1
|
Zhang L, Zhang J, Chen Y, Hou P, Zhou Z, Ding Z, Jia B, Xu R, Jiang M, Yan C. Improvement of classical therapy in EGFR inhibitors-induced cutaneous adverse reaction by microneedle delivery and Astragalus polysaccharide. Int J Biol Macromol 2025; 304:140762. [PMID: 39922340 DOI: 10.1016/j.ijbiomac.2025.140762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/29/2025] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
EGFR (epidermal growth factor receptor) inhibitors, as the first-line drugs of targeted therapy, often cause additional distress for patients due to the induced cutaneous adverse reactions (EICAR), while classical therapies represented by topical minocycline and epidermal growth factor have limitations especially for exacerbating immune imbalance. Here, we used Astragalus polysaccharide (APS), which has modulatory effects on both the epidermis and the immune system, as an adjuvant drug to reduce EICAR and achieve immune balance. APS, combined with minocycline or epidermal growth factor, was delivered by dissolvable microneedles (MN), a novel drug delivery method that penetrates the stratum corneum to deliver the drug directly into the skin tissue. The results demonstrated that this therapy with the developed MN system not only restored local epidermal conditions, but also reestablished the balance of immune cells. Significantly, the addition of APS also promoted the alleviation of EICAR in non-treated areas, suggesting that local administration can result in systemic effects. The application of APS and the MN delivery system can provide new strategy for clinical treatment of EICAR and potential solutions for other skin diseases.
Collapse
Affiliation(s)
- Luzheng Zhang
- Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing 102488, China
| | - Jie Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yiwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Ping Hou
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing 102488, China
| | - Zihan Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zifan Ding
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Bei Jia
- Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing 102488, China
| | - Runbing Xu
- Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing 102488, China
| | - Miao Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China; Beijing University of Chinese Medicine Affiliated Dongzhimen Hospital, Beijing 102488, China.
| | - Cong Yan
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
2
|
Mishra B, Gou Y, Tan Z, Wang Y, Hu G, Athar M, Mukhtar MS. Integrative systems biology framework discovers common gene regulatory signatures in mechanistically distinct inflammatory skin diseases. NPJ Syst Biol Appl 2025; 11:21. [PMID: 40016271 PMCID: PMC11868562 DOI: 10.1038/s41540-025-00498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/04/2025] [Indexed: 03/01/2025] Open
Abstract
More than 20% of the population across the world is affected by non-communicable inflammatory skin diseases including psoriasis, atopic dermatitis, hidradenitis suppurativa, rosacea, etc. Many of these chronic diseases are painful and debilitating with limited effective therapeutic interventions. This study aims to identify common regulatory pathways and master regulators that regulate the molecular pathogenesis of inflammatory skin diseases. We designed an integrative systems biology framework to identify the significant regulators across several diseases. Network analytics unraveled 55 high-value proteins as significant regulators in molecular pathogenesis which can serve as putative drug targets for more effective treatments. We identified IKZF1 as a shared master regulator in hidradenitis suppurativa, atopic dermatitis, and rosacea with known disease-derived molecules for developing efficacious combinatorial treatments for these diseases. The proposed framework is very modular and indicates a significant path of molecular mechanism-based drug development from complex transcriptomics data and other multi-omics data.
Collapse
Affiliation(s)
- Bharat Mishra
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Yifei Gou
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC, USA
| | - Zhengzhi Tan
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC, USA
| | - Yiqing Wang
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC, USA
| | - Getian Hu
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC, USA
| | - Mohammad Athar
- Department of Dermatology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - M Shahid Mukhtar
- Department of Genetics & Biochemistry, Clemson University, Clemson, SC, USA.
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
Yang Q, Zhao D, Ju L, Cao P, Wei J, Liu Z. Brigatinib can inhibit proliferation and induce apoptosis of human immortalized keratinocyte cells. Front Pharmacol 2025; 16:1524277. [PMID: 40041486 PMCID: PMC11876137 DOI: 10.3389/fphar.2025.1524277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/21/2025] [Indexed: 03/06/2025] Open
Abstract
Background Brigatinib is approved in multiple countries for the treatment of patients with anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC). Despite its superior efficacy, the dermal toxicities caused by brigatinib cannot be overlooked. However, its underlying mechanism remains unknown. Methods The effects of brigatinib on the proliferation ability of human immortalized keratinocyte (HaCaT) cells were evaluated using Cell Counting Kit-8 (CCK-8) proliferation, colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays. The effects of brigatinib on apoptosis were detected using Annexin FITC/PI and Acridine Orange (AO) staining assays. Cell cycle was assessed with flow cytometry. An analysis of transcriptome by RNA sequencing procedures (RNA-seq) was performed to reveal the key regulatory genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to find out the biological function and related signal pathways. The expressions of amphiregulin, epiregulin and transforming growth factor alpha (TGFA) and the protein levels of Phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) and Cleaved-Caspase three were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot assay. Results Brigatinib inhibits cell proliferation with an IC50 value of 2.9 μmol/L and significantly increases apoptosis rates. Transcriptome sequencing (RNA-seq) indicates that brigatinib could significantly downregulate the expression of amphiregulin, epiregulin and TGFA. In addition, we demonstrated that brigatinib reduced the protein expression of amphiregulin, epiregulin, TGFA, PI3K, AKT and phosphorylated AKT (p-AKT). Conclusion This study confirms the inhibition of HaCaT cells growth and progression by brigatinib and highlights the potential value of the PI3K/AKT pathway as a therapeutic target for brigatinib-induced dermal toxicities.
Collapse
Affiliation(s)
- Qi Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dan Zhao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Linjie Ju
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Cao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jifu Wei
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Zhixian Liu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Simpson CL, Tiwaa A, Zaver SA, Johnson CJ, Chu EY, Harms PW, Gudjonsson JE. ERK hyperactivation in epidermal keratinocytes impairs intercellular adhesion and drives Grover disease pathology. JCI Insight 2024; 9:e182983. [PMID: 39325541 PMCID: PMC11601706 DOI: 10.1172/jci.insight.182983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Grover disease is an acquired epidermal blistering disorder in which keratinocytes lose intercellular connections. While its pathologic features are well defined, its etiology remains unclear, and there is no FDA-approved therapy. Interestingly, Grover disease was a common adverse event in clinical trials for cancer using B-RAF inhibitors, but it remained unknown how B-RAF blockade compromised skin integrity. Here, we identified ERK hyperactivation as a key driver of Grover disease pathology. We leveraged a fluorescent biosensor to confirm that the B-RAF inhibitors dabrafenib and vemurafenib paradoxically activated ERK in human keratinocytes and organotypic epidermis, disrupting cell-cell junctions and weakening epithelial integrity. Consistent with clinical data showing that concomitant MEK blockade prevents Grover disease in patients receiving B-RAF inhibitors, we found that MEK inhibition suppressed ERK and rescued cohesion of B-RAF-inhibited keratinocytes. Validating these results, we demonstrated ERK hyperactivation in patient biopsies from vemurafenib-induced Grover disease and from spontaneous Grover disease, revealing a common etiology for both. Finally, in line with our recent identification of ERK hyperactivation in Darier disease, a genetic disorder with identical pathology to Grover disease, our studies uncovered that the pathogenic mechanisms of these diseases converge on ERK signaling and support MEK inhibition as a therapeutic strategy.
Collapse
Affiliation(s)
- Cory L. Simpson
- Department of Dermatology, and
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | | | | | - Christopher J. Johnson
- Department of Dermatology, and
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Emily Y. Chu
- Department of Dermatology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Paul W. Harms
- Department of Pathology and
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
5
|
Alessandrini AM, Rossi AN, Dika E. Folliculitis Decalvans Due to Epidermal Growth Factor Inhibitor. Dermatol Pract Concept 2024; 14:dpc.1403a161. [PMID: 39122496 PMCID: PMC11314079 DOI: 10.5826/dpc.1403a161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 08/12/2024] Open
Affiliation(s)
- Aurora Maria Alessandrini
- Dermatology, Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Alice Nadia Rossi
- Dermatology, Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Emi Dika
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Dermatology, Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
You Q, Chen L, Li S, Liu M, Tian M, Cheng Y, Xia L, Li W, Yao Y, Li Y, Zhou Y, Ma Y, Lv D, Zhao L, Wang H, Wu Z, Hu J, Ju J, Jia C, Xu N, Luo J, Zhang S. Topical JAK inhibition ameliorates EGFR inhibitor-induced rash in rodents and humans. Sci Transl Med 2024; 16:eabq7074. [PMID: 38896602 DOI: 10.1126/scitranslmed.abq7074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Epidermal growth factor receptor inhibitors (EGFRis) are used to treat many cancers, but their use is complicated by the development of a skin rash that may be severe, limiting their use and adversely affecting patient quality of life. Most studies of EGFRi-induced rash have focused on the fully developed stage of this skin disorder, and early pathological changes remain unclear. We analyzed high-throughput transcriptome sequencing of skin samples from rats exposed to the EGFRi afatinib and identified that keratinocyte activation is an early pathological alteration in EGFRi-induced rash. Mechanistically, the induction of S100 calcium-binding protein A9 (S100A9) occurred before skin barrier disruption and led to keratinocyte activation, resulting in expression of specific cytokines, chemokines, and surface molecules such as interleukin 6 (Il6) and C-C motif chemokine ligand 2 (CCL2) to recruit and activate monocytes through activation of the Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathway, further recruiting more immune cells. Topical JAK inhibition suppressed the recruitment of immune cells and ameliorated the severity of skin rash in afatinib-treated rats and mice with epidermal deletion of EGFR, while having no effect on EGFRi efficacy in tumor-bearing mice. In a pilot clinical trial (NCT05120362), 11 patients with EGFRi-induced rash were treated with delgocitinib ointment, resulting in improvement in rash severity by at least one grade in 10 of them according to the MASCC EGFR inhibitor skin toxicity tool (MESTT) criteria. These findings provide a better understanding of the early pathophysiology of EGFRi-induced rash and suggest a strategy to manage this condition.
Collapse
Affiliation(s)
- Qing You
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Leying Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shuaihu Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meng Tian
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuan Cheng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liangyong Xia
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenxi Li
- OnQuality Pharmaceuticals LLC., Shanghai 201112, China
| | - Yang Yao
- OnQuality Pharmaceuticals LLC., Shanghai 201112, China
| | - Yinan Li
- OnQuality Pharmaceuticals LLC., Shanghai 201112, China
| | - Ying Zhou
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yurui Ma
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dazhao Lv
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Longfei Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hejie Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaoyu Wu
- OnQuality Pharmaceuticals LLC., Shanghai 201112, China
| | - Jiajun Hu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juegang Ju
- OnQuality Pharmaceuticals LLC., Shanghai 201112, China
| | - Chuanlong Jia
- Department of Dermatology, Shanghai East Hospital, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Nan Xu
- Department of Dermatology, Shanghai East Hospital, Tongji University, 150 Jimo Road, Shanghai 200120, China
| | - Jie Luo
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiyi Zhang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Katz S, Ciuba D, Ribas A, Shelach N, Zelinger G, Barrow B, Corn BW. A topical BRAF inhibitor (LUT-014) for treatment of radiodermatitis among women with breast cancer. JAAD Int 2024; 15:62-68. [PMID: 38405632 PMCID: PMC10891318 DOI: 10.1016/j.jdin.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2023] [Indexed: 02/27/2024] Open
Abstract
Background Modern radiotherapy is associated with dermatitis (RD) in approximately one-third of patients treated for breast cancer. There is currently no standard for treating RD. Objective The objective of this study was to determine whether LUT014, a topical BRAF inhibitor which paradoxically activates mitogen-activated protein kinase, can safely improve RD. Methods A phase I/II study was designed to first follow a small cohort of women with grade 2 RD regarding toxicity and response. Then, 20 patients were randomized to compare LUT014 to "vehicle" relative to safety and response (measured with common terminology criteria for adverse events, Dermatology Life Quality Index). Results No substantial toxicity (eg, 0 serious adverse event) was associated with LUT014. All 8 women receiving LUT014 achieved treatment success (5-point Dermatology Life Quality Index reduction at day 14) compared to 73% (8/11) on the placebo arm (P = .591). The time to complete recovery was shorter in the treatment arm. Limitations The sample size was limited. Only 2 hospitals were included. Conclusions Topical LU014 is tolerable and may be efficacious for grade 2 RD.
Collapse
Affiliation(s)
- Sanford Katz
- Division of Radiotherapy, Willis-Knighton Cancer Center, Shreveport, Louisiana
| | - Doug Ciuba
- Radiation Oncology of Columbus, Columbus, Georgia
| | - Antoni Ribas
- Department of Medical Oncology, University of California Los Angeles (UCAL) and Jonsson Comprehensive Cancer Center, Los Angeles, California
| | | | - Galit Zelinger
- Department of Medical Oncology, University of California Los Angeles (UCAL) and Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Briana Barrow
- Division of Radiotherapy, Willis-Knighton Cancer Center, Shreveport, Louisiana
| | - Benjamin W. Corn
- Lutris-Pharma, Tel Aviv, Israel
- Department of Oncology, Hebrew University Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
8
|
Simpson CL, Tiwaa A, Zaver SA, Johnson CJ, Chu EY, Harms PW, Gudjonsson JE. ERK hyperactivation in epidermal keratinocytes impairs intercellular adhesion and drives Grover disease pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591953. [PMID: 38746263 PMCID: PMC11092613 DOI: 10.1101/2024.04.30.591953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Grover disease is an acquired dermatologic disorder characterized by pruritic vesicular and eroded skin lesions. While its pathologic features are well-defined, including impaired cohesion of epidermal keratinocytes, the etiology of Grover disease remains unclear and it lacks any FDA-approved therapy. Interestingly, drug-induced Grover disease occurs in patients treated with B-RAF inhibitors that can paradoxically activate C-RAF and the downstream kinase MEK. We recently identified hyperactivation of MEK and ERK as key drivers of Darier disease, which is histologically identical to Grover disease, supporting our hypothesis that they share a pathogenic mechanism. To model drug-induced Grover disease, we treated human keratinocytes with clinically utilized B-RAF inhibitors dabrafenib or vemurafenib and leveraged a fluorescent biosensor to confirm they activated ERK, which disrupted intercellular junctions and compromised keratinocyte sheet integrity. Consistent with clinical data showing concomitant MEK blockade prevents Grover disease in patients receiving B-RAF inhibitors, we found that MEK inhibition suppressed excess ERK activity to rescue cohesion of B-RAF-inhibited keratinocytes. Validating these results, we demonstrated ERK hyperactivation in skin biopsies of vemurafenib-induced Grover disease, but also in spontaneous Grover disease. In sum, our data define a pathogenic role for ERK hyperactivation in Grover disease and support MEK inhibition as a therapeutic strategy. GRAPHICAL ABSTRACT
Collapse
|
9
|
Hajjo R, Sabbah DA, Bardaweel SK, Zhong HA. Targeting the EGFR/RAS/RAF signaling pathway in anticancer research: a recent update on inhibitor design and clinical trials (2020-2023). Expert Opin Ther Pat 2024; 34:51-69. [PMID: 38450537 DOI: 10.1080/13543776.2024.2327307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024]
Abstract
INTRODUCTION Recent years have seen significant strides in drug developmenttargeting the EGFR/RAS/RAF signaling pathway which is critical forcell growth and proliferation. Protein-protein interaction networksamong EGFR, RAS, and RAF proteins offer insights for drug discovery. This review discusses the drug design and development efforts ofinhibitors targeting these proteins over the past 3 years, detailingtheir structures, selectivity, efficacy, and combination therapy.Strategies to combat drug resistance and minimize toxicities areexplored, along with future research directions. AREA COVERED This review encompasses clinical trials and patents on EGFR, KRAS,and BRAF inhibitors from 2020 to 2023, including advancements indesign and synthesis of proteolysis targeting chimeras (PROTACs) forprotein degradation. EXPERT OPINION To tackle drug resistance, designing allosteric fourth-generationEGFR inhibitors is vital. Covalent, allosteric, or combinationaltherapies, along with PROTAC degraders, are key methods to addressresistance and toxicity in KRAS and BRAF inhibitors.
Collapse
Affiliation(s)
- Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Board Member, National Center for Epidemics and Communicable Disease Control (JCDC), Amman, Jordan
| | - Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Haizhen A Zhong
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
10
|
Kraehenbuehl L, Schneider S, Pawlik L, Mangana J, Cheng P, Dummer R, Meier-Schiesser B. Cutaneous Adverse Events of Systemic Melanoma Treatments: A Retrospective Single-Center Analysis. Pharmaceuticals (Basel) 2023; 16:935. [PMID: 37513847 PMCID: PMC10383648 DOI: 10.3390/ph16070935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Recent progress in the treatment of advanced melanoma has led to the improved survival of affected patients. However, novel treatments also lead to considerable and distinct skin toxicity. To further characterize cutaneous adverse events (AE) of systemic treatments, we conducted a single-center retrospective study of biopsy-proven cutaneous adverse events of melanoma treatment over a period of 10 years at the University Hospital of Zurich, Switzerland. In 102 identified patients, 135 individual skin AEs developed. Immune checkpoint blockade (ICB) was causal for 81 skin AEs, and 54 were related to targeted therapies (TT). Recorded types of skin AEs included lichenoid, maculopapular, acneiform, urticarial, panniculitis, folliculitis, psoriasiform, granulomatous, eczematous, and others. The incidence of skin AEs was higher with TT (18.54%) than with ICB (9.64%, p = 0.0029). Most AEs were low-grade, although 19.21% of AEs were common terminology criteria for adverse events (CTCAE) Grades 3 or 4. A large spectrum of skin AEs was documented during treatment of advanced melanoma, and distinct phenotypes were observed, depending on treatment classes. AEs occurred earlier during treatment with TT than with ICB, and distinct types of skin AEs were associated with respective treatment classes. This study comprehensively describes skin AEs occurring during systemic treatment for melanoma at a single center.
Collapse
Affiliation(s)
- Lukas Kraehenbuehl
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Stephanie Schneider
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Laura Pawlik
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Joanna Mangana
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Phil Cheng
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Barbara Meier-Schiesser
- Department of Dermatology, University Hospital Zurich (USZ), University of Zurich (UZH), 8091 Zurich, Switzerland
| |
Collapse
|
11
|
Friedman N, Weinstein-Fudim L, Mostinski Y, Elia J, Cohen S, Steinberg E, Frankenburg S, Peretz T, Eisenberg G, Lotem M, Benny O, Merims S. Preventing skin toxicities induced by EGFR inhibitors by topically blocking drug-receptor interactions. Sci Transl Med 2023; 15:eabo0684. [PMID: 37285403 DOI: 10.1126/scitranslmed.abo0684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023]
Abstract
Epidermal growth factor receptor (EGFR) inhibitors are used to treat many advanced-stage epithelial cancers but induce severe skin toxicities in most treated patients. These side effects lead to a deterioration in the quality of life of the patients and compromise the anticancer treatment. Current treatment strategies for these skin toxicities focus on symptom reduction rather than preventing the initial trigger that causes the toxicity. In this study, we developed a compound and method for treating "on-target" skin toxicity by blocking the drug at the site of toxicity without reducing the systemic dose reaching the tumor. We first screened for small molecules that effectively blocked the binding of anti-EGFR monoclonal antibodies to EGFR and identified a potential candidate, SDT-011. In silico docking predicted that SDT-011 interacted with the same residues on EGFR found to be important for the binding of EGFR inhibitors cetuximab and panitumumab. Binding of SDT-011 to EGFR reduced the binding affinity of cetuximab to EGFR and could reactivate EGFR signaling in keratinocyte cell lines, ex vivo cetuximab-treated whole human skin, and A431-injected mice. Specific small molecules were topically applied and were delivered via a slow-release system derived from biodegradable nanoparticles that penetrate the hair follicles and sebaceous glands, within which EGFR is highly expressed. Our approach has the potential to reduce skin toxicity caused by EGFR inhibitors.
Collapse
Affiliation(s)
- Nethanel Friedman
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Liza Weinstein-Fudim
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
- Laboratory of Teratology, Department of Medical Neurobiology, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Yelena Mostinski
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Jhonatan Elia
- Department of Plastic and Reconstructive Surgery, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Sherri Cohen
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Eliana Steinberg
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Shoshana Frankenburg
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
- Wohl Institute for Translational Medicine, Hadassah Medical Organization, Jerusalem 91120, Israel
- Hadassah Cancer Research Institute (HCRI), Jerusalem 91120, Israel
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Galit Eisenberg
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
- Wohl Institute for Translational Medicine, Hadassah Medical Organization, Jerusalem 91120, Israel
- Hadassah Cancer Research Institute (HCRI), Jerusalem 91120, Israel
| | - Michal Lotem
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
- Wohl Institute for Translational Medicine, Hadassah Medical Organization, Jerusalem 91120, Israel
- Hadassah Cancer Research Institute (HCRI), Jerusalem 91120, Israel
| | - Ofra Benny
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Sharon Merims
- Sharett Institute of Oncology, Hadassah Medical Center, Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
- Wohl Institute for Translational Medicine, Hadassah Medical Organization, Jerusalem 91120, Israel
- Hadassah Cancer Research Institute (HCRI), Jerusalem 91120, Israel
| |
Collapse
|
12
|
Computational analysis of natural product B-Raf inhibitors. J Mol Graph Model 2023; 118:108340. [PMID: 36208592 DOI: 10.1016/j.jmgm.2022.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022]
Abstract
B-Raf protein is a serine-threonine kinase and an important signal transduction molecule of the MAPK signaling pathway that mediates signals from RAS to MEK, ultimately promoting various essential cellular functions. The B-Raf kinase domain is divided into two subdomains: a small N-terminal lobe and a large C-terminal lobe, with a deep catalytic cleft between them. The N-terminal lobe contains a phosphate-binding loop (P-loop) and nucleotide-binding pocket, while the C-terminal lobe binds the protein substrates and contains the catalytic loop. The ligand pharmacophore was generated by using 17 different natural products and the receptor pharmacophore was generated by using protein structures. The reported natural product B-Raf inhibitors were analyzed according to the pharmacophore analysis (HipHop fit), virtual screening tools by Lipinski's rule of five. Thirteen out of seventeen molecules share the best ligand based pharmacophoric model (HipHop_5). The best receptor based pharmacophoric model came as AADHR. The compounds were docked against the B-Raf receptors (PDB ID: 3OG7, 4XV2, 5C9C). The compound DHSilB with cDOCKER interaction energy of -62.7 kcal/mol, -83.3 kcal/mol, -73.6 kcal/mol as well as the compound DHSilA with cDOCKER interaction energy of -63.9 kcal/mol, -63.2 kcal/mol, -74.7 kcal/mol showed satisfactory interaction with the respective receptors. Finally, the MD simulation was run for 100 ns for the top docked compounds DHSilA and DHSilB with the B-Raf proteins (PDB ID: 3OG7, 4XV2 and 5C9C). After the MD simulation run for 100 ns, the ligand 2,3-dehydrosilybin A (DHSilA) was found to be more stable in terms of the trajectories of RMSD, RMSF, Rg and H-bonds.
Collapse
|
13
|
Wang PP, Lin C, Wang J, Margonis GA, Wu B. BRAF Mutations in Colorectal Liver Metastases: Prognostic Implications and Potential Therapeutic Strategies. Cancers (Basel) 2022; 14:cancers14174067. [PMID: 36077604 PMCID: PMC9454989 DOI: 10.3390/cancers14174067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary In this literature review, we investigated the relationship between BRAF mutation and prognosis in patients with colorectal cancer liver metastases. We also investigated factors affecting the prognosis of patients with BRAF mutations and summarized the latest research on targeted therapies. Abstract Surgery combined with chemotherapy and precision medicine is the only potential treatment for patients with colorectal cancer liver metastases (CRLM). The use of modern molecular biotechnology to identify suitable biomarkers is of great significance for predicting prognosis and formulating individualized treatment plans for these patients. BRAF mutations, particularly V600E, are widely believed to be associated with poor prognosis in patients with metastatic CRC (mCRC). However, it is unclear which specific factors affect the prognosis of CRLM patients with BRAF mutations. It is also unknown whether patients with resectable CRLM and BRAF mutations should undergo surgical treatment since there is an increased recurrence rate after surgery in these patients. In this review, we combined the molecular mechanism and clinical characteristics of BRAF mutations to explore the prognostic significance and potential targeted therapy strategies for patients with BRAF-mutated CRLM.
Collapse
Affiliation(s)
- Pei-Pei Wang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Chen Lin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Jane Wang
- Department of Surgery, University of California San Francisco, San Francisco, CA 94158, USA
| | | | - Bin Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
- Correspondence:
| |
Collapse
|
14
|
Li Y, Fu R, Jiang T, Duan D, Wu Y, Li C, Li Z, Ni R, Li L, Liu Y. Mechanism of Lethal Skin Toxicities Induced by Epidermal Growth Factor Receptor Inhibitors and Related Treatment Strategies. Front Oncol 2022; 12:804212. [PMID: 35223483 PMCID: PMC8866822 DOI: 10.3389/fonc.2022.804212] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) inhibitors are widely used to treat various types of cancers such as non-small cell lung cancer, head and neck cancer, breast cancer, pancreatic cancer. Adverse reactions such as skin toxicity, interstitial lung disease, hepatotoxicity, ocular toxicity, hypomagnesemia, stomatitis, and diarrhea may occur during treatment. Because the EGFR signaling pathway is important for maintaining normal physiological skin function. Adverse skin reactions occurred in up to 90% of cancer patients treated with EGFR inhibitors, including common skin toxicities (such as papulopustular exanthemas, paronychia, hair changes) and rare fatal skin toxicities (e.g., Stevens–Johnson syndrome, toxic epidermal necrolysis, acute generalized exanthematous pustulosis). This has led to the dose reduction or discontinuation of EGFR inhibitors in the treatment of cancer. Recently, progress has been made about research on the skin toxicity of EGFR inhibitors. Here, we summarize the mechanism of skin toxicity caused by EGFR inhibitors, measures to prevent severe fatal skin toxicity, and provide reference for medical staff how to give care and treatment after adverse skin reactions.
Collapse
Affiliation(s)
- Yanping Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ruoqiu Fu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Tingting Jiang
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Dongyu Duan
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuanlin Wu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Chen Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Ziwei Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Rui Ni
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Li
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Yao Liu
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
15
|
Kis AM, Macasoi I, Paul C, Radulescu M, Buzatu R, Watz CG, Cheveresan A, Berceanu D, Pinzaru I, Dinu S, Manea A, Poenaru M, Borza C, Dehelean CA. Methotrexate and Cetuximab—Biological Impact on Non-Tumorigenic Models: In Vitro and In Ovo Assessments. Medicina (B Aires) 2022; 58:medicina58020167. [PMID: 35208492 PMCID: PMC8877801 DOI: 10.3390/medicina58020167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/20/2022] Open
Abstract
Background Objectives: The neoplastic process remains a major health problem facing humanity. Although there are currently different therapeutic options, they raise a multitude of shortcomings related to the toxic effects associated with their administration. Methotrexate (Met) and Cetuximab (Cet) are two basic chemotherapeutics used in cancer practice, but notwithstanding despite many years of use, the mechanisms by which the multitude of side-effects occur are not yet fully understood. Thus, the present study focused on the in vitro and in ovo evaluation of the associated toxic mechanisms on keratinocytes, keys cells in the wound healing process. Materials and Methods: The two chemotherapeutics were tested in eight different concentrations to evaluate keratinocytes viability, the anti-migratory effect, and the influence on the expression of markers involved in the production of cell apoptosis. In addition, the potential irritating effect on the vascular plexus were highlighted by applying the in ovo method, chick chorioallantoic membrane (HET-CAM). Results: The results revealed that Met induced decreased cell viability as well as increased expression of pro-apoptotic genes. In the vascular plexus of the chorioallantoic membrane, Met caused vascular irritation accompanied by capillary hemorrhage and vascular stasis. Conclusions: Summarizing, Cet presents a safer toxicological profile, compared to Met, based on the results obtained from both in vitro (cell viability, wound healing, RT-PCR assays), and in ovo (HET-CAM assay) techniques.
Collapse
Affiliation(s)
- Andreea M. Kis
- Department of ENT, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania; (A.M.K.); (M.P.)
| | - Ioana Macasoi
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania; (I.M.); (I.P.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Corina Paul
- Department of Pediatrics, “Victor Babeş” University of Medicine and Pharmacy, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania;
| | - Matilda Radulescu
- Department of Microbiology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Correspondence: (M.R.); (R.B.)
| | - Roxana Buzatu
- Department of Dental Aesthetics, Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timişoara, Romania
- Correspondence: (M.R.); (R.B.)
| | - Claudia G. Watz
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
- Departament of Pharmaceutical Physics, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania
| | - Adelina Cheveresan
- Department of Pharmacology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Delia Berceanu
- Department of Microbiology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Iulia Pinzaru
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania; (I.M.); (I.P.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timişoara, Romania;
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 9 No., Revolutiei Bv., 300041 Timişoara, Romania
| | - Aniko Manea
- Department of Neonatology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Marioara Poenaru
- Department of ENT, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timișoara, Romania; (A.M.K.); (M.P.)
| | - Claudia Borza
- Department of Pathophysiology, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| | - Cristina A. Dehelean
- Departament of Toxicology and Drug Industry, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timişoara, Romania; (I.M.); (I.P.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania;
| |
Collapse
|
16
|
Mihai MM, Ion A, Giurcăneanu C, Nițipir C, Popa AM, Chifiriuc MC, Popa MI, Říčař J, Popa LG, Sârbu I, Lazăr V. The Impact of Long-Term Antibiotic Therapy of Cutaneous Adverse Reactions to EGFR Inhibitors in Colorectal Cancer Patients. J Clin Med 2021; 10:jcm10153219. [PMID: 34362003 PMCID: PMC8347035 DOI: 10.3390/jcm10153219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is an important public health issue, in terms of incidence and mortality, with approximately 1.8 million new cases reported worldwide in 2018. Advancements in understanding pathophysiological key steps in CRC tumorigenesis have led to the development of new targeted therapies such as those based on epidermal growth factor receptor inhibitors (EGFR inhibitors). The cutaneous adverse reactions induced by EGFR inhibitors, particularly papulopustular rash, often require long-term antibiotic treatment with tetracycline agents (mostly minocycline and doxycycline). However, this raises several issues of concern: possible occurrence of gut dysbiosis in already vulnerable CRC patients, selection of highly antibiotic resistant and/or virulent clones, development of adverse reactions related to tetracyclines, interference of antibiotics with the response to oncologic therapy, with a negative impact on disease prognosis etc. In the context of scarce information regarding these issues and controversial opinions regarding the role of tetracyclines in patients under EGFR inhibitors, our aim was to perform a thorough literature review and discuss the main challenges raised by long-term use of tetracyclines in advanced CRC patients receiving this targeted therapy.
Collapse
Affiliation(s)
- Mara Mădălina Mihai
- Department of Oncologic Dermatology, ‘Elias’ Emergency University Hospital, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.G.); (L.G.P.)
- Department of Dermatology, ‘Elias’ Emergency University Hospital, 011461 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, ICUB—Research Institute of the University of Bucharest, 050657 Bucharest, Romania; (M.-C.C.); (V.L.)
- Correspondence: (M.M.M.); (A.I.); Tel.: +40-74-336-4164 (M.M.M.)
| | - Ana Ion
- Department of Dermatology, ‘Elias’ Emergency University Hospital, 011461 Bucharest, Romania
- Correspondence: (M.M.M.); (A.I.); Tel.: +40-74-336-4164 (M.M.M.)
| | - Călin Giurcăneanu
- Department of Oncologic Dermatology, ‘Elias’ Emergency University Hospital, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.G.); (L.G.P.)
- Department of Dermatology, ‘Elias’ Emergency University Hospital, 011461 Bucharest, Romania
| | - Cornelia Nițipir
- Department of Oncology, ‘Elias’ Emergency University Hospital, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.N.); (A.-M.P.)
| | - Ana-Maria Popa
- Department of Oncology, ‘Elias’ Emergency University Hospital, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.N.); (A.-M.P.)
| | - Mariana-Carmen Chifiriuc
- Department of Microbiology, Faculty of Biology, ICUB—Research Institute of the University of Bucharest, 050657 Bucharest, Romania; (M.-C.C.); (V.L.)
| | - Mircea Ioan Popa
- Department of Microbiology, Faculty of Medicine, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Jan Říčař
- Department of Dermatology and Venereology, Charles University, Medical School and Teaching Hospital Pilsen, 30599 Pilsen, Czech Republic;
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology, ‘Elias’ Emergency University Hospital, ‘Carol Davila’ University of Medicine and Pharmacy, 020021 Bucharest, Romania; (C.G.); (L.G.P.)
- Department of Dermatology, ‘Elias’ Emergency University Hospital, 011461 Bucharest, Romania
| | - Ionela Sârbu
- Department of Genetics, Faculty of Biology, ICUB—Research Institute of the University of Bucharest, 050657 Bucharest, Romania;
| | - Veronica Lazăr
- Department of Microbiology, Faculty of Biology, ICUB—Research Institute of the University of Bucharest, 050657 Bucharest, Romania; (M.-C.C.); (V.L.)
| |
Collapse
|