1
|
Lanzi C, Arrighetti N, Pasquali S, Cassinelli G. Targeting EZH2 in SMARCB1-deficient sarcomas: Advances and opportunities to potentiate the efficacy of EZH2 inhibitors. Biochem Pharmacol 2023; 215:115727. [PMID: 37541451 DOI: 10.1016/j.bcp.2023.115727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Soft tissue sarcomas (STSs) are rare mesechymal malignancies characterized by distintive molecular, histological and clinical features. Many STSs are considered as predominatly epigenetic diseases due to underlying chromatin deregulation. Discovery of deregulated functional antagonism between the chromatin remodeling BRG1/BRM-associated (BAFs) and the histone modifying Polycomb repressor complexes (PRCs) has provided novel actionable targets. In epithelioid sarcoma (ES), extracranial, extrarenal malignant rhabdoid tumors (eMRTs) and synovial sarcoma (SS), the total or partial loss of the BAF core subunit SMARCB1, driven by different alterations, is associated with PRC2 deregulation and dependency on its enzymatic subunit, EZH2. In these SMARCB1-deficient STSs, aberrant EZH2 expression and/or activity emerged as a druggable vulnerability. Although preclinical investigation supported EZH2 targeting as a promising therapeutic option, clinical studies demonstrated a variable response to EZH2 inhibitors. Actually, whereas the clinical benefit recorded in ES patients prompted the FDA approval of the EZH2 inhibitor tazemetostat, the modest and sporadic responses observed in eMRT and SS patients highlighted the need to deepen mechanistic as well as pharmacological investigations to improve drug effectiveness. We summarize the current knowledge of different mechanisms driving SMARCB1 deficiency and EZH2 deregulation in ES, eMRT and SS along with preclinical and clinical studies of EZH2-targeting agents. Possible implication of the PRC2- and enzymatic-independent functions of EZH2 and of its homolog, EZH1, in the response to anti-EZH2 agents will be discussed together with combinatorial strategies under investigation to improve the efficacy of EZH2 targeting in these tumors.
Collapse
Affiliation(s)
- Cinzia Lanzi
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Noemi Arrighetti
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
2
|
Guo T, Wei R, Dean D, Hornicek F, Duan Z. SMARCB1 expression is a novel diagnostic and prognostic biomarker for osteosarcoma. Biosci Rep 2022; 42:BSR20212446. [PMID: 34984436 PMCID: PMC8753343 DOI: 10.1042/bsr20212446] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/13/2021] [Accepted: 01/04/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Although weak SWI/SNF related matrix-associated actin-dependent regulator of chromatin subfamily B member 1 (SMARCB1) expression is a known diagnostic and prognostic biomarker in several malignancies, its expression and clinical significance in osteosarcoma remain unknown. The aim of the present study was to investigate SMARCB1 expression in osteosarcoma and its clinical significance with respect to chemosensitivity and prognosis. METHODS We obtained 114 specimens from 70 osteosarcoma patients to construct a tissue microarray (TMA) and assess SMARCB1 protein expression via immunohistochemistry (IHC). The mRNA expression of SMARCB1 was in-silico analyzed using open-access RNA sequencing (RNA-Seq) and clinicopathological data provided by the Therapeutically Applicable Research to Generate Effective Treatments on Osteosarcoma (TARGET-OS) project. The correlations between SMARCB1 expression and clinical features were statistically analyzed. RESULTS Weak SMARCB1 expression occurred in 70% of the osteosarcoma patient specimens in the TMA, and significantly correlated with poor neoadjuvant response as well as shorter overall and progression-free survival (PFS). In addition, mRNA in-silico analysis confirmed that SMARCB1 expression correlates with chemotherapeutic response and prognosis in osteosarcoma patients. CONCLUSION To our knowledge, the present study is the first to analyze SMARCB1 expression in osteosarcoma. SMARCB1 may serve as a novel diagnostic and prognostic biomarker in osteosarcoma.
Collapse
Affiliation(s)
- Tao Guo
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu 610041, China
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and The University of Miami Miller School of Medicine. Address: Papanicolaou Cancer Research Building, 1550 NW. 10th Avenue, Miami, FL 33136, U.S.A
| | - Ran Wei
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and The University of Miami Miller School of Medicine. Address: Papanicolaou Cancer Research Building, 1550 NW. 10th Avenue, Miami, FL 33136, U.S.A
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People’s Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing 100044, China
| | - Dylan C. Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and The University of Miami Miller School of Medicine. Address: Papanicolaou Cancer Research Building, 1550 NW. 10th Avenue, Miami, FL 33136, U.S.A
- Department of Orthopaedic Surgery, Keck School of Medicine at University of Southern California (USC), USC Norris Comprehensive Cancer Center, 1441 Eastlake Ave, NTT 3449, Los Angeles, CA 90033, U.S.A
| | - Francis J. Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and The University of Miami Miller School of Medicine. Address: Papanicolaou Cancer Research Building, 1550 NW. 10th Avenue, Miami, FL 33136, U.S.A
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, Sylvester Comprehensive Cancer Center, and The University of Miami Miller School of Medicine. Address: Papanicolaou Cancer Research Building, 1550 NW. 10th Avenue, Miami, FL 33136, U.S.A
| |
Collapse
|