1
|
Zheng J, Deng Y, Fang C, Xiong S, Zhu X, Wu W, Chen X, Wu W, Yin D, Hu K, Yan H. Comprehensive dataset of interactors for the entire PARP family using TurboID proximity labeling. Sci Data 2025; 12:405. [PMID: 40057523 PMCID: PMC11890743 DOI: 10.1038/s41597-025-04722-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/27/2025] [Indexed: 05/03/2025] Open
Abstract
A comprehensive dataset detailing protein interactors for the PARP family has been generated using TurboID proximity labeling under standardized experimental conditions. V5-TurboID fusion constructs enabled identification of 6,314 high-confidence interacting proteins through mass spectrometry, capturing transient interactions undetectable by conventional methods. Parallel GFP-PARP localization experiments validated physiological subcellular distributions. The dataset reveals both shared and unique interactors across PARP members, with network analysis suggesting functional cooperativity and specialization. Functional annotation analyses were performed on representative PARP members to validate key biological processes. All raw proteomic data (PRIDE: PXD052745)29 and processed interaction networks (figshare)50 are publicly available. This comprehensive interactome atlas provides a valuable foundation for advancing our understanding of PARP-mediated regulatory mechanisms and supports therapeutic development.
Collapse
Affiliation(s)
- Jiefu Zheng
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China
| | - Yawen Deng
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Cong Fang
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China
| | - Shiyu Xiong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xudong Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Weijun Wu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xinliang Chen
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wenjing Wu
- Department of Breast Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Dong Yin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Haiyan Yan
- Department of Clinical Laboratory, Shenshan Central Hospital, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Shanwei, 516600, China.
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
2
|
Merkuryev AV, Egorov VV. Role of PARP-1 structural and functional features in PARP-1 inhibitors development. Bioorg Chem 2025; 156:108188. [PMID: 39855113 DOI: 10.1016/j.bioorg.2025.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/18/2024] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is the key enzyme among other PARPs for post-translational modification of DNA repair proteins. It has four functional domains for DNA-binding, automodification and enzymatic activity. PARP-1 participates in poly-ADP-ribosylation of itself or other proteins during DNA damage response. It recruits reparation machinery proteins that restore native DNA sequence. PARP-1 participates in chromatin structure organization and gene expression regulation. It was shown that PARP-1-dependent regulation mechanisms affect on possible risk of carcinogenesis. Therefore, PARP-1 was proposed as a novel target for cancer treatment. Three generations of PARP-1 inhibitors had been developed depending on pharmacophore structure. To date, four PARP-1 inhibitors have been approved for cancer treatment as a chemotherapy potentiators or as a stand-alone therapy. However, different cytotoxicity effects of specific PARP-1 inhibitors were observed due to diverse PARP-1 activity in cellular processes. Moreover, cancer cells can develop resistance to PARP-1 inhibitors and decrease chemotherapy efficacy. There are promising strategies how to avoid these disadvantages including dual-targeted inhibitors and combination therapy.
Collapse
|
3
|
Cantore T, Gasperini P, Bevilacqua R, Ciani Y, Sinha S, Ruppin E, Demichelis F. PRODE recovers essential and context-essential genes through neighborhood-informed scores. Genome Biol 2025; 26:42. [PMID: 40022167 PMCID: PMC11869679 DOI: 10.1186/s13059-025-03501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025] Open
Abstract
Gene context-essentiality assessment supports precision oncology opportunities. The variability of gene effects inference from loss-of-function screenings across models and technologies limits identifying robust hits. We propose a computational framework named PRODE that integrates gene effects with protein-protein interactions to generate neighborhood-informed essential (NIE) and neighborhood-informed context essential (NICE) scores. It outperforms the canonical gene effect approach in recovering missed essential genes in shRNA screens and prioritizing context-essential hits from CRISPR-KO screens, as supported by in vitro validations. Applied to Her2 + breast cancer tumor samples, PRODE identifies oxidative phosphorylation genes as vulnerabilities with prognostic value, highlighting new therapeutic opportunities.
Collapse
Affiliation(s)
- Thomas Cantore
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, Trento, 38123, Italy
| | - Paola Gasperini
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, Trento, 38123, Italy
| | - Riccardo Bevilacqua
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, Trento, 38123, Italy
| | - Yari Ciani
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, Trento, 38123, Italy
| | - Sanju Sinha
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Currently at Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Francesca Demichelis
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, Trento, 38123, Italy.
| |
Collapse
|
4
|
Mahadevan A, Yazdanpanah O, Patel V, Benjamin DJ, Kalebasty AR. Ophthalmologic toxicities of antineoplastic agents in genitourinary cancers: Mechanisms, management, and clinical implications. Curr Probl Cancer 2025; 54:101171. [PMID: 39708456 DOI: 10.1016/j.currproblcancer.2024.101171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/23/2024]
Abstract
Genitourinary cancers affect over 480,000 patients in the United States annually. While promising therapeutic modalities continue to emerge, notably immune checkpoint inhibitors, molecular targeted therapies, antibody-drug conjugates, and radioligand therapies, these treatments are associated with a spectrum of adverse side-effects, including ophthalmologic toxicities. In this review, we cover the most commonly used antineoplastic agents for the kidneys, bladder, urinary tracts, prostate, testis, and penis, detailing mechanism, indication, and recent trials supporting their use. For each category of antineoplastic therapy, we describe the epidemiology, management, and clinical presentation, of common ophthalmologic toxicities stemming from these agents. This review serves to augment awareness and recognition of possible ophthalmologic manifestations resulting from the use of antineoplastic agents in genitourinary malignancy. Early identification of these side effects can hasten ophthalmology referral and ultimately improve visual outcomes in patients experiencing medication-induced ocular toxicities.
Collapse
Affiliation(s)
- Aditya Mahadevan
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Omid Yazdanpanah
- Division of Hematology/Oncology, University of California Irvine Health, Orange, CA, USA.
| | - Vivek Patel
- Department of Ophthalmology, University of California Irvine Health, Orange, CA, USA.
| | | | | |
Collapse
|
5
|
Provencher L, Nartey W, Brownlee PM, Atkins AW, Gagné JP, Baudrier L, Ting NSY, Piett CG, Fang S, Pearson DD, Moore S, Billon P, Nagel ZD, Poirier GG, Williams GJ, Goodarzi AA. CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair. Nat Commun 2025; 16:1026. [PMID: 39863586 PMCID: PMC11762318 DOI: 10.1038/s41467-025-56085-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage. While CHD6 loss does not impair RAD51 foci formation or DNA double-strand break repair, it causes sensitivity to replication stress, and PARP1/2-trapping or Pol ζ inhibitor-induced γH2AX foci accumulation in S-phase. DNA repair pathway screening reveals that CHD6 loss elicits insufficiency in apurinic-apyrimidinic endonuclease (APEX1) activity and genomic abasic site accumulation. We reveal APEX1-linked roles for CHD6 important for understanding PARP1/2-trapping inhibitor sensitivity.
Collapse
Affiliation(s)
- Luc Provencher
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Wilson Nartey
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Peter M Brownlee
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Austin W Atkins
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jean-Philippe Gagné
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
- Oncology Division, CHU de Québec Research Center, Quebec City, QC, Canada
| | - Lou Baudrier
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nicholas S Y Ting
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Cortt G Piett
- Harvard University, School of Public Health, Boston, MA, USA
| | - Shujuan Fang
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Dustin D Pearson
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Shaun Moore
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Pierre Billon
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Zachary D Nagel
- Harvard University, School of Public Health, Boston, MA, USA
| | - Guy G Poirier
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
- Oncology Division, CHU de Québec Research Center, Quebec City, QC, Canada
| | - Gareth J Williams
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Aaron A Goodarzi
- Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
6
|
Ben Kacem M, Bright SJ, Moran E, Flint DB, Martinus DKJ, Turner BX, Qureshi I, Kolachina R, Manandhar M, Marinello PC, Shaitelman SF, Sawakuchi GO. PARP inhibition radiosensitizes BRCA1 wildtype and mutated breast cancer to proton therapy. Sci Rep 2024; 14:30897. [PMID: 39730675 DOI: 10.1038/s41598-024-81914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Aggressive breast cancers often fail or acquire resistance to radiotherapy. To develop new strategies to improve the outcome of aggressive breast cancer patients, we studied how PARP inhibition radiosensitizes breast cancer models to proton therapy, which is a radiotherapy modality that generates more DNA damage in the tumor than standard radiotherapy using photons. Two human BRCA1-mutated breast cancer cell lines and their isogenic BRCA1-recovered pairs were treated with a PARP inhibitor and irradiated with photons or protons. Protons (9.9 and 3.85 keV/µm) induced higher cell kill independent of BRCA1 status. PARP inhibition amplified the cell kill effect to both photons and protons (9.9 and 3.85 keV/µm) independent of BRCA1 status. Numbers of γH2AX foci, micronuclei, and cGAS-positive micronuclei were significantly higher in BRCA1-mutated cells. Cell cycle distribution and stress-induced senescence were not affected by PARP inhibition in our cell lines. In vivo, the combination of protons (3.99 keV/µm) and PARP inhibition induced the greatest tumor growth delay and the highest survival. We found that PARP inhibition increases radiosensitization independent of BRCA1 status for both protons and photons. The combination of protons and PARP inhibition was the most effective in decreasing clonogenic cell survival, increasing DNA damage, and delaying tumor growth.
Collapse
Affiliation(s)
- Mariam Ben Kacem
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Scott J Bright
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Emma Moran
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David B Flint
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David K J Martinus
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Broderick X Turner
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ilsa Qureshi
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Rishab Kolachina
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Mandira Manandhar
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Poliana C Marinello
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Simona F Shaitelman
- Division of Radiation Oncology, Department of Breast Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Gabriel O Sawakuchi
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Lei XY, He KY, Li QT, Zhang L, Wu DH, Yang JY, Guo JR, Liu MJ, Zhao ZL, Li JQ, Liu H, Zhao Y, Li YJ, Sun QH, Wu CG, Wang YF, Cao GS, Wang G, Jian YP, Xu ZX. PARylation of HMGA1 desensitizes esophageal squamous cell carcinoma to olaparib. Clin Transl Med 2024; 14:e70111. [PMID: 39690136 DOI: 10.1002/ctm2.70111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 12/19/2024] Open
Abstract
As a chromatin remodelling factor, high mobility group A1 (HMGA1) plays various roles in both physiological and pathological conditions. However, its role in DNA damage response and DNA damage-based chemotherapy remains largely unexplored. In this study, we report the poly ADP-ribosylation (PARylation) of HMGA1 during DNA damage, leading to desensitization of esophageal squamous cell carcinoma (ESCC) cells to the poly(ADP-ribose) polymerase 1 (PARP1) inhibitor, olaparib. We found that HMGA1 accumulates at sites of DNA damage, where it interacts with PARP1 and undergoes PARylation at residues E47 and E50 in its conserved AT-hook domain. This modification enhances the accumulation of Ku70/Ku80 at the site of DNA damage and activates the DNA-dependent protein kinase catalytic subunit, facilitating nonhomologous end-joining repair. In both subcutaneous tumour models and genetically engineered mouse models of in situ esophageal cancer, HMGA1 interference increased tumour sensitivity to olaparib. Moreover, HMGA1 was highly expressed in ESCC tissues and positively correlated with PARP1 levels as well as poor prognosis in ESCC patients. Taken together, these findings reveal a mechanistic link between HMGA1 and PARP1 in regulating cell responses to DNA damage and suggest that targeting HMGA1 could be a promising strategy to increase cancer cell sensitivity to olaparib.
Collapse
Affiliation(s)
- Xin-Yuan Lei
- School of Life Sciences, Henan University, Kaifeng, China
| | - Kai-Yue He
- School of Life Sciences, Henan University, Kaifeng, China
| | - Qiu-Tong Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Lei Zhang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Dan-Hui Wu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jing-Yu Yang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jin-Rong Guo
- School of Life Sciences, Henan University, Kaifeng, China
| | - Meng-Jie Liu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Zi-Long Zhao
- School of Life Sciences, Henan University, Kaifeng, China
| | - Jun-Qi Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Huai Liu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yuan Zhao
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yu-Jia Li
- School of Life Sciences, Henan University, Kaifeng, China
| | - Qian-Hui Sun
- School of Life Sciences, Henan University, Kaifeng, China
| | - Chen-Guang Wu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yun-Fan Wang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Geng-Sheng Cao
- School of Life Sciences, Henan University, Kaifeng, China
| | - Gang Wang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yong-Ping Jian
- School of Life Sciences, Henan University, Kaifeng, China
| | - Zhi-Xiang Xu
- School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
8
|
Zhang L, Zhang XN, Ansari AJ, Zhang Y. An NAD + with Dually Modified Adenine for Labeling ADP-Ribosylation-Specific Proteins. Tetrahedron 2024; 168:134361. [PMID: 39553786 PMCID: PMC11563119 DOI: 10.1016/j.tet.2024.134361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Protein adenosine diphosphate (ADP)-ribosylation participates in various pivotal cellular events. Its readers and erasers play key roles in modulating ADP-ribosylation-based signaling pathways. Unambiguous assignments of readers and erasers to individual ADP-ribosylated proteins provide insightful knowledge on ADP-ribosylation biology and require the development of tools and technologies for this goal. Herein, we report the design and the synthesis of a nicotinamide adenine dinucleotide (NAD+) carrying a photoactive and a clickable group. Functioning as a substrate for poly-ADP-ribosylation (PARylation), this NAD+ mimic with dually modified adenine enables covalent crosslinking and labeling of proteins bound to PARylation, representing a new photoaffinity probe for studying this critical post-translational modification.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Arshad J. Ansari
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
9
|
Stephens E, Chen LC, Ansari AJ, Shen K, Zhang L, Guillen SG, Wang CCC, Zhang Y. Discovery of PARP1-Sparing Inhibitors for Protein ADP-Ribosylation. ACS Med Chem Lett 2024; 15:1940-1946. [PMID: 39563804 PMCID: PMC11571001 DOI: 10.1021/acsmedchemlett.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/12/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
Poly-ADP-ribose polymerases (PARPs) that catalyze cellular ADP-ribosylation play important roles in human health. PARP inhibitors have found success in the clinic for cancer treatment. However, isoform-specific inhibitors are needed for improved safety. Here, we report the unexpected discovery of nicotinamide mimics that block non-PARP1-catalyzed ADP-ribosylation at micromolar concentrations. These PARP1-sparing PARP inhibitors represent first-in-class probes for ADP-ribosylation, shedding light on the selective inhibition of PARPs.
Collapse
Affiliation(s)
- Elisa
N. Stephens
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Liang-Chieh Chen
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Arshad J. Ansari
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Kaiyu Shen
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Lei Zhang
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Steven G. Guillen
- Department
of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Clay C. C. Wang
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department
of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
| | - Yong Zhang
- Department
of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School
of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department
of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
- Norris
Comprehensive Cancer Center, University
of Southern California, Los Angeles, California 90089, United States
- Research
Center for Liver Diseases, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
10
|
Shih CT, Huang TT, Nair JR, Ibanez KR, Lee JM. Poly (ADP-Ribose) Polymerase Inhibitor Olaparib-Resistant BRCA1-Mutant Ovarian Cancer Cells Demonstrate Differential Sensitivity to PARP Inhibitor Rechallenge. Cells 2024; 13:1847. [PMID: 39594596 PMCID: PMC11592949 DOI: 10.3390/cells13221847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Poly (ADP-ribose) polymerase inhibitors (PARPis) show cytotoxicity in homologous recombination deficiency (HRD) seen in BRCA-mutant ovarian cancer (OvCa). Despite initial responses, resistance often develops. The reintroduction of different PARPis, such as niraparib or rucaparib, has shown some clinical activity in BRCA mutation-associated OvCa patients with prior olaparib treatment, yet the underlying mechanisms remain unclear. To investigate the differential sensitivity to different PARPis, we established an olaparib-resistant BRCA1-mutant OvCa cell line (UWB-OlaJR) by exposing UWB1.289 cells to gradually increasing concentrations of olaparib. UWB-OlaJR exhibited restored HR capability without BRCA1 reversion mutation or increased drug efflux. We examined cell viability, DNA damage, and DNA replication fork dynamics in UWB-OlaJR treated with various PARPis. UWB-OlaJR exhibits varying sensitivity to PARPis, showing cross-resistance to veliparib and talazoparib, and sensitivity with increased cytotoxicity to niraparib and rucaparib. Indeed, DNA fiber assay reveals that niraparib and rucaparib cause higher replication stress than the others. Moreover, S1 nuclease fiber assay shows that niraparib and rucaparib induce greater DNA single-strand gaps than other PARPis, leading to increased DNA damage and cell death. Our study provides novel insights into differential PARPi sensitivity in olaparib-resistant BRCA-mutant OvCa, which requires further investigation of inter-agent differences in large prospective studies.
Collapse
Affiliation(s)
- Chi-Ting Shih
- Women’s Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD 20892, USA; (T.-T.H.); (J.R.N.); (K.R.I.); (J.-M.L.)
| | | | | | | | | |
Collapse
|
11
|
Nahálková J. On the interface of aging, cancer, and neurodegeneration with SIRT6 and L1 retrotransposon protein interaction network. Ageing Res Rev 2024; 101:102496. [PMID: 39251041 DOI: 10.1016/j.arr.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
Roles of the sirtuins in aging and longevity appear related to their evolutionarily conserved functions as retroviral-restriction factors. Retrotransposons also promote the aging process, which can be reversed by the inhibition of their activity. SIRT6 can functionally limit the mutation activity of LINE-1 (L1), a retrotransposon causing cancerogenesis-linked mutations accumulating during aging. Here, an overview of the molecular mechanisms of the controlling effects was created by the pathway enrichment and gene function prediction analysis of a protein interaction network of SIRT6 and L1 retrotransposon proteins L1 ORF1p, and L1 ORF2p. The L1-SIRT6 interaction network is enriched in pathways and nodes associated with RNA quality control, DNA damage response, tumor-related and retrotransposon activity-suppressing functions. The analysis also highlighted sumoylation, which controls protein-protein interactions, subcellular localization, and other post-translational modifications; DNA IR Damage and Cellular Response via ATR, and Hallmark Myc Targets V1, which scores are a measure of tumor aggressiveness. The protein node prioritization analysis emphasized the functions of tumor suppressors p53, PARP1, BRCA1, and BRCA2 having L1 retrotransposon limiting activity; tumor promoters EIF4A3, HNRNPA1, HNRNPH1, DDX5; and antiviral innate immunity regulators DDX39A and DDX23. The outline of the regulatory mechanisms involved in L1 retrotransposition with a focus on the prioritized nodes is here demonstrated in detail. Furthermore, a model establishing functional links between HIV infection, L1 retrotransposition, SIRT6, and cancer development is also presented. Finally, L1-SIRT6 subnetwork SIRT6-PARP1-BRCA1/BRCA2-TRIM28-PIN1-p53 was constructed, where all nodes possess L1 retrotransposon activity-limiting activity and together represent candidates for multitarget control.
Collapse
Affiliation(s)
- Jarmila Nahálková
- Biochemistry, Molecular, and Cell Biology Unit, Biochemworld co., Snickar-Anders väg 17, Skyttorp, Uppsala County 74394, Sweden.
| |
Collapse
|
12
|
Kwon DH, Shin S, Nam YS, Choe N, Lim Y, Jeong A, Lee YG, Kim YK, Kook H. CBL-b E3 ligase-mediated neddylation and activation of PARP-1 induce vascular calcification. Exp Mol Med 2024; 56:2246-2259. [PMID: 39349831 PMCID: PMC11541702 DOI: 10.1038/s12276-024-01322-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 10/03/2024] Open
Abstract
Vascular calcification (VC) refers to the accumulation of mineral deposits on the walls of arteries and veins, and it is closely associated with increased mortality in cardiovascular disease patients, particularly among high-risk patients with diabetes and chronic kidney disease (CKD). Neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) is a ubiquitin-like protein that plays a pivotal role in various cellular functions, primarily through its conjugation to target proteins and subsequent relay of biological signals. However, the role of NEDDylation in VC has not been investigated. In our study, we observed that MLN4924, an inhibitor of the NEDD8-activating E1 enzyme, effectively impedes the progression of VC. LC‒MS/MS analysis revealed that poly(ADP‒ribose) polymerase 1 (PARP-1) is subjected to NEDD8 conjugation, leading to an increase in PARP-1 activity during VC. We subsequently revealed that PARP-1 NEDDylation is mediated by the E3 ligase CBL proto-oncogene B (CBL-b) and is reversed by NEDD8-specific protease 1 (NEDP-1) during VC. Furthermore, the CBL-b C373 peptide effectively mitigated the inactive form of the E3 ligase activity of CBL-b, ultimately preventing VC. These findings provide compelling evidence that the NEDD8-dependent activation of PARP-1 represents a novel mechanism underlying vascular calcification and suggests a promising new therapeutic target for VC.
Collapse
Affiliation(s)
- Duk-Hwa Kwon
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea.
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea.
- BK21 plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Republic of Korea.
| | - Sera Shin
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Yoon Seok Nam
- Institute of Well-Aging Medicare & CSU G-LAMP Project Group, Chosun University, Gwangju, Republic of Korea
| | - Nakwon Choe
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Yongwoon Lim
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Anna Jeong
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- BK21 plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Republic of Korea
| | - Yun-Gyeong Lee
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Young-Kook Kim
- BK21 plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Republic of Korea
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyun Kook
- Department of Pharmacology, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea.
- Basic Research Laboratory for Vascular Remodeling, Chonnam National University Medical School, Hwasun, Jeollanamdo, Republic of Korea.
- BK21 plus Center for Creative Biomedical Scientists, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
13
|
Özdemir C, Purkey LR, Sanchez A, Miller KM. PARticular MARks: Histone ADP-ribosylation and the DNA damage response. DNA Repair (Amst) 2024; 140:103711. [PMID: 38924925 PMCID: PMC11877395 DOI: 10.1016/j.dnarep.2024.103711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Cellular and molecular responses to DNA damage are highly orchestrated and dynamic, acting to preserve the maintenance and integrity of the genome. Histone proteins bind DNA and organize the genome into chromatin. Post-translational modifications of histones have been shown to play an essential role in orchestrating the chromatin response to DNA damage by regulating the DNA damage response pathway. Among the histone modifications that contribute to this intricate network, histone ADP-ribosylation (ADPr) is emerging as a pivotal component of chromatin-based DNA damage response (DDR) pathways. In this review, we survey how histone ADPr is regulated to promote the DDR and how it impacts chromatin and other histone marks. Recent advancements have revealed histone ADPr effects on chromatin structure and the regulation of DNA repair factor recruitment to DNA lesions. Additionally, we highlight advancements in technology that have enabled the identification and functional validation of histone ADPr in cells and in response to DNA damage. Given the involvement of DNA damage and epigenetic regulation in human diseases including cancer, these findings have clinical implications for histone ADPr, which are also discussed. Overall, this review covers the involvement of histone ADPr in the DDR and highlights potential future investigations aimed at identifying mechanisms governed by histone ADPr that participate in the DDR, human diseases, and their treatments.
Collapse
Affiliation(s)
- Cem Özdemir
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Laura R Purkey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
14
|
Vekariya U, Minakhin L, Chandramouly G, Tyagi M, Kent T, Sullivan-Reed K, Atkins J, Ralph D, Nieborowska-Skorska M, Kukuyan AM, Tang HY, Pomerantz RT, Skorski T. PARG is essential for Polθ-mediated DNA end-joining by removing repressive poly-ADP-ribose marks. Nat Commun 2024; 15:5822. [PMID: 38987289 PMCID: PMC11236980 DOI: 10.1038/s41467-024-50158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
DNA polymerase theta (Polθ)-mediated end-joining (TMEJ) repairs DNA double-strand breaks and confers resistance to genotoxic agents. How Polθ is regulated at the molecular level to exert TMEJ remains poorly characterized. We find that Polθ interacts with and is PARylated by PARP1 in a HPF1-independent manner. PARP1 recruits Polθ to the vicinity of DNA damage via PARylation dependent liquid demixing, however, PARylated Polθ cannot perform TMEJ due to its inability to bind DNA. PARG-mediated de-PARylation of Polθ reactivates its DNA binding and end-joining activities. Consistent with this, PARG is essential for TMEJ and the temporal recruitment of PARG to DNA damage corresponds with TMEJ activation and dissipation of PARP1 and PAR. In conclusion, we show a two-step spatiotemporal mechanism of TMEJ regulation. First, PARP1 PARylates Polθ and facilitates its recruitment to DNA damage sites in an inactivated state. PARG subsequently activates TMEJ by removing repressive PAR marks on Polθ.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Leonid Minakhin
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Gurushankar Chandramouly
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Mrityunjay Tyagi
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Tatiana Kent
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jessica Atkins
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Douglas Ralph
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Anna-Mariya Kukuyan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Richard T Pomerantz
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA.
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Alvaro-Aranda L, Petitalot A, Djeghmoum Y, Panigada D, Singh J, Ehlén Å, Vugic D, Martin C, Miron S, Contreras-Perez A, Nhiri N, Boucherit V, Lafitte P, Dumoulin I, Quiles F, Rouleau E, Jacquet E, Feliubadaló L, del Valle J, Sharan SK, Stoppa-Lyonnet D, Zinn-Justin S, Lázaro C, Caputo S, Carreira A. The BRCA2 R2645G variant increases DNA binding and induces hyper-recombination. Nucleic Acids Res 2024; 52:6964-6976. [PMID: 38142462 PMCID: PMC11229362 DOI: 10.1093/nar/gkad1222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/30/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
BRCA2 tumor suppressor protein ensures genome integrity by mediating DNA repair via homologous recombination (HR). This function is executed in part by its canonical DNA binding domain located at the C-terminus (BRCA2CTD), the only folded domain of the protein. Most germline pathogenic missense variants are located in this highly conserved region which binds to single-stranded DNA (ssDNA) and to the acidic protein DSS1. These interactions are essential for the HR function of BRCA2. Here, we report that the variant R2645G, identified in breast cancer and located at the DSS1 interface, unexpectedly increases the ssDNA binding activity of BRCA2CTDin vitro. Human cells expressing this variant display a hyper-recombination phenotype, chromosomal instability in the form of chromatid gaps when exposed to DNA damage, and increased PARP inhibitor sensitivity. In mouse embryonic stem cells (mES), this variant alters viability and confers sensitivity to cisplatin and Mitomycin C. These results suggest that BRCA2 interaction with ssDNA needs to be tightly regulated to limit HR and prevent chromosomal instability and we propose that this control mechanism involves DSS1. Given that several missense variants located within this region have been identified in breast cancer patients, these findings might have clinical implications for carriers.
Collapse
Affiliation(s)
- Lucia Alvaro-Aranda
- Genome Instability and Cancer Predisposition Laboratory, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC-UAM, Madrid 28049, Spain
| | - Ambre Petitalot
- Department of Genetics, Institut Curie, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Yasmina Djeghmoum
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Davide Panigada
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Jenny Kaur Singh
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Åsa Ehlén
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Domagoj Vugic
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Charlotte Martin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, 91190 Gif-sur-Yvette, France
| | - Aida Contreras-Perez
- Genome Instability and Cancer Predisposition Laboratory, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC-UAM, Madrid 28049, Spain
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, Paris-Saclay University, CNRS, 91190 Gif-sur-Yvette, France
| | - Virginie Boucherit
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Philippe Lafitte
- Department of Genetics, Institut Curie, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Isaac Dumoulin
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| | - Francisco Quiles
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Etienne Rouleau
- Department of Genetics, Institut Curie, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, Paris-Saclay University, CNRS, 91190 Gif-sur-Yvette, France
| | - Lidia Feliubadaló
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Jesús del Valle
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Dominique Stoppa-Lyonnet
- Department of Genetics, Institut Curie, Paris 75005, France
- Paris-Cité University, Paris, France
- INSERM U830, Institut Curie, Paris 75005, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Paris-Saclay University, 91190 Gif-sur-Yvette, France
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology (ICO), Hereditary Cancer Group, Molecular Mechanisms and Experimental Therapy in Oncology Program, Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Spain
- Ciber Oncología (CIBERONC), Instituto Salud Carlos III, Madrid, Spain
| | - Sandrine M Caputo
- Department of Genetics, Institut Curie, Paris 75005, France
- PSL Research University, Paris 75005, France
| | - Aura Carreira
- Genome Instability and Cancer Predisposition Laboratory, Centro de Biologia Molecular Severo Ochoa (CBMSO), CSIC-UAM, Madrid 28049, Spain
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France
- Paris-Saclay University CNRS, UMR3348, F-91405 Orsay, France
| |
Collapse
|
16
|
Kim A, Benavente CA. Oncogenic Roles of UHRF1 in Cancer. EPIGENOMES 2024; 8:26. [PMID: 39051184 PMCID: PMC11270427 DOI: 10.3390/epigenomes8030026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/29/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an essential protein involved in the maintenance of repressive epigenetic marks, ensuring epigenetic stability and fidelity. As an epigenetic regulator, UHRF1 comprises several functional domains (UBL, TTD, PHD, SRA, RING) that are collectively responsible for processes like DNA methylation, histone modification, and DNA repair. UHRF1 is a downstream effector of the RB/E2F pathway, which is nearly universally deregulated in cancer. Under physiological conditions, UHRF1 protein levels are cell cycle-dependent and are post-translationally regulated by proteasomal degradation. Conversely, UHRF1 is overexpressed and serves as an oncogenic driver in multiple cancers. This review focuses on the functional domains of UHRF1, highlighting its key interacting proteins and oncogenic roles in solid tumors including retinoblastoma, osteosarcoma, lung cancer, and breast cancer. Additionally, current therapeutic strategies targeting UHRF1 domains or its interactors are explored, providing an insight on potential clinical applications.
Collapse
Affiliation(s)
- Ahhyun Kim
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Claudia A. Benavente
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
17
|
Bastos IM, Rebelo S, Silva VLM. A review of poly(ADP-ribose)polymerase-1 (PARP1) role and its inhibitors bearing pyrazole or indazole core for cancer therapy. Biochem Pharmacol 2024; 221:116045. [PMID: 38336156 DOI: 10.1016/j.bcp.2024.116045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Cancer is a disease with a high mortality rate characterized by uncontrolled proliferation of abnormal cells. The hallmarks of cancer evidence the acquired cells characteristics that promote the growth of malignant tumours, including genomic instability and mutations, the ability to evade cellular death and the capacity of sustaining proliferative signalization. Poly(ADP-ribose) polymerase-1 (PARP1) is a protein that plays key roles in cellular regulation, namely in DNA damage repair and cell survival. The inhibition of PARP1 promotes cellular death in cells with homologous recombination deficiency, and therefore, the interest in PARP protein has been rising as a target for anticancer therapies. There are already some PARP1 inhibitors approved by Food and Drug Administration (FDA), such as Olaparib and Niraparib. The last compound presents in its structure an indazole core. In fact, pyrazoles and indazoles have been raising interest due to their various medicinal properties, namely, anticancer activity. Derivatives of these compounds have been studied as inhibitors of PARP1 and presented promising results. Therefore, this review aims to address the importance of PARP1 in cell regulation and its role in cancer. Moreover, it intends to report a comprehensive literature review of PARP1 inhibitors, containing the pyrazole and indazole scaffolds, published in the last fifteen years, focusing on structure-activity relationship aspects, thus providing important insights for the design of novel and more effective PARP1 inhibitors.
Collapse
Affiliation(s)
- Inês M Bastos
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sandra Rebelo
- Institute of Biomedicine-iBiMED, Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
18
|
Chappidi N, Quail T, Doll S, Vogel LT, Aleksandrov R, Felekyan S, Kühnemuth R, Stoynov S, Seidel CAM, Brugués J, Jahnel M, Franzmann TM, Alberti S. PARP1-DNA co-condensation drives DNA repair site assembly to prevent disjunction of broken DNA ends. Cell 2024; 187:945-961.e18. [PMID: 38320550 DOI: 10.1016/j.cell.2024.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/27/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024]
Abstract
DNA double-strand breaks (DSBs) are repaired at DSB sites. How DSB sites assemble and how broken DNA is prevented from separating is not understood. Here we uncover that the synapsis of broken DNA is mediated by the DSB sensor protein poly(ADP-ribose) (PAR) polymerase 1 (PARP1). Using bottom-up biochemistry, we reconstitute functional DSB sites and show that DSB sites form through co-condensation of PARP1 multimers with DNA. The co-condensates exert mechanical forces to keep DNA ends together and become enzymatically active for PAR synthesis. PARylation promotes release of PARP1 from DNA ends and the recruitment of effectors, such as Fused in Sarcoma, which stabilizes broken DNA ends against separation, revealing a finely orchestrated order of events that primes broken DNA for repair. We provide a comprehensive model for the hierarchical assembly of DSB condensates to explain DNA end synapsis and the recruitment of effector proteins for DNA damage repair.
Collapse
Affiliation(s)
- Nagaraja Chappidi
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Thomas Quail
- Max Planck Institute of Cell Biology and Genetics (MPI-CBG), Pfotenhauerstr. 108, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Nöthnitzer Str. 38, 01187 Dresden, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Simon Doll
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307 Dresden, Germany
| | - Laura T Vogel
- Department of Molecular Physical Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Radoslav Aleksandrov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl.21, 1113 Sofia, Bulgaria
| | - Suren Felekyan
- Department of Molecular Physical Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Ralf Kühnemuth
- Department of Molecular Physical Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Stoyno Stoynov
- Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str, bl.21, 1113 Sofia, Bulgaria
| | - Claus A M Seidel
- Department of Molecular Physical Chemistry, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jan Brugués
- Max Planck Institute of Cell Biology and Genetics (MPI-CBG), Pfotenhauerstr. 108, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307 Dresden, Germany; Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Nöthnitzer Str. 38, 01187 Dresden, Germany
| | - Marcus Jahnel
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Arnoldstraße 18, 01307 Dresden, Germany
| | - Titus M Franzmann
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany.
| |
Collapse
|
19
|
Geng L, Zhu M, Luo D, Chen H, Li B, Lao Y, An H, Wu Y, Li Y, Xia A, Shi Y, Tong Z, Lu S, Xu D, Wang X, Zhang W, Sun B, Xu Z. TKT-PARP1 axis induces radioresistance by promoting DNA double-strand break repair in hepatocellular carcinoma. Oncogene 2024; 43:682-692. [PMID: 38216672 PMCID: PMC10890932 DOI: 10.1038/s41388-023-02935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/14/2024]
Abstract
Hepatocellular carcinoma (HCC) stands as the fifth most prevalent malignant tumor on a global scale and presents as the second leading cause of cancer-related mortality. DNA damage-based radiotherapy (RT) plays a pivotal role in the treatment of HCC. Nevertheless, radioresistance remains a primary factor contributing to the failure of radiation therapy in HCC patients. In this study, we investigated the functional role of transketolase (TKT) in the repair of DNA double-strand breaks (DSBs) in HCC. Our research unveiled that TKT is involved in DSB repair, and its depletion significantly reduces both non-homologous end joining (NHEJ) and homologous recombination (HR)-mediated DSB repair. Mechanistically, TKT interacts with PARP1 in a DNA damage-dependent manner. Furthermore, TKT undergoes PARylation by PARP1, resulting in the inhibition of its enzymatic activity, and TKT can enhance the auto-PARylation of PARP1 in response to DSBs in HCC. The depletion of TKT effectively mitigates the radioresistance of HCC, both in vitro and in mouse xenograft models. Moreover, high TKT expression confers resistance of RT in clinical HCC patients, establishing TKT as a marker for assessing the response of HCC patients who received cancer RT. In summary, our findings reveal a novel mechanism by which TKT contributes to the radioresistance of HCC. Overall, we identify the TKT-PARP1 axis as a promising potential therapeutic target for improving RT outcomes in HCC.
Collapse
Affiliation(s)
- Longpo Geng
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Mingming Zhu
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Dongjun Luo
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Huihui Chen
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Binghua Li
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuanxiang Lao
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Hongda An
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yue Wu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yunzheng Li
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Anliang Xia
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yi Shi
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230061, China
| | - Zhuting Tong
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Shanshan Lu
- Department of Pharmacy, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, China
| | - Dengqiu Xu
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Xu Wang
- School of Life Sciences, Anhui Medical University, Hefei, 230022, China.
| | - Wenjun Zhang
- Department of Burns and Plastic Surgery, Shanghai Changzheng Hospital, Shanghai, 200003, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| | - Zhu Xu
- Department of Hepatobiliary Surgery, Innovative Institute of Tumor Immunity and Medicine (ITIM), Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
20
|
Skouteris N, Papageorgiou G. PARP Inhibitors in Colorectal Malignancies: A 2023 Update. Rev Recent Clin Trials 2024; 19:101-108. [PMID: 38058097 DOI: 10.2174/0115748871260815231116060817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Colorectal carcinoma (CRC) is one of the most common malignancies in the Western world, and metastatic disease is associated with a dismal prognosis. Poly-ADpribose polymerase (PARP) inhibitors gain increasing attention in the field of medical oncology, as they lead to synthetic lethality in malignancies with preexisting alterations in the DNA damage repair (DDR) pathway. As those alterations are frequently seen in CRC, a targeted approach through PARP inhibitors is expected to benefit these patients, both alone and in combination with other agents like chemotherapy, immunotherapy, antiangiogenics, and radiation. OBJECTIVE This review article aims to better clarify the role of PARP inhibitors as a treatment option in patients with metastatic CRC with alterations in the DDR pathway. METHODS We used the PubMed database to retrieve journal articles and the inclusion criteria were all human studies that illustrated the effective role of PARP inhibitors in patients with metastatic CRC with homologous repair deficiency (HRD) and the correct line of therapy. RESULTS Current evidence supports the utilization of PARP inhibitors in CRC subgroups, as monotherapy and in combination with other agents. Up to now, data are insufficient to support a formal indication, and further research is needed. CONCLUSION Efforts to precisely define the homologous repair deficiency (HRD) in CRC - and eventually the subgroup of patients that are expected to benefit the most - are also underway.
Collapse
Affiliation(s)
- Nikolaos Skouteris
- Division of Medical Oncology & Hematopoietic Cell Transplant Unit, Department of Medicine, "Metaxa" Cancer Hospital, 51 Botassi Street, 18537 Piraeus, Greece
| | | |
Collapse
|
21
|
Coll RP, Bright SJ, Martinus DKJ, Georgiou DK, Sawakuchi GO, Manning HC. Alpha Particle-Emitting Radiopharmaceuticals as Cancer Therapy: Biological Basis, Current Status, and Future Outlook for Therapeutics Discovery. Mol Imaging Biol 2023; 25:991-1019. [PMID: 37845582 PMCID: PMC12054971 DOI: 10.1007/s11307-023-01857-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Critical advances in radionuclide therapy have led to encouraging new options for cancer treatment through the pairing of clinically useful radiation-emitting radionuclides and innovative pharmaceutical discovery. Of the various subatomic particles used in therapeutic radiopharmaceuticals, alpha (α) particles show great promise owing to their relatively large size, delivered energy, finite pathlength, and resulting ionization density. This review discusses the therapeutic benefits of α-emitting radiopharmaceuticals and their pairing with appropriate diagnostics, resulting in innovative "theranostic" platforms. Herein, the current landscape of α particle-emitting radionuclides is described with an emphasis on their use in theranostic development for cancer treatment. Commonly studied radionuclides are introduced and recent efforts towards their production for research and clinical use are described. The growing popularity of these radionuclides is explained through summarizing the biological effects of α radiation on cancer cells, which include DNA damage, activation of discrete cell death programs, and downstream immune responses. Examples of efficient α-theranostic design are described with an emphasis on strategies that lead to cellular internalization and the targeting of proteins involved in therapeutic resistance. Historical barriers to the clinical deployment of α-theranostic radiopharmaceuticals are also discussed. Recent progress towards addressing these challenges is presented along with examples of incorporating α-particle therapy in pharmaceutical platforms that can be easily converted into diagnostic counterparts.
Collapse
Affiliation(s)
- Ryan P Coll
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Scott J Bright
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - David K J Martinus
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - Dimitra K Georgiou
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA
| | - Gabriel O Sawakuchi
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Blvd, Houston, TX, 77030, USA
| | - H Charles Manning
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
- Cyclotron Radiochemistry Facility, The University of Texas MD Anderson Cancer Center, 1881 East Rd, Houston, TX, 77054, USA.
| |
Collapse
|
22
|
Lu L, Niu Z, Chao Z, Fu C, Chen K, Shi Y. Exploring the therapeutic potential of ADC combination for triple-negative breast cancer. Cell Mol Life Sci 2023; 80:350. [PMID: 37930428 PMCID: PMC11073441 DOI: 10.1007/s00018-023-04946-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 11/07/2023]
Abstract
Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer. Currently, standard treatment options for TNBC are limited to surgery, adjuvant chemotherapy, and radiotherapy. However, these treatment methods are associated with a higher risk of intrinsic or acquired recurrence. Antibody-drug conjugates (ADCs) have emerged as a useful and promising class of cancer therapeutics. ADCs, also known as "biochemical missiles", use a monoclonal antibody (mAb) to target tumor antigens and deliver a cytotoxic drug payload. Currently, several ADCs clinical studies are underway worldwide, including sacituzumab govitecan (SG), which was recently approved by the FDA for the treatment of TNBC. However, due to the fact that only a small portion of TNBC patients respond to ADC therapy and often develop resistance, growing evidence supports the use of ADCs in combination with other treatment strategies to treat TNBC. In this review, we described the current utilization of ADCs and discussed the prospects of ADC combination therapy for TNBC.
Collapse
Affiliation(s)
- Linlin Lu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Zihe Niu
- Department of Soochow University School of Medicine, Soochow University Suzhou, Suzhou, 215000, China
| | - Zhujun Chao
- Department of Soochow University School of Medicine, Soochow University Suzhou, Suzhou, 215000, China
| | - Cuiping Fu
- Department of Respiratory, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.
| | - Yaqin Shi
- Department of Oncology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
23
|
Hu ML, Pan YR, Yong YY, Liu Y, Yu L, Qin DL, Qiao G, Law BYK, Wu JM, Zhou XG, Wu AG. Poly (ADP-ribose) polymerase 1 and neurodegenerative diseases: Past, present, and future. Ageing Res Rev 2023; 91:102078. [PMID: 37758006 DOI: 10.1016/j.arr.2023.102078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a first responder that recognizes DNA damage and facilitates its repair. Neurodegenerative diseases, characterized by progressive neuron loss driven by various risk factors, including DNA damage, have increasingly shed light on the pivotal involvement of PARP1. During the early phases of neurodegenerative diseases, PARP1 experiences controlled activation to swiftly address mild DNA damage, thereby contributing to maintain brain homeostasis. However, in late stages, exacerbated PARP1 activation precipitated by severe DNA damage exacerbates the disease condition. Consequently, inhibition of PARP1 overactivation emerges as a promising therapeutic approach for neurodegenerative diseases. In this review, we comprehensively synthesize and explore the multifaceted role of PARP1 in neurodegenerative diseases, with a particular emphasis on its over-activation in the aggregation of misfolded proteins, dysfunction of the autophagy-lysosome pathway, mitochondrial dysfunction, neuroinflammation, and blood-brain barrier (BBB) injury. Additionally, we encapsulate the therapeutic applications and limitations intrinsic of PARP1 inhibitors, mainly including limited specificity, intricate pathway dynamics, constrained clinical translation, and the heterogeneity of patient cohorts. We also explore and discuss the potential synergistic implementation of these inhibitors alongside other agents targeting DNA damage cascades within neurodegenerative diseases. Simultaneously, we propose several recommendations for the utilization of PARP1 inhibitors within the realm of neurodegenerative disorders, encompassing factors like the disease-specific roles of PARP1, combinatorial therapeutic strategies, and personalized medical interventions. Lastly, the encompassing review presents a forward-looking perspective along with strategic recommendations that could guide future research endeavors in this field.
Collapse
Affiliation(s)
- Meng-Ling Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi-Ru Pan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yuan-Yuan Yong
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi Liu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
24
|
Tsai LK, Peng M, Chang CC, Wen L, Liu L, Liang X, Chen YE, Xu J, Sung LY. ZSCAN4 interacts with PARP1 to promote DNA repair in mouse embryonic stem cells. Cell Biosci 2023; 13:193. [PMID: 37875990 PMCID: PMC10594928 DOI: 10.1186/s13578-023-01140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND In eukaryotic cells, DNA double strand breaks (DSB) are primarily repaired by canonical non-homologous end joining (c-NHEJ), homologous recombination (HR) and alternative NHEJ (alt-NHEJ). Zinc finger and SCAN domain containing 4 (ZSCAN4), sporadically expressed in 1-5% mouse embryonic stem cells (mESCs), is known to regulate genome stability by promoting HR. RESULTS Here we show that ZSCAN4 promotes DNA repair by acting with Poly (ADP-ribose) polymerase 1 (PARP1), which is a key member of the alt-NHEJ pathway. In the presence of PARP1, ZSCAN4-expressing mESCs are associated with lower extent of endogenous or chemical induced DSB comparing to ZSCAN4-negative ones. Reduced DSBs associated with ZSCAN4 are abolished by PARP1 inhibition, achieved either through small molecule inhibitor or gene knockout in mESCs. Furthermore, PARP1 binds directly to ZSCAN4, and the second ⍺-helix and the fourth zinc finger motif of ZSCAN4 are critical for this binding. CONCLUSIONS These data reveal that PARP1 and ZSCAN4 have a protein-protein interaction, and shed light on the molecular mechanisms by which ZSCAN4 reduces DSB in mESCs.
Collapse
Affiliation(s)
- Li-Kuang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Chia-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Luan Wen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC.
- Center for Developmental Biology and Regenerative Medicine, Taipei, 106, Taiwan, ROC.
- Center for Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan, ROC.
| |
Collapse
|
25
|
Folly-Kossi H, Graves JD, Garan LAW, Lin FT, Lin WC. DNA2 Nuclease Inhibition Confers Synthetic Lethality in Cancers with Mutant p53 and Synergizes with PARP Inhibitors. CANCER RESEARCH COMMUNICATIONS 2023; 3:2096-2112. [PMID: 37756561 PMCID: PMC10578204 DOI: 10.1158/2767-9764.crc-23-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/03/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
The tumor suppressor p53 promotes tumor-suppressive activities including cell-cycle inhibition, apoptosis, senescence, autophagy, and DNA repair. However, somatic mutations in the TP53 gene are one of the most common alterations in human cancers. We previously showed that mutant p53 (mutp53) can bind TopBP1, an ATR activator, to attenuate its ATR-activating function. A partially defective ATR function caused by mutp53 makes cancer cells more vulnerable to inhibitors of other TopBP1-independent ATR activators, such as DNA2. DNA2 plays a role in homologous recombination (HR) repair by resecting DNA ends in double-strand breaks and preparing them for invasion of homologous duplex. Here we identify a new DNA2 inhibitor, namely d16, and show that d16 exhibits anticancer activities and overcomes chemotherapy resistance in mutp53-bearing cancers. Similar to DNA2 depletion, d16 treatment results in cell-cycle arrest mainly at S-phase. Moreover, reexpression of mutp53 in a p53-null cancer cell line makes cells more vulnerable to d16-mediated inhibition of ATR activity. As d16 also inhibits HR, a combination of d16 and PARP inhibitors displays synergistic induction of cell death. DNA2 is often overexpressed in cancer, particularly in cancer cells harboring mutp53. Overexpression of DNA2 is associated with poor outcome in ovarian cancer. Overall, our results provide a rationale to target DNA2 as a new synthetic lethality approach in mutp53-bearing cancers, and further extend the benefit of PARP inhibitors beyond BRCA-mutated cancers. SIGNIFICANCE This study identifies a new DNA2 inhibitor as a synthetic lethal targeted therapy for mutp53-harboring cancers, and provides a new therapeutic strategy by combining DNA2 inhibitors with PARP inhibitors for these cancers.
Collapse
Affiliation(s)
- Helena Folly-Kossi
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Joshua D. Graves
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Lidija A. Wilhelms Garan
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Fang-Tsyr Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Weei-Chin Lin
- Section of Hematology/Oncology, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
26
|
Wooten J, Mavingire N, Damar K, Loaiza-Perez A, Brantley E. Triumphs and challenges in exploiting poly(ADP-ribose) polymerase inhibition to combat triple-negative breast cancer. J Cell Physiol 2023; 238:1625-1640. [PMID: 37042191 DOI: 10.1002/jcp.31015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/14/2023] [Indexed: 04/13/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) regulates a myriad of DNA repair mechanisms to preserve genomic integrity following DNA damage. PARP inhibitors (PARPi) confer synthetic lethality in malignancies with a deficiency in the homologous recombination (HR) pathway. Patients with triple-negative breast cancer (TNBC) fail to respond to most targeted therapies because their tumors lack expression of the estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Certain patients with TNBC harbor mutations in HR mediators such as breast cancer susceptibility gene 1 (BRCA1) and breast cancer susceptibility gene 2 (BRCA2), enabling them to respond to PARPi. PARPi exploits the synthetic lethality of BRCA-mutant cells. However, de novo and acquired PARPi resistance frequently ensue. In this review, we discuss the roles of PARP in mediating DNA repair processes in breast epithelial cells, mechanisms of PARPi resistance in TNBC, and recent advances in the development of agents designed to overcome PARPi resistance in TNBC.
Collapse
Affiliation(s)
- Jonathan Wooten
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Nicole Mavingire
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Katherine Damar
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| | - Andrea Loaiza-Perez
- Facultad de Medicina, Instituto de Oncología Ángel H. Roffo (IOAHR), Universidad de Buenos Aires, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eileen Brantley
- Department of Basic Sciences, Division of Pharmacology, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
- Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University Health, Loma Linda, California, USA
| |
Collapse
|
27
|
Taouis K, Vacher S, Guirouilh-Barbat J, Camonis J, Formstecher E, Popova T, Hamy AS, Petitalot A, Lidereau R, Caputo SM, Zinn-Justin S, Bièche I, Driouch K, Lallemand F. WWOX binds MERIT40 and modulates its function in homologous recombination, implications in breast cancer. Cancer Gene Ther 2023; 30:1144-1155. [PMID: 37248434 PMCID: PMC10425285 DOI: 10.1038/s41417-023-00626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023]
Abstract
The tumor suppressor gene WWOX is localized in an unstable chromosomal region and its expression is decreased or absent in several types of cancer. A low expression of WWOX is associated with a poor prognosis in breast cancer (BC). It has recently been shown that WWOX contributes to genome stability through its role in the DNA damage response (DDR). In breast cancer cells, WWOX inhibits homologous recombination (HR), and thus promotes the repair of DNA double-stranded breaks (DSBs) by non-homologous end joining (NHEJ). The fine-tuning modulation of HR activity is crucial. Its under or overstimulation inducing genome alterations that can induce cancer. MERIT40 is a positive regulator of the DDR. This protein is indispensable for the function of the multi-protein complex BRCA1-A, which suppresses excessive HR activity. MERIT40 also recruits Tankyrase, a positive regulator of HR, to the DSBs to stimulate DNA repair. Here, we identified MERIT40 as a new molecular partner of WWOX. We demonstrated that WWOX inhibited excessive HR activity induced by overexpression of MERIT40. We showed that WWOX impaired the MERIT40-Tankyrase interaction preventing the role of the complex on DSBs. Furthermore, we found that MERIT40 is overexpressed in BC and that this overexpression is associated to a poor prognosis. These results strongly suggest that WWOX, through its interaction with MERIT40, prevents the deleterious impact of excessive HR on BC development by inhibiting MERIT40-Tankyrase association. This inhibitory effect of WWOX would oppose MERIT40-dependent BC development.
Collapse
Affiliation(s)
- Karim Taouis
- Service de génétique, unité de pharmacogénomique, Institut Curie, 26 rue d'Ulm, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Sophie Vacher
- Service de génétique, unité de pharmacogénomique, Institut Curie, 26 rue d'Ulm, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Josée Guirouilh-Barbat
- Laboratoire Recombinaison-Réparation et Cancer UMR8200 Stabilité Génétique et Oncogenèse Institut Gustave Roussy, PR2, pièce 426114 Rue Edouard Vaillant, 94805, Villejuif, France
| | | | | | - Tatiana Popova
- Centre De Recherche, Institut Curie, Paris, F-75248, France
- INSERM U830, Paris, F-75248, France
| | - Anne-Sophie Hamy
- Residual Tumor & Response to Treatment Laboratory, RT2Lab, Translational Research Department, INSERM, U932 Immunity and Cancer, University Paris, Paris, France
- Department of Medical Oncology, Institut Curie, Paris, France
- University Paris, Paris, France
| | - Ambre Petitalot
- Service de génétique, unité de pharmacogénomique, Institut Curie, 26 rue d'Ulm, Paris, France
| | - Rosette Lidereau
- Service de génétique, unité de pharmacogénomique, Institut Curie, 26 rue d'Ulm, Paris, France
| | - Sandrine M Caputo
- Service de génétique, unité de pharmacogénomique, Institut Curie, 26 rue d'Ulm, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Ivan Bièche
- Service de génétique, unité de pharmacogénomique, Institut Curie, 26 rue d'Ulm, Paris, France
- INSERM U1016, Université Paris Descartes, 4 avenue de l'observatoire, Paris, France
| | - Keltouma Driouch
- Service de génétique, unité de pharmacogénomique, Institut Curie, 26 rue d'Ulm, Paris, France
- Paris Sciences Lettres Research University, Paris, France
| | - François Lallemand
- Service de génétique, unité de pharmacogénomique, Institut Curie, 26 rue d'Ulm, Paris, France.
- Paris Sciences Lettres Research University, Paris, France.
| |
Collapse
|
28
|
Huang Y, Zheng D, Yang Q, Wu J, Tian H, Ji Z, Chen L, Cai J, Li Z, Chen Y. Global trends in BRCA-related breast cancer research from 2013 to 2022: A scientometric analysis. Front Oncol 2023; 13:1197168. [PMID: 37476378 PMCID: PMC10354558 DOI: 10.3389/fonc.2023.1197168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Since the mid-2000s, breast cancer incidence among women has slowly increased at about 0.5% per year. In the last three decades, Breast Cancer Susceptibility Gene (BRCA) has been proven to be the crucial gene in encouraging the incidence and development of breast cancer. However, scientometric analysis on BRCA-related breast cancer is in shortage. Thus, to have a clear understanding of the current status and catch up with the hotspots, a scientometric analysis was conducted on specific academic publications collected from the Web of Science (WoS). Methods We searched the Web of Science Core Collection (WoSCC) to procure associated articles as our dataset. Bibliometric, CiteSpace, VOSviewer, and HistCite software were then applied to conduct visual analyses of countries, institutions, journals, authors, landmark articles, and keywords in this research field. Results A total of 7,266 articles and 1,310 review articles published between 2013 to 2022 were retrieved eventually. The annual output steadily rose year by year and peaked in 2021. The USA led the way in the number of published works, total citations, and collaboration. Breast Cancer Research and Treatment was the most favoured journal in this research field. Narod SA from the University of Toronto produced the most publications. At last, the most prominent keywords were "breast cancer" (n=1,778), "women" (n=1,369), "brca1" (n=1,276), "ovarian cancer" (n=1,259), "risk" (n=1,181), and "mutations" (n=929), which exposed the hotspots within the BRCA domain of breast cancer study. Conclusion The tendency in the BRCA research field over the past decade was presented by the scientometric analysis. The current research focus is the clinical trials of poly-adenosine diphosphate ribose polymerase inhibitors (PARPi) drugs and their resistance mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhiyang Li
- *Correspondence: Zhiyang Li, ; Yexi Chen,
| | - Yexi Chen
- *Correspondence: Zhiyang Li, ; Yexi Chen,
| |
Collapse
|
29
|
Gu L, Hickey RJ, Malkas LH. Therapeutic Targeting of DNA Replication Stress in Cancer. Genes (Basel) 2023; 14:1346. [PMID: 37510250 PMCID: PMC10378776 DOI: 10.3390/genes14071346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/30/2023] Open
Abstract
This article reviews the currently used therapeutic strategies to target DNA replication stress for cancer treatment in the clinic, highlighting their effectiveness and limitations due to toxicity and drug resistance. Cancer cells experience enhanced spontaneous DNA damage due to compromised DNA replication machinery, elevated levels of reactive oxygen species, loss of tumor suppressor genes, and/or constitutive activation of oncogenes. Consequently, these cells are addicted to DNA damage response signaling pathways and repair machinery to maintain genome stability and support survival and proliferation. Chemotherapeutic drugs exploit this genetic instability by inducing additional DNA damage to overwhelm the repair system in cancer cells. However, the clinical use of DNA-damaging agents is limited by their toxicity and drug resistance often arises. To address these issues, the article discusses a potential strategy to target the cancer-associated isoform of proliferating cell nuclear antigen (caPCNA), which plays a central role in the DNA replication and damage response network. Small molecule and peptide agents that specifically target caPCNA can selectively target cancer cells without significant toxicity to normal cells or experimental animals.
Collapse
Affiliation(s)
- Long Gu
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Robert J Hickey
- Department of Cancer Biology & Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Linda H Malkas
- Department of Molecular Diagnostics & Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
30
|
Li WH, Wang F, Song GY, Yu QH, Du RP, Xu P. PARP-1: a critical regulator in radioprotection and radiotherapy-mechanisms, challenges, and therapeutic opportunities. Front Pharmacol 2023; 14:1198948. [PMID: 37351512 PMCID: PMC10283042 DOI: 10.3389/fphar.2023.1198948] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Background: Since its discovery, poly (ADP-ribose) polymerase 1 (PARP-1) has been extensively studied due to its regulatory role in numerous biologically crucial pathways. PARP inhibitors have opened new therapeutic avenues for cancer patients and have gained approval as standalone treatments for certain types of cancer. With continued advancements in the research of PARP inhibitors, we can fully realize their potential as therapeutic targets for various diseases. Purpose: To assess the current understanding of PARP-1 mechanisms in radioprotection and radiotherapy based on the literature. Methods: We searched the PubMed database and summarized information on PARP inhibitors, the interaction of PARP-1 with DNA, and the relationships between PARP-1 and p53/ROS, NF-κB/DNA-PK, and caspase3/AIF, respectively. Results: The enzyme PARP-1 plays a crucial role in repairing DNA damage and modifying proteins. Cells exposed to radiation can experience DNA damage, such as single-, intra-, or inter-strand damage. This damage, associated with replication fork stagnation, triggers DNA repair mechanisms, including those involving PARP-1. The activity of PARP-1 increases 500-fold on DNA binding. Studies on PARP-1-knockdown mice have shown that the protein regulates the response to radiation. A lack of PARP-1 also increases the organism's sensitivity to radiation injury. PARP-1 has been found positively or negatively regulate the expression of specific genes through its modulation of key transcription factors and other molecules, including NF-κB, p53, Caspase 3, reactive oxygen species (ROS), and apoptosis-inducing factor (AIF). Conclusion: This review provides a comprehensive analysis of the physiological and pathological roles of PARP-1 and examines the impact of PARP-1 inhibitors under conditions of ionizing radiation exposure. The review also emphasizes the challenges and opportunities for developing PARP-1 inhibitors to improve the clinical outcomes of ionizing radiation damage.
Collapse
Affiliation(s)
- Wen-Hao Li
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Fei Wang
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Gui-Yuan Song
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Qing-Hua Yu
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Rui-Peng Du
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
| | - Ping Xu
- School of Food and Biomedicine, Zaozhuang University, Zaozhuang, Shandong, China
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
31
|
Loboda AP, Adonin LS, Zvereva SD, Guschin DY, Korneenko TV, Telegina AV, Kondratieva OK, Frolova SE, Pestov NB, Barlev NA. BRCA Mutations-The Achilles Heel of Breast, Ovarian and Other Epithelial Cancers. Int J Mol Sci 2023; 24:ijms24054982. [PMID: 36902416 PMCID: PMC10003548 DOI: 10.3390/ijms24054982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Two related tumor suppressor genes, BRCA1 and BRCA2, attract a lot of attention from both fundamental and clinical points of view. Oncogenic hereditary mutations in these genes are firmly linked to the early onset of breast and ovarian cancers. However, the molecular mechanisms that drive extensive mutagenesis in these genes are not known. In this review, we hypothesize that one of the potential mechanisms behind this phenomenon can be mediated by Alu mobile genomic elements. Linking mutations in the BRCA1 and BRCA2 genes to the general mechanisms of genome stability and DNA repair is critical to ensure the rationalized choice of anti-cancer therapy. Accordingly, we review the literature available on the mechanisms of DNA damage repair where these proteins are involved, and how the inactivating mutations in these genes (BRCAness) can be exploited in anti-cancer therapy. We also discuss a hypothesis explaining why breast and ovarian epithelial tissues are preferentially susceptible to mutations in BRCA genes. Finally, we discuss prospective novel therapeutic approaches for treating BRCAness cancers.
Collapse
Affiliation(s)
- Anna P. Loboda
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | | | - Svetlana D. Zvereva
- Laboratory of Molecular Oncology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Dmitri Y. Guschin
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
| | | | | | | | - Nikolay B. Pestov
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| | - Nick A. Barlev
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, 108819 Moscow, Russia
- Institute of Cytology, Tikhoretsky ave 4, 194064 St-Petersburg, Russia
- Correspondence: (N.B.P.); (N.A.B.)
| |
Collapse
|
32
|
Lodovichi S, Quadri R, Sertic S, Pellicioli A. PARylation of BRCA1 limits DNA break resection through BRCA2 and EXO1. Cell Rep 2023; 42:112060. [PMID: 36735534 DOI: 10.1016/j.celrep.2023.112060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
The nucleolytic processing (resection) of a DNA double-strand break (DSB) is a critical step to repair the lesion by homologous recombination (HR). PARylation, which is the attachment of poly(ADP-ribose) (PAR) units to specific targets by PAR polymerases (PARPs), regulates many steps of HR, including resection. Here, we show that preventing PARylation of the oncosuppressor BRCA1 induces hyper-resection of DSBs through BRCA2 and the EXO1 nuclease. Upon expression of the unPARylatable variant of BRCA1, we observe a reduced 53BP1-RIF1 barrier for resection accompanied by an increase in the recruitment of the RAD51 recombinase. Similar results are observed when cells are treated with the clinically approved PARP inhibitor olaparib. We propose that PARylation of BRCA1 is important to limit the formation of excessively extended DNA filaments, thereby reducing illegitimate chromosome rearrangements. Our results shed light on molecular aspects of HR and on the mechanisms of PARP inhibitor treatment.
Collapse
Affiliation(s)
- Samuele Lodovichi
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20131 Milano, Italy
| | - Roberto Quadri
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20131 Milano, Italy
| | - Sarah Sertic
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20131 Milano, Italy
| | - Achille Pellicioli
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20131 Milano, Italy.
| |
Collapse
|
33
|
Geng L, Sun Y, Zhu M, An H, Li Y, Lao Y, Zhang Y, Li B, Ni J, Xu Z. The inhibition of PARG attenuates DNA repair in hepatocellular carcinoma. MOLECULAR BIOMEDICINE 2023; 4:3. [PMID: 36719492 PMCID: PMC9889579 DOI: 10.1186/s43556-023-00114-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Affiliation(s)
- Longpo Geng
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yaling Sun
- Department of Radiation Oncology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Mingming Zhu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Hongda An
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yunzheng Li
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yuanxiang Lao
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yongli Zhang
- Department of Gynecology of Shanghai First Maternity & Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China.
| | - Binghua Li
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Jie Ni
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Zhu Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
34
|
Qin H, Zhang J, Zhao Y, Zhang L, Feng J, Zhang L. Discovery of a potent olaparib-chlorambucil hybrid inhibitor of PARP1 for the treatment of cancer. Front Pharmacol 2023; 13:1054616. [PMID: 36699082 PMCID: PMC9868654 DOI: 10.3389/fphar.2022.1054616] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction: Development of Poly (ADP-ribose) polymerase (PARP) inhibitors has been extensively studied in cancer treatment. Olaparib, the first approved PARP inhibitor, showed potency in the inhibition of both BRCA (breast cancer associated)-mutated and BRCA-unmutated cancers. Methods: Aiming to the discovery of olaparib analogs for the treatment of cancer, structural modifications were performed based on the scaffold of olaparib. In the first series, reduction of carbonyl group to CH2 led to decrease of PARP1 inhibitory activity. Preserving the original carbonyl group, molecules with potent PARP1 inhibitory activities were derived by introduction of hydrazide and aromatic nitrogen mustard groups. The synthesized compounds were evaluated in the in the PARP1 enzyme inhibitory screening, cancer cell based antiproliferative assay, cell cycle arrest and apoptosis studies. Results: It is remarkable that, molecule C2 with chlorambucil substitution, exhibited potent PARP1 inhibitory activity and a broad-spectrum of anticancer potency in the in vitro antiproliferative assay. Compared with olaparib and chlorambucil, molecule C2 also showed significant potency in inhibition of a variety of BRCA-unmutated cell lines. Further analysis revealed the effects of C2 in induction of G2/M phase cell cycle arrest and promotion of apoptosis. Discussion: Collectively, the olaparib-chlorambucil hybrid molecule (C2) could be utilized as a lead compound for further drug design.
Collapse
Affiliation(s)
- Hongyu Qin
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Jian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Yilu Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Lihui Zhang
- School of Stomatology, Weifang Medical University, Weifang, Shandong, China
| | - Jinhong Feng
- Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of sciences), Jinan, Shandong, China,*Correspondence: Jinhong Feng, ; Lei Zhang,
| | - Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Weifang Medical University, Weifang, Shandong, China,*Correspondence: Jinhong Feng, ; Lei Zhang,
| |
Collapse
|
35
|
Hunia J, Gawalski K, Szredzka A, Suskiewicz MJ, Nowis D. The potential of PARP inhibitors in targeted cancer therapy and immunotherapy. Front Mol Biosci 2022; 9:1073797. [PMID: 36533080 PMCID: PMC9751342 DOI: 10.3389/fmolb.2022.1073797] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 07/29/2023] Open
Abstract
DNA damage response (DDR) deficiencies result in genome instability, which is one of the hallmarks of cancer. Poly (ADP-ribose) polymerase (PARP) enzymes take part in various DDR pathways, determining cell fate in the wake of DNA damage. PARPs are readily druggable and PARP inhibitors (PARPi) against the main DDR-associated PARPs, PARP1 and PARP2, are currently approved for the treatment of a range of tumor types. Inhibition of efficient PARP1/2-dependent DDR is fatal for tumor cells with homologous recombination deficiencies (HRD), especially defects in breast cancer type 1 susceptibility protein 1 or 2 (BRCA1/2)-dependent pathway, while allowing healthy cells to survive. Moreover, PARPi indirectly influence the tumor microenvironment by increasing genomic instability, immune pathway activation and PD-L1 expression on cancer cells. For this reason, PARPi might enhance sensitivity to immune checkpoint inhibitors (ICIs), such as anti-PD-(L)1 or anti-CTLA4, providing a rationale for PARPi-ICI combination therapies. In this review, we discuss the complex background of the different roles of PARP1/2 in the cell and summarize the basics of how PARPi work from bench to bedside. Furthermore, we detail the early data of ongoing clinical trials indicating the synergistic effect of PARPi and ICIs. We also introduce the diagnostic tools for therapy development and discuss the future perspectives and limitations of this approach.
Collapse
Affiliation(s)
- Jaromir Hunia
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Karol Gawalski
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
36
|
Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers (Basel) 2022; 14:cancers14225633. [PMID: 36428727 PMCID: PMC9688455 DOI: 10.3390/cancers14225633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cytotoxic effects as single agents in tumors characterized by defective repair of DNA double-strand breaks deriving from BRCA1/2 mutations or other abnormalities in genes associated with homologous recombination. Preclinical studies have shown that PARPi-induced DNA damage may affect the tumor immune microenvironment and immune-mediated anti-tumor response through several mechanisms. In particular, increased DNA damage has been shown to induce the activation of type I interferon pathway and up-regulation of PD-L1 expression in cancer cells, which can both enhance sensitivity to Immune Checkpoint Inhibitors (ICIs). Despite the recent approval of ICIs for a number of advanced cancer types based on their ability to reinvigorate T-cell-mediated antitumor immune responses, a consistent percentage of treated patients fail to respond, strongly encouraging the identification of combination therapies to overcome resistance. In the present review, we analyzed both established and unexplored mechanisms that may be elicited by PARPi, supporting immune reactivation and their potential synergism with currently used ICIs. This analysis may indicate novel and possibly patient-specific immune features that might represent new pharmacological targets of PARPi, potentially leading to the identification of predictive biomarkers of response to their combination with ICIs.
Collapse
|
37
|
Soni A, Lin X, Mladenov E, Mladenova V, Stuschke M, Iliakis G. BMN673 Is a PARP Inhibitor with Unique Radiosensitizing Properties: Mechanisms and Potential in Radiation Therapy. Cancers (Basel) 2022; 14:cancers14225619. [PMID: 36428712 PMCID: PMC9688666 DOI: 10.3390/cancers14225619] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
BMN673 is a relatively new PARP inhibitor (PARPi) that exhibits superior efficacy in vitro compared to olaparib and other clinically relevant PARPi. BMN673, similar to most clinical PARPi, inhibits the catalytic activities of PARP-1 and PARP-2 and shows impressive anticancer potential as monotherapy in several pre-clinical and clinical studies. Tumor resistance to PARPi poses a significant challenge in the clinic. Thus, combining PARPi with other treatment modalities, such as radiotherapy (RT), is being actively pursued to overcome such resistance. However, the modest to intermediate radiosensitization exerted by olaparib, rucaparib, and veliparib, limits the rationale and the scope of such combinations. The recently reported strong radiosensitizing potential of BMN673 forecasts a paradigm shift on this front. Evidence accumulates that BMN673 may radiosensitize via unique mechanisms causing profound shifts in the balance among DNA double-strand break (DSB) repair pathways. According to one of the emerging models, BMN673 strongly inhibits classical non-homologous end-joining (c-NHEJ) and increases reciprocally and profoundly DSB end-resection, enhancing error-prone DSB processing that robustly potentiates cell killing. In this review, we outline and summarize the work that helped to formulate this model of BMN673 action on DSB repair, analyze the causes of radiosensitization and discuss its potential as a radiosensitizer in the clinic. Finally, we highlight strategies for combining BMN673 with other inhibitors of DNA damage response for further improvements.
Collapse
Affiliation(s)
- Aashish Soni
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Xixi Lin
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Emil Mladenov
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Veronika Mladenova
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, German Cancer Research Center (DKFZ), 45147 Essen, Germany
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Correspondence: ; Tel.: +49-201-723-4152
| |
Collapse
|
38
|
Pei X, Mladenov E, Soni A, Li F, Stuschke M, Iliakis G. PTEN Loss Enhances Error-Prone DSB Processing and Tumor Cell Radiosensitivity by Suppressing RAD51 Expression and Homologous Recombination. Int J Mol Sci 2022; 23:12876. [PMID: 36361678 PMCID: PMC9658850 DOI: 10.3390/ijms232112876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 09/29/2023] Open
Abstract
PTEN has been implicated in the repair of DNA double-strand breaks (DSBs), particularly through homologous recombination (HR). However, other data fail to demonstrate a direct role of PTEN in DSB repair. Therefore, here, we report experiments designed to further investigate the role of PTEN in DSB repair. We emphasize the consequences of PTEN loss in the engagement of the four DSB repair pathways-classical non-homologous end-joining (c-NHEJ), HR, alternative end-joining (alt-EJ) and single strand annealing (SSA)-and analyze the resulting dynamic changes in their utilization. We quantitate the effect of PTEN knockdown on cell radiosensitivity to killing, as well as checkpoint responses in normal and tumor cell lines. We find that disruption of PTEN sensitizes cells to ionizing radiation (IR). This radiosensitization is associated with a reduction in RAD51 expression that compromises HR and causes a marked increase in SSA engagement, an error-prone DSB repair pathway, while alt-EJ and c-NHEJ remain unchanged after PTEN knockdown. The G2-checkpoint is partially suppressed after PTEN knockdown, corroborating the associated HR suppression. Notably, PTEN deficiency radiosensitizes cells to PARP inhibitors, Olaparib and BMN673. The results show the crucial role of PTEN in DSB repair and show a molecular link between PTEN and HR through the regulation of RAD51 expression. The expected benefit from combination treatment with Olaparib or BMN673 and IR shows that PTEN status may also be useful for patient stratification in clinical treatment protocols combining IR with PARP inhibitors.
Collapse
Affiliation(s)
- Xile Pei
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Emil Mladenov
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Aashish Soni
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Fanghua Li
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Martin Stuschke
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, 45147 Essen, Germany
| | - George Iliakis
- Division of Experimental Radiation Biology, Department of Radiation Therapy, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Institute of Medical Radiation Biology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
39
|
Nrf2 Modulation in Breast Cancer. Biomedicines 2022; 10:biomedicines10102668. [PMID: 36289931 PMCID: PMC9599257 DOI: 10.3390/biomedicines10102668] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 12/05/2022] Open
Abstract
Reactive oxygen species (ROS) are identified to control the expression and activity of various essential signaling intermediates involved in cellular proliferation, apoptosis, and differentiation. Indeed, ROS represents a double-edged sword in supporting cell survival and death. Many common pathological processes, including various cancer types and neurodegenerative diseases, are inflammation and oxidative stress triggers, or even initiate them. Keap1-Nrf2 is a master antioxidant pathway in cytoprotective mechanisms through Nrf2 target gene expression. Activation of the Nfr2 pathway benefits cells in the early stages and reduces the level of ROS. In contrast, hyperactivation of Keap1-Nrf2 creates a context that supports the survival of both healthy and cancerous cells, defending them against oxidative stress, chemotherapeutic drugs, and radiotherapy. Considering the dual role of Nrf2 in suppressing or expanding cancer cells, determining its inhibitory/stimulatory position and targeting can represent an impressive role in cancer treatment. This review focused on Nrf2 modulators and their roles in sensitizing breast cancer cells to chemo/radiotherapy agents.
Collapse
|
40
|
Ravishankar K, Jiang X, Leddin EM, Morcos F, Cisneros GA. Computational compensatory mutation discovery approach: Predicting a PARP1 variant rescue mutation. Biophys J 2022; 121:3663-3673. [PMID: 35642254 PMCID: PMC9617126 DOI: 10.1016/j.bpj.2022.05.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022] Open
Abstract
The prediction of protein mutations that affect function may be exploited for multiple uses. In the context of disease variants, the prediction of compensatory mutations that reestablish functional phenotypes could aid in the development of genetic therapies. In this work, we present an integrated approach that combines coevolutionary analysis and molecular dynamics (MD) simulations to discover functional compensatory mutations. This approach is employed to investigate possible rescue mutations of a poly(ADP-ribose) polymerase 1 (PARP1) variant, PARP1 V762A, associated with lung cancer and follicular lymphoma. MD simulations show PARP1 V762A exhibits noticeable changes in structural and dynamical behavior compared with wild-type (WT) PARP1. Our integrated approach predicts A755E as a possible compensatory mutation based on coevolutionary information, and molecular simulations indicate that the PARP1 A755E/V762A double mutant exhibits similar structural and dynamical behavior to WT PARP1. Our methodology can be broadly applied to a large number of systems where single-nucleotide polymorphisms have been identified as connected to disease and can shed light on the biophysical effects of such changes as well as provide a way to discover potential mutants that could restore WT-like functionality. This can, in turn, be further utilized in the design of molecular therapeutics that aim to mimic such compensatory effect.
Collapse
Affiliation(s)
| | - Xianli Jiang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas; Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emmett M Leddin
- Department of Chemistry, University of North Texas, Denton, Texas
| | - Faruck Morcos
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas; Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas; Center for Systems Biology, The University of Texas at Dallas, Richardson, Texas.
| | - G Andrés Cisneros
- Department of Chemistry, University of North Texas, Denton, Texas; Department of Physics, The University of Texas at Dallas, Richardson, Texas; Department of Chemistry, The University of Texas at Dallas, Richardson, Texas.
| |
Collapse
|
41
|
Hu JX, Yang Y, Xu YY, Shen HB. GraphLoc: a graph neural network model for predicting protein subcellular localization from immunohistochemistry images. Bioinformatics 2022; 38:4941-4948. [DOI: 10.1093/bioinformatics/btac634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/07/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Motivation
Recognition of protein subcellular distribution patterns and identification of location biomarker proteins in cancer tissues are important for understanding protein functions and related diseases. Immunohistochemical (IHC) images enable visualizing the distribution of proteins at the tissue level, providing an important resource for the protein localization studies. In the past decades, several image-based protein subcellular location prediction methods have been developed, but the prediction accuracies still have much space to improve due to the complexity of protein patterns resulting from multi-label proteins and variation of location patterns across cell types or states.
Results
Here, we propose a multi-label multi-instance model based on deep graph convolutional neural networks, GraphLoc, to recognize protein subcellular location patterns. GraphLoc builds a graph of multiple IHC images for one protein, learns protein-level representations by graph convolutions, and predicts multi-label information by a dynamic threshold method. Our results show that GraphLoc is a promising model for image-based protein subcellular location prediction with model interpretability. Furthermore, we apply GraphLoc to the identification of candidate location biomarkers and potential members for protein networks. A large portion of the predicted results have supporting evidence from the existing literatures and the new candidates also provide guidance for further experimental screening.
Availability
The dataset and code are available at: www.csbio.sjtu.edu.cn/bioinf/GraphLoc.
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jin-Xian Hu
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing , Ministry of Education of China, Shanghai 200240, China
| | - Yang Yang
- Shanghai Jiao Tong University Department of Computer Science and Engineering, Center for Brain-Like Computing and Machine Intelligence, , Shanghai 200240, China
| | - Ying-Ying Xu
- Southern Medical University School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, , Guangzhou 510515, China
- Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University , Guangzhou 510515, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing , Ministry of Education of China, Shanghai 200240, China
| |
Collapse
|
42
|
A Double-Edged Sword: The Two Faces of PARylation. Int J Mol Sci 2022; 23:ijms23179826. [PMID: 36077221 PMCID: PMC9456079 DOI: 10.3390/ijms23179826] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Poly ADP-ribosylation (PARylation) is a post-translational modification process. Following the discovery of PARP-1, numerous studies have demonstrated the role of PARylation in the DNA damage and repair responses for cellular stress and DNA damage. Originally, studies on PARylation were confined to PARP-1 activation in the DNA repair pathway. However, the interplay between PARylation and DNA repair suggests that PARylation is important for the efficiency and accuracy of DNA repair. PARylation has contradicting roles; however, recent evidence implicates its importance in inflammation, metabolism, and cell death. These differences might be dependent on specific cellular conditions or experimental models used, and suggest that PARylation may play two opposing roles in cellular homeostasis. Understanding the role of PARylation in cellular function is not only important for identifying novel therapeutic approaches; it is also essential for gaining insight into the mechanisms of unexplored diseases. In this review, we discuss recent reports on the role of PARylation in mediating diverse cellular functions and homeostasis, such as DNA repair, inflammation, metabolism, and cell death.
Collapse
|
43
|
Luedeman ME, Stroik S, Feng W, Luthman AJ, Gupta GP, Ramsden DA. Poly(ADP) ribose polymerase promotes DNA polymerase theta-mediated end joining by activation of end resection. Nat Commun 2022; 13:4547. [PMID: 35927262 PMCID: PMC9352658 DOI: 10.1038/s41467-022-32166-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
The DNA polymerase theta (Polθ)-mediated end joining (TMEJ) pathway for repair of chromosomal double strand breaks (DSBs) is essential in cells deficient in other DSB repair pathways, including hereditary breast cancers defective in homologous recombination. Strand-break activated poly(ADP) ribose polymerase 1 (PARP1) has been implicated in TMEJ, but the modest specificity of existing TMEJ assays means the extent of effect and the mechanism behind it remain unclear. We describe here a series of TMEJ assays with improved specificity and show ablation of PARP activity reduces TMEJ activity 2-4-fold. The reduction in TMEJ is attributable to a reduction in the 5' to 3' resection of DSB ends that is essential for engagement of this pathway and is compensated by increased repair by the nonhomologous-end joining pathway. This limited role for PARP activity in TMEJ helps better rationalize the combined employment of inhibitors of PARP and Polθ in cancer therapy.
Collapse
Affiliation(s)
- Megan E Luedeman
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Susanna Stroik
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wanjuan Feng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam J Luthman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gaorav P Gupta
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dale A Ramsden
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
44
|
Chen BR, Sleckman BP. The regulation of DNA end resection by chromatin response to DNA double strand breaks. Front Cell Dev Biol 2022; 10:932633. [PMID: 35912102 PMCID: PMC9335370 DOI: 10.3389/fcell.2022.932633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
DNA double-strand breaks (DSBs) constantly arise upon exposure to genotoxic agents and during physiological processes. The timely repair of DSBs is important for not only the completion of the cellular functions involving DSBs as intermediates, but also the maintenance of genome stability. There are two major pathways dedicated to DSB repair: homologous recombination (HR) and non-homologous end joining (NHEJ). The decision of deploying HR or NHEJ to repair DSBs largely depends on the structures of broken DNA ends. DNA ends resected to generate extensive single-strand DNA (ssDNA) overhangs are repaired by HR, while those remaining blunt or minimally processed can be repaired by NHEJ. As the generation and repair of DSB occurs within the context of chromatin, the resection of broken DNA ends is also profoundly affected by the state of chromatin flanking DSBs. Here we review how DNA end resection can be regulated by histone modifications, chromatin remodeling, and the presence of ssDNA structure through altering the accessibility to chromatin and the activity of pro- and anti-resection proteins.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Bo-Ruei Chen,
| | - Barry P. Sleckman
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
45
|
Oh KS, Nam AR, Bang JH, Seo HR, Kim JM, Yoon J, Kim TY, Oh DY. A synthetic lethal strategy using PARP and ATM inhibition for overcoming trastuzumab resistance in HER2-positive cancers. Oncogene 2022; 41:3939-3952. [PMID: 35798878 DOI: 10.1038/s41388-022-02384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
Despite its clinical efficacy in HER2-positive cancers, resistance to trastuzumab inevitably occurs. The DNA damage response (DDR) pathway is essential for maintaining genomic stability and cell survival. However, the role of the DDR pathway in HER2-positive tumors and trastuzumab resistance remains elusive. In this study, we verified that increased PARP1 expression in trastuzumab-resistant (TR) cells, owing to its augmented stability by escape from proteasomal degradation, confers tolerability to trastuzumab-induced DNA damage. Interruption of PARP1 in TR cells restrains its cellular growth, while simultaneously activating ATM to retain its genome stability. Dual inhibition of PARP and ATM induces synthetic lethality in TR cells by favoring the toxic NHEJ pathway instead of the HRR pathway. Our results highlight the potential of clinical development of DDR-targeting strategies for trastuzumab-resistant HER2-positive cancer patients.
Collapse
Affiliation(s)
- Kyoung-Seok Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ah-Rong Nam
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Ju-Hee Bang
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Hye-Rim Seo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.,Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Korea
| | - Jae-Min Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.,Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Korea
| | - Jeesun Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Korea
| | - Tae-Yong Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Korea
| | - Do-Youn Oh
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea. .,Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, 03080, Korea. .,Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Korea.
| |
Collapse
|
46
|
Kolobynina KG, Rapp A, Cardoso MC. Chromatin Ubiquitination Guides DNA Double Strand Break Signaling and Repair. Front Cell Dev Biol 2022; 10:928113. [PMID: 35865631 PMCID: PMC9294282 DOI: 10.3389/fcell.2022.928113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is the context for all DNA-based molecular processes taking place in the cell nucleus. The initial chromatin structure at the site of the DNA damage determines both, lesion generation and subsequent activation of the DNA damage response (DDR) pathway. In turn, proceeding DDR changes the chromatin at the damaged site and across large fractions of the genome. Ubiquitination, besides phosphorylation and methylation, was characterized as an important chromatin post-translational modification (PTM) occurring at the DNA damage site and persisting during the duration of the DDR. Ubiquitination appears to function as a highly versatile “signal-response” network involving several types of players performing various functions. Here we discuss how ubiquitin modifiers fine-tune the DNA damage recognition and response and how the interaction with other chromatin modifications ensures cell survival.
Collapse
|
47
|
Chen Y, Luo Y, Tian Q, Zeng D. miR-103 Derived from Bone Marrow Mesenchymal Stem Cell (BMSC) Retards the Chemo-Resistance Through Targeted-Regulation of TP53 Regulated Inhibitor of Apoptosis 1 (TRIAP1) in Breast Cancer. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The chemo-resistance was one of the major reasons for the treatment failure for breast cancer. Our study aimed to discuss the action of miR-103 derived from BMSC on retarding the chemo-resistance through targeted-regulating TRIAP1 in breast cancer. The cisplatin-resistant breast cancer
cells were cultivated and transfected with si-RNA targeting miR-103 followed by analysis of cell invasion, migration and apoptosis by Transwell. MiR-103 target gene was analyzed with bioinformatics method and dual-luciferase reporter assay. TRIAP1 expression was measured by Western Blot. The
cell apoptosis was reduced when miR-103 expression was restrained along with enhanced cell proliferation. The co-cultivation with BMSC in vitro could upregulate TRIAP1 expression in breast cancer cells. In cells transfected with si-miR-103, the expression of TRIAP1 was reduced, cell
apoptosis was increased and invasion was decreased. In conclusion, the chemo-resistance is induced and the malignant invasion of breast cancer cells is retarded by co-cultivation with mikR-103 derived from BMSC which might be through regulating the expression of TRIAP.
Collapse
Affiliation(s)
- Yihua Chen
- Department of Pathology, The General Hospital of Western Military Command, Chengdu, Sichuan, 610000, China
| | - Yan Luo
- Department of Pathology, The General Hospital of Western Military Command, Chengdu, Sichuan, 610000, China
| | - Qiang Tian
- Department of Pathology, The General Hospital of Western Military Command, Chengdu, Sichuan, 610000, China
| | - Dongmei Zeng
- Department of Pathology, The General Hospital of Western Military Command, Chengdu, Sichuan, 610000, China
| |
Collapse
|
48
|
Berger ND, Brownlee PM, Chen MJ, Morrison H, Osz K, Ploquin NP, Chan JA, Goodarzi AA. High replication stress and limited Rad51-mediated DNA repair capacity, but not oxidative stress, underlie oligodendrocyte precursor cell radiosensitivity. NAR Cancer 2022; 4:zcac012. [PMID: 35425901 PMCID: PMC9004414 DOI: 10.1093/narcan/zcac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/15/2022] [Accepted: 03/21/2022] [Indexed: 12/29/2022] Open
Abstract
Cranial irradiation is part of the standard of care for treating pediatric brain tumors. However, ionizing radiation can trigger serious long-term neurologic sequelae, including oligodendrocyte and brain white matter loss enabling neurocognitive decline in children surviving brain cancer. Oxidative stress-mediated oligodendrocyte precursor cell (OPC) radiosensitivity has been proposed as a possible explanation for this. Here, however, we demonstrate that antioxidants fail to improve OPC viability after irradiation, despite suppressing oxidative stress, suggesting an alternative etiology for OPC radiosensitivity. Using systematic approaches, we find that OPCs have higher irradiation-induced and endogenous γH2AX foci compared to neural stem cells, neurons, astrocytes and mature oligodendrocytes, and these correlate with replication-associated DNA double strand breakage. Furthermore, OPCs are reliant upon ATR kinase and Mre11 nuclease-dependent processes for viability, are more sensitive to drugs increasing replication fork collapse, and display synthetic lethality with PARP inhibitors after irradiation. This suggests an insufficiency for homology-mediated DNA repair in OPCs-a model that is supported by evidence of normal RPA but reduced RAD51 filament formation at resected lesions in irradiated OPCs. We therefore propose a DNA repair-centric mechanism of OPC radiosensitivity, involving chronically-elevated replication stress combined with 'bottlenecks' in RAD51-dependent DNA repair that together reduce radiation resilience.
Collapse
Affiliation(s)
- N Daniel Berger
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Peter M Brownlee
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Myra J Chen
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Hali Morrison
- Department of Oncology and Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - Katalin Osz
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Nicolas P Ploquin
- Department of Oncology and Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| | - Jennifer A Chan
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Aaron A Goodarzi
- Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Department of Oncology and Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
49
|
A PARylation-phosphorylation cascade promotes TOPBP1 loading and RPA-RAD51 exchange in homologous recombination. Mol Cell 2022; 82:2571-2587.e9. [PMID: 35597237 DOI: 10.1016/j.molcel.2022.04.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/14/2022] [Accepted: 04/22/2022] [Indexed: 01/30/2023]
Abstract
The efficiency of homologous recombination (HR) in the repair of DNA double-strand breaks (DSBs) is closely associated with genome stability and tumor response to chemotherapy. While many factors have been functionally characterized in HR, such as TOPBP1, their precise regulation remains unclear. Here, we report that TOPBP1 interacts with the RNA-binding protein HTATSF1 in a cell-cycle- and phosphorylation-dependent manner. Mechanistically, CK2 phosphorylates HTATSF1 to facilitate binding to TOPBP1, which promotes S-phase-specific TOPBP1 recruitment to damaged chromatin and subsequent RPA/RAD51-dependent HR, genome integrity, and cancer-cell viability. The localization of HTATSF1-TOPBP1 to DSBs is potentially independent of the transcription-coupled RNA-binding and processing capacity of HTATSF1 but rather relies on the recognition of poly(ADP-ribosyl)ated RPA by HTATSF1, which can be blunted with PARP inhibitors. Together, our study provides a mechanistic insight into TOPBP1 loading at HR-prone DSB sites via HTATSF1 and reveals how RPA-RAD51 exchange is tuned by a PARylation-phosphorylation cascade.
Collapse
|
50
|
Huang D, Kraus WL. The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Mol Cell 2022; 82:2315-2334. [PMID: 35271815 DOI: 10.1016/j.molcel.2022.02.021] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022]
Abstract
ADP-ribosylation (ADPRylation) is a post-translational modification of proteins catalyzed by ADP-ribosyl transferase (ART) enzymes, including nuclear PARPs (e.g., PARP1 and PARP2). Historically, studies of ADPRylation and PARPs have focused on DNA damage responses in cancers, but more recent studies elucidate diverse roles in a broader array of biological processes. Here, we summarize the expanding array of molecular mechanisms underlying the biological functions of nuclear PARPs with a focus on PARP1, the founding member of the family. This includes roles in DNA repair, chromatin regulation, gene expression, ribosome biogenesis, and RNA biology. We also present new concepts in PARP1-dependent regulation, including PAR-dependent post-translational modifications, "ADPR spray," and PAR-mediated biomolecular condensate formation. Moreover, we review advances in the therapeutic mechanisms of PARP inhibitors (PARPi) as well as the progress on the mechanisms of PARPi resistance. Collectively, the recent progress in the field has yielded new insights into the expanding universe of PARP1-mediated molecular and therapeutic mechanisms in a variety of biological processes.
Collapse
Affiliation(s)
- Dan Huang
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|