE It is well acknowledged that tobacco-derived lung carcinogens can induce lung injury and even lung cancer through a complex mechanism. MicroRNAs (MiRNAs) are differentially expressed in tobacco-derived carcinogen nicotine-derived nitrosamine ketone (NNK)-treated A/J mice. EXPERIMENTAL APPROACH RNA sequencing was used to detect the level of long non-coding RNAs (lncRNAs). Murine and human lung normal and cancer cells were used to evaluate the function of lncRNA XIST and miR-328-3p in vitro, and NNK-treated A/J mice were used to test their function in vivo. In vivo levels of miR-328-3p and lncRNA XIST were analysed, using in situ hybridization. miR-328-3p agomir and lncRNA XIST-specific siRNA were used to manipulate in vivo levels of miR-328-3p and lncRNA XIST in A/J mice. KEY RESULTS LncRNA XIST was up-regulated in NNK-induced lung injury and dominated the NNK-induced ectopic miRNA expression in NNK-induced lung injury both in vitro and in vivo. Either lncRNA XIST silencing or miR-328-3p overexpression exerted opposing effects in lung normal and cancer cells regarding cell migration. LncRNA XIST down-regulated miR-328-3p levels as a miRNA sponge, and miR-328-3p targeted the 3'-UTR of FZD7 mRNA, which is ectopically overexpressed in lung cancer patients. Both in vivo lncRNA XIST silencing and miR-328 overexpression could rescue NNK-induced lung injury and aberrant overexpression of the lung cancer biomarker CK19 in NNK-treated A/J mice. CONCLUSIONS AND IMPLICATIONS Our results highlight the promotive effect of lncRNA XIST in NNK-induced lung injury and elucidate its post-transcriptional mechanisms, indicating that targeting lncRNA XIST/miR-328-3p could be a potential therapeutic strategy to prevent tobacco carcinogen-induced lung injury in vivo.
Collapse
Affiliation(s)
- Bingxin Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Xuezheng Li
- Department of PIVAS, Yanbian University Hospital, Yanji, China
| | - Zhe Jiang
- Department of PIVAS, Yanbian University Hospital, Yanji, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuan Feng
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
3
|
Han G, Sinjab A, Rahal Z, Lynch AM, Treekitkarnmongkol W, Liu Y, Serrano AG, Feng J, Liang K, Khan K, Lu W, Hernandez SD, Liu Y, Cao X, Dai E, Pei G, Hu J, Abaya C, Gomez-Bolanos LI, Peng F, Chen M, Parra ER, Cascone T, Sepesi B, Moghaddam SJ, Scheet P, Negrao MV, Heymach JV, Li M, Dubinett SM, Stevenson CS, Spira AE, Fujimoto J, Solis LM, Wistuba II, Chen J, Wang L, Kadara H. An atlas of epithelial cell states and plasticity in lung adenocarcinoma. Nature 2024; 627:656-663. [PMID: 38418883 PMCID: PMC10954546 DOI: 10.1038/s41586-024-07113-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Understanding the cellular processes that underlie early lung adenocarcinoma (LUAD) development is needed to devise intervention strategies1. Here we studied 246,102 single epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial cells comprised diverse normal and cancer cell states, and diversity among cancer cells was strongly linked to LUAD-specific oncogenic drivers. KRAS mutant cancer cells showed distinct transcriptional features, reduced differentiation and low levels of aneuploidy. Non-malignant areas surrounding human LUAD samples were enriched with alveolar intermediate cells that displayed elevated KRT8 expression (termed KRT8+ alveolar intermediate cells (KACs) here), reduced differentiation, increased plasticity and driver KRAS mutations. Expression profiles of KACs were enriched in lung precancer cells and in LUAD cells and signified poor survival. In mice exposed to tobacco carcinogen, KACs emerged before lung tumours and persisted for months after cessation of carcinogen exposure. Moreover, they acquired Kras mutations and conveyed sensitivity to targeted KRAS inhibition in KAC-enriched organoids derived from alveolar type 2 (AT2) cells. Last, lineage-labelling of AT2 cells or KRT8+ cells following carcinogen exposure showed that KACs are possible intermediates in AT2-to-tumour cell transformation. This study provides new insights into epithelial cell states at the root of LUAD development, and such states could harbour potential targets for prevention or intervention.
Collapse
Affiliation(s)
- Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zahraa Rahal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne M Lynch
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Graduate Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuejiang Liu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Alejandra G Serrano
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jiping Feng
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ke Liang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khaja Khan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sharia D Hernandez
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yunhe Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xuanye Cao
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Enyu Dai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangsheng Pei
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Hu
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Camille Abaya
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lorena I Gomez-Bolanos
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fuduan Peng
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Minyue Chen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Edwin R Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Cascone
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Boris Sepesi
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marcelo V Negrao
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven M Dubinett
- Department of Medicine, The University of California Los Angeles, Los Angeles, CA, USA
| | | | - Avrum E Spira
- Lung Cancer Initiative at Johnson & Johnson, Boston, MA, USA
- Section of Computational Biomedicine, School of Medicine, Boston University, Boston, MA, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas Health Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
4
|
Corleis B, Tzouanas CN, Wadsworth MH, Cho JL, Linder AH, Schiff AE, Zessin B, Stei F, Dorhoi A, Dickey AK, Medoff BD, Shalek AK, Kwon DS. Tobacco smoke exposure recruits inflammatory airspace monocytes that establish permissive lung niches for Mycobacterium tuberculosis. Sci Transl Med 2023; 15:eadg3451. [PMID: 38055798 DOI: 10.1126/scitranslmed.adg3451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Tobacco smoking doubles the risk of active tuberculosis (TB) and accounts for up to 20% of all active TB cases globally. How smoking promotes lung microenvironments permissive to Mycobacterium tuberculosis (Mtb) growth remains incompletely understood. We investigated primary bronchoalveolar lavage cells from current and never smokers by performing single-cell RNA sequencing (scRNA-seq), flow cytometry, and functional assays. We observed the enrichment of immature inflammatory monocytes in the lungs of smokers compared with nonsmokers. These monocytes exhibited phenotypes consistent with recent recruitment from blood, ongoing differentiation, increased activation, and states similar to those with chronic obstructive pulmonary disease. Using integrative scRNA-seq and flow cytometry, we identified CD93 as a marker for a subset of these newly recruited smoking-associated lung monocytes and further provided evidence that the recruitment of monocytes into the lung was mediated by CCR2-binding chemokines, including CCL11. We also show that these cells exhibit elevated inflammatory responses upon exposure to Mtb and accelerated intracellular growth of Mtb compared with mature macrophages. This elevated Mtb growth could be inhibited by anti-inflammatory small molecules, providing a connection between smoking-induced pro-inflammatory states and permissiveness to Mtb growth. Our findings suggest a model in which smoking leads to the recruitment of immature inflammatory monocytes from the periphery to the lung, which results in the accumulation of these Mtb-permissive cells in the airway. This work defines how smoking may lead to increased susceptibility to Mtb and identifies host-directed therapies to reduce the burden of TB among those who smoke.
Collapse
Affiliation(s)
- Björn Corleis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, 17493, Germany
| | - Constantine N Tzouanas
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Institute for Medical Engineering & Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Marc H Wadsworth
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Institute for Medical Engineering & Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Josalyn L Cho
- Roy J. and Lucille A. Carver College of Medicine, Department of Internal Medicine, Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Alice H Linder
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Abigail E Schiff
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Björn Zessin
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, 17493, Germany
| | - Fabian Stei
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, 17493, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institute, Greifswald-Insel Riems, 17493, Germany
| | - Amy K Dickey
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Alex K Shalek
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Institute for Medical Engineering & Science (IMES), Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Roy J. and Lucille A. Carver College of Medicine, Department of Internal Medicine, Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Douglas S Kwon
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
5
|
Finnicum CT, Rahal Z, Hassane M, Treekitkarnmongkol W, Sinjab A, Morris R, Liu Y, Tang EL, Viet S, Petersen JL, Lorenzi PL, Tan L, Petrosino J, Hoffman KL, Fujimoto J, Moghaddam SJ, Kadara H. Pathogenesis of Tobacco-Associated Lung Adenocarcinoma Is Closely Coupled with Changes in the Gut and Lung Microbiomes. Int J Mol Sci 2022; 23:10930. [PMID: 36142843 PMCID: PMC9502774 DOI: 10.3390/ijms231810930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Microbial dysbiosis has emerged as a modulator of oncogenesis and response to therapy, particularly in lung cancer. Here, we investigate the evolution of the gut and lung microbiomes following exposure to a tobacco carcinogen. We performed 16S rRNA-Seq of fecal and lung samples collected prior to and at several timepoints following (nicotine-specific nitrosamine ketone/NNK) exposure in Gprc5a-/- mice that were previously shown to exhibit accelerated lung adenocarcinoma (LUAD) development following NNK exposure. We found significant progressive changes in human-relevant gut and lung microbiome members (e.g., Odoribacter, Alistipes, Akkermansia, and Ruminococus) that are closely associated with the phenotypic development of LUAD and immunotherapeutic response in human lung cancer patients. These changes were associated with decreased short-chain fatty acids (propionic acid and butyric acid) following exposure to NNK. We next sought to study the impact of Lcn2 expression, a bacterial growth inhibitor, given our previous findings on its protective role in LUAD development. Indeed, we found that the loss of Lcn2 was associated with widespread gut and lung microbiome changes at all timepoints, distinct from those observed in our Gprc5a-/- mouse model, including a decrease in abundance and diversity. Our overall findings apprise novel cues implicating microbial phenotypes in the development of tobacco-associated LUAD.
Collapse
Affiliation(s)
| | - Zahraa Rahal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maya Hassane
- Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon
| | - Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rhiannon Morris
- College of Natural Sciences, University of Texas at Austin, Austin, TX 78705, USA
| | - Yuejiang Liu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth L. Tang
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sarah Viet
- Avera Institute for Human Genetics, Sioux Falls, SD 57108, USA
| | | | - Philip L. Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kristi L. Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Seyed Javad Moghaddam
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
陈 琳, 陈 新, 刘 璐, 赵 燕, 左 伟, 尹 崇, 李 洪. [miR-30b-3p Inhibits the Proliferation and Invasion of Lung Adenocarcinoma
by Targeting COX6B1]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2022; 25:567-574. [PMID: 36002193 PMCID: PMC9411956 DOI: 10.3779/j.issn.1009-3419.2022.101.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most common clinical histological subtype of lung cancer and microRNAs (miRNAs) are a type of small non-coding RNAs which play a central role in cells. miR-30b-3p plays a key effect in many types of carcinoma, but there is still very little research on how it works in lung adenocarcinoma. The role and mechanism of miR-30b-3p in the proliferation and invasion of LUAD were explored in this study, to provide new targets for inhibiting the proliferation and invasion of LUAD. METHODS NCBI database was used to screen out miRNA with obvious differential expression, and the differential expression and survival curve were searched by StarBase database. Real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) was used to detect the relative expression of miR-30b-3p in each lung adenocarcinoma cell line. 5-ethynyl-2'-deoxyuridine (EdU) cell proliferation assay and Transwell invasion assay were used to detect the proliferation and invasion of A549 cells in each group. The target genes of miR-30b-3p were determined by the target gene prediction websites. Western blot assay was used to detect the expression of COX6B1 in each group of A549 cells. Double luciferase assay was used to verify the targeted binding relationship between miR-30b-3p and COX6B1. RESULTS The expression of miR-30b-3p in lung adenocarcinoma tissues and lung adenocarcinoma cells was downregulated (P<0.05). Low expression levels of miR-30b-3p were associated with poor prognosis in patients with lung adenocarcinoma (P=0.005,8). Overexpression of miR-30b-3p could inhibit the proliferation and the invasion of lung adenocarcinoma cells (P<0.05). Double luciferase assay proved that miR-30b-3p could target and bind to COX6B1 (P<0.05). Western blot analysis showed that the overexpression of miR-30b-3p could downregulate the expression of COX6B1 in A549 cells (P<0.05). EdU cell proliferation assay and Transwell invasion assay showed that the overexpression of miR-30b-3p could reverse the promoting effect of upregulation of COX6B1 on proliferation and invasion in lung adenocarcinoma cells (P<0.05). CONCLUSIONS miR-30b-3p acts as a tumor suppressor gene in lung adenocarcinoma, and it can inhibit the proliferation and invasion of lung adenocarcinoma by targeting the expression of COX6B1.
Collapse
Affiliation(s)
- 琳 陈
- 261053 潍坊,潍坊医学院病理学教研室Department of Pathology, Weifang Medical University, Weifang 261053, China
| | - 新璐 陈
- 261053 潍坊,潍坊医学院病理学教研室Department of Pathology, Weifang Medical University, Weifang 261053, China
| | - 璐 刘
- 261053 潍坊,潍坊医学院病理学教研室Department of Pathology, Weifang Medical University, Weifang 261053, China
| | - 燕乔 赵
- 261053 潍坊,潍坊医学院病理学教研室Department of Pathology, Weifang Medical University, Weifang 261053, China
| | - 伟 左
- 261053 潍坊,潍坊医学院附属医院Affiliated Hospital, Weifang Medical University, Weifang 261053, China
| | - 崇高 尹
- 261053 潍坊,潍坊医学院护理学院Colloge of Nursing, Weifang Medical University, Weifang 261053, China
| | - 洪利 李
- 261053 潍坊,潍坊医学院医学研究实验中心Medical Research Center, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
7
|
Hassane M, Rahal Z, Karaoghlanian N, Zhang J, Sinjab A, Wong JW, Lu W, Scheet P, Lee JJ, Raso MG, Solis LM, Fujimoto J, Chami H, Shihadeh AL, Kadara H. Chronic Exposure to Waterpipe Smoke Elicits Immunomodulatory and Carcinogenic Effects in the Lung. Cancer Prev Res (Phila) 2022; 15:423-434. [PMID: 35468191 PMCID: PMC9256796 DOI: 10.1158/1940-6207.capr-21-0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/23/2022] [Accepted: 04/21/2022] [Indexed: 01/07/2023]
Abstract
Effects of waterpipe smoking on lung pathobiology and carcinogenesis remain sparse despite the worldwide emergence of this tobacco vector. To address this gap, we investigated the effects of chronic waterpipe smoke (WPS) exposure on lung pathobiology, host immunity, and tumorigenesis using an experimental animal model that is prone to tobacco carcinogens and an exploratory observational analysis of human waterpipe smokers and nonsmokers. Mice exhibited elevated incidence of lung tumors following heavy WPS exposure (5 days/week for 20 weeks) compared to littermates with light WPS (once/week for 20 weeks) or control air. Lungs of mice exposed to heavy WPS showed augmented CD8+ and CD4+ T cell counts along with elevated protumor immune phenotypes including increased IL17A in T/B cells, PD-L1 on tumor and immune cells, and the proinflammatory cytokine IL1β in myeloid cells. RNA-sequencing (RNA-seq) analysis showed reduced antitumor immune gene signatures in animals exposed to heavy WPS relative to control air. We also performed RNA-seq analysis of airway epithelia from bronchial brushings of cancer-free waterpipe smokers and nonsmokers undergoing diagnostic bronchoscopy. Transcriptomes of normal airway cells in waterpipe smokers, relative to waterpipe nonsmokers, harbored gene programs that were associated with poor clinical outcomes in patients with lung adenocarcinoma, alluding to a WPS-associated molecular injury, like that established in response to cigarette smoking. Our findings support the notion that WPS exhibits carcinogenic effects and constitutes a possible risk factor for lung cancer as well as warrant future studies that can guide evidence-based policies for mitigating waterpipe smoking. PREVENTION RELEVANCE Potential carcinogenic effects of waterpipe smoking are very poorly understood despite its emergence as a socially acceptable form of smoking. Our work highlights carcinogenic effects of waterpipe smoking in the lung and, thus, accentuate the need for inclusion of individuals with exclusive waterpipe smoking in prevention and smoking cessation studies.
Collapse
Affiliation(s)
- Maya Hassane
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zahraa Rahal
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Jiexin Zhang
- Department of Biostatistics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Justin W. Wong
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Wei Lu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - J. Jack Lee
- Department of Biostatistics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hassan Chami
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,School of Medicine, John Hopkins University, Baltimore, Maryland, USA
| | - Alan L. Shihadeh
- Faculty of Engineering, American University of Beirut, Beirut, Lebanon
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Correspondence to Humam Kadara, PhD, Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA, Telephone: 713-745-9396,
| |
Collapse
|
8
|
Yin H, Jing B, Xu D, Guo W, Sun B, Zhang J, Liao Y, Song H, Wang T, Liu S, Kuang Y, Hu M, Li K, Zhang S, Zhang H, Xu J, Li X, Du J, Wu Y, Wu Y, Wang Q, Yao F, Chin YE, Zhou BP, Deng J. Identification of Active Bronchioalveolar Stem Cells as the Cell-of-Origin in Lung Adenocarcinoma. Cancer Res 2022; 82:1025-1037. [DOI: 10.1158/0008-5472.can-21-2445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022]
|
9
|
Qiu BQ, Lin XH, Lai SQ, Lu F, Lin K, Long X, Zhu SQ, Zou HX, Xu JJ, Liu JC, Wu YB. ITGB1-DT/ARNTL2 axis may be a novel biomarker in lung adenocarcinoma: a bioinformatics analysis and experimental validation. Cancer Cell Int 2021; 21:665. [PMID: 34906142 PMCID: PMC8670189 DOI: 10.1186/s12935-021-02380-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Lung cancer is one of the most lethal malignant tumors that endangers human health. Lung adenocarcinoma (LUAD) has increased dramatically in recent decades, accounting for nearly 40% of all lung cancer cases. Increasing evidence points to the importance of the competitive endogenous RNA (ceRNA) intrinsic mechanism in various human cancers. However, behavioral characteristics of the ceRNA network in lung adenocarcinoma need further study. METHODS Groups based on SLC2A1 expression were used in this study to identify associated ceRNA networks and potential prognostic markers in lung adenocarcinoma. The Cancer Genome Atlas (TCGA) database was used to obtain the patients' lncRNA, miRNA, and mRNA expression profiles, as well as clinical data. Informatics techniques were used to investigate the effect of hub genes on prognosis. The Cox regression analyses were performed to evaluate the prognostic effect of hub genes. The methylation, GSEA, and immune infiltration analyses were utilized to explore the potential mechanisms of the hub gene. The CCK-8, transwell, and colony formation assays were performed to detect the proliferation and invasion of lung cancer cells. RESULTS We eventually identified the ITGB1-DT/ARNTL2 axis as an independent fact may promote lung adenocarcinoma progression. Furthermore, methylation analysis revealed that hypo-methylation may cause the dysregulated ITGB1-DT/ARNTL2 axis, and immune infiltration analysis revealed that the ITGB1-DT/ARNTL2 axis may affect the immune microenvironment and the progression of lung adenocarcinoma. The CCK-8, transwell, and colonu formation assays suggested that ITGB1-DT/ARNTL2 promotes the progression of lung adenocarcinoma. And hsa-miR-30b-3p reversed the ITGB1/ARNTL2-mediated oncogenic processes. CONCLUSION Our study identified the ITGB1-DT/ARNTL2 axis as a novel prognostic biomarker affects the prognosis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Bai-Quan Qiu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xia-Hui Lin
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Song-Qing Lai
- Institute of Cardiovascular Disease, Jiangxi Academy of Clinical Medical Sciences, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Lu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Kun Lin
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiang Long
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shu-Qiang Zhu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hua-Xi Zou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian-Jun Xu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ji-Chun Liu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| | - Yong-Bing Wu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
10
|
Mao GC, Gong CC, Wang Z, Sun MX, Pei ZP, Meng WQ, Cen JF, He XW, Lu Y, Xu QQ, Xiao K. BMSC-derived exosomes ameliorate sulfur mustard-induced acute lung injury by regulating the GPRC5A-YAP axis. Acta Pharmacol Sin 2021; 42:2082-2093. [PMID: 33654219 PMCID: PMC8633287 DOI: 10.1038/s41401-021-00625-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Sulfur mustard (SM) is a highly toxic chemical warfare agent that causes acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS). There are no effective therapeutic treatments or antidotes available currently to counteract its toxic effects. Our previous study shows that bone marrow-derived mesenchymal stromal cells (BMSCs) could exert therapeutic effects against SM-induced lung injury. In this study, we explored the therapeutic potential of BMSC-derived exosomes (BMSC-Exs) against ALI and the underlying mechanisms. ALI was induced in mice by injection of SM (30 mg/kg, sc) at their medial and dorsal surfaces. BMSC-Exs (20 μg/kg in 200 μL PBS, iv) were injected for a 5-day period after SM exposure. We showed that BMSC-Exs administration caused a protective effect against pulmonary edema. Using a lung epithelial cell barrier model, BMSC-Exs (10, 20, 40 μg) dose-dependently inhibited SM-induced cell apoptosis and promoted the recovery of epithelial barrier function by facilitating the expression and relocalization of junction proteins (E-cadherin, claudin-1, occludin, and ZO-1). We further demonstrated that BMSC-Exs protected against apoptosis and promoted the restoration of barrier function against SM through upregulating G protein-coupled receptor family C group 5 type A (GPRC5A), a retinoic acid target gene predominately expressed in the epithelial cells of the lung. Knockdown of GPRC5A reduced the antiapoptotic and barrier regeneration abilities of BMSC-Exs and diminished their therapeutic effects in vitro and in vivo. BMSC-Exs-caused upregulation of GPRC5A promoted the expression of Bcl-2 and junction proteins via regulating the YAP pathway. In summary, BMSC-Exs treatment exerts protective effects against SM-induced ALI by promoting alveolar epithelial barrier repair and may be an alternative approach to stem cell-based therapy.
Collapse
Affiliation(s)
- Guan-Chao Mao
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Chu-Chu Gong
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zhen Wang
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
- Department of Preventive Medicinne, School of Medicine, Hunan Normal University, Changsha, China
| | - Ming-Xue Sun
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zhi-Peng Pei
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Wen-Qi Meng
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jin-Feng Cen
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xiao-Wen He
- Origincell Technology Group Co., Ltd., Shanghai, 201203, China
| | - Ying Lu
- Department of Pharmaceutical Science, School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Qing-Qiang Xu
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Kai Xiao
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
11
|
Alam A, Ansari MA, Badrealam KF, Pathak S. Molecular approaches to lung cancer prevention. Future Oncol 2021; 17:1793-1810. [PMID: 33653087 DOI: 10.2217/fon-2020-0789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lung cancer is generally diagnosed at advanced stages when surgical resection is not possible. Late diagnosis, along with development of chemoresistance, results in high mortality. Preventive approaches, including smoking cessation, chemoprevention and early detection are needed to improve survival. Smoking cessation combined with low-dose computed tomography screening has modestly improved survival. Chemoprevention has also shown some promise. Despite these successes, most lung cancer cases remain undetected until advanced stages. Additional early detection strategies may further improve survival and treatment outcome. Molecular alterations taking place during lung carcinogenesis have the potential to be used in early detection via noninvasive methods and may also serve as biomarkers for success of chemopreventive approaches. This review focuses on the utilization of molecular biomarkers to increase the efficacy of various preventive approaches.
Collapse
Affiliation(s)
- Asrar Alam
- Department of Preventive Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| | - Mohammad A Ansari
- Department of Epidemic Disease Research, Institute of Research & Medical Consultation, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Khan F Badrealam
- Cardiovascular & Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Sujata Pathak
- Department of Preventive Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
12
|
Zhang H, Guo L, Chen J. Rationale for Lung Adenocarcinoma Prevention and Drug Development Based on Molecular Biology During Carcinogenesis. Onco Targets Ther 2020; 13:3085-3091. [PMID: 32341654 PMCID: PMC7166063 DOI: 10.2147/ott.s248436] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/14/2020] [Indexed: 12/18/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common and aggressive subtype of lung cancer with the greatest heterogeneity and aggression. Inspite of recent years’ achievements in understanding the pathogenesis of this disease, as well as the development of new therapeutic approaches, our knowledge on crucial early molecular events during its development is still rudimentary. Recent classification and grading of LUAD has postulated that LUAD does not arise spontaneously, but through a stepwise process from lung adenomatous premalignancy atypical adenomatous hyperplasia to adenocarcinoma in situ, minimally invasive adenocarcinoma, and eventually frankly invasive predominant adenocarcinoma. In this review, we discuss the molecular processes that drive the evolutionary process that results in the formation of LUAD. We also describe how to handle lung premalignancy in clinical settings based on the most recent advances in genomic biology and our own understanding of lung cancer prevention.
Collapse
Affiliation(s)
- Hongming Zhang
- Department of Respiratory Medicine, Yancheng Third People's Hospital, Affiliated Yancheng Hospital of Southeast University Medical College, Yancheng, Jiangsu Province, People's Republic of China
| | - Liting Guo
- Department of Oncology, Ruijin Hospital,affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jibei Chen
- Department of Respiratory Medicine, Yancheng Third People's Hospital, Affiliated Yancheng Hospital of Southeast University Medical College, Yancheng, Jiangsu Province, People's Republic of China
| |
Collapse
|
13
|
Saab S, Zalzale H, Rahal Z, Khalifeh Y, Sinjab A, Kadara H. Insights Into Lung Cancer Immune-Based Biology, Prevention, and Treatment. Front Immunol 2020; 11:159. [PMID: 32117295 PMCID: PMC7026250 DOI: 10.3389/fimmu.2020.00159] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/21/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the number one cause of cancer-related deaths. The malignancy is characterized by dismal prognosis and poor clinical outcome mostly due to advanced-stage at diagnosis, thereby inflicting a heavy burden on public health worldwide. Recent breakthroughs in immunotherapy have greatly benefited a subset of lung cancer patients, and more importantly, they are undauntedly bringing forth a paradigm shift in the drugs approved for cancer treatment, by introducing "tumor-type agnostic therapies". Yet, and to fulfill immunotherapy's potential of personalized cancer treatment, demarcating the immune and genomic landscape of cancers at their earliest possible stages will be crucial to identify ideal targets for early treatment and to predict how a particular patient will fare with immunotherapy. Recent genomic surveys of premalignant lung cancer have shed light on early alterations in the evolution of lung cancer. More recently, the advent of immunogenomic technologies has provided prodigious opportunities to study the multidimensional landscape of lung tumors as well as their microenvironment at the molecular, genomic, and cellular resolution. In this review, we will summarize the current state of immune-based therapies for cancer, with a focus on lung malignancy, and highlight learning outcomes from clinical and preclinical studies investigating the naïve immune biology of lung cancer. The review also collates immunogenomic-based evidence from seminal reports which collectively warrant future investigations of premalignancy, the tumor-adjacent normal-appearing lung tissue, pulmonary inflammatory conditions such as chronic obstructive pulmonary disease, as well as systemic microbiome imbalance. Such future directions enable novel insights into the evolution of lung cancers and, thus, can provide a low-hanging fruit of targets for early immune-based treatment of this fatal malignancy.
Collapse
Affiliation(s)
- Sara Saab
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hussein Zalzale
- School of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zahraa Rahal
- School of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yara Khalifeh
- School of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Humam Kadara
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
14
|
Prevention and Early Detection for NSCLC: Advances in Thoracic Oncology 2018. J Thorac Oncol 2019; 14:1513-1527. [DOI: 10.1016/j.jtho.2019.06.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/24/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023]
|
15
|
Guo W, Hu M, Wu J, Zhou A, Liao Y, Song H, Xu D, Kuang Y, Wang T, Jing B, Li K, Ling J, Wen D, Wu W. Gprc5a depletion enhances the risk of smoking-induced lung tumorigenesis and mortality. Biomed Pharmacother 2019; 114:108791. [PMID: 30901718 DOI: 10.1016/j.biopha.2019.108791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 12/24/2022] Open
Abstract
AIMS Lung cancer remains the leading cause of cancer incidence and mortality. Although cigarette smoke is regarded as a high risk factor for lung tumor initiation, the role of the lung tumor suppressor GPRC5A in smoking-induced lung cancer is unclear. MAIN METHODS We obtained two lung cancer cohorts from the TCGA and GEO databases. Bioinformatics analysis showed differential gene expression in the cohorts. Quantitative real-time PCR, Western Blot and Gprc5a-/- mice uncovered the relationship between cigarette smoke and lung cancer in the GPRC5A deletion system in vitro and in vivo. KEY FINDINGS Bioinformatics analysis showed that the smoking lung cancer patients with low expression of GPRC5A had poor overall survival compared to the patients with high GPRC5A expression. Further analysis revealed that cancer-related stemness pathways such as the Hippo signaling pathway were induced in smoking patients with low GPRC5A expression. Additionally, we detected enriched expression of WNT5A and DLX5 in normal human lung epithelial 16HBE cells and human lung cancer H1299 cells in vitro. A relationship between cigarette smoke extract (NNK) and lung tumor initiation was observed in Gprc5a-/- mice. SIGNIFICANCE The lung tumor suppressor gene GPRC5A played a protective role in cigarette smoke-induced lung tumor initiation, providing a target for the prevention of lung cancer development and monitoring of prognosis.
Collapse
Affiliation(s)
- Wenzheng Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Min Hu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jingjing Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Aiping Zhou
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yueling Liao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Hongyong Song
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Dongliang Xu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yanbin Kuang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, China.
| | - Tong Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Bo Jing
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Kaimi Li
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jing Ling
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Minister of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Donghua Wen
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Sex specific function of epithelial STAT3 signaling in pathogenesis of K-ras mutant lung cancer. Nat Commun 2018; 9:4589. [PMID: 30389925 PMCID: PMC6214980 DOI: 10.1038/s41467-018-07042-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 10/03/2018] [Indexed: 01/05/2023] Open
Abstract
Lung adenocarcinomas (LUADs) with mutations in the K-ras oncogene display dismal prognosis. Proinflammatory and immunomodulatory events that drive development of K-ras mutant LUAD are poorly understood. Here, we develop a lung epithelial specific K-ras mutant/Stat3 conditional knockout (LR/Stat3Δ/Δ) mouse model. Epithelial Stat3 deletion results in intriguing sex-associated discrepancies; K-ras mutant tumors are decreased in female LR/Stat3Δ/Δ mice whereas tumor burdens are increased in males. RNA-sequencing and tumor microenvironment (TME) analysis demonstrate increased anti-tumor immune responses following Stat3 deletion in females and, conversely, elevated pro-tumor immune pathways in males. While IL-6 blockade in male LR/Stat3Δ/Δ mice reduces lung tumorigenesis, inhibition of estrogen receptor signaling in female mice augments K-ras mutant oncogenesis and reprograms lung TME toward a pro-tumor phenotype. Our data underscore a critical sex-specific role for epithelial Stat3 signaling in K-ras mutant LUAD, thus paving the way for developing personalized (e.g. sex-based) immunotherapeutic strategies for this fatal disease. Proinflammatory and immunomodulatory events that drive development of K-ras mutant lung adenocarcinoma (LUAD) are poorly understood. Here they develop a lung epithelial specific K-ras mutant/Stat3 conditional knockout mouse model and show a sex-specific role for epithelial Stat3 signaling in K-ras-mutant LUAD.
Collapse
|
17
|
Khalil A, Dekmak B, Boulos F, Kantrowitz J, Spira A, Fujimoto J, Kadara H, El-Hachem N, Nemer G. Transcriptomic Alterations in Lung Adenocarcinoma Unveil New Mechanisms Targeted by the TBX2 Subfamily of Tumor Suppressor Genes. Front Oncol 2018; 8:482. [PMID: 30425966 PMCID: PMC6218583 DOI: 10.3389/fonc.2018.00482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/09/2018] [Indexed: 12/22/2022] Open
Abstract
T-box (TBX) transcription factors are evolutionary conserved genes and master transcriptional regulators. In mammals, TBX2 subfamily (TBX2, TBX3, TBX4, and TBX5) genes are expressed in the developing lung bud and tracheae. Our group previously showed that the expression of TBX2 subfamily was significantly high in human normal lungs, but markedly suppressed in lung adenocarcinoma (LUAD). To further elucidate their role in LUAD pathogenesis, we first confirmed abundant expression of protein products of the four members by immunostaining in adult human normal lung tissues. We also found overall suppressed expression of these genes and their corresponding proteins in a panel of human LUAD cell lines. Transient over-expression of each of the genes in human (NCI-H1299), and mouse (MDA-F471) derived lung cancer cells was found to significantly inhibit growth and proliferation as well as induce apoptosis. Genome-wide transcriptomic analyses on NCI-H1299 cells, overexpressing TBX2 gene subfamily, unraveled novel regulatory pathways. These included, among others, inhibition of cell cycle progression but more importantly activation of the histone demethylase pathway. When using a pattern-matching algorithm, we showed that TBX's overexpression mimic molecular signatures from azacitidine treated NCI-H1299 cells which in turn are inversely correlated to expression profiles of both human and murine lung tumors relative to matched normal lung. In conclusion, we showed that the TBX2 subfamily genes play a critical tumor suppressor role in lung cancer pathogenesis through regulating its methylating pattern, making them putative candidates for epigenetic therapy in LUAD.
Collapse
Affiliation(s)
- Athar Khalil
- Departments of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Batoul Dekmak
- Departments of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fouad Boulos
- Department of Pathology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Jake Kantrowitz
- Section of Computational Biomedicine, Boston University, Boston, MA, United States
| | - Avrum Spira
- Section of Computational Biomedicine, Boston University, Boston, MA, United States
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Humam Kadara
- Departments of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Division of Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nehme El-Hachem
- Faculty of Medicine and Genome Innovation Centre, McGill University, Montreal, QC, Canada
| | - Georges Nemer
- Departments of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|