1
|
Cantore T, Gasperini P, Bevilacqua R, Ciani Y, Sinha S, Ruppin E, Demichelis F. PRODE recovers essential and context-essential genes through neighborhood-informed scores. Genome Biol 2025; 26:42. [PMID: 40022167 PMCID: PMC11869679 DOI: 10.1186/s13059-025-03501-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 02/05/2025] [Indexed: 03/03/2025] Open
Abstract
Gene context-essentiality assessment supports precision oncology opportunities. The variability of gene effects inference from loss-of-function screenings across models and technologies limits identifying robust hits. We propose a computational framework named PRODE that integrates gene effects with protein-protein interactions to generate neighborhood-informed essential (NIE) and neighborhood-informed context essential (NICE) scores. It outperforms the canonical gene effect approach in recovering missed essential genes in shRNA screens and prioritizing context-essential hits from CRISPR-KO screens, as supported by in vitro validations. Applied to Her2 + breast cancer tumor samples, PRODE identifies oxidative phosphorylation genes as vulnerabilities with prognostic value, highlighting new therapeutic opportunities.
Collapse
Affiliation(s)
- Thomas Cantore
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, Trento, 38123, Italy
| | - Paola Gasperini
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, Trento, 38123, Italy
| | - Riccardo Bevilacqua
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, Trento, 38123, Italy
| | - Yari Ciani
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, Trento, 38123, Italy
| | - Sanju Sinha
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
- Currently at Sanford Burnham Prebys Medical Discovery Institute, San Diego, CA, USA
| | - Eytan Ruppin
- Cancer Data Science Laboratory (CDSL), Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Francesca Demichelis
- Laboratory of Computational and Functional Oncology, Department of Cellular, Computational, and Integrative Biology, University of Trento, Via Sommarive 9, Trento, 38123, Italy.
| |
Collapse
|
2
|
Petrenko O, Kirillov V, D'Amico S, Reich NC. Intratumor heterogeneity in KRAS signaling shapes treatment resistance. iScience 2025; 28:111662. [PMID: 39898020 PMCID: PMC11787500 DOI: 10.1016/j.isci.2024.111662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/22/2024] [Accepted: 12/18/2024] [Indexed: 02/04/2025] Open
Abstract
KRAS mutations are linked to some of the deadliest forms of cancer. Pharmacological studies suggest that co-targeting KRAS with feedback/bypass pathways could lead to enhanced anti-tumor activity. The underlying premise is that cancers display a deep-rooted hypersensitivity to KRAS inactivation. Here, we investigate the role of intratumor heterogeneity in pancreatic ductal adenocarcinoma, focusing on oncogenic KRAS addiction and treatment resistance. Integrated analysis of single-cell and bulk RNA sequencing data reveals that most tumors display a mixture of cells with vastly different degrees of KRAS dependency. We identify distinct cell populations that vary in their gene expression patterns pertaining to the predicted level of KRAS signaling activity, cell growth, and differentiation commitment within each tumor. Selective targeting of mutant KRAS suppresses the growth of tumor cells with high RAS/mitogen-activated protein kinase (MAPK) activity while sparing pre-existing subsets with low RAS signaling activity, necessitating alternative treatments. Combination immunotherapy leads to durable tumor regression in preclinical models.
Collapse
Affiliation(s)
- Oleksi Petrenko
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Varvara Kirillov
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Stephen D'Amico
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Nancy C. Reich
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
3
|
Fong SH, Kuenzi BM, Mattson NM, Lee J, Sanchez K, Bojorquez-Gomez A, Ford K, Munson BP, Licon K, Bergendahl S, Shen JP, Kreisberg JF, Mali P, Hager JH, White MA, Ideker T. A multilineage screen identifies actionable synthetic lethal interactions in human cancers. Nat Genet 2025; 57:154-164. [PMID: 39558023 DOI: 10.1038/s41588-024-01971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/02/2024] [Indexed: 11/20/2024]
Abstract
Cancers are driven by alterations in diverse genes, creating dependencies that can be therapeutically targeted. However, many genetic dependencies have proven inconsistent across tumors. Here we describe SCHEMATIC, a strategy to identify a core network of highly penetrant, actionable genetic interactions. First, fundamental cellular processes are perturbed by systematic combinatorial knockouts across tumor lineages, identifying 1,805 synthetic lethal interactions (95% unreported). Interactions are then analyzed by hierarchical pooling, revealing that half segregate reliably by tissue type or biomarker status (51%) and a substantial minority are penetrant across lineages (34%). Interactions converge on 49 multigene systems, including MAPK signaling and BAF transcriptional regulatory complexes, which become essential on disruption of polymerases. Some 266 interactions translate to robust biomarkers of drug sensitivity, including frequent genetic alterations in the KDM5C/6A histone demethylases, which sensitize to inhibition of TIPARP (PARP7). SCHEMATIC offers a context-aware, data-driven approach to match genetic alterations to targeted therapies.
Collapse
Affiliation(s)
- Samson H Fong
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Brent M Kuenzi
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Nicole M Mattson
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - John Lee
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kyle Sanchez
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ana Bojorquez-Gomez
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kyle Ford
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Brenton P Munson
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Katherine Licon
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sarah Bergendahl
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - John Paul Shen
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jason F Kreisberg
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | | | - Trey Ideker
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Greenblatt JF, Alberts BM, Krogan NJ. Discovery and significance of protein-protein interactions in health and disease. Cell 2024; 187:6501-6517. [PMID: 39547210 PMCID: PMC11874950 DOI: 10.1016/j.cell.2024.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/17/2024]
Abstract
The identification of individual protein-protein interactions (PPIs) began more than 40 years ago, using protein affinity chromatography and antibody co-immunoprecipitation. As new technologies emerged, analysis of PPIs increased to a genome-wide scale with the introduction of intracellular tagging methods, affinity purification (AP) followed by mass spectrometry (MS), and co-fractionation MS (CF-MS). Now, combining the resulting catalogs of interactions with complementary methods, including crosslinking MS (XL-MS) and cryogenic electron microscopy (cryo-EM), helps distinguish direct interactions from indirect ones within the same or between different protein complexes. These powerful approaches and the promise of artificial intelligence applications like AlphaFold herald a future where PPIs and protein complexes, including energy-driven protein machines, will be understood in exquisite detail, unlocking new insights in the contexts of both basic biology and disease.
Collapse
Affiliation(s)
- Jack F Greenblatt
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
| | - Bruce M Alberts
- Department of Biochemistry and Biophysics, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute, University of California, San Francisco (UCSF), San Francisco, CA, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| |
Collapse
|
5
|
Liu F, Xin M, Feng H, Zhang W, Liao Z, Sheng T, Wen P, Wu Q, Liang T, Shi J, Zhou R, He K, Gu Z, Li H. Cryo-shocked tumor cells deliver CRISPR-Cas9 for lung cancer regression by synthetic lethality. SCIENCE ADVANCES 2024; 10:eadk8264. [PMID: 38552011 PMCID: PMC10980270 DOI: 10.1126/sciadv.adk8264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/23/2024] [Indexed: 04/01/2024]
Abstract
Although CRISPR-mediated genome editing holds promise for cancer therapy, inadequate tumor targeting and potential off-target side effects hamper its outcomes. In this study, we present a strategy using cryo-shocked lung tumor cells as a CRISPR-Cas9 delivery system for cyclin-dependent kinase 4 (CDK4) gene editing, which initiates synthetic lethal in KRAS-mutant non-small cell lung cancer (NSCLC). By rapidly liquid nitrogen shocking, we effectively eliminate the pathogenicity of tumor cells while preserving their structure and surface receptor activity. This delivery system enables the loaded CRISPR-Cas9 to efficiently target to lung through the capture in pulmonary capillaries and interactions with endothelial cells. In a NSCLC-bearing mouse model, the drug accumulation is increased nearly fourfold in lung, and intratumoral CDK4 expression is substantially down-regulated compared to CRISPR-Cas9 lipofectamine nanoparticles administration. Furthermore, CRISPR-Cas9 editing-mediated CDK4 ablation triggers synthetic lethal in KRAS-mutant NSCLC and prolongs the survival of mice.
Collapse
Affiliation(s)
- Feng Liu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Minhang Xin
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huiheng Feng
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Wentao Zhang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ziyan Liao
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Tao Sheng
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ping Wen
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Qing Wu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Tingxizi Liang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jiaqi Shi
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Ruyi Zhou
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kaixin He
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| | - Zhen Gu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongjun Li
- National Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Hepatobiliary and Pancreatic Surgery the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
6
|
Sweet-Cordero E, Marini K, Champion E, Lee A, Young I, Leung S, Mathey-Andrews N, Jacks T, Jackson P, Cochran J. The CLCF1-CNTFR axis drives an immunosuppressive tumor microenvironment and blockade enhances the effects of established cancer therapies. RESEARCH SQUARE 2024:rs.3.rs-4046823. [PMID: 38562778 PMCID: PMC10984090 DOI: 10.21203/rs.3.rs-4046823/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Tumors comprise a complex ecosystem consisting of many cell types that communicate through secreted factors. Targeting these intercellular signaling networks remains an important challenge in cancer research. Cardiotrophin-like cytokine factor 1 (CLCF1) is an interleukin-6 (IL-6) family member secreted by cancer-associated fibroblasts (CAFs) that binds to ciliary neurotrophic factor receptor (CNTFR), promoting tumor growth in lung and liver cancer1,2. A high-affinity soluble receptor (eCNTFR-Fc) that sequesters CLCF1 has anti-oncogenic effects3. However, the role of CLCF1 in mediating cell-cell interactions in cancer has remained unclear. We demonstrate that eCNTFR-Fc has widespread effects on both tumor cells and the tumor microenvironment and can sensitize cancer cells to KRAS inhibitors or immune checkpoint blockade. After three weeks of treatment with eCNTFR-Fc, there is a shift from an immunosuppressive to an immunostimulatory macrophage phenotype as well as an increase in activated T, NKT, and NK cells. Combination of eCNTFR-Fc and αPD1 was significantly more effective than single-agent therapy in a syngeneic allograft model, and eCNTFR-Fc sensitizes tumor cells to αPD1 in a non-responsive GEM model of lung adenocarcinoma. These data suggest that combining eCNTFR-Fc with KRAS inhibition or with αPD1 is a novel therapeutic strategy for lung cancer and potentially other cancers in which these therapies have been used but to date with only modest effect. Overall, we demonstrate the potential of cancer therapies that target cytokines to alter the immune microenvironment.
Collapse
Affiliation(s)
| | - Kieren Marini
- Division of Oncology, Department of Pediatrics, University of California San Francisco
| | - Emma Champion
- Division of Oncology, Department of Pediatrics, University of California San Francisco
| | - Alex Lee
- University of California, San Francisco
| | - Isabelle Young
- Division of Oncology, Department of Pediatrics, University of California San Francisco
| | - Stanley Leung
- Division of Oncology, Department of Pediatrics, University of California San Francisco
| | | | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research
| | | | | |
Collapse
|
7
|
Gong X, Du J, Peng RW, Chen C, Yang Z. CRISPRing KRAS: A Winding Road with a Bright Future in Basic and Translational Cancer Research. Cancers (Basel) 2024; 16:460. [PMID: 38275900 PMCID: PMC10814442 DOI: 10.3390/cancers16020460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
Once considered "undruggable" due to the strong affinity of RAS proteins for GTP and the structural lack of a hydrophobic "pocket" for drug binding, the development of proprietary therapies for KRAS-mutant tumors has long been a challenging area of research. CRISPR technology, the most successful gene-editing tool to date, is increasingly being utilized in cancer research. Here, we provide a comprehensive review of the application of the CRISPR system in basic and translational research in KRAS-mutant cancer, summarizing recent advances in the mechanistic understanding of KRAS biology and the underlying principles of drug resistance, anti-tumor immunity, epigenetic regulatory networks, and synthetic lethality co-opted by mutant KRAS.
Collapse
Affiliation(s)
- Xian Gong
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Jianting Du
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Ren-Wang Peng
- Division of General Thoracic Surgery, Department of BioMedical Research (DBMR), Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008 Bern, Switzerland;
| | - Chun Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| | - Zhang Yang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou 350001, China; (X.G.); (J.D.)
- Key Laboratory of Cardio-Thoracic Surgery, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
8
|
Ryan CJ, Devakumar LPS, Pettitt SJ, Lord CJ. Complex synthetic lethality in cancer. Nat Genet 2023; 55:2039-2048. [PMID: 38036785 DOI: 10.1038/s41588-023-01557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/04/2023] [Indexed: 12/02/2023]
Abstract
The concept of synthetic lethality has been widely applied to identify therapeutic targets in cancer, with varying degrees of success. The standard approach normally involves identifying genetic interactions between two genes, a driver and a target. In reality, however, most cancer synthetic lethal effects are likely complex and also polygenic, being influenced by the environment in addition to involving contributions from multiple genes. By acknowledging and delineating this complexity, we describe in this article how the success rate in cancer drug discovery and development could be improved.
Collapse
Affiliation(s)
- Colm J Ryan
- Conway Institute and School of Computer Science, University College Dublin, Dublin, Ireland.
| | - Lovely Paul Solomon Devakumar
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| | - Stephen J Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK.
| |
Collapse
|
9
|
Nolan A, Raso C, Kolch W, von Kriegsheim A, Wynne K, Matallanas D. Proteomic Mapping of the Interactome of KRAS Mutants Identifies New Features of RAS Signalling Networks and the Mechanism of Action of Sotorasib. Cancers (Basel) 2023; 15:4141. [PMID: 37627169 PMCID: PMC10452836 DOI: 10.3390/cancers15164141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
RAS proteins are key regulators of cell signalling and control different cell functions including cell proliferation, differentiation, and cell death. Point mutations in the genes of this family are common, particularly in KRAS. These mutations were thought to cause the constitutive activation of KRAS, but recent findings showed that some mutants can cycle between active and inactive states. This observation, together with the development of covalent KRASG12C inhibitors, has led to the arrival of KRAS inhibitors in the clinic. However, most patients develop resistance to these targeted therapies, and we lack effective treatments for other KRAS mutants. To accelerate the development of RAS targeting therapies, we need to fully characterise the molecular mechanisms governing KRAS signalling networks and determine what differentiates the signalling downstream of the KRAS mutants. Here we have used affinity purification mass-spectrometry proteomics to characterise the interactome of KRAS wild-type and three KRAS mutants. Bioinformatic analysis associated with experimental validation allows us to map the signalling network mediated by the different KRAS proteins. Using this approach, we characterised how the interactome of KRAS wild-type and mutants is regulated by the clinically approved KRASG12C inhibitor Sotorasib. In addition, we identified novel crosstalks between KRAS and its effector pathways including the AKT and JAK-STAT signalling modules.
Collapse
Affiliation(s)
- Aoife Nolan
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.N.); (C.R.); (W.K.); (A.v.K.); (K.W.)
| | - Cinzia Raso
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.N.); (C.R.); (W.K.); (A.v.K.); (K.W.)
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.N.); (C.R.); (W.K.); (A.v.K.); (K.W.)
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Alex von Kriegsheim
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.N.); (C.R.); (W.K.); (A.v.K.); (K.W.)
- Edinburgh Cancer Research UK Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.N.); (C.R.); (W.K.); (A.v.K.); (K.W.)
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (A.N.); (C.R.); (W.K.); (A.v.K.); (K.W.)
| |
Collapse
|
10
|
Kostyrko K, Román M, Lee AG, Simpson DR, Dinh PT, Leung SG, Marini KD, Kelly MR, Broyde J, Califano A, Jackson PK, Sweet-Cordero EA. UHRF1 is a mediator of KRAS driven oncogenesis in lung adenocarcinoma. Nat Commun 2023; 14:3966. [PMID: 37407562 PMCID: PMC10322837 DOI: 10.1038/s41467-023-39591-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
KRAS is a frequent driver in lung cancer. To identify KRAS-specific vulnerabilities in lung cancer, we performed RNAi screens in primary spheroids derived from a Kras mutant mouse lung cancer model and discovered an epigenetic regulator Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). In human lung cancer models UHRF1 knock-out selectively impaired growth and induced apoptosis only in KRAS mutant cells. Genome-wide methylation and gene expression analysis of UHRF1-depleted KRAS mutant cells revealed global DNA hypomethylation leading to upregulation of tumor suppressor genes (TSGs). A focused CRISPR/Cas9 screen validated several of these TSGs as mediators of UHRF1-driven tumorigenesis. In vivo, UHRF1 knock-out inhibited tumor growth of KRAS-driven mouse lung cancer models. Finally, in lung cancer patients high UHRF1 expression is anti-correlated with TSG expression and predicts worse outcomes for patients with KRAS mutant tumors. These results nominate UHRF1 as a KRAS-specific vulnerability and potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Kaja Kostyrko
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
| | - Marta Román
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Alex G Lee
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - David R Simpson
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Phuong T Dinh
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Stanley G Leung
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Kieren D Marini
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Marcus R Kelly
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Joshua Broyde
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Biomedical Informatics, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - E Alejandro Sweet-Cordero
- Division of Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
11
|
Ryan CJ, Mehta I, Kebabci N, Adams DJ. Targeting synthetic lethal paralogs in cancer. Trends Cancer 2023; 9:397-409. [PMID: 36890003 DOI: 10.1016/j.trecan.2023.02.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 03/08/2023]
Abstract
Synthetic lethal interactions, where mutation of one gene renders cells sensitive to inhibition of another gene, can be exploited for the development of targeted therapeutics in cancer. Pairs of duplicate genes (paralogs) often share common functionality and hence are a potentially rich source of synthetic lethal interactions. Because the majority of human genes have paralogs, exploiting such interactions could be a widely applicable approach for targeting gene loss in cancer. Moreover, existing small-molecule drugs may exploit synthetic lethal interactions by inhibiting multiple paralogs simultaneously. Consequently, the identification of synthetic lethal interactions between paralogs could be extremely informative for drug development. Here we review approaches to identify such interactions and discuss some of the challenges of exploiting them.
Collapse
Affiliation(s)
- Colm J Ryan
- Conway Institute and School of Computer Science, University College Dublin, Dublin, Ireland; Systems Biology Ireland, University College Dublin, Dublin, Ireland.
| | - Ishan Mehta
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Narod Kebabci
- Conway Institute and School of Computer Science, University College Dublin, Dublin, Ireland; Science Foundation Ireland (SFI) Centre for Research Training in Genomics Data Science, University College Dublin, Dublin, Ireland
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| |
Collapse
|
12
|
Tang X, Xue D, Zhang T, Nilsson-Payant BE, Carrau L, Duan X, Gordillo M, Tan AY, Qiu Y, Xiang J, Schwartz RE, tenOever BR, Evans T, Chen S. A multi-organoid platform identifies CIART as a key factor for SARS-CoV-2 infection. Nat Cell Biol 2023; 25:381-389. [PMID: 36918693 PMCID: PMC10014579 DOI: 10.1038/s41556-023-01095-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
COVID-19 is a systemic disease involving multiple organs. We previously established a platform to derive organoids and cells from human pluripotent stem cells to model SARS-CoV-2 infection and perform drug screens1,2. This provided insight into cellular tropism and the host response, yet the molecular mechanisms regulating SARS-CoV-2 infection remain poorly defined. Here we systematically examined changes in transcript profiles caused by SARS-CoV-2 infection at different multiplicities of infection for lung airway organoids, lung alveolar organoids and cardiomyocytes, and identified several genes that are generally implicated in controlling SARS-CoV-2 infection, including CIART, the circadian-associated repressor of transcription. Lung airway organoids, lung alveolar organoids and cardiomyocytes derived from isogenic CIART-/- human pluripotent stem cells were significantly resistant to SARS-CoV-2 infection, independently of viral entry. Single-cell RNA-sequencing analysis further validated the decreased levels of SARS-CoV-2 infection in ciliated-like cells of lung airway organoids. CUT&RUN, ATAC-seq and RNA-sequencing analyses showed that CIART controls SARS-CoV-2 infection at least in part through the regulation of NR4A1, a gene also identified from the multi-organoid analysis. Finally, transcriptional profiling and pharmacological inhibition led to the discovery that the Retinoid X Receptor pathway regulates SARS-CoV-2 infection downstream of CIART and NR4A1. The multi-organoid platform identified the role of circadian-clock regulation in SARS-CoV-2 infection, which provides potential therapeutic targets for protection against COVID-19 across organ systems.
Collapse
Affiliation(s)
- Xuming Tang
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Dongxiang Xue
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin E Nilsson-Payant
- Department of Microbiology, New York University, New York, NY, USA
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Lucia Carrau
- Department of Microbiology, New York University, New York, NY, USA
| | - Xiaohua Duan
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Miriam Gordillo
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Adrian Y Tan
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Yunping Qiu
- Stable Isotope and Metabolomics Core Facility, The Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jenny Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA.
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Kolch W, Berta D, Rosta E. Dynamic regulation of RAS and RAS signaling. Biochem J 2023; 480:1-23. [PMID: 36607281 PMCID: PMC9988006 DOI: 10.1042/bcj20220234] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
RAS proteins regulate most aspects of cellular physiology. They are mutated in 30% of human cancers and 4% of developmental disorders termed Rasopathies. They cycle between active GTP-bound and inactive GDP-bound states. When active, they can interact with a wide range of effectors that control fundamental biochemical and biological processes. Emerging evidence suggests that RAS proteins are not simple on/off switches but sophisticated information processing devices that compute cell fate decisions by integrating external and internal cues. A critical component of this compute function is the dynamic regulation of RAS activation and downstream signaling that allows RAS to produce a rich and nuanced spectrum of biological outputs. We discuss recent findings how the dynamics of RAS and its downstream signaling is regulated. Starting from the structural and biochemical properties of wild-type and mutant RAS proteins and their activation cycle, we examine higher molecular assemblies, effector interactions and downstream signaling outputs, all under the aspect of dynamic regulation. We also consider how computational and mathematical modeling approaches contribute to analyze and understand the pleiotropic functions of RAS in health and disease.
Collapse
Affiliation(s)
- Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dénes Berta
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| | - Edina Rosta
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
14
|
Tang R, Shuldiner EG, Kelly M, Murray CW, Hebert JD, Andrejka L, Tsai MK, Hughes NW, Parker MI, Cai H, Li YC, Wahl GM, Dunbrack RL, Jackson PK, Petrov DA, Winslow MM. Multiplexed screens identify RAS paralogues HRAS and NRAS as suppressors of KRAS-driven lung cancer growth. Nat Cell Biol 2023; 25:159-169. [PMID: 36635501 PMCID: PMC10521195 DOI: 10.1038/s41556-022-01049-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2022] [Indexed: 01/13/2023]
Abstract
Oncogenic KRAS mutations occur in approximately 30% of lung adenocarcinoma. Despite several decades of effort, oncogenic KRAS-driven lung cancer remains difficult to treat, and our understanding of the regulators of RAS signalling is incomplete. Here to uncover the impact of diverse KRAS-interacting proteins on lung cancer growth, we combined multiplexed somatic CRISPR/Cas9-based genome editing in genetically engineered mouse models with tumour barcoding and high-throughput barcode sequencing. Through a series of CRISPR/Cas9 screens in autochthonous lung cancer models, we show that HRAS and NRAS are suppressors of KRASG12D-driven tumour growth in vivo and confirm these effects in oncogenic KRAS-driven human lung cancer cell lines. Mechanistically, RAS paralogues interact with oncogenic KRAS, suppress KRAS-KRAS interactions, and reduce downstream ERK signalling. Furthermore, HRAS and NRAS mutations identified in oncogenic KRAS-driven human tumours partially abolished this effect. By comparing the tumour-suppressive effects of HRAS and NRAS in oncogenic KRAS- and oncogenic BRAF-driven lung cancer models, we confirm that RAS paralogues are specific suppressors of KRAS-driven lung cancer in vivo. Our study outlines a technological avenue to uncover positive and negative regulators of oncogenic KRAS-driven cancer in a multiplexed manner in vivo and highlights the role RAS paralogue imbalance in oncogenic KRAS-driven lung cancer.
Collapse
Affiliation(s)
- Rui Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Marcus Kelly
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Baxter Laboratories, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher W Murray
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Jess D Hebert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Andrejka
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Min K Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas W Hughes
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mitchell I Parker
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular and Cell Biology and Genetics Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Hongchen Cai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yao-Cheng Li
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Geoffrey M Wahl
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Roland L Dunbrack
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peter K Jackson
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Baxter Laboratories, Stanford University School of Medicine, Stanford, CA, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- The Chan Zuckerberg BioHub, San Francisco, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
15
|
Morales J, Allegakoen DV, Garcia JA, Kwong K, Sahu PK, Fajardo DA, Pan Y, Horlbeck MA, Weissman JS, Gustafson WC, Bivona TG, Sabnis AJ. GATOR2-dependent mTORC1 activity is a therapeutic vulnerability in FOXO1 fusion-positive rhabdomyosarcoma. JCI Insight 2022; 7:e162207. [PMID: 36282590 PMCID: PMC9746907 DOI: 10.1172/jci.insight.162207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/18/2022] [Indexed: 01/12/2023] Open
Abstract
Oncogenic FOXO1 gene fusions drive a subset of rhabdomyosarcoma (RMS) with poor survival; to date, these cancer drivers are therapeutically intractable. To identify new therapies for this disease, we undertook an isogenic CRISPR-interference screen to define PAX3-FOXO1-specific genetic dependencies and identified genes in the GATOR2 complex. GATOR2 loss in RMS abrogated aa-induced lysosomal localization of mTORC1 and consequent downstream signaling, slowing G1-S cell cycle transition. In vivo suppression of GATOR2 impaired the growth of tumor xenografts and favored the outgrowth of cells lacking PAX3-FOXO1. Loss of a subset of GATOR2 members can be compensated by direct genetic activation of mTORC1. RAS mutations are also sufficient to decouple mTORC1 activation from GATOR2, and indeed, fusion-negative RMS harboring such mutations exhibit aa-independent mTORC1 activity. A bisteric, mTORC1-selective small molecule induced tumor regressions in fusion-positive patient-derived tumor xenografts. These findings highlight a vulnerability in FOXO1 fusion-positive RMS and provide rationale for the clinical evaluation of bisteric mTORC1 inhibitors, currently in phase I testing, to treat this disease. Isogenic genetic screens can, thus, identify potentially exploitable vulnerabilities in fusion-driven pediatric cancers that otherwise remain mostly undruggable.
Collapse
Affiliation(s)
| | | | - José A. Garcia
- Division of Hematology-Oncology, Department of Medicine, UCSF, San Francisco, California, USA
- College of Osteopathic Medicine, Kansas City University, Kansas City, Missouri, USA
| | - Kristen Kwong
- Division of Pediatric Oncology, Department of Pediatrics, and
| | | | - Drew A. Fajardo
- Division of Hematology-Oncology, Department of Medicine, UCSF, San Francisco, California, USA
- School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Yue Pan
- Division of Pediatric Oncology, Department of Pediatrics, and
| | - Max A. Horlbeck
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
- Whitehead Institute, Boston, Massachusetts, USA
| | | | - Trever G. Bivona
- Division of Hematology-Oncology, Department of Medicine, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | - Amit J. Sabnis
- Division of Pediatric Oncology, Department of Pediatrics, and
| |
Collapse
|
16
|
Identification of the effects of COVID-19 on patients with pulmonary fibrosis and lung cancer: a bioinformatics analysis and literature review. Sci Rep 2022; 12:16040. [PMID: 36163484 PMCID: PMC9512912 DOI: 10.1038/s41598-022-20040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) poses a serious threat to human health and life. The effective prevention and treatment of COVID-19 complications have become crucial to saving patients’ lives. During the phase of mass spread of the epidemic, a large number of patients with pulmonary fibrosis and lung cancers were inevitably infected with the SARS-CoV-2 virus. Lung cancers have the highest tumor morbidity and mortality rates worldwide, and pulmonary fibrosis itself is one of the complications of COVID-19. Idiopathic lung fibrosis (IPF) and various lung cancers (primary and metastatic) become risk factors for complications of COVID-19 and significantly increase mortality in patients. Therefore, we applied bioinformatics and systems biology approaches to identify molecular biomarkers and common pathways in COVID-19, IPF, colorectal cancer (CRC) lung metastasis, SCLC and NSCLC. We identified 79 DEGs between COVID-19, IPF, CRC lung metastasis, SCLC and NSCLC. Meanwhile, based on the transcriptome features of DSigDB and common DEGs, we identified 10 drug candidates. In this study, 79 DEGs are the common core genes of the 5 diseases. The 10 drugs were found to have positive effects in treating COVID-19 and lung cancer, potentially reducing the risk of pulmonary fibrosis.
Collapse
|
17
|
Roman M, Hwang E, Sweet-Cordero EA. Synthetic Vulnerabilities in the KRAS Pathway. Cancers (Basel) 2022; 14:cancers14122837. [PMID: 35740503 PMCID: PMC9221492 DOI: 10.3390/cancers14122837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 02/06/2023] Open
Abstract
Mutations in Kristen Rat Sarcoma viral oncogene (KRAS) are among the most frequent gain-of-function genetic alterations in human cancer. Most KRAS-driven cancers depend on its sustained expression and signaling. Despite spectacular recent success in the development of inhibitors targeting specific KRAS alleles, the discovery and utilization of effective directed therapies for KRAS-mutant cancers remains a major unmet need. One potential approach is the identification of KRAS-specific synthetic lethal vulnerabilities. For example, while KRAS-driven oncogenesis requires the activation of a number of signaling pathways, it also triggers stress response pathways in cancer cells that could potentially be targeted for therapeutic benefit. This review will discuss how the latest advances in functional genomics and the development of more refined models have demonstrated the existence of molecular pathways that can be exploited to uncover synthetic lethal interactions with a promising future as potential clinical treatments in KRAS-mutant cancers.
Collapse
|
18
|
Catozzi S, Ternet C, Gourrege A, Wynne K, Oliviero G, Kiel C. Reconstruction and analysis of a large-scale binary Ras-effector signaling network. Cell Commun Signal 2022; 20:24. [PMID: 35246154 PMCID: PMC8896392 DOI: 10.1186/s12964-022-00823-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/18/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Ras is a key cellular signaling hub that controls numerous cell fates via multiple downstream effector pathways. While pathways downstream of effectors such as Raf, PI3K and RalGDS are extensively described in the literature, how other effectors signal downstream of Ras is often still enigmatic. METHODS A comprehensive and unbiased Ras-effector network was reconstructed downstream of 43 effector proteins (converging onto 12 effector classes) using public pathway and protein-protein interaction (PPI) databases. The output is an oriented graph of pairwise interactions defining a 3-layer signaling network downstream of Ras. The 2290 proteins comprising the network were studied for their implication in signaling crosstalk and feedbacks, their subcellular localizations, and their cellular functions. RESULTS The final Ras-effector network consists of 2290 proteins that are connected via 19,080 binary PPIs, increasingly distributed across the downstream layers, with 441 PPIs in layer 1, 1660 in layer 2, and 16,979 in layer 3. We identified a high level of crosstalk among proteins of the 12 effector classes. A class-specific Ras sub-network was generated in CellDesigner (.xml file) and a functional enrichment analysis thereof shows that 58% of the processes have previously been associated to a respective effector pathway, with the remaining providing insights into novel and unexplored functions of specific effector pathways. CONCLUSIONS Our large-scale and cell general Ras-effector network is a crucial steppingstone towards defining the network boundaries. It constitutes a 'reference interactome' and can be contextualized for specific conditions, e.g. different cell types or biopsy material obtained from cancer patients. Further, it can serve as a basis for elucidating systems properties, such as input-output relationships, crosstalk, and pathway redundancy. Video Abstract.
Collapse
Affiliation(s)
- Simona Catozzi
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Camille Ternet
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alize Gourrege
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Giorgio Oliviero
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland.,UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Kiel
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland. .,UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland. .,Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy.
| |
Collapse
|
19
|
Burge RA, Hobbs GA. Not all RAS mutations are equal: A detailed review of the functional diversity of RAS hot spot mutations. Adv Cancer Res 2022; 153:29-61. [PMID: 35101234 DOI: 10.1016/bs.acr.2021.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The RAS family of small GTPases are among the most frequently mutated oncogenes in human cancer. Approximately 20% of cancers harbor a RAS mutation, and >150 different missense mutations have been detected. Many of these mutations have mutant-specific biochemical defects that alter nucleotide binding and hydrolysis, effector interactions and cell signaling, prompting renewed efforts in the development of anti-RAS therapies, including the mutation-specific strategies. Previously viewed as undruggable, the recent FDA approval of a KRASG12C-selective inhibitor has offered real promise to the development of allele-specific RAS therapies. A broader understanding of the mutational consequences on RAS function must be developed to exploit additional allele-specific vulnerabilities. Approximately 94% of RAS mutations occur at one of three mutational "hot spots" at Gly12, Gly13 and Gln61. Further, the single-nucleotide substitutions represent >99% of these mutations. Within this scope, we discuss the mutational frequencies of RAS isoforms in cancer, mutant-specific effector interactions and biochemical properties. By limiting our analysis to this mutational subset, we simplify the analysis while only excluding a small percentage of total mutations. Combined, these data suggest that the presence or absence of select RAS mutations in human cancers can be linked to their biochemical properties. Continuing to examine the biochemical differences in each RAS-mutant protein will continue to provide additional breakthroughs in allele-specific therapeutic strategies.
Collapse
Affiliation(s)
- Rachel A Burge
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - G Aaron Hobbs
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
20
|
Abstract
In this review, I provide a brief history of the discovery of RAS and the GAPs and GEFs that regulate its activity from a personal perspective. Much of this history has been driven by technological breakthroughs that occurred concurrently, such as molecular cloning, cDNA expression to analyze RAS proteins and their structures, and application of PCR to detect mutations. I discuss the RAS superfamily and RAS proteins as therapeutic targets, including recent advances in developing RAS inhibitors. I also describe the role of the RAS Initiative at Frederick National Laboratory for Cancer Research in advancing development of RAS inhibitors and providing new insights into signaling complexes and interaction of RAS proteins with the plasma membrane.
Collapse
Affiliation(s)
- Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States; Frederick National Laboratory for Cancer Research, Frederick, MD, United States.
| |
Collapse
|
21
|
Abstract
Macropinocytosis is a critical route of nutrient acquisition in pancreatic cancer cells. Constitutive macropinocytosis is promoted by mutant KRAS, which activates the PI3Kα lipid kinase and RAC1, to drive membrane ruffling, macropinosome uptake and processing. However, our recent study on the KRASG12R mutant indicated the presence of a KRAS-independent mode of macropinocytosis in pancreatic cancer cell lines, thereby increasing the complexity of this process. We found that KRASG12R-mutant cell lines promote macropinocytosis independent of KRAS activity using PI3Kγ and RAC1, highlighting the convergence of regulation on RAC signaling. While macropinocytosis has been proposed to be a therapeutic target for the treatment of pancreatic cancer, our studies have underscored how little we understand about the activation and regulation of this metabolic process. Therefore, this review seeks to highlight the differences in macropinocytosis regulation in the two cellular subtypes while also highlighting the features that make the KRASG12R mutant atypical.
Collapse
Affiliation(s)
- G Aaron Hobbs
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
| | - Channing J Der
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
22
|
Drosten M, Barbacid M. Targeting KRAS mutant lung cancer: light at the end of the tunnel. Mol Oncol 2021; 16:1057-1071. [PMID: 34951114 PMCID: PMC8895444 DOI: 10.1002/1878-0261.13168] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/02/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022] Open
Abstract
For decades, KRAS mutant lung adenocarcinomas (LUAD) have been refractory to therapeutic strategies based on personalized medicine owing to the complexity of designing inhibitors to selectively target KRAS and downstream targets with acceptable toxicities. The recent development of selective KRASG12C inhibitors represents a landmark after 40 years of intense research efforts since the identification of KRAS as a human oncogene. Here, we discuss the mechanisms responsible for the rapid development of resistance to these inhibitors, as well as potential strategies to overcome this limitation. Other therapeutic strategies aimed at inhibiting KRAS oncogenic signaling by targeting either upstream activators or downstream effectors are also reviewed. Finally, we discuss the effect of targeting the mitogen‐activated protein kinase (MAPK) pathway, both based on the failure of MEK and ERK inhibitors in clinical trials, as well as on the recent identification of RAF1 as a potential target due to its MAPK‐independent activity. These new developments, taken together, are likely to open new avenues to effectively treat KRAS mutant LUAD.
Collapse
Affiliation(s)
- Matthias Drosten
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Mariano Barbacid
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| |
Collapse
|
23
|
Paralog knockout profiling identifies DUSP4 and DUSP6 as a digenic dependence in MAPK pathway-driven cancers. Nat Genet 2021; 53:1664-1672. [PMID: 34857952 DOI: 10.1038/s41588-021-00967-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/14/2021] [Indexed: 12/26/2022]
Abstract
Although single-gene perturbation screens have revealed a number of new targets, vulnerabilities specific to frequently altered drivers have not been uncovered. An important question is whether the compensatory relationship between functionally redundant genes masks potential therapeutic targets in single-gene perturbation studies. To identify digenic dependencies, we developed a CRISPR paralog targeting library to investigate the viability effects of disrupting 3,284 genes, 5,065 paralog pairs and 815 paralog families. We identified that dual inactivation of DUSP4 and DUSP6 selectively impairs growth in NRAS and BRAF mutant cells through the hyperactivation of MAPK signaling. Furthermore, cells resistant to MAPK pathway therapeutics become cross-sensitized to DUSP4 and DUSP6 perturbations such that the mechanisms of resistance to the inhibitors reinforce this mechanism of vulnerability. Together, multigene perturbation technologies unveil previously unrecognized digenic vulnerabilities that may be leveraged as new therapeutic targets in cancer.
Collapse
|
24
|
Huang L, Guo Z, Wang F, Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct Target Ther 2021; 6:386. [PMID: 34776511 PMCID: PMC8591115 DOI: 10.1038/s41392-021-00780-4] [Citation(s) in RCA: 468] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is the leading cause of death worldwide, and its treatment and outcomes have been dramatically revolutionised by targeted therapies. As the most frequently mutated oncogene, Kirsten rat sarcoma viral oncogene homologue (KRAS) has attracted substantial attention. The understanding of KRAS is constantly being updated by numerous studies on KRAS in the initiation and progression of cancer diseases. However, KRAS has been deemed a challenging therapeutic target, even "undruggable", after drug-targeting efforts over the past four decades. Recently, there have been surprising advances in directly targeted drugs for KRAS, especially in KRAS (G12C) inhibitors, such as AMG510 (sotorasib) and MRTX849 (adagrasib), which have obtained encouraging results in clinical trials. Excitingly, AMG510 was the first drug-targeting KRAS (G12C) to be approved for clinical use this year. This review summarises the most recent understanding of fundamental aspects of KRAS, the relationship between the KRAS mutations and tumour immune evasion, and new progress in targeting KRAS, particularly KRAS (G12C). Moreover, the possible mechanisms of resistance to KRAS (G12C) inhibitors and possible combination therapies are summarised, with a view to providing the best regimen for individualised treatment with KRAS (G12C) inhibitors and achieving truly precise treatment.
Collapse
Affiliation(s)
- Lamei Huang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Zhixing Guo
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Fang Wang
- grid.488530.20000 0004 1803 6191State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060 P. R. China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, P. R. China.
| |
Collapse
|
25
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Ran Cheng
- Department of Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
26
|
Zheng F, Kelly MR, Ramms DJ, Heintschel ML, Tao K, Tutuncuoglu B, Lee JJ, Ono K, Foussard H, Chen M, Herrington KA, Silva E, Liu S, Chen J, Churas C, Wilson N, Kratz A, Pillich RT, Patel DN, Park J, Kuenzi B, Yu MK, Licon K, Pratt D, Kreisberg JF, Kim M, Swaney DL, Nan X, Fraley SI, Gutkind JS, Krogan NJ, Ideker T. Interpretation of cancer mutations using a multiscale map of protein systems. Science 2021; 374:eabf3067. [PMID: 34591613 PMCID: PMC9126298 DOI: 10.1126/science.abf3067] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A major goal of cancer research is to understand how mutations distributed across diverse genes affect common cellular systems, including multiprotein complexes and assemblies. Two challenges—how to comprehensively map such systems and how to identify which are under mutational selection—have hindered this understanding. Accordingly, we created a comprehensive map of cancer protein systems integrating both new and published multi-omic interaction data at multiple scales of analysis. We then developed a unified statistical model that pinpoints 395 specific systems under mutational selection across 13 cancer types. This map, called NeST (Nested Systems in Tumors), incorporates canonical processes and notable discoveries, including a PIK3CA-actomyosin complex that inhibits phosphatidylinositol 3-kinase signaling and recurrent mutations in collagen complexes that promote tumor proliferation. These systems can be used as clinical biomarkers and implicate a total of 548 genes in cancer evolution and progression. This work shows how disparate tumor mutations converge on protein assemblies at different scales.
Collapse
Affiliation(s)
- Fan Zheng
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Marcus R. Kelly
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Dana J. Ramms
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Marissa L. Heintschel
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Kai Tao
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Beril Tutuncuoglu
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA 94158, USA
- The J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - John J. Lee
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Keiichiro Ono
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Helene Foussard
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA 94158, USA
- The J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Michael Chen
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Kari A. Herrington
- Department of Biochemistry and Biophysics Center for Advanced Light Microscopy at UCSF, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Erica Silva
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sophie Liu
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jing Chen
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Christopher Churas
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas Wilson
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Anton Kratz
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Rudolf T. Pillich
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Devin N. Patel
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Jisoo Park
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Brent Kuenzi
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Michael K. Yu
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Katherine Licon
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Dexter Pratt
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jason F. Kreisberg
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| | - Minkyu Kim
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA 94158, USA
- The J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Danielle L. Swaney
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA 94158, USA
- The J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Xiaolin Nan
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, 97239, USA
- Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA
- Knight Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Stephanie I. Fraley
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - J. Silvio Gutkind
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92093, USA
| | - Nevan J. Krogan
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA 94158, USA
- The J. David Gladstone Institutes, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Cancer Cell Map Initiative (CCMI), La Jolla and San Francisco, CA, USA
| |
Collapse
|
27
|
Setton J, Zinda M, Riaz N, Durocher D, Zimmermann M, Koehler M, Reis-Filho JS, Powell SN. Synthetic Lethality in Cancer Therapeutics: The Next Generation. Cancer Discov 2021; 11:1626-1635. [PMID: 33795234 PMCID: PMC8295179 DOI: 10.1158/2159-8290.cd-20-1503] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/01/2021] [Accepted: 02/23/2021] [Indexed: 12/25/2022]
Abstract
Synthetic lethality (SL) provides a conceptual framework for tackling targets that are not classically "druggable," including loss-of-function mutations in tumor suppressor genes required for carcinogenesis. Recent technological advances have led to an inflection point in our understanding of genetic interaction networks and ability to identify a wide array of novel SL drug targets. Here, we review concepts and lessons emerging from first-generation trials aimed at testing SL drugs, discuss how the nature of the targeted lesion can influence therapeutic outcomes, and highlight the need to develop clinical biomarkers distinct from those based on the paradigms developed to target activated oncogenes. SIGNIFICANCE: SL offers an approach for the targeting of loss of function of tumor suppressor and DNA repair genes, as well as of amplification and/or overexpression of genes that cannot be targeted directly. A next generation of tumor-specific alterations targetable through SL has emerged from high-throughput CRISPR technology, heralding not only new opportunities for drug development, but also important challenges in the development of optimal predictive biomarkers.
Collapse
Affiliation(s)
- Jeremy Setton
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Nadeem Riaz
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Simon N Powell
- Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
28
|
Castells-Roca L, Tejero E, Rodríguez-Santiago B, Surrallés J. CRISPR Screens in Synthetic Lethality and Combinatorial Therapies for Cancer. Cancers (Basel) 2021; 13:1591. [PMID: 33808217 PMCID: PMC8037779 DOI: 10.3390/cancers13071591] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/26/2022] Open
Abstract
Cancer is a complex disease resulting from the accumulation of genetic dysfunctions. Tumor heterogeneity causes the molecular variety that divergently controls responses to chemotherapy, leading to the recurrent problem of cancer reappearance. For many decades, efforts have focused on identifying essential tumoral genes and cancer driver mutations. More recently, prompted by the clinical success of the synthetic lethality (SL)-based therapy of the PARP inhibitors in homologous recombinant deficient tumors, scientists have centered their novel research on SL interactions (SLI). The state of the art to find new genetic interactions are currently large-scale forward genetic CRISPR screens. CRISPR technology has rapidly evolved to be a common tool in the vast majority of laboratories, as tools to implement CRISPR screen protocols are available to all researchers. Taking advantage of SLI, combinatorial therapies have become the ultimate model to treat cancer with lower toxicity, and therefore better efficiency. This review explores the CRISPR screen methodology, integrates the up-to-date published findings on CRISPR screens in the cancer field and proposes future directions to uncover cancer regulation and individual responses to chemotherapy.
Collapse
Affiliation(s)
- Laia Castells-Roca
- Genome Instability and DNA Repair Syndromes Group, Sant Pau Biomedical Research Institute (IIB Sant Pau) and Join Unit UAB-IR Sant Pau on Genomic Medicine, 08041 Barcelona, Spain
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Eudald Tejero
- Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain;
| | - Benjamín Rodríguez-Santiago
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Center for Biomedical Network Research on Rare Diseases (CIBERER) and Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain
| | - Jordi Surrallés
- Genome Instability and DNA Repair Syndromes Group, Sant Pau Biomedical Research Institute (IIB Sant Pau) and Join Unit UAB-IR Sant Pau on Genomic Medicine, 08041 Barcelona, Spain
- Genetics Department, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
- Genetics and Microbiology Department, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER) and Sant Pau Biomedical Research Institute (IIB Sant Pau), 08041 Barcelona, Spain
| |
Collapse
|
29
|
Mukhopadhyay S, Vander Heiden MG, McCormick F. The Metabolic Landscape of RAS-Driven Cancers from biology to therapy. NATURE CANCER 2021; 2:271-283. [PMID: 33870211 PMCID: PMC8045781 DOI: 10.1038/s43018-021-00184-x] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/10/2021] [Indexed: 02/07/2023]
Abstract
Our understanding of how the RAS protein family, and in particular mutant KRAS promote metabolic dysregulation in cancer cells has advanced significantly over the last decade. In this Review, we discuss the metabolic reprogramming mediated by oncogenic RAS in cancer, and elucidating the underlying mechanisms could translate to novel therapeutic opportunities to target metabolic vulnerabilities in RAS-driven cancers.
Collapse
Affiliation(s)
- Suman Mukhopadhyay
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Frank McCormick
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
30
|
Hoffmann HH, Sánchez-Rivera FJ, Schneider WM, Luna JM, Soto-Feliciano YM, Ashbrook AW, Le Pen J, Leal AA, Ricardo-Lax I, Michailidis E, Hao Y, Stenzel AF, Peace A, Zuber J, Allis CD, Lowe SW, MacDonald MR, Poirier JT, Rice CM. Functional interrogation of a SARS-CoV-2 host protein interactome identifies unique and shared coronavirus host factors. Cell Host Microbe 2021; 29:267-280.e5. [PMID: 33357464 PMCID: PMC7833927 DOI: 10.1016/j.chom.2020.12.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 12/26/2022]
Abstract
The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has devastated the global economy and claimed more than 1.7 million lives, presenting an urgent global health crisis. To identify host factors required for infection by SARS-CoV-2 and seasonal coronaviruses, we designed a focused high-coverage CRISPR-Cas9 library targeting 332 members of a recently published SARS-CoV-2 protein interactome. We leveraged the compact nature of this library to systematically screen SARS-CoV-2 at two physiologically relevant temperatures along with three related coronaviruses (human coronavirus 229E [HCoV-229E], HCoV-NL63, and HCoV-OC43), allowing us to probe this interactome at a much higher resolution than genome-scale studies. This approach yielded several insights, including potential virus-specific differences in Rab GTPase requirements and glycosylphosphatidylinositol (GPI) anchor biosynthesis, as well as identification of multiple pan-coronavirus factors involved in cholesterol homeostasis. This coronavirus essentiality catalog could inform ongoing drug development efforts aimed at intercepting and treating coronavirus disease 2019 (COVID-19) and help prepare for future coronavirus outbreaks.
Collapse
Affiliation(s)
- H-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | | | - William M Schneider
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Joseph M Luna
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Yadira M Soto-Feliciano
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Alison W Ashbrook
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Jérémie Le Pen
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Andrew A Leal
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016 USA
| | - Inna Ricardo-Lax
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Eleftherios Michailidis
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Yuan Hao
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016 USA
| | - Ansgar F Stenzel
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA; Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria; Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - C David Allis
- Laboratory of Chromatin Biology & Epigenetics, The Rockefeller University, New York, NY 10065, USA
| | - Scott W Lowe
- Cancer Biology and Genetics, MSKCC New York, NY 10065, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - John T Poirier
- Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, NYU Langone Health, New York, NY 10016 USA.
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
31
|
Kiel C, Matallanas D, Kolch W. The Ins and Outs of RAS Effector Complexes. Biomolecules 2021; 11:236. [PMID: 33562401 PMCID: PMC7915224 DOI: 10.3390/biom11020236] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
RAS oncogenes are among the most commonly mutated proteins in human cancers. They regulate a wide range of effector pathways that control cell proliferation, survival, differentiation, migration and metabolic status. Including aberrations in these pathways, RAS-dependent signaling is altered in more than half of human cancers. Targeting mutant RAS proteins and their downstream oncogenic signaling pathways has been elusive. However, recent results comprising detailed molecular studies, large scale omics studies and computational modeling have painted a new and more comprehensive portrait of RAS signaling that helps us to understand the intricacies of RAS, how its physiological and pathophysiological functions are regulated, and how we can target them. Here, we review these efforts particularly trying to relate the detailed mechanistic studies with global functional studies. We highlight the importance of computational modeling and data integration to derive an actionable understanding of RAS signaling that will allow us to design new mechanism-based therapies for RAS mutated cancers.
Collapse
Affiliation(s)
- Christina Kiel
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
32
|
Hoffmann HH, Schneider WM, Sánchez-Rivera FJ, Luna JM, Ashbrook AW, Soto-Feliciano YM, Leal AA, Le Pen J, Ricardo-Lax I, Michailidis E, Hao Y, Stenzel AF, Peace A, Allis CD, Lowe SW, MacDonald MR, Poirier JT, Rice CM. Functional interrogation of a SARS-CoV-2 host protein interactome identifies unique and shared coronavirus host factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32935098 DOI: 10.1101/2020.09.11.291716] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The ongoing SARS-CoV-2 pandemic has devastated the global economy and claimed nearly one million lives, presenting an urgent global health crisis. To identify host factors required for infection by SARS-CoV-2 and seasonal coronaviruses, we designed a focused high-coverage CRISPR-Cas9 library targeting 332 members of a recently published SARS-CoV-2 protein interactome. We leveraged the compact nature of this library to systematically screen four related coronaviruses (HCoV-229E, HCoV-NL63, HCoV-OC43 and SARS-CoV-2) at two physiologically relevant temperatures (33 °C and 37 °C), allowing us to probe this interactome at a much higher resolution relative to genome scale studies. This approach yielded several new insights, including unexpected virus and temperature specific differences in Rab GTPase requirements and GPI anchor biosynthesis, as well as identification of multiple pan-coronavirus factors involved in cholesterol homeostasis. This coronavirus essentiality catalog could inform ongoing drug development efforts aimed at intercepting and treating COVID-19, and help prepare for future coronavirus outbreaks. HIGHLIGHTS Focused CRISPR screens targeting host factors in the SARS-CoV-2 interactome were performed for SARS-CoV-2, HCoV-229E, HCoV-NL63, and HCoV-OC43 coronaviruses.Focused interactome CRISPR screens achieve higher resolution compared to genome-wide screens, leading to the identification of critical factors missed by the latter.Parallel CRISPR screens against multiple coronaviruses uncover host factors and pathways with pan-coronavirus and virus-specific functional roles.The number of host proteins that interact with a viral bait protein is not proportional to the number of functional interactors.Novel SARS-CoV-2 host factors are expressed in relevant cell types in the human airway.
Collapse
|