1
|
Wei W, Zhang Y, Li Y, Huang J, Kang F, Tan S, Lin L, Lu X, Wei H, Wang N. Hypoxia-mediated high expression of TRIM15 promotes malignant progression of high-grade serous ovarian cancer through activation of AKT signaling pathway by K63 ubiquitination. Int J Cancer 2025; 156:2401-2415. [PMID: 40026037 DOI: 10.1002/ijc.35387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 12/24/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
The tripartite motif (TRIM) family member TRIM15 is an E3 ubiquitin ligase that is abnormally expressed in a variety of tumors, but its role and mechanism in high-grade serous ovarian cancer (HGSOC) are unclear. Here, we found for the first time that TRIM15 was upregulated in HGSOC and was associated with poor overall survival. Functional experiments showed that TRIM15 drove the proliferation of HGSOC cells and inhibited the apoptosis of tumor cells in vivo and in vitro. In terms of mechanism, we found that TRIM15 contributed to the malignant proliferation of HGSOC cells by promoting the activation of AKT and that there was a direct binding between them. TRIM15 induced lysine-63 (K63) ubiquitination of AKT through its Ring domain, which in turn activated the AKT signaling pathway. In addition, TRIM15-mediated K63 ubiquitination occurs mainly in the pleckstrin homology (PH) domain of AKT. We further identified other proteins and their functions regulated by TRIM15 in HGSOC cells by ubiquitin proteomic analysis. Furthermore, hypoxia-inducible factor-1α promoted TRIM15 transcriptional activation by binding to the hypoxia response elements of the TRIM15 promoter. Our study suggests that TRIM15 induces K63 ubiquitination of the AKT PH domain through its Ring domain and activates the AKT signaling pathway, thereby promoting HGSOC progression. In addition, the abnormally high expression of TRIM15 was associated with the hypoxic microenvironment of HGSOC tissues.
Collapse
Affiliation(s)
- Wei Wei
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yang Zhang
- Department of Breast Surgery, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Yibing Li
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Jiazhen Huang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Fuli Kang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Shuang Tan
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Lin Lin
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Xiaohang Lu
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| | - Heng Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ning Wang
- Department of Obstetrics and Gynecology, the Second Hospital of Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
2
|
Valcikova B, Vadovicova N, Smolkova K, Zacpalova M, Krejci P, Lee S, Rauch J, Kolch W, von Kriegsheim A, Dorotikova A, Andrysik Z, Vichova R, Vacek O, Soucek K, Uldrijan S. eIF4F controls ERK MAPK signaling in melanomas with BRAF and NRAS mutations. Proc Natl Acad Sci U S A 2024; 121:e2321305121. [PMID: 39436655 PMCID: PMC11536119 DOI: 10.1073/pnas.2321305121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/12/2024] [Indexed: 10/23/2024] Open
Abstract
The eIF4F translation initiation complex plays a critical role in melanoma resistance to clinical BRAF and MEK inhibitors. In this study, we uncover a function of eIF4F in the negative regulation of the rat sarcoma (RAS)/rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) signaling pathway. We demonstrate that eIF4F is essential for controlling ERK signaling intensity in treatment-naïve melanoma cells harboring BRAF or NRAS mutations. Specifically, the dual-specificity phosphatase DUSP6/MKP3, which acts as a negative feedback regulator of ERK activity, requires continuous production in an eIF4F-dependent manner to limit excessive ERK signaling driven by oncogenic RAF/RAS mutations. Treatment with small-molecule eIF4F inhibitors disrupts the negative feedback control of MAPK signaling, leading to ERK hyperactivation and EGR1 overexpression in melanoma cells in vitro and in vivo. Furthermore, our quantitative analyses reveal a high spare signaling capacity in the ERK pathway, suggesting that eIF4F-dependent feedback keeps the majority of ERK molecules inactive under normal conditions. Overall, our findings highlight the crucial role of eIF4F in regulating ERK signaling flux and suggest that pharmacological eIF4F inhibitors can disrupt the negative feedback control of MAPK activity in melanomas with BRAF and NRAS activating mutations.
Collapse
Affiliation(s)
- Barbora Valcikova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Natalia Vadovicova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Karolina Smolkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Magdalena Zacpalova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
- Laboratory of Cell Signaling, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Brno60200, Czech Republic
| | - Shannon Lee
- Systems Biology Ireland, School of Medicine, University College Dublin, DublinD04 V1W8, Ireland
| | - Jens Rauch
- Systems Biology Ireland, School of Medicine, University College Dublin, DublinD04 V1W8, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, DublinD04 V1W8, Ireland
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, DublinD04 V1W8, Ireland
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, DublinD04 V1W8, Ireland
| | - Alexander von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, EdinburghEH4 2XR, United Kingdom
| | - Anna Dorotikova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| | - Zdenek Andrysik
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO80045
| | - Rachel Vichova
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno61200, Czech Republic
| | - Ondrej Vacek
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno61200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czech Republic
| | - Karel Soucek
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno61200, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno62500, Czech Republic
| | - Stjepan Uldrijan
- Department of Biology, Faculty of Medicine, Masaryk University, Brno62500, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, Brno60200, Czech Republic
| |
Collapse
|
3
|
Singh AK, Duddempudi PK, Kenchappa DB, Srivastava N, Amdare NP. Immunological landscape of solid cancer: Interplay between tumor and autoimmunity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 389:163-235. [PMID: 39396847 DOI: 10.1016/bs.ircmb.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The immune system, a central player in maintaining homeostasis, emerges as a pivotal factor in the pathogenesis and progression of two seemingly disparate yet interconnected categories of diseases: autoimmunity and cancer. This chapter delves into the intricate and multifaceted role of the immune system, particularly T cells, in orchestrating responses that govern the delicate balance between immune surveillance and self-tolerance. T cells, pivotal immune system components, play a central role in both diseases. In autoimmunity, aberrant T cell activation drives damaging immune responses against normal tissues, while in cancer, T cells exhibit suppressed responses, allowing the growth of malignant tumors. Immune checkpoint receptors, example, initially explored in autoimmunity, now revolutionize cancer treatment via immune checkpoint blockade (ICB). Though effective in various tumors, ICB poses risks of immune-related adverse events (irAEs) akin to autoimmunity. This chapter underscores the importance of understanding tumor-associated antigens and their role in autoimmunity, immune checkpoint regulation, and their implications for both diseases. It also explores autoimmunity resulting from cancer immunotherapy and shared molecular pathways in solid tumors and autoimmune diseases, highlighting their interconnectedness at the molecular level. Additionally, it sheds light on common pathways and epigenetic features shared by autoimmunity and cancer, and the potential of repurposing drugs for therapeutic interventions. Delving deeper into these insights could unlock therapeutic strategies for both autoimmunity and cancer.
Collapse
Affiliation(s)
- Ajay K Singh
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | | | - Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
4
|
Zhang P, Li J, Wang Z, Zhao L, Qiu J, Xu Y, Wu G, Xia Q. Establishment of a new prognostic risk model of MAPK pathway-related molecules in kidney renal clear cell carcinoma based on genomes and transcriptomes analysis. Front Oncol 2023; 13:1077309. [PMID: 36969076 PMCID: PMC10036835 DOI: 10.3389/fonc.2023.1077309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
PURPOSE The mitogen-activated protein kinase (MAPK) signaling pathway is often studied in oncology as the most easily mentioned signaling pathway. This study aims to establish a new prognostic risk model of MAPK pathway related molecules in kidney renal clear cell carcinoma (KIRC) based on genome and transcriptome analysis. METHODS In our study, RNA-seq data were acquired from the KIRC dataset of The Cancer Genome Atlas (TCGA) database. MAPK signaling pathway-related genes were obtained from the gene enrichment analysis (GSEA) database. We used "glmnet" and the "survival" extension package for LASSO (Least absolute shrinkage and selection operator) regression curve analysis and constructed a prognosis-related risk model. The survival curve and the COX regression analysis were used the "survival" expansion packages. The ROC curve was plotted using the "survival ROC" extension package. We then used the "rms" expansion package to construct a nomogram plot. We performed a pan-cancer analysis of CNV (copy number variation), SNV (single nucleotide variant), drug sensitivity, immune infiltration, and overall survival (OS) of 14 MAPK signaling pathway-related genes using several analysis websites, such as GEPIA website and TIMER database. Besides, the immunohistochemistry and pathway enrichment analysis used The Human Protein Atlas (THPA) database and the GSEA method. Finally, the mRNA expression of risk model genes in clinical renal cancer tissues versus adjacent normal tissues was further verified by real-time quantitative reverse transcription (qRT-PCR). RESULTS We performed Lasso regression analysis using 14 genes and created a new KIRC prognosis-related risk model. High-risk scores suggested that KIRC patients with lower-risk scores had a significantly worse prognosis. Based on the multivariate Cox analysis, we found that the risk score of this model could serve as an independent risk factor for KIRC patients. In addition, we used the THPA database to verify the differential expression of proteins between normal kidney tissues and KIRC tumor tissues. Finally, the results of qRT-PCR experiments suggested large differences in the mRNA expression of risk model genes. CONCLUSIONS This study constructs a KIRC prognosis prediction model involving 14 MAPK signaling pathway-related genes, which is essential for exploring potential biomarkers for KIRC diagnosis.
Collapse
Affiliation(s)
- Peizhi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiayi Li
- School of Business, Hanyang University, Seoul, Republic of Korea
| | - Zicheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Leizuo Zhao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Urology, Dongying People’s Hospital, Dongying, China
| | - Jiechuan Qiu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingkun Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
5
|
Marchand B, Poulin MA, Lawson C, Tai LH, Jean S, Boucher MJ. Gemcitabine promotes autophagy and lysosomal function through ERK- and TFEB-dependent mechanisms. Cell Death Dis 2023; 9:45. [PMID: 36746928 PMCID: PMC9902516 DOI: 10.1038/s41420-023-01342-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/08/2023]
Abstract
Gemcitabine is a first-line treatment agent for pancreatic ductal adenocarcinoma (PDAC). Contributing to its cytotoxicity, this chemotherapeutic agent is primarily a DNA replication inhibitor that also induces DNA damage. However, its therapeutic effects are limited owing to chemoresistance. Evidence in the literature points to a role for autophagy in restricting the efficacy of gemcitabine. Autophagy is a catabolic process in which intracellular components are delivered to degradative organelles lysosomes. Interfering with this process sensitizes PDAC cells to gemcitabine. It is consequently inferred that autophagy and lysosomal function need to be tightly regulated to maintain homeostasis and provide resistance to environmental stress, such as those imposed by chemotherapeutic drugs. However, the mechanism(s) through which gemcitabine promotes autophagy remains elusive, and the impact of gemcitabine on lysosomal function remains largely unexplored. Therefore, we applied complementary approaches to define the mechanisms triggered by gemcitabine that support autophagy and lysosome function. We found that gemcitabine elicited ERK-dependent autophagy in PDAC cells, but did not stimulate ERK activity or autophagy in non-tumoral human pancreatic epithelial cells. Gemcitabine also promoted transcription factor EB (TFEB)-dependent lysosomal function in PDAC cells. Indeed, treating PDAC cells with gemcitabine caused expansion of the lysosomal network, as revealed by Lysosome associated membrane protein-1 (LAMP1) and LysoTracker staining. More specific approaches have shown that gemcitabine promotes the activity of cathepsin B (CTSB), a cysteine protease playing an active role in lysosomal degradation. We showed that lysosomal function induced by gemcitabine depends on TFEB, the master regulator of autophagy and lysosomal biogenesis. Interfering with TFEB function considerably limited the clonogenic growth of PDAC cells and hindered the capacity of TFEB-depleted PDAC cells to develop orthotopic tumors.
Collapse
Affiliation(s)
- Benoît Marchand
- grid.86715.3d0000 0000 9064 6198Department of Medicine, Gastroenterology Division, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Marc-Antoine Poulin
- grid.86715.3d0000 0000 9064 6198Department of Medicine, Gastroenterology Division, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Christine Lawson
- grid.86715.3d0000 0000 9064 6198Department of Immunology and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada
| | - Lee-Hwa Tai
- grid.86715.3d0000 0000 9064 6198Department of Immunology and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada ,grid.86715.3d0000 0000 9064 6198Member of the Centre de Recherche du CHUS and the Institut de recherche sur le cancer de l’Université de Sherbrooke, Sherbrooke, Canada
| | - Steve Jean
- grid.86715.3d0000 0000 9064 6198Department of Immunology and Cell Biology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada ,grid.86715.3d0000 0000 9064 6198Member of the Centre de Recherche du CHUS and the Institut de recherche sur le cancer de l’Université de Sherbrooke, Sherbrooke, Canada
| | - Marie-Josée Boucher
- Department of Medicine, Gastroenterology Division, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Canada. .,Member of the Centre de Recherche du CHUS and the Institut de recherche sur le cancer de l'Université de Sherbrooke, Sherbrooke, Canada.
| |
Collapse
|
6
|
Hlophe YN, Joubert AM. Vascular endothelial growth
factor‐C
in activating vascular endothelial growth factor receptor‐3 and chemokine receptor‐4 in melanoma adhesion. J Cell Mol Med 2022; 26:5743-5754. [DOI: 10.1111/jcmm.17571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/27/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yvette N. Hlophe
- Department of Physiology University of Pretoria Pretoria South Africa
| | - Anna M. Joubert
- Department of Physiology University of Pretoria Pretoria South Africa
| |
Collapse
|
7
|
Riegel K, Vijayarangakannan P, Kechagioglou P, Bogucka K, Rajalingam K. Recent advances in targeting protein kinases and pseudokinases in cancer biology. Front Cell Dev Biol 2022; 10:942500. [PMID: 35938171 PMCID: PMC9354965 DOI: 10.3389/fcell.2022.942500] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Kinases still remain the most favorable members of the druggable genome, and there are an increasing number of kinase inhibitors approved by the FDA to treat a variety of cancers. Here, we summarize recent developments in targeting kinases and pseudokinases with some examples. Targeting the cell cycle machinery garnered significant clinical success, however, a large section of the kinome remains understudied. We also review recent developments in the understanding of pseudokinases and discuss approaches on how to effectively target in cancer.
Collapse
Affiliation(s)
- Kristina Riegel
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | | | - Petros Kechagioglou
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | - Katarzyna Bogucka
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center Mainz, JGU-Mainz, Mainz, Germany
- *Correspondence: Krishnaraj Rajalingam,
| |
Collapse
|
8
|
Oncogenic Signalling of Growth Factor Receptors in Cancer: Mechanisms and Therapeutic Opportunities. Int J Mol Sci 2022; 23:ijms23137376. [PMID: 35806381 PMCID: PMC9266644 DOI: 10.3390/ijms23137376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/29/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer is a common name for several distinct diseases caused by uncontrolled cell growth and proliferation [...]
Collapse
|
9
|
Aimaier R, Chung M, Zhu H, Yu Q. The spatiotemporal expression of NRAS and occurrence of giant congenital melanocytic nevi. Exp Dermatol 2022; 31:582-585. [PMID: 35020224 DOI: 10.1111/exd.14527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/30/2021] [Accepted: 01/08/2022] [Indexed: 11/28/2022]
Abstract
The mechanism underlying giant congenital melanocytic nevus (GCMN) formation is not fully understood. According to recent research, NRAS gene mutation is the main driving factor in GCMN. Melanocytic precursor cells proliferate during the embryonic stage after acquiring NRAS mutations. However, why GCMN undergoes intense proliferation in the embryonic stage and then stops postnatally remains unknown. The current theory for this phenomenon is that the GCMN undergoes oncogene-induced senescence. However, there is not enough evidence to indicate that senescence induces growth arrest in GCMN. In this study, we hypothesized that the expression level of the NRAS gene changes dynamically during the development and differentiation of neural crest cells into melanocytes and that the NRAS expression level determines whether the cell proliferates or becomes quiescent.
Collapse
Affiliation(s)
- Rehanguli Aimaier
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Manhon Chung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Hainan Zhu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Qingxiong Yu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| |
Collapse
|
10
|
Turdo A, D'Accardo C, Glaviano A, Porcelli G, Colarossi C, Colarossi L, Mare M, Faldetta N, Modica C, Pistone G, Bongiorno MR, Todaro M, Stassi G. Targeting Phosphatases and Kinases: How to Checkmate Cancer. Front Cell Dev Biol 2021; 9:690306. [PMID: 34778245 PMCID: PMC8581442 DOI: 10.3389/fcell.2021.690306] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
Metastatic disease represents the major cause of death in oncologic patients worldwide. Accumulating evidence have highlighted the relevance of a small population of cancer cells, named cancer stem cells (CSCs), in the resistance to therapies, as well as cancer recurrence and metastasis. Standard anti-cancer treatments are not always conclusively curative, posing an urgent need to discover new targets for an effective therapy. Kinases and phosphatases are implicated in many cellular processes, such as proliferation, differentiation and oncogenic transformation. These proteins are crucial regulators of intracellular signaling pathways mediating multiple cellular activities. Therefore, alterations in kinases and phosphatases functionality is a hallmark of cancer. Notwithstanding the role of kinases and phosphatases in cancer has been widely investigated, their aberrant activation in the compartment of CSCs is nowadays being explored as new potential Achille's heel to strike. Here, we provide a comprehensive overview of the major protein kinases and phosphatases pathways by which CSCs can evade normal physiological constraints on survival, growth, and invasion. Moreover, we discuss the potential of inhibitors of these proteins in counteracting CSCs expansion during cancer development and progression.
Collapse
Affiliation(s)
- Alice Turdo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Caterina D'Accardo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Antonino Glaviano
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Gaetana Porcelli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Cristina Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Lorenzo Colarossi
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | - Marzia Mare
- Department of Experimental Oncology, Mediterranean Institute of Oncology (IOM), Catania, Italy
| | | | - Chiara Modica
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| | - Giuseppe Pistone
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Maria Rita Bongiorno
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Matilde Todaro
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy.,Azienda Ospedaliera Universitaria Policlinico (AOUP), Palermo, Italy
| | - Giorgio Stassi
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, Palermo, Italy
| |
Collapse
|
11
|
ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer. Cells 2021; 10:cells10102509. [PMID: 34685488 PMCID: PMC8533760 DOI: 10.3390/cells10102509] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The RAF/MEK/ERK signaling pathway regulates diverse cellular processes as exemplified by cell proliferation, differentiation, motility, and survival. Activation of ERK1/2 generally promotes cell proliferation, and its deregulated activity is a hallmark of many cancers. Therefore, components and regulators of the ERK pathway are considered potential therapeutic targets for cancer, and inhibitors of this pathway, including some MEK and BRAF inhibitors, are already being used in the clinic. Notably, ERK1/2 kinases also have pro-apoptotic functions under certain conditions and enhanced ERK1/2 signaling can cause tumor cell death. Although the repertoire of the compounds which mediate ERK activation and apoptosis is expanding, and various anti-cancer compounds induce ERK activation while exerting their anti-proliferative effects, the mechanisms underlying ERK1/2-mediated cell death are still vague. Recent studies highlight the importance of dual-specificity phosphatases (DUSPs) in determining the pro- versus anti-apoptotic function of ERK in cancer. In this review, we will summarize the recent major findings in understanding the role of ERK in apoptosis, focusing on the major compounds mediating ERK-dependent apoptosis. Studies that further define the molecular targets of these compounds relevant to cell death will be essential to harnessing these compounds for developing effective cancer treatments.
Collapse
|
12
|
Najar MA, Aravind A, Dagamajalu S, Sidransky D, Ashktorab H, Smoot DT, Gowda H, Prasad TSK, Modi PK, Chatterjee A. Hyperactivation of MEK/ERK pathway by Ca 2+ /calmodulin-dependent protein kinase kinase 2 promotes cellular proliferation by activating cyclin-dependent kinases and minichromosome maintenance protein in gastric cancer cells. Mol Carcinog 2021; 60:769-783. [PMID: 34437731 DOI: 10.1002/mc.23343] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/04/2023]
Abstract
Although CAMKK2 is overexpressed in several cancers, its role and relevant downstream signaling pathways in gastric cancer (GC) are poorly understood. Treatment of AGS GC cells with a CAMKK2 inhibitor, STO-609, resulted in decreased cell proliferation, cell migration, invasion, colony-forming ability, and G1/S-phase arrest. Quantitative phosphoproteomics in AGS cells with the CAMKK2 inhibitor led to the identification of 9603 unique phosphosites mapping to 3120 proteins. We observed decreased phosphorylation of 1101 phosphopeptides (1.5-fold) corresponding to 752 proteins upon CAMKK2 inhibition. Bioinformatics analysis of hypo-phosphorylated proteins revealed enrichment of MAPK1/MAPK3 signaling. Kinase enrichment analysis of hypo-phosphorylated proteins using the X2K Web tool identified ERK1, cyclin-dependant kinase 1 (CDK1), and CDK2 as downstream substrates of CAMKK2. Moreover, inhibition of CAMKK2 and MEK1 resulted in decreased phosphorylation of ERK1, CDK1, MCM2, and MCM3. Immunofluorescence results were in concordance with our mass spectroscopy data and Western blot analysis results. Taken together, our data reveal the essential role of CAMKK2 in the pathobiology of GC through the activation of the MEK/ERK1 signaling cascade.
Collapse
Affiliation(s)
- Mohd A Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Anjana Aravind
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hassan Ashktorab
- Department of Medicine, Howard University, Washington, District of Columbia, USA
| | - Duane T Smoot
- Department of Medicine, Meharry Medical Center, Nashville, Tennessee, USA
| | - Harsha Gowda
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India.,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant K Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Aditi Chatterjee
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India.,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
13
|
Tang C, Ma J, Liu X, Liu Z. Identification of Four Immune Subtypes in Bladder Cancer Based on Immune Gene Sets. Front Oncol 2020; 10:544610. [PMID: 33117683 PMCID: PMC7571508 DOI: 10.3389/fonc.2020.544610] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023] Open
Abstract
Molecular classification of bladder cancer is becoming increasingly important for its clinical management. And, the current classifications are primarily based on gene expression profiles. We identified four immunotypes of bladder cancer (referred to as C1–C4) based on gene expression profiles performed by immune-related gene sets in three independent data sets, and proved that this classification is effective and reproducible. We found that C2 is an immune-infiltrating type and C4 is an immune “desert” type. These types are characterized by the up- and downregulation of genes encoding numerous immune checkpoint proteins and HLA and regulating human immune cell subgroups. The survival rate was better for the C2 subtype than for other subtypes. We believe that this can be explained by the antitumor effects of CD4 memory T cells and CD8 T cells as well as their ability to circumvent M0 macrophage antitumor immunity. In addition, C2 was most sensitive to not only anti-PD-1 immunosuppressive therapy, but also conventional chemotherapeutics such as gemcitabine and bleomycin. The C4 subtype was most sensitive to the chemotherapy drugs cisplatin and doxorubicin. This theoretical framework may guide the personalized treatment of bladder cancer in the future. It is worth noting that the C2 immune infiltration type positively correlates with a variety of stromal components, such as enrichment of endothelial cells and fibroblasts, epithelial-mesenchymal transition, and angiogenesis, together with enrichment of seven kinds of stem cells. We further identified tumor-related JAK-STAT and other signaling pathways in the C2 subtype, along with important mutations in the proteins involved in these pathways, revealing the complex mechanism underlying tumor immune escape. Our results, and particularly the identification of hub genes specific to the C2 and C4 subtypes, provide a reference for the development of immunotherapeutic agents against bladder cancer.
Collapse
Affiliation(s)
- Chaozhi Tang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiakang Ma
- Department of Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiuli Liu
- Department of Oncology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Zhengchun Liu
- Department of Radiation Oncology, Affiliated Hospital of Guilin Medical University, Guilin, China
| |
Collapse
|
14
|
Identification of FOS as a Candidate Risk Gene for Liver Cancer by Integrated Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6784138. [PMID: 32280695 PMCID: PMC7125454 DOI: 10.1155/2020/6784138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/20/2020] [Indexed: 01/08/2023]
Abstract
Liver cancer is a lethal disease that is associated with poor prognosis. In order to identify the functionally important genes associated with liver cancer that may reveal novel therapeutic avenues, we performed integrated analysis to profile miRNA and mRNA expression levels for liver tumors compared to normal samples in The Cancer Genome Atlas (TCGA) database. We identified 405 differentially expressed genes and 233 differentially expressed miRNAs in tumor samples compared with controls. In addition, we also performed the pathway analysis and found that mitogen-activated protein kinases (MAPKs) and G-protein coupled receptor (GPCR) pathway were two of the top significant pathway nodes dysregulated in liver cancer. Furthermore, by examining these signaling networks, we discovered that FOS (Fos proto-oncogene, AP-1 transcription factor subunit), LAMC2 (laminin subunit gamma 2), and CALML3 (calmodulin like 3) were the most significant gene nodes with high degrees involved in liver cancer. The expression and disease prediction accuracy of FOS, LAMC2, CALML3, and their interacting miRNAs were further performed using a HCC cohort. Finally, we investigated the prognostic significance of FOS in another HCC cohort. Patients with higher FOS expression displayed significantly shorter time to recurrence (TTR) and overall survival (OS) compared with patients with lower expression. Collectively, our study demonstrates that FOS is a potential prognostic marker for liver cancer that may reveal a novel therapeutic avenue in this lethal disease.
Collapse
|
15
|
Braicu C, Buse M, Busuioc C, Drula R, Gulei D, Raduly L, Rusu A, Irimie A, Atanasov AG, Slaby O, Ionescu C, Berindan-Neagoe I. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers (Basel) 2019; 11:cancers11101618. [PMID: 31652660 PMCID: PMC6827047 DOI: 10.3390/cancers11101618] [Citation(s) in RCA: 564] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/13/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway is an important bridge in the switch from extracellular signals to intracellular responses. Alterations of signaling cascades are found in various diseases, including cancer, as a result of genetic and epigenetic changes. Numerous studies focused on both the homeostatic and the pathologic conduct of MAPK signaling; however, there is still much to be deciphered in terms of regulation and action models in both preclinical and clinical research. MAPK has implications in the response to cancer therapy, particularly the activation of the compensatory pathways in response to experimental MAPK inhibition. The present paper discusses new insights into MAPK as a complex cell signaling pathway with roles in the sustenance of cellular normal conduit, response to cancer therapy, and activation of compensatory pathways. Unfortunately, most MAPK inhibitors trigger resistance due to the activation of compensatory feed-back loops in tumor cells and tumor microenvironment components. Therefore, novel combinatorial therapies have to be implemented for cancer management in order to restrict the possibility of alternative pathway activation, as a perspective for developing novel therapies based on integration in translational studies.
Collapse
Affiliation(s)
- Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Mihail Buse
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Constantin Busuioc
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Rares Drula
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | | | - Alexandru Irimie
- Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuta", 40015 Cluj-Napoca, Romania.
- Department of Surgical Oncology and Gynecological Oncology, Iuliu Hatieganu University of Medicine and Pharmacy, 40015 Cluj-Napoca, Romania.
| | - Atanas G Atanasov
- Department of Pharmacognosy, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, 05-552 Magdalenka, Poland.
- Institute of Neurobiology, Bulgarian Academy of Sciences, 23 Acad. G. Bonchev str., 1113 Sofia, Bulgaria.
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic.
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 601 77 Brno, Czech Republic.
| | - Calin Ionescu
- th Surgical Department, Municipal Hospital, 400139, Cluj-Napoca, Romania.
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- MEDFUTURE-Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute Prof. Dr. Ion Chiricuta, Republicii 34 Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|