1
|
Gui F, Jiang B, Jiang J, He Z, Tsujino T, Takai T, Arai S, Pana C, Köllermann J, Bradshaw GA, Eisert R, Kalocsay M, Fassl A, Balk SP, Kibel AS, Jia L. Acute BRCAness induction and AR pathway blockage through CDK12/7/9 degradation enhances PARP inhibitor sensitivity in prostate cancer. SCIENCE ADVANCES 2025; 11:eadu0847. [PMID: 40267193 PMCID: PMC12017310 DOI: 10.1126/sciadv.adu0847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/17/2025] [Indexed: 04/25/2025]
Abstract
Current treatments for advanced prostate cancer (PCa) primarily target the androgen receptor (AR) pathway. However, the emergence of castration-resistant prostate cancer (CRPC) and resistance to AR pathway inhibitors (APPIs) remains ongoing challenges. Here, we present BSJ-5-63, a proteolysis-targeting chimera (PROTAC) targeting cyclin-dependent kinases (CDKs) CDK12, CDK7, and CDK9, offering a multipronged approach to CRPC therapy. BSJ-5-63 degrades CDK12, diminishing BRCA1 and BRCA2 expression and inducing a sustained "BRCAness" state. This sensitizes cancer cells to PARP inhibitors (PARPis) regardless of their homologous recombination repair (HRR) status. Furthermore, CDK7 and CDK9 degradation attenuates AR signaling, enhancing its therapeutic efficacy. Preclinical studies, including both in vitro and in vivo CRPC models, demonstrate that BSJ-5-63 exerts potent antitumor activity in both AR-positive and AR-negative setting. This study introduces BSJ-5-63 as a promising therapeutic agent that addresses both DNA repair and AR signaling mechanisms, with potential benefits for a board patient population.
Collapse
Affiliation(s)
- Fu Gui
- Department of Urology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jie Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Zhixiang He
- Department of Cancer Biology, Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Takuya Tsujino
- Department of Urology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Tomoaki Takai
- Department of Urology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Seiji Arai
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Department of Urology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Celine Pana
- Goethe University Frankfurt, University Hospital, Department of Urology, Frankfurt am Main, Germany
| | - Jens Köllermann
- Goethe University Frankfurt, University Hospital, Dr. Senckenberg Institute of Pathology, Frankfurt am Main, Germany
| | | | - Robyn Eisert
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Marian Kalocsay
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne Fassl
- Goethe University Frankfurt, University Hospital, Department of Urology, Frankfurt am Main, Germany
| | - Steven P. Balk
- Department of Medicine and Cancer Center, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Adam S. Kibel
- Department of Urology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Li Jia
- Department of Urology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Bruter AV, Varlamova EA, Stavskaya NI, Antysheva ZG, Manskikh VN, Tvorogova AV, Korshunova DS, Khamidullina AI, Utkina MV, Bogdanov VP, Baikova IP, Nikiforova AI, Albert EA, Maksimov DO, Li J, Chen M, Schools GP, Feoktistov AV, Shtil AA, Roninson IB, Mogila VA, Silaeva YY, Tatarskiy VV. Knockout of cyclin-dependent kinases 8 and 19 leads to depletion of cyclin C and suppresses spermatogenesis and male fertility in mice. eLife 2025; 13:RP96465. [PMID: 40172945 PMCID: PMC11964450 DOI: 10.7554/elife.96465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
CDK8 and CDK19 paralogs are regulatory kinases associated with the transcriptional Mediator complex. We have generated mice with the systemic inducible Cdk8 knockout on the background of Cdk19 constitutive knockout. Cdk8/19 double knockout (iDKO) males, but not single Cdk8 or Cdk19 KO, had an atrophic reproductive system and were infertile. The iDKO males lacked postmeiotic spermatids and spermatocytes after meiosis I pachytene. Testosterone levels were decreased whereas the amounts of the luteinizing hormone were unchanged. Single-cell RNA sequencing showed marked differences in the expression of steroidogenic genes (such as Cyp17a1, Star, and Fads) in Leydig cells concomitant with alterations in Sertoli cells and spermatocytes, and were likely associated with an impaired synthesis of steroids. Star and Fads were also downregulated in cultured Leydig cells after iDKO. The treatment of primary Leydig cell culture with a CDK8/19 inhibitor did not induce the same changes in gene expression as iDKO, and a prolonged treatment of mice with a CDK8/19 inhibitor did not affect the size of testes. iDKO, in contrast to the single knockouts or treatment with a CDK8/19 kinase inhibitor, led to depletion of cyclin C (CCNC), the binding partner of CDK8/19 that has been implicated in CDK8/19-independent functions. This suggests that the observed phenotype was likely mediated through kinase-independent activities of CDK8/19, such as CCNC stabilization.
Collapse
Affiliation(s)
- Alexandra V Bruter
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
- Blokhin National Medical Research Center of OncologyMoscowRussian Federation
| | - Ekaterina A Varlamova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Nina I Stavskaya
- Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Zoia G Antysheva
- Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Vasily N Manskikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State UniversityMoscowRussian Federation
| | - Anna V Tvorogova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Diana S Korshunova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Alvina I Khamidullina
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
- Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | | | - Viktor P Bogdanov
- Life Sciences Research Center, Moscow Institute of Physics and TechnologyDolgoprudnyRussian Federation
| | - Iuliia P Baikova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | | | - Eugene A Albert
- Life Sciences Research Center, Moscow Institute of Physics and TechnologyDolgoprudnyRussian Federation
| | - Denis O Maksimov
- Life Sciences Research Center, Moscow Institute of Physics and TechnologyDolgoprudnyRussian Federation
| | - Jing Li
- Department of Drug Discovery and Biomedical Sciences, University of South CarolinaColumbiaUnited States
| | - Mengqian Chen
- Department of Drug Discovery and Biomedical Sciences, University of South CarolinaColumbiaUnited States
- Senex Biotechnology, IncColumbiaUnited States
| | - Gary P Schools
- Department of Drug Discovery and Biomedical Sciences, University of South CarolinaColumbiaUnited States
| | - Alexey V Feoktistov
- The Engelhardt Institute of Molecular Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Alexander A Shtil
- Blokhin National Medical Research Center of OncologyMoscowRussian Federation
- Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Igor B Roninson
- Department of Drug Discovery and Biomedical Sciences, University of South CarolinaColumbiaUnited States
| | - Vladislav A Mogila
- Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
- Department of Drug Discovery and Biomedical Sciences, University of South CarolinaColumbiaUnited States
| | - Yulia Y Silaeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
- Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| | - Victor V Tatarskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
- Institute of Gene Biology, Russian Academy of SciencesMoscowRussian Federation
| |
Collapse
|
3
|
Siskin M, Economides MP, Wise DR. Cyclin-Dependent Kinase Inhibition in Prostate Cancer: Past, Present, and Future. Cancers (Basel) 2025; 17:774. [PMID: 40075623 PMCID: PMC11898528 DOI: 10.3390/cancers17050774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Despite significant progress, prostate cancer remains a leading cause of death. Cyclin-dependent kinase (CDK) 4/6 inhibitors, which are already approved for the treatment of hormone receptor-positive breast cancer, are undergoing extensive testing as monotherapy and in various combinations as a potentially valuable treatment modality in prostate cancer patients. Thus far, a limited number of these studies have published results, which have been largely disappointing. AREAS COVERED In this review, we describe the biologic rationale for the use of CDK4/6 inhibitors in prostate cancer, the existing clinical data describing their use in prostate cancer, and ongoing clinical trials of CDK4/6 inhibitors as monotherapy and in combination for the treatment of prostate cancer. In particular, we focus on possible resistance mechanisms that may be particularly relevant in prostate cancer patients, leading to de novo and acquired resistance, and we highlight novel strategies that can overcome this resistance. CONCLUSIONS Current clinical trials are actively working to (1) refine the role of CDK4/6 inhibitors in prostate cancer patients; (2) develop new inhibitors of other cell-cycle targets, such as CDK2 and CDK7; and (3) explore novel combination therapies with inhibitors of other relevant pathways, such as PI3K or MAPK. Further genomic subtyping of advanced prostate cancer will likely shed light on the subsets of patients most likely to benefit from cell-cycle-targeted agents.
Collapse
Affiliation(s)
| | | | - David R. Wise
- Genitourinary Medical Oncology Service, Perlmutter Cancer Center, NYU Langone Heath Center, New York, NY 10016, USA; (M.S.); (M.P.E.)
| |
Collapse
|
4
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
5
|
Gui F, Jiang B, Jiang J, He Z, Tsujino T, Takai T, Arai S, Pana C, Köllermann J, Bradshaw GA, Eisert R, Kalocsay M, Fassl A, Balk SP, Kibel AS, Jia L. Acute BRCAness Induction and AR Signaling Blockage through CDK12/7/9 Degradation Enhances PARP Inhibitor Sensitivity in Prostate Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602803. [PMID: 39026842 PMCID: PMC11257538 DOI: 10.1101/2024.07.09.602803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Current treatments for advanced prostate cancer (PCa) primarily target the androgen receptor (AR) pathway. However, the emergence of castration-resistant prostate cancer (CRPC) and resistance to AR pathway inhibitors (APSIs) remains ongoing challenges. Here, we present BSJ-5-63, a novel proteolysis-targeting chimera (PROTAC) targeting cyclin-dependent kinases (CDKs) CDK12, CDK7, and CDK9, offering a multi-pronged approach to CRPC therapy. BSJ-5-63 degrades CDK12, diminishing BRCA1 and BRCA2 expression and inducing a sustained "BRCAness" state. This sensitizes cancer cells to PARP inhibitors (PARPis) regardless of their homologous recombination repair (HRR) status. Furthermore, CDK7 and CDK9 degradation attenuates AR signaling, enhancing its therapeutic efficacy. Preclinical studies, including both in vitro and in vivo CRPC models, demonstrate that BSJ-5-63 exerts potent anti-tumor activity in both AR-positive and AR-negative setting. This study introduces BSJ-5-63 as a promising therapeutic agent that addresses both DNA repair and AR signaling mechanisms, with potential benefits for a board patient population.
Collapse
|
6
|
Yavuz S, Abraham TE, Houtsmuller AB, van Royen ME. Phase Separation Mediated Sub-Nuclear Compartmentalization of Androgen Receptors. Cells 2024; 13:1693. [PMID: 39451211 PMCID: PMC11506798 DOI: 10.3390/cells13201693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The androgen receptor (AR), a member of the nuclear steroid hormone receptor family of transcription factors, plays a crucial role not only in the development of the male phenotype but also in the development and growth of prostate cancer. While AR structure and AR interactions with coregulators and chromatin have been studied in detail, improving our understanding of AR function in gene transcription regulation, the spatio-temporal organization and the role of microscopically discernible AR foci in the nucleus are still underexplored. This review delves into the molecular mechanisms underlying AR foci formation, focusing on liquid-liquid phase separation and its role in spatially organizing ARs and their binding partners within the nucleus at transcription sites, as well as the influence of 3D-genome organization on AR-mediated gene transcription.
Collapse
Affiliation(s)
- Selçuk Yavuz
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
| | - Tsion E. Abraham
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.E.A.)
| | - Adriaan B. Houtsmuller
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
- Erasmus Optical Imaging Center, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (T.E.A.)
| | - Martin E. van Royen
- Department of Pathology, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.Y.); (M.E.v.R.)
| |
Collapse
|
7
|
Liu J, He L, Jiang W, Xie P. Global trends and topics in CDK7 inhibitor research: a bibliometric analysis. Front Pharmacol 2024; 15:1426988. [PMID: 39386027 PMCID: PMC11461233 DOI: 10.3389/fphar.2024.1426988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Background CDK7 has been demonstrated to play a crucial role in the initiation and progression of malignancy. Therefore, targeting CDK7, which regulates the transcription process, has emerged as a new promising approach for treating cancer. Research on CDK7 inhibitors has significantly increased over the past 2 decades, with almost 600 related papers in the Web of Science Core Collection database. To effectively identify future research hotspots and potential future directions, it is crucial to systematically review and visually present the research on this topic from a comprehensive viewpoint, ensuring scientific reliability. Methods This study performed bibliometric analysis via CiteSpace and VOSviewer scientometrics analysis software to examine data on the publication of articles on CDK7 inhibitors over the past 2 decades; the data included country of publication, author names, institution names, scientific categories, cited journals, and keywords related to the field of CDK7 inhibitors. Results This bibliometric analysis included 426 publications from 41 different nations, referencing a total of 15,892 sources. Research associated with CDK7 inhibitors has rapidly expanded since 2016, and the US and China are the two countries with the highest publication output among the countries and institutes that produce literature on CDK7 inhibitors. Furthermore, the US is the country that most frequently engages in international cooperation. The evolution of keywords identifying antitumor strategies related to CDK7-mediated cellular transcription processes has been the research focus in recent years. Conclusion In this study, we identified research efforts and their evolving patterns and predicted advances in the CDK7 inhibitor field. The knowledge structure of CDK7 inhibitors encompasses pharmacological mechanisms, therapeutic targets, and cancer treatment strategies. The primary objectives of contemporary research are to discover the processes underlying cancer progression, identify specific signaling pathways, and develop effective clinical medicines.
Collapse
Affiliation(s)
| | | | | | - Ping Xie
- Department of Gynecology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
8
|
Montoya-Novoa I, Gardeazábal-Torbado JL, Alegre-Martí A, Fuentes-Prior P, Estébanez-Perpiñá E. Androgen receptor post-translational modifications and their implications for pathology. Biochem Soc Trans 2024; 52:1673-1694. [PMID: 38958586 DOI: 10.1042/bst20231082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
A major mechanism to modulate the biological activities of the androgen receptor (AR) involves a growing number of post-translational modifications (PTMs). In this review we summarise the current knowledge on the structural and functional impact of PTMs that affect this major transcription factor. Next, we discuss the cross-talk between these different PTMs and the presence of clusters of modified residues in the AR protein. Finally, we discuss the implications of these covalent modifications for the aetiology of diseases such as spinal and bulbar muscular atrophy (Kennedy's disease) and prostate cancer, and the perspectives for pharmacological intervention.
Collapse
Affiliation(s)
- Inés Montoya-Novoa
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - José Luis Gardeazábal-Torbado
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Andrea Alegre-Martí
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Pablo Fuentes-Prior
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| | - Eva Estébanez-Perpiñá
- Structural Biology of Nuclear Receptors, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona (UB), 08028 Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona (UB), 08028 Barcelona, Spain
| |
Collapse
|
9
|
Andolfi C, Bartolini C, Morales E, Gündoğdu B, Puhr M, Guzman J, Wach S, Taubert H, Aigner A, Eder IE, Handle F, Culig Z. MED12 and CDK8/19 Modulate Androgen Receptor Activity and Enzalutamide Response in Prostate Cancer. Endocrinology 2024; 165:bqae114. [PMID: 39253786 PMCID: PMC11398899 DOI: 10.1210/endocr/bqae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/11/2024]
Abstract
Prostate cancer progression is driven by androgen receptor (AR) activity, which is a target for therapeutic approaches. Enzalutamide is an AR inhibitor that prolongs the survival of patients with advanced prostate cancer. However, resistance mechanisms arise and impair its efficacy. One of these mechanisms is the expression of AR-V7, a constitutively active AR splice variant. The Mediator complex is a multisubunit protein that modulates gene expression on a genome-wide scale. MED12 and cyclin-dependent kinase (CDK)8, or its paralog CDK19, are components of the kinase module that regulates the proliferation of prostate cancer cells. In this study, we investigated how MED12 and CDK8/19 influence cancer-driven processes in prostate cancer cell lines, focusing on AR activity and the enzalutamide response. We inhibited MED12 expression and CDK8/19 activity in LNCaP (AR+, enzalutamide-sensitive), 22Rv1 (AR-V7+, enzalutamide-resistant), and PC3 (AR-, enzalutamide-insensitive) cells. Both MED12 and CDK8/19 inhibition reduced cell proliferation in all cell lines, and MED12 inhibition reduced proliferation in the respective 3D spheroids. MED12 knockdown significantly inhibited c-Myc protein expression and signaling pathways. In 22Rv1 cells, it consistently inhibited the AR response, prostate-specific antigen (PSA) secretion, AR target genes, and AR-V7 expression. Combined with enzalutamide, MED12 inhibition additively decreased the AR activity in both LNCaP and 22Rv1 cells. CDK8/19 inhibition significantly decreased PSA secretion in LNCaP and 22Rv1 cells and, when combined with enzalutamide, additively reduced proliferation in 22Rv1 cells. Our study revealed that MED12 and CDK8/19 regulate AR activity and that their inhibition may modulate response to enzalutamide in prostate cancer.
Collapse
Affiliation(s)
- Chiara Andolfi
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Caterina Bartolini
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- University of Florence, 50 121 Florence, Italy
| | - Elisa Morales
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Johannes Gutenberg University Mainz, 55122 Mainz, Germany
| | - Büşra Gündoğdu
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Graudate School of Science and Engineering, Yıldız Technical University, 34220 Istanbul, Turkey
| | - Martin Puhr
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Juan Guzman
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Sven Wach
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Helge Taubert
- Department of Urology and Pediatric Urology, Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, 04107 Leipzig, Germany
| | - Iris E Eder
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Florian Handle
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Institute of Pathology, Neuropathology & Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Zoran Culig
- Department of Urology, Division of Experimental Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
10
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
11
|
Li X, Xiong H, Mou X, Huang C, Thomas ER, Yu W, Jiang Y, Chen Y. Androgen receptor cofactors: A potential role in understanding prostate cancer. Biomed Pharmacother 2024; 173:116338. [PMID: 38417290 DOI: 10.1016/j.biopha.2024.116338] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024] Open
Abstract
Prostate cancer (PCa) is witnessing a concerning rise in incidence annually, with the androgen receptor (AR) emerging as a pivotal contributor to its growth and progression. Mounting evidence underscores the AR's ability to recruit cofactors, influencing downstream gene transcription and thereby fueling the proliferation and metastasis of PCa cells. Although, clinical strategies involving AR antagonists provide some relief, managing castration resistant prostate cancer (CRPC) remains a formidable challenge. Thus, the need of the hour lies in unearthing new drugs or therapeutic targets to effectively combat PCa. This review encapsulates the pivotal roles played by coactivators and corepressors of AR, notably androgen receptor-associated protein (ARA) and steroid receptor Coactivators (SRC) in PCa. Our data unveils how these cofactors intricately modulate histone modifications, cell cycling, SUMOylation, and apoptosis through their interactions with AR. Among the array of cofactors scrutinised, such as ARA70β, ARA24, ARA160, ARA55, ARA54, PIAS1, PIAS3, SRC1, SRC2, SRC3, PCAF, p300/CBP, MED1, and CARM1, several exhibit upregulation in PCa. Conversely, other cofactors like ARA70α, PIASy, and NCoR/SMRT demonstrate downregulation. This duality underscores the complexity of AR cofactor dynamics in PCa. Based on our findings, we propose that manipulating cofactor regulation to modulate AR function holds promise as a novel therapeutic avenue against advanced PCa. This paradigm shift offers renewed hope in the quest for effective treatments in the face of CRPC's formidable challenges.
Collapse
Affiliation(s)
- Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Haojun Xiong
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xingzhu Mou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Cancan Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | | | - Wenjing Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Yu Jiang
- The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China.
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China; Department of Dermatology, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
| |
Collapse
|
12
|
Lin J, Liu Y, Liu P, Qi W, Liu J, He X, Liu Q, Liu Z, Yin J, Lin J, Bao H, Lin J. SNHG17 alters anaerobic glycolysis by resetting phosphorylation modification of PGK1 to foster pro-tumor macrophage formation in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2023; 42:339. [PMID: 38098044 PMCID: PMC10722693 DOI: 10.1186/s13046-023-02890-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Within the tumor immune microenvironment (TME), tumor-associated macrophages (TAMs) are crucial in modulating polarization states to influence cancer development through metabolic reprogramming. While long non-coding RNAs (lncRNAs) have been shown to play a pivotal role in the progression of various cancers, the underlying mechanisms by which lncRNAs alter M2 polarization through macrophage metabolism remodeling remain unelucidated. METHODS RNA sequencing was used to screen for differentially expressed lncRNAs in TAMs and normal tissue-resident macrophages (NTRMs) isolated from pancreatic ductal adenocarcinoma (PDAC) tissues, whilst RT-qPCR and FISH were employed to detect the expression level of SNHG17. Moreover, a series of in vivo and in vitro experiments were conducted to assess the functions of SNHG17 from TAMs in the polarization and glycolysis of M2-like macrophages and in the proliferation and metastasis of pancreatic cancer cells (PCs). Furthermore, Western blotting, RNA pull-down, mass spectrometry, RIP, and dual-luciferase assays were utilized to explore the underlying mechanism through which SNHG17 induces pro-tumor macrophage formation. RESULTS SNHG17 was substantially enriched in TAMs and was positively correlated with a worse prognosis in PDAC. Meanwhile, functional assays determined that SNHG17 promoted the malignant progression of PCs by enhancing M2 macrophage polarization and anaerobic glycolysis. Mechanistically, SNHG17 could sponge miR-628-5p to release PGK1 mRNA and concurrently interact with the PGK1 protein, activating the pro-tumorigenic function of PGK1 by enhancing phosphorylation at the T168A site of PGK1 through ERK1/2 recruitment. Lastly, SNHG17 knockdown could reverse the polarization status of macrophages in PDAC. CONCLUSIONS The present study illustrated the essential role of SNHG17 and its molecular mechanism in TAMs derived from PDAC, indicating that SNHG17 might be a viable target for PDAC immunotherapy.
Collapse
Affiliation(s)
- Jiayu Lin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Yihao Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Pengyi Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wenxin Qi
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xingfeng He
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, 00014, Helsinki, Finland
| | - Jingxin Yin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jiewei Lin
- Research Institute of Pancreatic Disease, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Haili Bao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- School of Life Sciences, Shanghai University, Shanghai, China.
| | - Jianhong Lin
- Department of Pharmacy, The Third Hospital of Xiamen, Xiamen, 361100, China.
| |
Collapse
|
13
|
Chen Y, Zhang S, Li Z, Yin B, Liu Y, Zhang L. Discovery of a Dual-Target Inhibitor of CDK7 and HDAC1 That Induces Apoptosis and Inhibits Migration in Colorectal Cancer. ChemMedChem 2023; 18:e202300281. [PMID: 37821774 DOI: 10.1002/cmdc.202300281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/13/2023]
Abstract
Aberrant expression or dysfunction of cyclin-dependent kinase 7(CDK7) and histone deacetylase 1 (HDAC1) are associated with the occurrence and progression of various cancers. In this study, we developed a series of dual-target inhibitors by designing and synthesizing compounds that incorporate the pharmacophores of THZ2 and SAHA. The most potent dual-target inhibitor displayed robust inhibitory activity against several types of cancer cells and demonstrated promising inhibitory effects on both CDK7 and HDAC1. After further mechanistic studies, it was discovered that this inhibitor effectively arrested HCT-116 cells at the G2 phase and induced apoptosis. Additionally, it also significantly hindered the migration of HCT-116 cells and exhibited notable anti-tumor effects. These findings offer strong support for the development of dual-target inhibitors of CDK7 and HDAC1 and provide a promising avenue for future cancer therapy.
Collapse
Affiliation(s)
- Yao Chen
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Shuangqian Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Bo Yin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yi Liu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
14
|
Chen L, Zhang Z, Han Q, Maity BK, Rodrigues L, Zboril E, Adhikari R, Ko SH, Li X, Yoshida SR, Xue P, Smith E, Xu K, Wang Q, Huang THM, Chong S, Liu Z. Hormone-induced enhancer assembly requires an optimal level of hormone receptor multivalent interactions. Mol Cell 2023; 83:3438-3456.e12. [PMID: 37738977 PMCID: PMC10592010 DOI: 10.1016/j.molcel.2023.08.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 07/11/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023]
Abstract
Transcription factors (TFs) activate enhancers to drive cell-specific gene programs in response to signals, but our understanding of enhancer assembly during signaling events is incomplete. Here, we show that androgen receptor (AR) forms condensates through multivalent interactions mediated by its N-terminal intrinsically disordered region (IDR) to orchestrate enhancer assembly in response to androgen signaling. AR IDR can be substituted by IDRs from selective proteins for AR condensation capacity and its function on enhancers. Expansion of the poly(Q) track within AR IDR results in a higher AR condensation propensity as measured by multiple methods, including live-cell single-molecule microscopy. Either weakening or strengthening AR condensation propensity impairs its heterotypic multivalent interactions with other enhancer components and diminishes its transcriptional activity. Our work reveals the requirement of an optimal level of AR condensation in mediating enhancer assembly and suggests that alteration of the fine-tuned multivalent IDR-IDR interactions might underlie AR-related human pathologies.
Collapse
Affiliation(s)
- Lizhen Chen
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | - Zhao Zhang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Qinyu Han
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Barun K Maity
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Leticia Rodrigues
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Emily Zboril
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Rashmi Adhikari
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Su-Hyuk Ko
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xin Li
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Shawn R Yoshida
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Pengya Xue
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Emilie Smith
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Kexin Xu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Qianben Wang
- Department of Pathology, Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tim Hui-Ming Huang
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Shasha Chong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Zhijie Liu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
15
|
Wang M, Chen Q, Wang S, Xie H, Liu J, Huang R, Xiang Y, Jiang Y, Tian D, Bian E. Super-enhancers complexes zoom in transcription in cancer. J Exp Clin Cancer Res 2023; 42:183. [PMID: 37501079 PMCID: PMC10375641 DOI: 10.1186/s13046-023-02763-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Super-enhancers (SEs) consist of multiple typical enhancers enriched at high density with transcription factors, histone-modifying enzymes and cofactors. Oncogenic SEs promote tumorigenesis and malignancy by altering protein-coding gene expression and noncoding regulatory element function. Therefore, they play central roles in the treatment of cancer. Here, we review the structural characteristics, organization, identification, and functions of SEs and the underlying molecular mechanism by which SEs drive oncogenic transcription in tumor cells. We then summarize abnormal SE complexes, SE-driven coding genes, and noncoding RNAs involved in tumor development. In summary, we believe that SEs show great potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- MengTing Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - QingYang Chen
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - ShuJie Wang
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - RuiXiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YuFei Xiang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YanYi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - DaSheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| | - ErBao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
16
|
Chen Z, Tian D, Chen X, Cheng M, Xie H, Zhao J, Liu J, Fang Z, Zhao B, Bian E. Super-enhancer-driven lncRNA LIMD1-AS1 activated by CDK7 promotes glioma progression. Cell Death Dis 2023; 14:383. [PMID: 37385987 PMCID: PMC10310775 DOI: 10.1038/s41419-023-05892-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/07/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
Long non-coding RNAs (lncRNAs) are tissue-specific expression patterns and dysregulated in cancer. How they are regulated still needs to be determined. We aimed to investigate the functions of glioma-specific lncRNA LIMD1-AS1 activated by super-enhancer (SE) and identify the potential mechanisms. In this paper, we identified a SE-driven lncRNA, LIMD1-AS1, which is expressed at significantly higher levels in glioma than in normal brain tissue. High LIMD1-AS1 levels were significantly associated with a shorter survival time of glioma patients. LIMD1-AS1 overexpression significantly enhanced glioma cells proliferation, colony formation, migration, and invasion, whereas LIMD1-AS1 knockdown inhibited their proliferation, colony formation, migration, and invasion, and the xenograft tumor growth of glioma cells in vivo. Mechanically, inhibition of CDK7 significantly attenuates MED1 recruitment to the super-enhancer of LIMD1-AS1 and then decreases the expression of LIMD1-AS1. Most importantly, LIMD1-AS1 could directly bind to HSPA5, leading to the activation of interferon signaling. Our findings support the idea that CDK7 mediated-epigenetically activation of LIMD1-AS1 plays a crucial role in glioma progression and provides a promising therapeutic approach for patients with glioma.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Dasheng Tian
- Department of Orthopaedics, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Xueran Chen
- Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230601, China
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230601, China
| | - Meng Cheng
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Han Xie
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - JiaJia Zhao
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Jun Liu
- Department of Orthopaedics, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China
| | - Zhiyou Fang
- Department of Laboratory Medicine, Hefei Cancer Hospital, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230601, China.
- Anhui Province Key Laboratory of Medical Physics and Technology; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, Hefei, Anhui, 230601, China.
| | - Bing Zhao
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China.
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China.
| | - Erbao Bian
- Department of Neurosurgery, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China.
- Department of Orthopaedics, the Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, Anhui, 230601, China.
| |
Collapse
|
17
|
Niu X, Zhang L, Wu Y, Zong Z, Wang B, Liu J, Zhang L, Zhou F. Biomolecular condensates: Formation mechanisms, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e223. [PMID: 36875159 PMCID: PMC9974629 DOI: 10.1002/mco2.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/06/2023] Open
Abstract
Biomolecular condensates are cellular structures composed of membraneless assemblies comprising proteins or nucleic acids. The formation of these condensates requires components to change from a state of solubility separation from the surrounding environment by undergoing phase transition and condensation. Over the past decade, it has become widely appreciated that biomolecular condensates are ubiquitous in eukaryotic cells and play a vital role in physiological and pathological processes. These condensates may provide promising targets for the clinic research. Recently, a series of pathological and physiological processes have been found associated with the dysfunction of condensates, and a range of targets and methods have been demonstrated to modulate the formation of these condensates. A more extensive description of biomolecular condensates is urgently needed for the development of novel therapies. In this review, we summarized the current understanding of biomolecular condensates and the molecular mechanisms of their formation. Moreover, we reviewed the functions of condensates and therapeutic targets for diseases. We further highlighted the available regulatory targets and methods, discussed the significance and challenges of targeting these condensates. Reviewing the latest developments in biomolecular condensate research could be essential in translating our current knowledge on the use of condensates for clinical therapeutic strategies.
Collapse
Affiliation(s)
- Xin Niu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Lei Zhang
- Department of OrthopedicsThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yuchen Wu
- Department of Clinical Medicine, The First School of MedicineWenzhou Medical UniversityWenzhouChina
| | - Zhi Zong
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Jisheng Liu
- Department of Otolaryngology Head and Neck SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhouChina
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhouChina
| |
Collapse
|
18
|
Luo Y, Xiang S, Feng J. Protein Phase Separation: New Insights into Carcinogenesis. Cancers (Basel) 2022; 14:cancers14235971. [PMID: 36497453 PMCID: PMC9740862 DOI: 10.3390/cancers14235971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Phase separation is now acknowledged as an essential biologic mechanism wherein distinct activated molecules assemble into a different phase from the surrounding constituents of a cell. Condensates formed by phase separation play an essential role in the life activities of various organisms under normal physiological conditions, including the advanced structure and regulation of chromatin, autophagic degradation of incorrectly folded or unneeded proteins, and regulation of the actin cytoskeleton. During malignant transformation, abnormally altered condensate assemblies are often associated with the abnormal activation of oncogenes or inactivation of tumor suppressors, resulting in the promotion of the carcinogenic process. Thus, understanding the role of phase separation in various biological evolutionary processes will provide new ideas for the development of drugs targeting specific condensates, which is expected to be an effective cancer therapy strategy. However, the relationship between phase separation and cancer has not been fully elucidated. In this review, we mainly summarize the main processes and characteristics of phase separation and the main methods for detecting phase separation. In addition, we summarize the cancer proteins and signaling pathways involved in phase separation and discuss their promising future applications in addressing the unmet clinical therapeutic needs of people with cancer. Finally, we explain the means of targeted phase separation and cancer treatment.
Collapse
|
19
|
Li ZM, Liu G, Gao Y, Zhao MG. Targeting CDK7 in oncology: The avenue forward. Pharmacol Ther 2022; 240:108229. [PMID: 35700828 DOI: 10.1016/j.pharmthera.2022.108229] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Cyclin-dependent kinase (CDK) 7 is best characterized for the ability to regulate biological processes, including the cell cycle and gene transcription. Abnormal CDK7 activity is observed in various tumours and represents a driving force for tumourigenesis. Therefore, CDK7 may be an appealing target for cancer treatment. Whereas, the enthusiasm for CDK7-targeted therapeutic strategy is mitigated due to the widely possessed belief that this protein is essential for normal cells. Indeed, the fact confronts the consensus. This is the first review to introduce the role of CDK7 in pan-cancers via a combined analysis of comprehensive gene information and (pre)clinical research results. We also discuss the recent advances in protein structure and summarize the understanding of mechanisms underlying CDK7 function. These endeavours highlight the pivotal roles of CDK7 in tumours and may contribute to the development of effective CDK7 inhibitors within the strategy of structure-based drug discovery for cancer therapy.
Collapse
Affiliation(s)
- Zhi-Mei Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Guan Liu
- Department of General Surgery, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Xi'an 710038, Shaanxi, PR China
| | - Ya Gao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Key Laboratory of Henan Province for Drug Quality and Evaluation, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, Henan, PR China.
| | - Ming-Gao Zhao
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China; Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xinsi Road 1, Xi'an 710038, Shaanxi, PR China.
| |
Collapse
|
20
|
Jiao A, Liu H, Ding R, Zheng H, Zhang C, Feng Z, Lei L, Wang X, Su Y, Yang X, Sun C, Zhang L, Bai L, Sun L, Zhang B. Med1 Controls Effector CD8+ T Cell Differentiation and Survival through C/EBPβ-Mediated Transcriptional Control of T-bet. THE JOURNAL OF IMMUNOLOGY 2022; 209:855-863. [DOI: 10.4049/jimmunol.2200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/25/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Effector CD8+ T cells are crucial players in adaptive immunity for effective protection against invading pathogens. The regulatory mechanisms underlying CD8+ T cell effector differentiation are incompletely understood. In this study, we defined a critical role of mediator complex subunit 1 (Med1) in controlling effector CD8+ T cell differentiation and survival during acute bacterial infection. Mice with Med1-deficient CD8+ T cells exhibited significantly impaired expansion with evidently reduced killer cell lectin-like receptor G1+ terminally differentiated and Ly6c+ effector cell populations. Moreover, Med1 deficiency led to enhanced cell apoptosis and expression of multiple inhibitory receptors (programmed cell death 1, T cell Ig and mucin domain–containing-3, and T cell immunoreceptor with Ig and ITIM domains). RNA-sequencing analysis revealed that T-bet– and Zeb2-mediated transcriptional programs were impaired in Med1-deficient CD8+ T cells. Overexpression of T-bet could rescue the differentiation and survival of Med1-deficient CD8+ effector T cells. Mechanistically, the transcription factor C/EBPβ promoted T-bet expression through interacting with Med1 in effector T cells. Collectively, our findings revealed a novel role of Med1 in regulating effector CD8+ T cell differentiation and survival in response to bacterial infection.
Collapse
Affiliation(s)
- Anjun Jiao
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Haiyan Liu
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Renyi Ding
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Huiqiang Zheng
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Cangang Zhang
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zhao Feng
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lei Lei
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xin Wang
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yanhong Su
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaofeng Yang
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chenming Sun
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lianjun Zhang
- ¶Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- ‖Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China; and
| | - Liang Bai
- #Institute of Cardiovascular Science, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Lina Sun
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Baojun Zhang
- *Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- †Institute of Infection and Immunity, Translational Medicine Institute, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- ‡Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education, Xi’an, Shaanxi, China
- §Xi’an Key Laboratory of Immune Related Diseases, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
21
|
Jin Z, Wu J, Lin J, Wang J, Shen Y. Identification of the Transcription Co-Factor–Related Gene Signature and Risk Score Model for Osteosarcoma. Front Genet 2022; 13:862803. [PMID: 35734428 PMCID: PMC9207420 DOI: 10.3389/fgene.2022.862803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022] Open
Abstract
Osteosarcoma is a malignant tumor with a poor prognosis. Nowadays, there is a lack of good methods to assess the prognosis of osteosarcoma patients. Transcription co-factors (TcoFs) play crucial roles in transcriptional regulation through the interaction with transcription factors (TFs). Many studies have revealed that TcoFs are related to many diseases, especially cancer. However, few studies have been reported about prognostic prediction models of osteosarcoma by using TcoF-related genes. In order to construct a prognostic risk model with TcoF-related genes, the mRNA expression data and matched clinical information of osteosarcoma were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database and the Gene Expression Omnibus (GEO) database. TARGET was used as a training set and GSE21257 from GEO was used as a validation set. Univariate Cox regression was performed to select 13 TcoF-related candidate genes, of which five genes (LMO2, MAML3, MTF2, RBPMS, and SIRT1) were finally used to construct the prognostic risk model by LASSO Cox regression analysis. The Kaplan–Meier (K-M) survival curves showed an obvious difference between high- and low-risk groups. The receiver operating characteristic (ROC) curves based on TARGET demonstrated that this risk model was credible (1-year AUC: 0.607; 3-years AUC: 0.713; 5-years AUC: 0.736). Meanwhile, the risk model was associated with immune cells and immune-related functions. By combining the risk score and clinical factors, the nomogram of osteosarcoma was assessed with a C-index of 0.738 to further support the reliability of this 5-gene prognostic risk model. Finally, the expression of TcoF-related genes was validated in different cell lines by quantitative real-time PCR (qRT-PCR) and also in different tissue samples by immunohistochemistry (IHC). In conclusion, the model can predict the prognosis of osteosarcoma patients and may provide novel targets for the treatment of osteosarcoma patients.
Collapse
Affiliation(s)
- Zhijian Jin
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jintao Wu
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianwei Lin
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Wang
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhui Shen
- Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yuhui Shen,
| |
Collapse
|
22
|
Tan W, Peng S, Li Z, Zhang R, Xiao Y, Chen X, Zhu J, Li B, Lv X. Identification of Therapeutic Targets and Prognostic Biomarkers among Genes from the Mediator Complex Family in the Hepatocellular Carcinoma Tumour-Immune Microenvironment. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2021613. [PMID: 35069777 PMCID: PMC8776440 DOI: 10.1155/2022/2021613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is predominant among all types of primary liver cancers characterised by high morbidity and mortality. Genes in the mediator complex (MED) family are engaged in the tumour-immune microenvironment and function as regulatory hubs mediating carcinogenesis and progression across diverse cancer types. Whereas research studies have been conducted to examine the mechanisms in several cancers, studies that systematically focused on the therapeutic and prognostic values of MED in patients with HCC are limited. METHODS The online databases ONCOMINE, GEPIA, UALCAN, GeneMANIA, cBioPortal, OmicStudio, STING, Metascape, and TIMER were used in this study. RESULTS The transcriptional levels of all members of the MED family in HCC presented an aberrant high expression pattern. Significant correlations were found between the MED1, MED6, MED8, MED10, MED12, MED15, MED17, MED19, MED20, MED21, MED22, MED23, MED24, MED25, MED26, and MED27 expression levels and the pathological stage in the patients with HCC. The patients with high expression levels of MED6, MED8, MED10, MED17, MED19, MED20, MED21, MED22, MED24, and MED25 were significantly associated with poor prognosis. Functional enrichment analysis revealed that the members of the MED family were mainly enriched in the nucleobase-containing compound catabolic process, regulation of chromosome organisation, and transcriptional regulation by TP53. Significant correlations were found between the MED6, MED8, MED10, MED17, MED19, MED20, MED21, MED22, MED24, and MED25 expression levels and all types of immune cells (B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells). B cells and MED8 were independent predictors of overall survival. We found significant correlations between the somatic copy number alterations of the MED6, MED8, MED10, MED20, MED21, MED22, MED24, and MED25 molecules and the abundance of immune infiltrates. CONCLUSIONS Our study delineated a thorough landscape to investigate the therapeutic and prognostic potentials of the MED family for HCC cases, which yielded promising results for the development of immunotherapeutic drugs and construction of a prognostic stratification model.
Collapse
Affiliation(s)
- Wei Tan
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical College, Lishui City, Zhejiang Province 323000, China
| | - Shuai Peng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning City, Guangxi Zhuang Autonomous Region 530021, China
| | - Zhuokai Li
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical College, Lishui City, Zhejiang Province 323000, China
| | - Ruiqian Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical College, Lishui City, Zhejiang Province 323000, China
| | - Yangrui Xiao
- Department of Radiology, Lishui Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical College, Lishui City, Zhejiang Province 323000, China
| | - Xiao Chen
- Department of Radiology, Lishui Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical College, Lishui City, Zhejiang Province 323000, China
| | - Jinde Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical College, Lishui City, Zhejiang Province 323000, China
| | - Bingrong Li
- Department of Radiology, Lishui Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical College, Lishui City, Zhejiang Province 323000, China
| | - Xinliang Lv
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical College, Lishui City, Zhejiang Province 323000, China
| |
Collapse
|
23
|
Zhang Y, Song C, Zhang Y, Wang Y, Feng C, Chen J, Wei L, Pan Q, Shang D, Zhu Y, Zhu J, Fang S, Zhao J, Yang Y, Zhao X, Xu X, Wang Q, Guo J, Li C. TcoFBase: a comprehensive database for decoding the regulatory transcription co-factors in human and mouse. Nucleic Acids Res 2022; 50:D391-D401. [PMID: 34718747 PMCID: PMC8728270 DOI: 10.1093/nar/gkab950] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/21/2021] [Accepted: 10/04/2021] [Indexed: 02/05/2023] Open
Abstract
Transcription co-factors (TcoFs) play crucial roles in gene expression regulation by communicating regulatory cues from enhancers to promoters. With the rapid accumulation of TcoF associated chromatin immunoprecipitation sequencing (ChIP-seq) data, the comprehensive collection and integrative analyses of these data are urgently required. Here, we developed the TcoFBase database (http://tcof.liclab.net/TcoFbase), which aimed to document a large number of available resources for mammalian TcoFs and provided annotations and enrichment analyses of TcoFs. TcoFBase curated 2322 TcoFs and 6759 TcoFs associated ChIP-seq data from over 500 tissues/cell types in human and mouse. Importantly, TcoFBase provided detailed and abundant (epi) genetic annotations of ChIP-seq based TcoF binding regions. Furthermore, TcoFBase supported regulatory annotation information and various functional annotations for TcoFs. Meanwhile, TcoFBase embedded five types of TcoF regulatory analyses for users, including TcoF gene set enrichment, TcoF binding genomic region annotation, TcoF regulatory network analysis, TcoF-TF co-occupancy analysis and TcoF regulatory axis analysis. TcoFBase was designed to be a useful resource that will help reveal the potential biological effects of TcoFs and elucidate TcoF-related regulatory mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Chenchen Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Jiaxin Chen
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Ling Wei
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Qi Pan
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Desi Shang
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Base for Scientific and Technological Innovation Cooperation, University of South China, Hengyang, Hunan 421001, China
| | - Yanbing Zhu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jiang Zhu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Shuangsang Fang
- Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jun Zhao
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Yongsan Yang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Xilong Zhao
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Xiaozheng Xu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Qiuyu Wang
- Correspondence may also be addressed to Qiuyu Wang. Tel: +86 13351294769; Fax: +86 0734 8279018;
| | - Jincheng Guo
- Correspondence may also be addressed to Jincheng Guo. Tel: +86 1062600822; Fax: +86 1062601356;
| | - Chunquan Li
- To whom correspondence should be addressed. Tel: +86 15004591078; Fax: +86 0734 8279018;
| |
Collapse
|
24
|
Epigenetic Coregulation of Androgen Receptor Signaling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:277-293. [DOI: 10.1007/978-3-031-11836-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Lei L, Yang X, Su Y, Zheng H, Liu J, Liu H, Zou Y, Jiao A, Wang X, Zhang C, Zhang X, Zhang J, Zhang D, Zhou X, Shi L, Liu E, Bai L, Sun C, Zhang B. Med1 controls CD8 T cell maintenance through IL-7R-mediated cell survival signalling. J Cell Mol Med 2021; 25:4870-4876. [PMID: 33733611 PMCID: PMC8107092 DOI: 10.1111/jcmm.16465] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Under steady‐state conditions, the pool size of peripheral CD8+ T cells is maintained through turnover and survival. Beyond TCR and IL‐7R signals, the underlying mechanisms are less well understood. In the present study, we found a significant reduction of CD8+ T cell proportion in spleens but not in thymi of mice with T cell‐specific deletion of Mediator Subunit 1 (Med1). A competitive transfer of wild‐type (WT) and Med1‐deficient CD8+ T cells reproduced the phenotype in the same recipients and confirmed intrinsic role of Med1. Furthermore, we observed a comparable degree of migration and proliferation but a significant increase of cell death in Med1‐deficient CD8+ T cells compared with WT counterparts. Finally, Med1‐deficient CD8+ T cells exhibited a decreased expression of interleukin‐7 receptor α (IL‐7Rα), down‐regulation of phosphorylated‐STAT5 (pSTAT5) and Bim up‐regulation. Collectively, our study reveals a novel role of Med1 in the maintenance of CD8+ T cells through IL‐7Rα/STAT5 pathway‐mediated cell survival.
Collapse
Affiliation(s)
- Lei Lei
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, China
| | - Xiaofeng Yang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Huiqiang Zheng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jun Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Haiyan Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Yujing Zou
- Duke University Medical Center, Durham, NC, USA
| | - Anjun Jiao
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xingzhe Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Jiahui Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Dan Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiaobo Zhou
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lin Shi
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Enqi Liu
- Institute of Cardiovascular Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Liang Bai
- Institute of Cardiovascular Science, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Chenming Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.,Xi'an Key Laboratory of Immune Related Diseases, Xi'an, China
| |
Collapse
|
26
|
Boija A, Klein IA, Young RA. Biomolecular Condensates and Cancer. Cancer Cell 2021; 39:174-192. [PMID: 33417833 PMCID: PMC8721577 DOI: 10.1016/j.ccell.2020.12.003] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022]
Abstract
Malignant transformation is characterized by dysregulation of diverse cellular processes that have been the subject of detailed genetic, biochemical, and structural studies, but only recently has evidence emerged that many of these processes occur in the context of biomolecular condensates. Condensates are membrane-less bodies, often formed by liquid-liquid phase separation, that compartmentalize protein and RNA molecules with related functions. New insights from condensate studies portend a profound transformation in our understanding of cellular dysregulation in cancer. Here we summarize key features of biomolecular condensates, note where they have been implicated-or will likely be implicated-in oncogenesis, describe evidence that the pharmacodynamics of cancer therapeutics can be greatly influenced by condensates, and discuss some of the questions that must be addressed to further advance our understanding and treatment of cancer.
Collapse
Affiliation(s)
- Ann Boija
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA.
| | - Isaac A Klein
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
27
|
Liang H, Du J, Elhassan RM, Hou X, Fang H. Recent progress in development of cyclin-dependent kinase 7 inhibitors for cancer therapy. Expert Opin Investig Drugs 2021; 30:61-76. [PMID: 33183110 DOI: 10.1080/13543784.2021.1850693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Cyclin-dependent kinase 7 (CDK7) is a part of the CDK-activating kinase family (CAK) which has a key role in the cell cycle and transcriptional regulation. Several lines of evidence suggest that CDK7 is a promising therapeutic target for cancer. CDK7 selective inhibitors such as SY-5609 and CT7001 are in clinical development. Areas covered: We explore the biology of CDK7 and its role in cancer and follow this with an evaluation of the preclinical and clinical progress of CDK7 inhibitors, and their potential in the clinic. We searched PubMed and ClinicalTrials to identify relevant data from the database inception to 14 October 2020. Expert opinion: CDK7 inhibitors are next generation therapeutics for cancer. However, there are still challenges which include selectively, side effects, and drug resistance. Nevertheless, with ongoing clinical development of these inhibitors and greater analysis of their target, CDK7 inhibitors will become a promising approach for treatment of cancer in the near future.
Collapse
Affiliation(s)
- Hanzhi Liang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| | - Jintong Du
- Shandong Cancer Hospital and Institute, Shandong First Medical University , Jinan, Shandong, China
| | - Reham M Elhassan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| |
Collapse
|
28
|
Super-enhancer in prostate cancer: transcriptional disorders and therapeutic targets. NPJ Precis Oncol 2020; 4:31. [PMID: 33299103 PMCID: PMC7677538 DOI: 10.1038/s41698-020-00137-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Abnormal activity of oncogenic and tumor-suppressor signaling pathways contributes to cancer and cancer risk in humans. Transcriptional dysregulation of these pathways is commonly associated with tumorigenesis and the development of cancer. Genetic and epigenetic alterations may mediate dysregulated transcriptional activity. One of the most important epigenetic alternations is the non-coding regulatory element, which includes both enhancers and super-enhancers (SEs). SEs, characterized as large clusters of enhancers with aberrant high levels of transcription factor binding, have been considered as key drivers of gene expression in controlling and maintaining cancer cell identity. In cancer cells, oncogenes acquire SEs and the cancer phenotype relies on these abnormal transcription programs driven by SEs, which leads to cancer cells often becoming addicted to the SEs-related transcription programs, including prostate cancer. Here, we summarize recent findings of SEs and SEs-related gene regulation in prostate cancer and review the potential pharmacological inhibitors in basic research and clinical trials.
Collapse
|