1
|
Gong JN, Djajawi TM, Moujalled DM, Pomilio G, Khong T, Zhang LP, Fedele PL, Low MS, Anderson MA, Riffkin CD, White CA, Lan P, Lessene G, Herold MJ, Strasser A, Spencer A, Grigoriadis G, Wei AH, van Delft MF, Roberts AW, Huang DCS. Re-appraising assays on permeabilized blood cancer cells testing venetoclax or other BH3 mimetic agents selectively targeting pro-survival BCL2 proteins. Cell Death Differ 2025:10.1038/s41418-025-01487-7. [PMID: 40204951 DOI: 10.1038/s41418-025-01487-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/23/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
BH3 mimetic drugs that selectively target the pro-survival BCL2 proteins are highly promising for cancer treatment, most notably for treating blood cancers. Venetoclax, which inhibits BCL2, is now approved for treating chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). Preferably, robust and validated assays would identify patients most likely to benefit from therapy with venetoclax itself or with inhibitors of other pro-survival proteins. A sophisticated method that has been developed is the BH3 profiling assay. In this assay, permeabilized, instead of intact, cells are treated for a few hours with inhibitors of the pro-survival BCL2 proteins, and the resultant mitochondrial depolarization measured. Sensitivity to a specific inhibitor (e.g., venetoclax or other BH3 mimetics) is then used to infer the reliance of a tumor (e.g., CLL) on one or more pro-survival BCL2 proteins. However, we found that this methodology cannot reliably identify such dependencies. In part, this is because almost all cells express multiple pro-survival BCL2 proteins that restrain BAX and BAK which must be inhibited before mitochondrial depolarization and apoptosis can proceed. Using genetic and pharmacological tools across multiple cell line models of blood cancer, we demonstrated that selective BCL2 inhibitors have important flow-on effects that includes the redistribution of BH3-only proteins to ancillary pro-survival proteins not directly engaged by the inhibitor. These secondary effects, critical to the biological action of selective inhibitors, were not accurately recapitulated in permeabilized cells, probably due to the limited time frame possible in such assays or the altered biophysical conditions when cells are permeabilized. While we could consistently define the sensitivity of a tumor cell to a particular BH3 mimetic drugs using intact cells, this was not reliable with permeabilized cells. These studies emphasize the need to carefully evaluate assays on permeabilized cells undertaken with inhibitors of the pro-survival BCL2 proteins.
Collapse
Affiliation(s)
- Jia-Nan Gong
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, Beijing, China.
| | - Tirta M Djajawi
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Donia M Moujalled
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Alfred Health-Monash University, Melbourne, VIC, Australia
| | - Giovanna Pomilio
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Alfred Health-Monash University, Melbourne, VIC, Australia
| | - Tiffany Khong
- Australian Centre for Blood Diseases, Alfred Health-Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC, Australia
- Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital, Melbourne, VIC, Australia
| | - Li-Ping Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, Beijing, China
| | - Pasquale L Fedele
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Haematology, Monash Health, Clayton, VIC, Australia
- School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Michael S Low
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Haematology, Monash Health, Clayton, VIC, Australia
- School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Mary Ann Anderson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | - Christine A White
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- oNKo-Innate, Melbourne, VIC, Australia
| | - Ping Lan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Jinan, China
| | - Guillaume Lessene
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Marco J Herold
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Spencer
- Australian Centre for Blood Diseases, Alfred Health-Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC, Australia
- Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital, Melbourne, VIC, Australia
| | - George Grigoriadis
- School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Andrew H Wei
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Alfred Health-Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC, Australia
- Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mark F van Delft
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew W Roberts
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
- Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| | - David C S Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Steen TV, Espinoza I, Duran C, Casadevall G, Serrano-Hervás E, Cuyàs E, Verdura S, Kemble G, Kaufmann SH, McWilliams R, Osuna S, Billadeau DD, Menendez JA, Lupu R. Fatty acid synthase (FASN) inhibition cooperates with BH3 mimetic drugs to overcome resistance to mitochondrial apoptosis in pancreatic cancer. Neoplasia 2025; 62:101143. [PMID: 39999714 PMCID: PMC11908614 DOI: 10.1016/j.neo.2025.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Resistance to mitochondrial apoptosis is a major driver of chemoresistance in pancreatic ductal adenocarcinoma (PDAC). However, pharmacological manipulation of the mitochondrial apoptosis threshold in PDAC cells remains an unmet therapeutic goal. We hypothesized that fatty acid synthase inhibitors (FASNis), a family of targeted metabolic therapeutics recently entering the clinic, could lower the apoptotic threshold in chemoresistant PDAC cells and be synergistic with BH3 mimetics that neutralize anti-apoptotic proteins. Computational studies with TVB-3166 and TVB-3664, two analogues of the clinical-grade FASNi TVB-2640 (denifanstat), confirmed their uncompetitive behavior towards NADPH when bound to the FASN ketoacyl reductase domain. The extent of NADPH accumulation, a consequence of FASN inhibition, paralleled the sensitivity of PDAC cells to the apoptotic effects of TVB FASNis in conventional PDAC cell lines that naturally express varying levels of FASN. FASN inhibition dramatically increased the sensitivity of "FASN-high" expressing PDAC cells to the BCL2/BCL-XL/BCL-W inhibitor ABT-263/navitoclax and the BCL2-selective inhibitor ABT-199/venetoclax, both in vitro and in in vivo xenografted tumors. The ability of TVB FASNis to shift the balance of pro- and anti-apoptotic proteins and thereby push PDAC cells closer to the apoptotic threshold was also observed in cell lines developed from patient-derived xenografts (PDXs) representative of the classical (pancreatic) transcriptomic subtype of PDAC. Experiments in PDAC PDXs in vivo confirmed the synergistic antitumor activity of TVB-3664 with navitoclax and venetoclax, independent of the nature of the replication stress signature of patient-derived PDAC cells. The discovery that targeted inhibition of FASN is a metabolic perturbation that sensitizes PDAC cells to BH3 mimetics warrants further investigation to overcome resistance to mitochondrial apoptosis in PDAC patients.
Collapse
Affiliation(s)
- Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ingrid Espinoza
- National Institute of Health, National Heart Lung and Blood Institute (NHLBI), Bethesda, MD 20817, USA; Lung Development and Pediatric Branch (HNH36), Bethesda, MD 20817, USA
| | - Cristina Duran
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona 17003, Spain
| | - Guillem Casadevall
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona 17003, Spain
| | - Eila Serrano-Hervás
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona 17007, Spain; Metabolism and Cancer Group,Girona Biomedical Research Institute (IDIBGI), Salt 17190, Girona, Spain
| | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona 17007, Spain; Metabolism and Cancer Group,Girona Biomedical Research Institute (IDIBGI), Salt 17190, Girona, Spain
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona 17007, Spain; Metabolism and Cancer Group,Girona Biomedical Research Institute (IDIBGI), Salt 17190, Girona, Spain
| | | | - Scott H Kaufmann
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA; Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Robert McWilliams
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona 17003, Spain; ICREA, Barcelona 08010, Spain
| | - Daniel D Billadeau
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA; Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona 17007, Spain; Metabolism and Cancer Group,Girona Biomedical Research Institute (IDIBGI), Salt 17190, Girona, Spain.
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Cancer Center, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
3
|
El‐Khouly D, Thabet NA, Sayed‐Ahmed M, Omran MM. Promotion of Autophagy and Apoptosis in Colorectal Cancer Exposed to Imatinib and Thymoquinone. J Biochem Mol Toxicol 2025; 39:e70238. [PMID: 40143604 PMCID: PMC11947640 DOI: 10.1002/jbt.70238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/18/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
Cancer cells possess high proliferative ability and usually override apoptosis and metastasize to distant lesions. Autophagy in cancer cells is a double-edged weapon where a cross-regulation postulation between apoptosis and autophagy exists. The aim of the present study was to investigate the effect of adding Thymoquinone (TQ) to Imatinib (IM) in HCT116 human colorectal cancer cell line model on various apoptotic and autophagy markers. The combination doses of IM and TQ were selected according to our previous study concerned with cytotoxicity and uptake/efflux genes modulation. In the current study, the combination induced autophagy in HCT116 cell line which in turn enhanced apoptosis. Moreover, early apoptosis was evidenced. The induction of both autophagy and apoptosis resulted in programmed cell death. The assessment of AMPK, Par-4, apoptosis markers, colony formation assays, flow cytometry and autophagy detection by acridine orange proved this rapport.
Collapse
Affiliation(s)
- Dalia El‐Khouly
- Department of Pharmacology and Toxicology, Faculty of PharmacyAhram Canadian University, 6th of October CityGizaEgypt
| | - Nadia A. Thabet
- Department of Cancer Biology, Pharmacology Unit, National Cancer InstituteCairo UniversityEgypt
| | - Mohamed Sayed‐Ahmed
- Department of Cancer Biology, Pharmacology Unit, National Cancer InstituteCairo UniversityEgypt
| | - Mervat M. Omran
- Department of Cancer Biology, Pharmacology Unit, National Cancer InstituteCairo UniversityEgypt
- Department of Obstetrics and GynecologyUniversity of ChicagoChicagoIllinoisUSA
| |
Collapse
|
4
|
Alcon C, Kovatcheva M, Morales-Sánchez P, López-Polo V, Torres T, Puig S, Lu A, Samitier J, Enrich C, Serrano M, Montero J. HRK downregulation and augmented BCL-xL binding to BAK confer apoptotic protection to therapy-induced senescent melanoma cells. Cell Death Differ 2025; 32:646-656. [PMID: 39627361 PMCID: PMC11982230 DOI: 10.1038/s41418-024-01417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 04/11/2025] Open
Abstract
Senescent cells are commonly detected in tumors after chemo and radiotherapy, leading to a characteristic cellular phenotype that resists apoptotic cell death. In this study, we used multiple melanoma cell lines, molecular markers, and therapies to investigate the key role of the BCL-2 family proteins in the survival of senescent cells. We first used BH3 profiling to assess changes in apoptotic priming upon senescence induction. Unexpectedly, not all cell types analyzed showed a decrease in apoptotic priming, BIM was downregulated, there was variability in BAX expression and BAK remained constant or increased. Therefore, there was not a clear pattern for pro-survival adaptation. Many studies have been devoted to find ways to eliminate senescent cells, leading to one of the most studied senolytic agents: navitoclax, a promiscuous BH3 mimetic that inhibits BCL-2, BCL-xL and BCL-W. While it is known that the BCL-2 family of proteins is commonly upregulated in senescent cells, the complexity of the apoptotic network has not been fully explored. Interestingly, we found distinct protein expression changes always leading to a BCL-xL mediated pro-survival adaptation, as assessed by BH3 profiling. When analyzing potential therapeutic strategies, we observed a stronger senolytic activity in these melanoma cell lines when specifically targeting BCL-xL using A-1331852, navitoclax or the PROTAC BCL-xL degrader DT2216. We found that the sensitizer protein HRK was systematically downregulated when senescence was induced, leading to an increased availability of BCL-xL. Furthermore, we identified that the main apoptotic inhibition was shaped by BCL-xL and BAK binding increase that prevented mitochondrial permeabilization and apoptosis. To our knowledge, this is the first time that the molecular basis for BCL-xL anti-apoptotic adaptation in senescence is described, paving the way for the development of new molecules that either prevent HRK downregulation or displace BCL-xL binding to BAK to be used as senolytics.
Collapse
Affiliation(s)
- Clara Alcon
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| | - Marta Kovatcheva
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Paula Morales-Sánchez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Vanessa López-Polo
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Teresa Torres
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Susana Puig
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
- Dermatology Department, Hospital Clinic and Fundació Clínic per la Recerca Biomèdica., Barcelona, Spain
| | - Albert Lu
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona, Barcelona, Spain
| | - Carlos Enrich
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Altos Labs, Cambridge Institute of Science, Cambridge, UK
| | - Joan Montero
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
5
|
Liu M, Guo J, Liu W, Yang Z, Yu F. Dual Targeting of Aurora-A and Bcl-xL Synergistically Reshapes the Immune Microenvironment and Induces Apoptosis in Breast Cancer. Cancer Sci 2025. [PMID: 40159464 DOI: 10.1111/cas.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
The Aurora-A kinase inhibitor MLN8237 has shown efficacy in clinical trials for advanced breast cancer; however, its use as a monotherapy is limited by significant side effects and modest efficacy. Therefore, combining MLN8237 with other agents at lower doses may provide a viable alternative. In this study, we evaluated the combination of MLN8237 with the BH3 mimetic ABT263 for the treatment of triple-negative breast cancer (TNBC). We found that this combination significantly suppressed tumor growth and metastasis in immunocompetent syngeneic mouse models, whereas its efficacy was attenuated in immunodeficient xenograft models. Mechanistic studies revealed that the combination enhanced anti-tumor immunity by increasing the presence of CD8+ T cells and NK cells, while reducing the number of immunosuppressive cells in the tumor microenvironment. This shift resulted in elevated levels of IFN-γ and granzyme B, which activated the extrinsic apoptotic pathways in cancer cells. Notably, the combination treatment did not affect tumor cell proliferation but promoted apoptosis with minimal toxicity. Furthermore, the synergistic effect of MLN8237 and ABT263 in inducing intrinsic apoptosis was primarily driven by the inhibition of the AKT-Mcl-1 and Bcl-xL survival pathways in cultured tumor cells. Together, these findings support the MLN8237-ABT263 combination as an effective treatment strategy for TNBC, promoting both immune-mediated extrinsic apoptosis and inactivation of Bcl-xL/Mcl-1-dependent intrinsic anti-apoptotic pathways.
Collapse
Affiliation(s)
- Mingxue Liu
- Department of Ultrasound, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Guo
- Department of Ultrasound, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiyong Liu
- Department of Ultrasound, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhenye Yang
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fazhi Yu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Martín F, Alcon C, Marín E, Morales-Sánchez P, Manzano-Muñoz A, Díaz S, García M, Samitier J, Lu A, Villanueva A, Reguart N, Teixido C, Montero J. Novel selective strategies targeting the BCL-2 family to enhance clinical efficacy in ALK-rearranged non-small cell lung cancer. Cell Death Dis 2025; 16:194. [PMID: 40113795 PMCID: PMC11926089 DOI: 10.1038/s41419-025-07513-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 01/29/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
ALK (anaplastic lymphoma kinase) rearrangements represent the third most predominant driver oncogene in non-small cell lung cancer (NSCLC). Although ALK inhibitors are the tyrosine kinase inhibitors (TKIs) with the longest survival rates in lung cancer, the complex systemic clinical evaluation and the apoptotic cell death evasion of drug-tolerant persister (DTP) cancer cells may limit their therapeutic response. We found that dynamic BH3 profiling (DBP) presents an excellent predictive capacity to ALK-TKIs, that would facilitate their use in a clinical setting and complementing the readout of standard diagnostic assays. In addition, we revealed novel acute adaptive mechanisms in response to ALK inhibitors in cell lines and patient-derived tumor cells. Consistently, all our cell models confirmed a rapid downregulation of the sensitizer protein NOXA, leading to dependence on the anti-apoptotic protein MCL-1 after treatment with ALK-TKIs. In some cases, the anti-apoptotic protein BCL-xL may contribute equally to this anti-apoptotic response. Importantly, these acute dependencies could be prevented with BH3 mimetics in vitro and in vivo, blocking tumor adaptation to treatment. Finally, we also demonstrated how dual reactivation of PI3K/AKT and MAPK signaling pathways can impair lorlatinib response, which could be overcome with specific inhibitors of both signaling pathways. In conclusion, our findings propose several therapeutic combinations that should be explored in future clinical trials to enhance ALK inhibitors efficacy and improve the clinical response in a broad NSCLC patient population.
Collapse
Affiliation(s)
- Fernando Martín
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Clara Alcon
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Elba Marín
- Division of Medical Oncology, Hospital Clínic, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Unitat funcional de Tumors Toràcics, Hospital Clínic, Barcelona, Spain
| | - Paula Morales-Sánchez
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Albert Manzano-Muñoz
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Sherley Díaz
- Department of Pathology and CORE Molecular Biology Laboratory, Hospital Clínic, Barcelona, Spain
| | - Mireia García
- Department of Pathology and CORE Molecular Biology Laboratory, Hospital Clínic, Barcelona, Spain
| | - Josep Samitier
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona, Barcelona, Spain
| | - Albert Lu
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Alberto Villanueva
- Chemoresistance and Predictive Factors Group, Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology (ICO), Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Noemí Reguart
- Division of Medical Oncology, Hospital Clínic, Barcelona, Spain
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Unitat funcional de Tumors Toràcics, Hospital Clínic, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Cristina Teixido
- Translational Genomics and Targeted Therapies in Solid Tumors, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
- Unitat funcional de Tumors Toràcics, Hospital Clínic, Barcelona, Spain
- Department of Pathology and CORE Molecular Biology Laboratory, Hospital Clínic, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
| | - Joan Montero
- Networking Biomedical Research Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
7
|
Zhang LP, Wei YM, Luo MJ, Ren SY, Zhan XW, Wang C, Li ZF, Zhu RM, Yan S, Cheng Y, Xu JL, Yang XJ, Du KL, Wang JQ, Zhang GN, Du DX, Gao R, Zhao DB, Gong JN. Both direct and indirect suppression of MCL1 synergizes with BCLXL inhibition in preclinical models of gastric cancer. Cell Death Dis 2025; 16:170. [PMID: 40075071 PMCID: PMC11904182 DOI: 10.1038/s41419-025-07481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/08/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025]
Abstract
Despite the progress of treatment in gastric cancer (GC), the overall outcomes remain poor in patients with advanced diseases, underscoring the urgency to develop more effective treatment strategies. BH3-mimetic drugs, which inhibit the pro-survival BCL2 family proteins, have demonstrated great therapeutic potential in cancer therapy. Although previous studies have implicated a role of targeting the cell survival pathway in GC, the contribution of different pro-survival BCL2 family proteins in promoting survival and mediating resistance to current standard therapies in GC remains unclear. A systematic study to elucidate the hierarchy of these proteins using clinically more relevant GC models is essential to identify the most effective therapeutic target(s) and rational combination strategies for improving GC therapy. Here, we provide evidence from both in vitro and in vivo studies using a broad panel of GC cell lines, tumoroids, and xenograft models to demonstrate that BCLXL and MCL1, but not other pro-survival BCL2 family proteins, are crucial for GC cells survival. While small molecular inhibitors of BCLXL or MCL1 exhibited some single-agent activity, their combination sufficed to cause maximum killing. However, due to the unsolved cardiotoxicity associated with direct MCL1 inhibitors, finding combinations of agents that indirectly target MCL1 and enable the reduction of doses of BCLXL inhibitors while maintaining their anti-neoplastic effects is potentially a feasible approach for the further development of these compounds. Importantly, inhibiting BCLXL synergized significantly with anti-mitotic and HER2-targeting drugs, leading to enhanced anti-tumour activity with tolerable toxicity in preclinical GC models. Mechanistically, anti-mitotic chemotherapies induced MCL1 degradation via the ubiquitin-proteasome pathway mainly through FBXW7, whereas HER2-targeting drugs suppressed MCL1 transcription via the STAT3/SRF axis. Moreover, co-targeting STAT3 and BCLXL also exhibited synergistic killing, extending beyond HER2-amplified GC. Collectively, our results provide mechanistic rationale and pre-clinical evidence for co-targeting BCLXL and MCL1 (both directly and indirectly) in GC. (i) Gastric cancer cells rely on BCLXL and, to a lesser degree, on MCL1 for survival. The dual inhibition of BCLXL and MCL1 with small molecular inhibitors acts synergistically to kill GC cells, regardless of their TCGA molecular subtypes or the presence of poor prognostic markers. While the effect of S63845 is mediated by both BAX and BAK in most cases, BAX, rather than BAK, acts as the primary mediator of BCLXLi in GC cells. (ii) Inhibiting BCLXL significantly synergizes with anti-mitotic and HER2-targeting drugs, leading to enhanced anti-tumour activity with tolerable toxicity in preclinical GC models. Mechanistically, anti-mitotic chemotherapies induce MCL1 degradation via the ubiquitin-proteasome pathway mainly through FBXW7, whereas HER2-targeting drugs suppress MCL1 transcription via the STAT3/SRF axis. The combination of the STAT3 inhibitor and BCLXL inhibitor also exhibits synergistic killing, extending beyond HER2-amplified GC.
Collapse
Affiliation(s)
- Li-Ping Zhang
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu-Min Wei
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ming-Jie Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Shu-Yue Ren
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiang-Wen Zhan
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chao Wang
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ze-Feng Li
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-Min Zhu
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuo Yan
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Cheng
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jia-Li Xu
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xing-Jiu Yang
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ke-Lei Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jin-Qing Wang
- Department of Gastrointestinal Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Guan-Nan Zhang
- Division of Colorectal Surgery, Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - De-Xiao Du
- Department of general surgery, Capital Medical University Affiliated Beijing Shijitan Hospital, Beijing, China
| | - Ran Gao
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dong-Bing Zhao
- Department of Pancreatic and Gastric Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Nan Gong
- National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Gupta G, Afzal M, Moglad E, Goyal A, Almalki WH, Goyal K, Rana M, Ali H, Rekha1 A, Kazmi I, Alzarea SI, Singh SK. Parthanatos and apoptosis: unraveling their roles in cancer cell death and therapy resistance. EXCLI JOURNAL 2025; 24:351-380. [PMID: 40166425 PMCID: PMC11956527 DOI: 10.17179/excli2025-8251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 02/20/2025] [Indexed: 04/02/2025]
Abstract
Cell death is a fundamental process that needs to be maintained to balance cellular functions and prevent disease. There are several cell death pathways; however, apoptosis and parthanatos are the most prominent and have important roles in cancer biology. As an extremely well-regulated process, apoptosis removes damaged or abnormal cells via caspase activation and mitochondrial involvement. Unlike in the healthy cells, the loss of ability to induce apoptosis in cancer permits tumor cells to survive and multiply out of control and contribute to tumor progression and therapy resistance. On the contrary, parthanatos is a caspase-independent metabolic collapse driven by poly (ADP-ribose) polymerase 1 (PARP1) overactivation, translocation of apoptosis-inducing factor (AIF), and complete DNA damage. Several cancer models are involved with parthanatos. Deoxypodophyllotoxin (DPT) induces parthanatos in glioma cells by excessive ROS generation, PARP1 upregulation, and AIF nuclear translocation. Like in acute myeloid leukemia (AML), the cannabinoid derivative WIN-55 triggers parthanatos, and the effects can be reversed by PARP inhibitors such as olaparib. Developing cancer treatment strategies involving advanced cancer treatment strategies relies on the interplay between apoptosis and parthanatos. However, such apoptosis-based cancer therapies tend to develop resistance, so there is an urgent need to look into alternative pathways like parthanatos, which may not always trigger apoptosis. In overcoming apoptosis resistance, there is evidence that combining apoptosis-inducing agents, such as BH3 mimetics, with PARP inhibitors synergistically enhances cell death. Oxidative stress modulators have been found to promote the execution of parthanatic and apoptotic pathways and allow treatment. In this review, apoptosis and parthanatos are thoroughly compared at the molecular level, and their roles in cancer pathogenesis as related to cancer therapeutic potential are discussed. We incorporate recent findings to demonstrate that not only can parthanatos be used to manage therapy resistance and enhance cancer treatment via the combination of parthanatos and apoptosis but also that immunity and bone deposition can feasibly be employed against long-circulating cancer stem cells to treat diverse forms of metastatic cancers.
Collapse
Affiliation(s)
- Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ehssan Moglad
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to be University), Clement Town, 248002, Dehradun, India
| | - Mohit Rana
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Arcot Rekha1
- Dr. D.Y. Patil Medical College, Hospital and Research Centre, Pimpri, Pune, India
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Al-Jouf, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| |
Collapse
|
9
|
Mosadegh M, Noori Goodarzi N, Erfani Y. A Comprehensive Insight into Apoptosis: Molecular Mechanisms, Signaling Pathways, and Modulating Therapeutics. Cancer Invest 2025; 43:33-58. [PMID: 39760426 DOI: 10.1080/07357907.2024.2445528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/15/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Apoptosis, or programmed cell death, is a fundamental biological process essential for maintaining tissue homeostasis. Dysregulation of apoptosis is implicated in a variety of diseases, including cancer, neurodegenerative disorders, and autoimmune conditions. This review provides an in-depth insight into the molecular mechanisms and signaling pathways that regulate apoptosis, highlighting both intrinsic and extrinsic pathways. Additionally, the review explains the tumor microenvironment's influence on apoptosis and its implications for cancer therapy resistance. Understanding the complex interplay between apoptotic signaling and cellular responses is crucial for developing targeted therapies that can effectively manage diseases associated with apoptosis dysregulation. The effects of conventional therapeutics and alternative substances with natural sources such as herbal compounds, alongside vitamins, minerals, and trace elements on cellular homeostasis and disease pathogenesis have been thoroughly investigated. Moreover, recent advances in therapeutic strategies aimed at modulating apoptosis are discussed, with a focus on novel interventions such as nutrition bio shield dietary supplement. These emerging approaches offer potential benefits beyond conventional treatments by selectively targeting apoptotic pathways to inhibit cancer progression and metastasis. By integrating insights from recent studies, this review aims to enhance our understanding of apoptosis and guide future research in developing innovative therapeutic approaches.
Collapse
Affiliation(s)
- Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Erfani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Hartman ML. Tipping the balance of cell death: alternative splicing as a source of MCL-1S in cancer. Cell Death Dis 2024; 15:917. [PMID: 39695189 DOI: 10.1038/s41419-024-07307-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Apoptosis-regulating proteins from the B-cell lymphoma-2 (BCL-2) family are of continued interest as they represent promising targets for anti-cancer therapies. Myeloid cell leukemia-1 (MCL-1), which usually refers to the long isoform (MCL-1L) is frequently overexpressed in various types of cancer. However, MCL1 pre-mRNA can also undergo alternative splicing through exon skipping to yield the short isoform, MCL-1S. Regarding its structure and function, MCL-1S corresponds to BCL-2 homology domain 3 (BH3)-only pro-apoptotic proteins in contrast to the pro-survival role of MCL-1L. As cancer cells are usually characterized by the high MCL-1L:MCL-1S ratio, several studies revealed that overexpression of MCL-1S may constitute a new therapeutic approach in cancer and presumably overcome resistance to currently available drugs. Switching the balance towards high levels of MCL-1S is feasible by using inhibitors of alternative splicing-regulating proteins and strategies directly interfering with MCL1 pre-mRNA. Additionally, several compounds were shown to increase MCL-1S levels through unelucidated mechanisms, while diversely affecting the level of MCL-1L isoform. These mechanisms require detailed clarification as the balance between the long and short variants of MCL-1 can also contribute to mitochondrial hyperpolarization. In this respect, the role of MCL-1S in the regulation of apoptosis-unrelated events of the mitochondria physiology, including mitochondria fission and fusion also remains to be determined. In this review, the structure and function of MCL-1S isoform, and MCL-1S-targeting approaches are discussed.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| |
Collapse
|
11
|
Zhang X, Tao Y, Xu Z, Jiang B, Yang X, Huang T, Tan W. Sorafenib and SIAIS361034, a novel PROTAC degrader of BCL-x L, display synergistic antitumor effects on hepatocellular carcinoma with minimal hepatotoxicity. Biochem Pharmacol 2024; 230:116542. [PMID: 39284500 DOI: 10.1016/j.bcp.2024.116542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
The overexpression of BCL-xL is closely associated with poor prognosis in hepatocellular carcinoma (HCC). While the strategy of combination of BCL-xL and MCL-1 for treating solid tumors has been reported, it presents significant hepatotoxicity. SIAIS361034, a novel proteolysis targeting chimera (PROTAC) agent, selectively induces the ubiquitination and subsequent proteasomal degradation of BCL-xL through the CRBN-E3 ubiquitin ligase. When combined with sorafenib, SIAIS361034 showed a potent synergistic effect in inhibiting hepatocellular carcinoma development both in vitro and in vivo. Since SIAIS361034 exhibits a high degree of selectivity for degrading BCL-xL in hepatocellular carcinoma, the hepatotoxicity typically associated with the combined inhibition of BCL-xL and MCL-1 is significantly reduced, thereby greatly enhancing safety. Mechanistically, BCL-xL and MCL-1 sequester the BH3-only protein BIM on mitochondria at baseline. Treatment with SIAIS361034 and sorafenib destabilizes BIM/BCL-xL and BIM/MCL1 association, resulting in the liberation of more BIM proteins to trigger apoptosis. Additionally, we discovered a novel compensatory regulation mechanism in hepatocellular carcinoma cells. BIM can rapidly respond to changes in the balance between BCL-xL and MCL-1 through their co-transcription factor MEF2C to maintain apoptosis resistance. In summary, the combination therapy of SIAIS361034 and sorafenib represents an effective and safe approach for inhibiting hepatocellular carcinoma progression. The novel balancing mechanism may also provide insights for combination and precision therapies in the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Xiaoyi Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yachuan Tao
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhongli Xu
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai 201210, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai 201210, China
| | - Xiaobao Yang
- Gluetacs Therapeutics (Shanghai) Co., Ltd., No. 99 Haike Road, Zhangjiang Hi-Tech Park, Shanghai 201210, China.
| | - Taomin Huang
- Department of Pharmacy, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| |
Collapse
|
12
|
Becker JH, Metropulos AE, Spaulding C, Marinelarena AM, Shields MA, Principe DR, Pham TD, Munshi HG. Targeting BCL2 with Venetoclax Enhances the Efficacy of the KRASG12D Inhibitor MRTX1133 in Pancreatic Cancer. Cancer Res 2024; 84:3629-3639. [PMID: 39137400 PMCID: PMC11532783 DOI: 10.1158/0008-5472.can-23-3574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/22/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
MRTX1133 is currently being evaluated in patients with pancreatic ductal adenocarcinoma (PDAC) tumors harboring a KRASG12D mutation. Combination strategies have the potential to enhance the efficacy of MRTX1133 to further promote cell death and tumor regression. In this study, we demonstrated that MRTX1133 increased the levels of the proapoptotic protein BIM in PDAC cells and conferred sensitivity to the FDA-approved BCL2 inhibitor venetoclax. Combined treatment with MRTX1133 and venetoclax resulted in cell death and growth suppression in 3D cultures. BIM was required for apoptosis induced by the combination treatment. Consistently, BIM was induced in tumors treated with MRTX1133, and venetoclax enhanced the efficacy of MRTX1133 in vivo. Venetoclax could also resensitize MRTX1133-resistant PDAC cells to MRTX1133 in 3D cultures, and tumors established from resistant cells responded to the combination of MRTX1133 and venetoclax. These results provide a rationale for the clinical testing of MRTX1133 and venetoclax in patients with PDAC. Significance: The combination of MRTX1133 and the FDA-approved drug venetoclax promotes cancer cell death and tumor regression in pancreatic ductal adenocarcinoma, providing rationale for testing venetoclax with KRASG12D inhibitors in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Jeffrey H. Becker
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Anastasia E. Metropulos
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | - Christina Spaulding
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| | | | - Mario A. Shields
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Daniel R. Principe
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Thao D. Pham
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| | - Hidayatullah G. Munshi
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
- The Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois
| |
Collapse
|
13
|
Al-Sawaf O, Robrecht S, Zhang C, Olivieri S, Chang YM, Fink AM, Tausch E, Schneider C, Ritgen M, Kreuzer KA, Sivchev L, Niemann CU, Schwarer A, Loscertales J, Weinkove R, Strumberg D, Kilfoyle A, Manzoor BS, Jawaid D, Emechebe N, Devine J, Boyer M, Runkel ED, Eichhorst B, Stilgenbauer S, Jiang Y, Hallek M, Fischer K. Venetoclax-obinutuzumab for previously untreated chronic lymphocytic leukemia: 6-year results of the randomized phase 3 CLL14 study. Blood 2024; 144:1924-1935. [PMID: 39082668 PMCID: PMC11551846 DOI: 10.1182/blood.2024024631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/21/2024] [Indexed: 11/01/2024] Open
Abstract
ABSTRACT In the CLL14 study, patients with previously untreated chronic lymphocytic leukemia (CLL) and coexisting conditions were randomized to 12 cycles of venetoclax-obinutuzumab (Ven-Obi, n = 216) or chlorambucil-obinutuzumab (Clb-Obi, n = 216). Progression-free survival (PFS) was the primary end point. Key secondary end points included time-to-next-treatment (TTNT), rates of undetectable minimal residual disease (uMRD), overall survival (OS), and rates of adverse events. Patient reported outcomes of time until definitive deterioration (TUDD) in quality of life (QoL) were analyzed. At a median observation time of 76.4 months, PFS remained superior for Ven-Obi compared with Clb-Obi (median, 76.2 vs 36.4 months; hazard ratio [HR], 0.40; 95% confidence interval [CI], 0.31-0.52; P < .0001). Likewise, TTNT was longer after Ven-Obi (6-year TTNT, 65.2% vs 37.1%; HR, 0.44; 95% CI, 0.33-0.58; P < .0001). In the Ven-Obi arm, presence of del(17p), unmutated immunoglobulin heavy-chain variable region, and lymph node size of ≥5 cm were independent prognostic factors for shorter PFS. The 6-year OS rate was 78.7% in the Ven-Obi and 69.2% in the Clb-Obi arm (HR, 0.69; 95% CI, 0.48-1.01; P = .052). A significantly longer TUDD in global health status/QoL was observed in the Ven-Obi than in the Clb-Obi arm (median, 82.1 vs 65.1 months; HR, 0.70; 95% CI, 0.51-0.97). Follow-up-adjusted second primary malignancies incidence rates were 2.3 and 1.4 per 1000 patient-months in the Ven-Obi and Clb-Obi arm, respectively. The sustained long-term survival and QoL benefits support the use of 1-year fixed-duration Ven-Obi in CLL. This trial was registered at www.ClinicalTrials.gov as #NCT02242942.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/mortality
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Bridged Bicyclo Compounds, Heterocyclic/administration & dosage
- Bridged Bicyclo Compounds, Heterocyclic/adverse effects
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Sulfonamides/administration & dosage
- Sulfonamides/adverse effects
- Sulfonamides/therapeutic use
- Male
- Female
- Aged
- Middle Aged
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Aged, 80 and over
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Quality of Life
- Adult
Collapse
Affiliation(s)
- Othman Al-Sawaf
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Sandra Robrecht
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Can Zhang
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | | | | | - Anna Maria Fink
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Eugen Tausch
- Division of CLL, Department III of Internal Medicine, University Hospital Ulm, Ulm, Germany
| | - Christof Schneider
- Division of CLL, Department III of Internal Medicine, University Hospital Ulm, Ulm, Germany
| | | | - Karl-Anton Kreuzer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Liliya Sivchev
- Multiprofile Hospital for Active Treatment Pazardjik, Pazardzhik, Bulgaria
| | | | | | | | - Robert Weinkove
- Te Rerenga Ora Wellington Blood and Cancer Centre, Te Whatu Ora Health New Zealand Capital, Wellington, New Zealand
- Cancer Immunotherapy Program, Malaghan Institute of Medical Research, Wellington, New Zealand
| | | | | | | | | | | | | | | | | | - Barbara Eichhorst
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Stephan Stilgenbauer
- Division of CLL, Department III of Internal Medicine, University Hospital Ulm, Ulm, Germany
| | | | - Michael Hallek
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| | - Kirsten Fischer
- Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, German Chronic Lymphocytic Leukemia Study Group, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Cuyàs E, Pedarra S, Verdura S, Pardo MA, Espin Garcia R, Serrano-Hervás E, Llop-Hernández À, Teixidor E, Bosch-Barrera J, López-Bonet E, Martin-Castillo B, Lupu R, Pujana MA, Sardanyès J, Alarcón T, Menendez JA. Fatty acid synthase (FASN) is a tumor-cell-intrinsic metabolic checkpoint restricting T-cell immunity. Cell Death Discov 2024; 10:417. [PMID: 39349429 PMCID: PMC11442875 DOI: 10.1038/s41420-024-02184-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024] Open
Abstract
Fatty acid synthase (FASN)-catalyzed endogenous lipogenesis is a hallmark of cancer metabolism. However, whether FASN is an intrinsic mechanism of tumor cell defense against T cell immunity remains unexplored. To test this hypothesis, here we combined bioinformatic analysis of the FASN-related immune cell landscape, real-time assessment of cell-based immunotherapy efficacy in CRISPR/Cas9-based FASN gene knockout (FASN KO) cell models, and mathematical and mechanistic evaluation of FASN-driven immunoresistance. FASN expression negatively correlates with infiltrating immune cells associated with cancer suppression, cytolytic activity signatures, and HLA-I expression. Cancer cells engineered to carry a loss-of-function mutation in FASN exhibit an enhanced cytolytic response and an accelerated extinction kinetics upon interaction with cytokine-activated T cells. Depletion of FASN results in reduced carrying capacity, accompanied by the suppression of mitochondrial OXPHOS and strong downregulation of electron transport chain complexes. Targeted FASN depletion primes cancer cells for mitochondrial apoptosis as it synergizes with BCL-2/BCL-XL-targeting BH3 mimetics to render cancer cells more susceptible to T-cell-mediated killing. FASN depletion prevents adaptive induction of PD-L1 in response to interferon-gamma and reduces constitutive overexpression of PD-L1 by abolishing PD-L1 post-translational palmitoylation. FASN is a novel tumor cell-intrinsic metabolic checkpoint that restricts T cell immunity and may be exploited to improve the efficacy of T cell-based immunotherapy.
Collapse
Affiliation(s)
- Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Stefano Pedarra
- Centre de Recerca Matemàtica (CRM), 08193, Bellaterra, Barcelona, Spain
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Miguel Angel Pardo
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Roderic Espin Garcia
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Eila Serrano-Hervás
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Àngela Llop-Hernández
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Eduard Teixidor
- Medical Oncology, Catalan Institute of Oncology, 17007, Girona, Spain
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
| | - Joaquim Bosch-Barrera
- Medical Oncology, Catalan Institute of Oncology, 17007, Girona, Spain
- Precision Oncology Group (OncoGir-Pro), Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Medical Sciences, Medical School, University of Girona, 17071, Girona, Spain
| | - Eugeni López-Bonet
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Department of Anatomical Pathology, Dr. Josep Trueta Hospital of Girona, 17007, Girona, Spain
| | - Begoña Martin-Castillo
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain
- Unit of Clinical Research, Catalan Institute of Oncology, 17007, Girona, Spain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Mayo Clinic Cancer Center, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology Laboratory, Mayo Clinic Laboratory, Rochester, MN, 55905, USA
| | - Miguel Angel Pujana
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Sardanyès
- Centre de Recerca Matemàtica (CRM), 08193, Bellaterra, Barcelona, Spain
| | - Tomás Alarcón
- Centre de Recerca Matemàtica (CRM), 08193, Bellaterra, Barcelona, Spain
- ICREA, 08010, Barcelona, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, 17007, Girona, Spain.
- Metabolism and Cancer Group, Girona Biomedical Research Institute (IDIBGI), 17190, Girona, Spain.
| |
Collapse
|
15
|
Iyer P, Jasdanwala SS, Bhatia K, Bhatt S. Mitochondria and Acute Leukemia: A Clinician's Perspective. Int J Mol Sci 2024; 25:9704. [PMID: 39273651 PMCID: PMC11395402 DOI: 10.3390/ijms25179704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Acute leukemia is a group of aggressive hematological malignancies, with acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) being the most common types. The biology of acute leukemia involves complex genetic and epigenetic alterations that lead to uncontrolled cell proliferation and resistance to apoptosis. Mitochondrial dysfunction is a feature of acute leukemia that results in altered energy production, unregulated cell death pathways, and increased cancer cell survival. Apoptosis, particularly via the mitochondrial pathway, is crucial for cellular homeostasis and cancer prevention. In acute leukemia, disruption of apoptosis is pivotal in disease development and progression, with elevated levels of anti-apoptotic proteins conferring a survival advantage to leukemia cells and promoting resistance to conventional therapies. Targeting mitochondrial apoptosis using BH3 mimetics and anti-apoptotic protein inhibitors is a viable therapeutic strategy. Alterations in the mitochondrial membrane potential, metabolism, and dynamics also contribute to the pathogenesis of acute leukemia. Continued research is vital for developing novel therapies and enhancing survival outcomes in patients with acute leukemia while minimizing the long-term adverse effects of treatment. In this narrative review, we provide a birds-eye view of the available scientific literature on the importance of mitochondria in acute leukemia, and discuss the role of BH3 mimetics in targeting the mitochondrial internal apoptotic machinery.
Collapse
Affiliation(s)
- Prasad Iyer
- Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore 229899, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | | | - Karanpreet Bhatia
- Department of Hematology and Medical Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Shruti Bhatt
- Department of Pharmacy, National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|
16
|
Chaudhry S, Beckedorff F, Jasdanwala SS, Totiger TM, Affer M, Lawal AE, Montoya S, Tamiro F, Tonini O, Chirino A, Adams A, Sondhi AK, Noudali S, Cornista AM, Nicholls M, Afaghani J, Robayo P, Bilbao D, Nimer SD, Rodríguez JA, Bhatt S, Wang E, Taylor J. Altered RNA export by SF3B1 mutants confers sensitivity to nuclear export inhibition. Leukemia 2024; 38:1894-1905. [PMID: 38997434 PMCID: PMC11347370 DOI: 10.1038/s41375-024-02328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
SF3B1 mutations frequently occur in cancer yet lack targeted therapies. Clinical trials of XPO1 inhibitors, selinexor and eltanexor, in high-risk myelodysplastic neoplasms (MDS) revealed responders were enriched with SF3B1 mutations. Given that XPO1 (Exportin-1) is a nuclear exporter responsible for the export of proteins and multiple RNA species, this led to the hypothesis that SF3B1-mutant cells are sensitive to XPO1 inhibition, potentially due to altered splicing. Subsequent RNA sequencing after XPO1 inhibition in SF3B1 wildtype and mutant cells showed increased nuclear retention of RNA transcripts and increased alternative splicing in the SF3B1 mutant cells particularly of genes that impact apoptotic pathways. To identify novel drug combinations that synergize with XPO1 inhibition, a forward genetic screen was performed with eltanexor treatment implicating anti-apoptotic targets BCL2 and BCLXL, which were validated by functional testing in vitro and in vivo. These targets were tested in vivo using Sf3b1K700E conditional knock-in mice, which showed that the combination of eltanexor and venetoclax (BCL2 inhibitor) had a preferential sensitivity for SF3B1 mutant cells without excessive toxicity. In this study, we unveil the mechanisms underlying sensitization to XPO1 inhibition in SF3B1-mutant MDS and preclinically rationalize the combination of eltanexor and venetoclax for high-risk MDS.
Collapse
Affiliation(s)
- Sana Chaudhry
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shaista Shabbir Jasdanwala
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore, Singapore
| | - Tulasigeri M Totiger
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maurizio Affer
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Skye Montoya
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Francesco Tamiro
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Olivia Tonini
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alexandra Chirino
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andrew Adams
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Anya K Sondhi
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephen Noudali
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alyssa Mauri Cornista
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Miah Nicholls
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jumana Afaghani
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paola Robayo
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Pathology and Laboratory Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephen D Nimer
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jose Antonio Rodríguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Shruti Bhatt
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore, Singapore
| | - Eric Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA.
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
17
|
Edwards F, Fantozzi G, Simon AY, Morretton JP, Herbette A, Tijhuis AE, Wardenaar R, Foulane S, Gemble S, Spierings DC, Foijer F, Mariani O, Vincent-Salomon A, Roman-Roman S, Sastre-Garau X, Goundiam O, Basto R. Centrosome amplification primes ovarian cancer cells for apoptosis and potentiates the response to chemotherapy. PLoS Biol 2024; 22:e3002759. [PMID: 39236086 PMCID: PMC11441705 DOI: 10.1371/journal.pbio.3002759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 09/30/2024] [Accepted: 07/17/2024] [Indexed: 09/07/2024] Open
Abstract
Centrosome amplification is a feature of cancer cells associated with chromosome instability and invasiveness. Enhancing chromosome instability and subsequent cancer cell death via centrosome unclustering and multipolar divisions is an aimed-for therapeutic approach. Here, we show that centrosome amplification potentiates responses to conventional chemotherapy in addition to its effect on multipolar divisions and chromosome instability. We perform single-cell live imaging of chemotherapy responses in epithelial ovarian cancer cell lines and observe increased cell death when centrosome amplification is induced. By correlating cell fate with mitotic behaviors, we show that enhanced cell death can occur independently of chromosome instability. We identify that cells with centrosome amplification are primed for apoptosis. We show they are dependent on the apoptotic inhibitor BCL-XL and that this is not a consequence of mitotic stresses associated with centrosome amplification. Given the multiple mechanisms that promote chemotherapy responses in cells with centrosome amplification, we assess such a relationship in an epithelial ovarian cancer patient cohort. We show that high centrosome numbers associate with improved treatment responses and longer overall survival. Our work identifies apoptotic priming as a clinically relevant consequence of centrosome amplification, expanding our understanding of this pleiotropic cancer cell feature.
Collapse
Affiliation(s)
- Frances Edwards
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Giulia Fantozzi
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Anthony Y. Simon
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Jean-Philippe Morretton
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Aurelie Herbette
- Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Andrea E. Tijhuis
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rene Wardenaar
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Stacy Foulane
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Simon Gemble
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| | - Diana C.J. Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | | | - Sergio Roman-Roman
- Department of Translational Research, Institut Curie, PSL University, Paris, France
| | | | - Oumou Goundiam
- Department of Translational Research, Institut Curie, PSL University, Paris, France
| | - Renata Basto
- Biology of centrosomes and genetic instability, Institut Curie, PSL Research University, CNRS UMR 144, Paris, France
| |
Collapse
|
18
|
Del Bufalo D, Damia G. Overview of BH3 mimetics in ovarian cancer. Cancer Treat Rev 2024; 129:102771. [PMID: 38875743 DOI: 10.1016/j.ctrv.2024.102771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/16/2024]
Abstract
Ovarian carcinoma is the leading cause of gynecological cancer-related death, still with a dismal five-year prognosis, mainly due to late diagnosis and the emergence of resistance to cytotoxic and targeted agents. Bcl-2 family proteins have a key role in apoptosis and are associated with tumor development/progression and response to therapy in different cancer types, including ovarian carcinoma. In tumors, evasion of apoptosis is a possible mechanism of resistance to therapy. BH3 mimetics are small molecules that occupy the hydrophobic pocket on pro-survival proteins, allowing the induction of apoptosis, and are currently under study as single agents and/or in combination with cytotoxic and targeted agents in solid tumors. Here, we discuss recent advances in targeting anti-apoptotic proteins of the Bcl-2 family for the treatment of ovarian cancer, focusing on BH3 mimetics, and how these approaches could potentially offer an alternative/complementary way to treat patients and overcome or delay resistance to current treatments.
Collapse
Affiliation(s)
- Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Via E. Chianesi 53, 00144 Rome, Italy.
| | - Giovanna Damia
- Laboratory of Gynecological Preclinical Oncology, Experimental Oncology Department, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via M. Negri 2, 20156 Milan, Italy.
| |
Collapse
|
19
|
Wang S, Guo S, Guo J, Du Q, Wu C, Wu Y, Zhang Y. Cell death pathways: molecular mechanisms and therapeutic targets for cancer. MedComm (Beijing) 2024; 5:e693. [PMID: 39239068 PMCID: PMC11374700 DOI: 10.1002/mco2.693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/24/2024] [Accepted: 07/28/2024] [Indexed: 09/07/2024] Open
Abstract
Cell death regulation is essential for tissue homeostasis and its dysregulation often underlies cancer development. Understanding the different pathways of cell death can provide novel therapeutic strategies for battling cancer. This review explores several key cell death mechanisms of apoptosis, necroptosis, autophagic cell death, ferroptosis, and pyroptosis. The research gap addressed involves a thorough analysis of how these cell death pathways can be precisely targeted for cancer therapy, considering tumor heterogeneity and adaptation. It delves into genetic and epigenetic factors and signaling cascades like the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways, which are critical for the regulation of cell death. Additionally, the interaction of the microenvironment with tumor cells, and particularly the influence of hypoxia, nutrient deprivation, and immune cellular interactions, are explored. Emphasizing therapeutic strategies, this review highlights emerging modulators and inducers such as B cell lymphoma 2 (BCL2) homology domain 3 (BH3) mimetics, tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), chloroquine, and innovative approaches to induce ferroptosis and pyroptosis. This review provides insights into cancer therapy's future direction, focusing on multifaceted approaches to influence cell death pathways and circumvent drug resistance. This examination of evolving strategies underlines the considerable clinical potential and the continuous necessity for in-depth exploration within this scientific domain.
Collapse
Affiliation(s)
- Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jing Guo
- College of Clinical Medicine Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Cen Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yeke Wu
- College of Clinical Medicine Hospital of Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
20
|
Lu J, Tai Z, Wu J, Li L, Zhang T, Liu J, Zhu Q, Chen Z. Nanomedicine-induced programmed cell death enhances tumor immunotherapy. J Adv Res 2024; 62:199-217. [PMID: 37743016 PMCID: PMC11331180 DOI: 10.1016/j.jare.2023.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND There has been widespread concern about the high cancer mortality rate and the shortcomings of conventional cancer treatments. Immunotherapy is a novel oncology therapy with high efficiency and low side effects, which is a revolutionary direction for clinical oncology treatment. However, its clinical effectiveness is uneven. Based on the redefinition and reclassification of programmed cell death (PCD) (divided into necroptosis, ferroptosis, pyroptosis, and autophagy), the role of nanomedicine-induced PCD in cancer therapy has also received significant attention. Clinical and preclinical studies have begun to combine PCD with immunotherapy. AIM OF REVIEW In this article, we present recent research in tumor immunotherapy, provide an overview of how nanomedicine-induced PCD is involved in tumor therapy, and review how nanomedicine-induced PCD can improve the limitations of immunotherapy to enhance tumor immunotherapy. The future development of nanomedicine-mediated PCD tumor therapy and tumor immunotherapy is also proposed Key scientific concepts of overview Nanomedicine-induced PCD is a prospective method of tumor immunotherapy. Nanomedicines increase tumor site penetration and targeting ability, and nanomedicine-mediated PCD activation can stimulate powerful anti-tumor immune effects, which has a good contribution to immunotherapy of tumors.
Collapse
Affiliation(s)
- Jiaye Lu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Junchao Wu
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Lisha Li
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Tingrui Zhang
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China.
| | - Zhongjian Chen
- School of Medicine, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China.
| |
Collapse
|
21
|
Yaghoubi Naei V, Monkman J, Sadeghirad H, Mehdi A, Blick T, Mullally W, O'Byrne K, Warkiani ME, Kulasinghe A. Spatial proteomic profiling of tumor and stromal compartments in non-small-cell lung cancer identifies signatures associated with overall survival. Clin Transl Immunology 2024; 13:e1522. [PMID: 39026528 PMCID: PMC11257771 DOI: 10.1002/cti2.1522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
Objectives Non-small-cell lung carcinoma (NSCLC) is the most prevalent and lethal form of lung cancer. The need for biomarker-informed stratification of targeted therapies has underpinned the need to uncover the underlying properties of the tumor microenvironment (TME) through high-plex quantitative assays. Methods In this study, we profiled resected NSCLC tissues from 102 patients by targeted spatial proteomics of 78 proteins across tumor, immune activation, immune cell typing, immune-oncology, drug targets, cell death and PI3K/AKT modules to identify the tumor and stromal signatures associated with overall survival (OS). Results Survival analysis revealed that stromal CD56 (HR = 0.384, P = 0.06) and tumoral TIM3 (HR = 0.703, P = 0.05) were associated with better survival in univariate Cox models. In contrast, after adjusting for stage, BCLXL (HR = 2.093, P = 0.02) and cleaved caspase 9 (HR = 1.575, P = 0.1) negatively influenced survival. Delta testing indicated the protective effect of TIM-3 (HR = 0.614, P = 0.04) on OS. In multivariate analysis, CD56 (HR = 0.172, P = 0.001) was associated with better survival in the stroma, while B7.H3 (HR = 1.72, P = 0.008) was linked to poorer survival in the tumor. Conclusions Deciphering the TME using high-plex spatially resolved methods is giving us new insights into compartmentalised tumor and stromal protein signatures associated with clinical endpoints in NSCLC.
Collapse
Affiliation(s)
- Vahid Yaghoubi Naei
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNSWAustralia
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - James Monkman
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Habib Sadeghirad
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Ahmed Mehdi
- Queensland Cyber Infrastructure Foundation (QCIF) LtdThe University of QueenslandBrisbaneQLDAustralia
| | - Tony Blick
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | | | - Ken O'Byrne
- The Princess Alexandra HospitalBrisbaneQLDAustralia
| | | | - Arutha Kulasinghe
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
22
|
Kim SH, Chun C, Yoon TY. Profiling of BCLxL Protein Complexes in Non-Small Cell Lung Cancer Cells via Multiplexed Single-Molecule Pull-Down and Co-Immunoprecipitation. Anal Chem 2024; 96:8932-8941. [PMID: 38728439 DOI: 10.1021/acs.analchem.3c05801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
We introduce multiplexed single-molecule pull-down and co-immunoprecipitation, named m-SMPC, an analysis tool for profiling multiple protein complexes within a single reaction chamber using single-molecule fluorescence imaging. We employed site-selective conjugation of biotin and fluorescent dye directly onto the monoclonal antibodies, which completed an independent sandwich immunoassay without the issue of host cross-reactivity. We applied this technique to profile endogenous B-cell lymphoma extra-large (BCLxL) complexes in non-small cell lung cancer (NSCLC) cells. Up to three distinct BCLxL complexes were successfully detected simultaneously within a single reaction chamber without fluorescence signal crosstalk. Notably, the NSCLC cell line EBC-1 exhibited high BCLxL-BAX and BCLxL-BAK levels, which closely paralleled a strong response to the BCLxL inhibitor A-1331852. This streamlined method offers the potential for quantitative biomarkers derived from protein complex profiling, paving the way for their application in protein complex-targeted therapies.
Collapse
Affiliation(s)
- Shi Ho Kim
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul 08826, South Korea
| | - Changju Chun
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
- Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Tae-Young Yoon
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul 08826, South Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
- Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
23
|
Kopparapu P, Löhr CV, Pearce MC, Tyavanagimatt S, Nakshatri H, Kolluri SK. Small Molecule Functional Converter of B-Cell Lymphoma-2 (Bcl-2) Suppresses Breast Cancer Lung Metastasis. ACS Pharmacol Transl Sci 2024; 7:1302-1309. [PMID: 38751629 PMCID: PMC11091964 DOI: 10.1021/acsptsci.3c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/28/2024] [Indexed: 05/18/2024]
Abstract
The B-cell lymphoma-2 (Bcl-2) family of proteins plays a vital role in tumorigenesis. Cancer cells utilize the expression of Bcl-2 to evade therapy and develop resistance. Bcl-2 overexpression also causes cancer cells to be more invasive and metastatic. About 80% of cancer deaths are due to metastases, and yet targeted therapies for metastatic cancers are scarce. We discovered a small molecule, BFC1103, which changes the conformation of Bcl-2 to convert the antiapoptotic protein to a proapoptotic protein. BFC1103-induced apoptosis is dependent on the expression levels of Bcl-2, with higher levels causing more apoptosis. BFC1103 suppressed the growth of breast cancer lung metastasis. BFC1103 has the potential for further optimization and development for clinical testing in metastatic cancers that express Bcl-2. This study demonstrates a new approach to target Bcl-2 using a small molecule, BFC1103, to suppress metastatic disease.
Collapse
Affiliation(s)
- Prasad
R. Kopparapu
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331-8580, United States
| | - Christiane V. Löhr
- Department
of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon 97331-4801, United States
| | - Martin C. Pearce
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331-8580, United States
| | - Shanthakumar Tyavanagimatt
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331-8580, United States
| | - Harikrishna Nakshatri
- Department
of Surgery, Indiana University School of
Medicine, Indianapolis, Indiana 46202-3082, United States
| | - Siva K. Kolluri
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331-8580, United States
- Linus
Pauling Institute, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
24
|
Zhao K, Braun M, Meyer L, Otte K, Raifer H, Helmprobst F, Möschl V, Pagenstecher A, Urban H, Ronellenfitsch MW, Steinbach JP, Pesek J, Watzer B, Nockher WA, Taudte RV, Neubauer A, Nimsky C, Bartsch JW, Rusch T. A Novel Approach for Glioblastoma Treatment by Combining Apoptosis Inducers (TMZ, MTX, and Cytarabine) with E.V.A. (Eltanexor, Venetoclax, and A1210477) Inhibiting XPO1, Bcl-2, and Mcl-1. Cells 2024; 13:632. [PMID: 38607071 PMCID: PMC11011525 DOI: 10.3390/cells13070632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Adjuvant treatment for Glioblastoma Grade 4 with Temozolomide (TMZ) inevitably fails due to therapeutic resistance, necessitating new approaches. Apoptosis induction in GB cells is inefficient, due to an excess of anti-apoptotic XPO1/Bcl-2-family proteins. We assessed TMZ, Methotrexate (MTX), and Cytarabine (Ara-C) (apoptosis inducers) combined with XPO1/Bcl-2/Mcl-1-inhibitors (apoptosis rescue) in GB cell lines and primary GB stem-like cells (GSCs). Using CellTiter-Glo® and Caspase-3 activity assays, we generated dose-response curves and analyzed the gene and protein regulation of anti-apoptotic proteins via PCR and Western blots. Optimal drug combinations were examined for their impact on the cell cycle and apoptosis induction via FACS analysis, paralleled by the assessment of potential toxicity in healthy mouse brain slices. Ara-C and MTX proved to be 150- to 10,000-fold more potent in inducing apoptosis than TMZ. In response to inhibitors Eltanexor (XPO1; E), Venetoclax (Bcl-2; V), and A1210477 (Mcl-1; A), genes encoding for the corresponding proteins were upregulated in a compensatory manner. TMZ, MTX, and Ara-C combined with E, V, and A evidenced highly lethal effects when combined. As no significant cell death induction in mouse brain slices was observed, we conclude that this drug combination is effective in vitro and expected to have low side effects in vivo.
Collapse
Affiliation(s)
- Kai Zhao
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Madita Braun
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Leonie Meyer
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Katharina Otte
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Hartmann Raifer
- FACS Core Facility, Philipps University Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Frederik Helmprobst
- Department of Neuropathology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Vincent Möschl
- Department of Neuropathology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Axel Pagenstecher
- Department of Neuropathology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Hans Urban
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Michael W. Ronellenfitsch
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Joachim P. Steinbach
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Dr. Senckenberg Institute of Neurooncology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528 Frankfurt am Main, Germany
| | - Jelena Pesek
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Bernhard Watzer
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Wolfgang A. Nockher
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - R. Verena Taudte
- Medical Mass Spectrometry Core Facility, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
| | - Andreas Neubauer
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Christopher Nimsky
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Jörg W. Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Tillmann Rusch
- Department of Hematology, Oncology & Immunology, Philipps University Marburg, Baldingerstraße 1, 35043 Marburg, Germany
- University Cancer Center (UCT) Frankfurt—Marburg, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
25
|
Jia J, Ji W, Saliba AN, Csizmar CM, Ye K, Hu L, Peterson KL, Schneider PA, Meng XW, Venkatachalam A, Patnaik MM, Webster JA, Smith BD, Ghiaur G, Wu X, Zhong J, Pandey A, Flatten KS, Deng Q, Wang H, Kaufmann SH, Dai H. AMPK inhibition sensitizes acute leukemia cells to BH3 mimetic-induced cell death. Cell Death Differ 2024; 31:405-416. [PMID: 38538744 PMCID: PMC11043078 DOI: 10.1038/s41418-024-01283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024] Open
Abstract
BH3 mimetics, including the BCL2/BCLXL/BCLw inhibitor navitoclax and MCL1 inhibitors S64315 and tapotoclax, have undergone clinical testing for a variety of neoplasms. Because of toxicities, including thrombocytopenia after BCLXL inhibition as well as hematopoietic, hepatic and possible cardiac toxicities after MCL1 inhibition, there is substantial interest in finding agents that can safely sensitize neoplastic cells to these BH3 mimetics. Building on the observation that BH3 mimetic monotherapy induces AMP kinase (AMPK) activation in multiple acute leukemia cell lines, we report that the AMPK inhibitors (AMPKis) dorsomorphin and BAY-3827 sensitize these cells to navitoclax or MCL1 inhibitors. Cell fractionation and phosphoproteomic analyses suggest that sensitization by dorsomorphin involves dephosphorylation of the proapoptotic BCL2 family member BAD at Ser75 and Ser99, leading BAD to translocate to mitochondria and inhibit BCLXL. Consistent with these results, BAD knockout or mutation to BAD S75E/S99E abolishes the sensitizing effects of dorsomorphin. Conversely, dorsomorphin synergizes with navitoclax or the MCL1 inhibitor S63845 to induce cell death in primary acute leukemia samples ex vivo and increases the antitumor effects of navitoclax or S63845 in several xenograft models in vivo with little or no increase in toxicity in normal tissues. These results suggest that AMPK inhibition can sensitize acute leukemia to multiple BH3 mimetics, potentially allowing administration of lower doses while inducing similar antineoplastic effects.
Collapse
Affiliation(s)
- Jia Jia
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wenbo Ji
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Antoine N Saliba
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Clifford M Csizmar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kaiqin Ye
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Lei Hu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- University of Science and Technology of China, Hefei, 230026, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Kevin L Peterson
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Paula A Schneider
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - X Wei Meng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Annapoorna Venkatachalam
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mrinal M Patnaik
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jonathan A Webster
- Adult Leukemia Program, Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, MD, 21287, USA
| | - B Douglas Smith
- Adult Leukemia Program, Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, MD, 21287, USA
| | - Gabriel Ghiaur
- Adult Leukemia Program, Sidney Kimmel Cancer Center at Johns Hopkins, Baltimore, MD, 21287, USA
| | - Xinyan Wu
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jun Zhong
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
- Manipal Academy of Higher Education, Manipal, 576104, Kamataka, India
| | - Karen S Flatten
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Qingmei Deng
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hongzhi Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China
| | - Scott H Kaufmann
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA.
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
- Division of Oncology Research, Department of Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
26
|
Pandey S, Anang V, Schumacher MM. Mitochondria driven innate immune signaling and inflammation in cancer growth, immune evasion, and therapeutic resistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:223-247. [PMID: 38782500 DOI: 10.1016/bs.ircmb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Mitochondria play an important and multifaceted role in cellular function, catering to the cell's energy and biosynthetic requirements. They modulate apoptosis while responding to diverse extracellular and intracellular stresses including reactive oxygen species (ROS), nutrient and oxygen scarcity, endoplasmic reticulum stress, and signaling via surface death receptors. Integral components of mitochondria, such as mitochondrial DNA (mtDNA), mitochondrial RNA (mtRNA), Adenosine triphosphate (ATP), cardiolipin, and formyl peptides serve as major damage-associated molecular patterns (DAMPs). These molecules activate multiple innate immune pathways both in the cytosol [such as Retionoic Acid-Inducible Gene-1 (RIG-1) and Cyclic GMP-AMP Synthase (cGAS)] and on the cell surface [including Toll-like receptors (TLRs)]. This activation cascade leads to the release of various cytokines, chemokines, interferons, and other inflammatory molecules and oxidative species. The innate immune pathways further induce chronic inflammation in the tumor microenvironment which either promotes survival and proliferation or promotes epithelial to mesenchymal transition (EMT), metastasis and therapeutic resistance in the cancer cell's. Chronic activation of innate inflammatory pathways in tumors also drives immunosuppressive checkpoint expression in the cancer cells and boosts the influx of immune-suppressive populations like Myeloid-Derived Suppressor Cells (MDSCs) and Regulatory T cells (Tregs) in cancer. Thus, sensing of cellular stress by the mitochondria may lead to enhanced tumor growth. In addition to that, the tumor microenvironment also becomes a source of immunosuppressive cytokines. These cytokines exert a debilitating effect on the functioning of immune effector cells, and thus foster immune tolerance and facilitate immune evasion. Here we describe how alteration of the mitochondrial homeostasis and cellular stress drives innate inflammatory pathways in the tumor microenvironment.
Collapse
Affiliation(s)
- Sanjay Pandey
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, United States.
| | - Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Michelle M Schumacher
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, United States; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
27
|
Kopparapu PR, Pearce MC, Löhr CV, Duong C, Jang HS, Tyavanagimatt S, O'Donnell EF, Nakshatri H, Kolluri SK. Identification and Characterization of a Small Molecule Bcl-2 Functional Converter. CANCER RESEARCH COMMUNICATIONS 2024; 4:634-644. [PMID: 38329389 PMCID: PMC10911799 DOI: 10.1158/2767-9764.crc-22-0526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/21/2023] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
Cancer cells exploit the expression of anti-apoptotic protein Bcl-2 to evade apoptosis and develop resistance to therapeutics. High levels of Bcl-2 leads to sequestration of pro-apoptotic proteins causing the apoptotic machinery to halt. In this study, we report discovery of a small molecule, BFC1108 (5-chloro-N-(2-ethoxyphenyl)-2-[(4-methoxybenzyol)amino]benzamide), which targets Bcl-2 and converts it into a pro-apoptotic protein. The apoptotic effect of BFC1108 is not inhibited, but rather potentiated, by Bcl-2 overexpression. BFC1108 induces a conformational change in Bcl-2, resulting in the exposure of its BH3 domain both in vitro and in vivo. BFC1108 suppresses the growth of triple-negative breast cancer xenografts with high Bcl-2 expression and inhibits breast cancer lung metastasis. This study demonstrates a novel approach to targeting Bcl-2 using BFC1108, a small molecule Bcl-2 functional converter that effectively induces apoptosis in Bcl-2-expressing cancers. SIGNIFICANCE We report the identification of a small molecule that exposes the Bcl-2 killer conformation and induces death in Bcl-2-expressing cancer cells. Selective targeting of Bcl-2 and elimination of cancer cells expressing Bcl-2 opens up new therapeutic avenues.
Collapse
Affiliation(s)
- Prasad R. Kopparapu
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Martin C. Pearce
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Christiane V. Löhr
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Cathy Duong
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Hyo Sang Jang
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Shanthakumar Tyavanagimatt
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | - Edmond F. O'Donnell
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
| | | | - Siva K. Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| |
Collapse
|
28
|
Menendez JA, Cuyàs E, Encinar JA, Vander Steen T, Verdura S, Llop‐Hernández À, López J, Serrano‐Hervás E, Osuna S, Martin‐Castillo B, Lupu R. Fatty acid synthase (FASN) signalome: A molecular guide for precision oncology. Mol Oncol 2024; 18:479-516. [PMID: 38158755 PMCID: PMC10920094 DOI: 10.1002/1878-0261.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The initial excitement generated more than two decades ago by the discovery of drugs targeting fatty acid synthase (FASN)-catalyzed de novo lipogenesis for cancer therapy was short-lived. However, the advent of the first clinical-grade FASN inhibitor (TVB-2640; denifanstat), which is currently being studied in various phase II trials, and the exciting advances in understanding the FASN signalome are fueling a renewed interest in FASN-targeted strategies for the treatment and prevention of cancer. Here, we provide a detailed overview of how FASN can drive phenotypic plasticity and cell fate decisions, mitochondrial regulation of cell death, immune escape and organ-specific metastatic potential. We then present a variety of FASN-targeted therapeutic approaches that address the major challenges facing FASN therapy. These include limitations of current FASN inhibitors and the lack of precision tools to maximize the therapeutic potential of FASN inhibitors in the clinic. Rethinking the role of FASN as a signal transducer in cancer pathogenesis may provide molecularly driven strategies to optimize FASN as a long-awaited target for cancer therapeutics.
Collapse
Affiliation(s)
- Javier A. Menendez
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Jose Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC)Miguel Hernández University (UMH)ElcheSpain
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| | - Sara Verdura
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Àngela Llop‐Hernández
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Júlia López
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Eila Serrano‐Hervás
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
- ICREABarcelonaSpain
| | - Begoña Martin‐Castillo
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- Unit of Clinical ResearchCatalan Institute of OncologyGironaSpain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| |
Collapse
|
29
|
Chiou JT, Wu YY, Lee YC, Chang LS. BCL2L1 inhibitor A-1331852 inhibits MCL1 transcription and triggers apoptosis in acute myeloid leukemia cells. Biochem Pharmacol 2023; 215:115738. [PMID: 37562509 DOI: 10.1016/j.bcp.2023.115738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
BH3 mimetics exert anticancer activity by inhibiting anti-apoptotic BCL2 proteins. However, accumulating evidence indicates that the off-target effects of these drugs tightly modulates their anticancer activities. In this study, we investigated whether the BCL2L1 inhibitor A-1331852 induced the death of U937 acute myeloid leukemia (AML) cells through a non-BCL2L1-targeted effect. A-1331852-induced apoptosis in U937 cells was characterized by increased ROS production, downregulation of MCL1, and loss of mitochondrial membrane potential. Ectopic expression of MCL1 alleviated A-1331852-induced mitochondrial depolarization and cytotoxicity in U937 cells. A-1331852-induced ROS production increased p38 MAPK phosphorylation and inhibited MCL1 transcription. Inhibition of p38 MAPK activation restored MCL1 expression in A-1331852-treated cells. A-1331852 triggered p38 MAPK-mediated Cullin 3 downregulation, which in turn increased PP2Acα expression, thereby reducing CREB phosphorylation. A-1331852 reduced the binding of CREB to the MCL1 promoter, leading to the inhibition of CREB-mediated MCL1 transcription. Furthermore, A-1331852 acted synergistically with the BCL2 inhibitor ABT-199 to induce U937 and ABT-199-resistant U937 cell death by inhibiting MCL1 expression. A similar phenomenon caused A-1331852-induced MCL1 downregulation and cytotoxicity in AML HL-60 cells. Collectively, our data suggest that A-1331852 shows an off-target effect of inhibiting MCL1 transcription, ultimately leading to U937 and HL-60 cell death.
Collapse
Affiliation(s)
- Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yu-Ying Wu
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
30
|
Barroso T, Melo-Alvim C, Ribeiro LA, Casimiro S, Costa L. Targeting Inhibitor of Apoptosis Proteins to Overcome Chemotherapy Resistance-A Marriage between Targeted Therapy and Cytotoxic Chemotherapy. Int J Mol Sci 2023; 24:13385. [PMID: 37686191 PMCID: PMC10487656 DOI: 10.3390/ijms241713385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Precision oncology is the ultimate goal of cancer treatment, i.e., to treat cancer and only cancer, leaving all the remaining cells and tissues as intact as possible. Classical chemotherapy and radiotherapy, however, are still effective in many patients with cancer by effectively inducing apoptosis of cancer cells. Cancer cells might resist apoptosis via the anti-apoptotic effects of the inhibitor of apoptosis proteins. Recently, the inhibitors of those proteins have been developed with the goal of enhancing the cytotoxic effects of chemotherapy and radiotherapy, and one of them, xevinapant, has already demonstrated effectiveness in a phase II clinical trial. This class of drugs represents an example of synergism between classical cytotoxic chemo- and radiotherapy and new targeted therapy.
Collapse
Affiliation(s)
- Tiago Barroso
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisbon, Portugal; (C.M.-A.); (L.A.R.); (L.C.)
| | - Cecília Melo-Alvim
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisbon, Portugal; (C.M.-A.); (L.A.R.); (L.C.)
| | - Leonor Abreu Ribeiro
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisbon, Portugal; (C.M.-A.); (L.A.R.); (L.C.)
| | - Sandra Casimiro
- Luís Costa Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| | - Luís Costa
- Medical Oncology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte, 1649-035 Lisbon, Portugal; (C.M.-A.); (L.A.R.); (L.C.)
- Luís Costa Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisbon, Portugal;
| |
Collapse
|
31
|
Wang H, Guo M, Wei H, Chen Y. Structural basis of the specificity and interaction mechanism of Bmf binding to pro-survival Bcl-2 family proteins. Comput Struct Biotechnol J 2023; 21:3760-3767. [PMID: 37560128 PMCID: PMC10407628 DOI: 10.1016/j.csbj.2023.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/11/2023] Open
Abstract
The apoptotic pathway is regulated by protein-protein interactions between members of the Bcl-2 family. Pro-survival Bcl-2 family proteins act as cell guardians and protect cells against death. Selective binding and neutralization of BH3-only proteins with pro-survival Bcl-2 family proteins is critical for initiating apoptosis. In this study, the binding assay shows that the BH3 peptide derived from the BH3-only protein Bmf has a high affinity for the pro-survival proteins Bcl-2 and Bcl-xL, but a much lower affinity for Mcl-1. The complex structures of Bmf BH3 with Bcl-2, Bcl-xL and Mcl-1 reveal that the α-helical Bmf BH3 accommodates into the canonical groove of these pro-survival proteins, but the conformational changes and some interactions are different among the three complexes. Bmf BH3 forms conserved hydrophobic and salt bridge interactions with Bcl-2 and Bcl-xL, and also establishes several hydrogen bonds to support their binding. However, the highly conserved Asp-Arg salt bridge is not formed in the Mcl-1/Bmf BH3 complex, and few hydrogen bonds are observed. Furthermore, mutational analysis shows that substitutions of less-conserved residues in the α2-α3 region of these pro-survival Bcl-2 family proteins, as well as the highly conserved Arg, lead to significant changes in their binding affinity to Bmf BH3, while substitutions of less-conserved residues in Bmf BH3 have a more dramatic effect on its affinity to Mcl-1. This study provides structural insight into the specificity and interaction mechanism of Bmf BH3 binding to pro-survival Bcl-2 family proteins, and helps guide the design of BH3 mimics targeting pro-survival Bcl-2 family proteins.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
32
|
Valentini E, Di Martile M, Brignone M, Di Caprio M, Manni I, Chiappa M, Sergio I, Chiacchiarini M, Bazzichetto C, Conciatori F, D'Aguanno S, D'Angelo C, Ragno R, Russillo M, Colotti G, Marchesi F, Bellone ML, Dal Piaz F, Felli MP, Damia G, Del Bufalo D. Bcl-2 family inhibitors sensitize human cancer models to therapy. Cell Death Dis 2023; 14:441. [PMID: 37460459 DOI: 10.1038/s41419-023-05963-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/20/2023]
Abstract
BH3 mimetics, targeting the Bcl-2 family anti-apoptotic proteins, represent a promising therapeutic opportunity in cancers. ABT-199, the first specific Bcl-2 inhibitor, was approved by FDA for the treatment of several hematological malignancies. We have recently discovered IS21, a novel pan BH3 mimetic with preclinical antitumor activity in several tumor types. Here, we evaluated the efficacy of IS21 and other BH3 mimetics, both as single agents and combined with the currently used antineoplastic agents in T-cell acute lymphoblastic leukemia, ovarian cancer, and melanoma. IS21 was found to be active in T-cell acute lymphoblastic leukemia, melanoma, lung, pancreatic, and ovarian cancer cell lines. Bcl-xL and Mcl-1 protein levels predicted IS21 sensitivity in melanoma and ovarian cancer, respectively. Exploring IS21 mechanism of action, we found that IS21 activity depends on the presence of BAX and BAK proteins: complexes between Bcl-2 and Bcl-xL proteins and their main binding partners were reduced after IS21 treatment. In combination experiments, BH3 mimetics sensitized leukemia cells to chemotherapy, ovarian cancer cells and melanoma models to PARP and MAPK inhibitors, respectively. We showed that this enhancing effect was related to the potentiation of the apoptotic pathway, both in hematologic and solid tumors. In conclusion, our data suggest the use of inhibitors of anti-apoptotic proteins as a therapeutic strategy to enhance the efficacy of anticancer treatment.
Collapse
Affiliation(s)
- Elisabetta Valentini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Matteo Brignone
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Marica Di Caprio
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Isabella Manni
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Michela Chiappa
- Laboratory of Gynecological Preclinical Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Sergio
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Martina Chiacchiarini
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Bazzichetto
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Fabiana Conciatori
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Simona D'Aguanno
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Carmen D'Angelo
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug Chemistry and Technology, Sapienza University of Rome, Rome, Italy
| | - Michelangelo Russillo
- Division of Medical Oncology, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council, Rome, Italy
| | - Francesco Marchesi
- Hematology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Laura Bellone
- Department of Medicine, Surgery and Dentistry, University of Salerno, Fisciano, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry, University of Salerno, Fisciano, Italy
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Giovanna Damia
- Laboratory of Gynecological Preclinical Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
33
|
Al-Sawaf O, Zhang C, Jin HY, Robrecht S, Choi Y, Balasubramanian S, Kotak A, Chang YM, Fink AM, Tausch E, Schneider C, Ritgen M, Kreuzer KA, Chyla B, Paulson JN, Pallasch CP, Frenzel LP, Peifer M, Eichhorst B, Stilgenbauer S, Jiang Y, Hallek M, Fischer K. Transcriptomic profiles and 5-year results from the randomized CLL14 study of venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab in chronic lymphocytic leukemia. Nat Commun 2023; 14:2147. [PMID: 37072421 PMCID: PMC10113251 DOI: 10.1038/s41467-023-37648-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/24/2023] [Indexed: 04/20/2023] Open
Abstract
Data on long-term outcomes and biological drivers associated with depth of remission after BCL2 inhibition by venetoclax in the treatment of chronic lymphocytic leukemia (CLL) are limited. In this open-label parallel-group phase-3 study, 432 patients with previously untreated CLL were randomized (1:1) to receive either 1-year venetoclax-obinutuzumab (Ven-Obi, 216 patients) or chlorambucil-Obi (Clb-Obi, 216 patients) therapy (NCT02242942). The primary endpoint was investigator-assessed progression-free survival (PFS); secondary endpoints included minimal residual disease (MRD) and overall survival. RNA sequencing of CD19-enriched blood was conducted for exploratory post-hoc analyses. After a median follow-up of 65.4 months, PFS is significantly superior for Ven-Obi compared to Clb-Obi (Hazard ratio [HR] 0.35 [95% CI 0.26-0.46], p < 0.0001). At 5 years after randomization, the estimated PFS rate is 62.6% after Ven-Obi and 27.0% after Clb-Obi. In both arms, MRD status at the end of therapy is associated with longer PFS. MRD + ( ≥ 10-4) status is associated with increased expression of multi-drug resistance gene ABCB1 (MDR1), whereas MRD6 (< 10-6) is associated with BCL2L11 (BIM) expression. Inflammatory response pathways are enriched in MRD+ patient solely in the Ven-Obi arm. These data indicate sustained long-term efficacy of fixed-duration Ven-Obi in patients with previously untreated CLL. The distinct transcriptomic profile of MRD+ status suggests possible biological vulnerabilities.
Collapse
Affiliation(s)
- Othman Al-Sawaf
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany.
- Cancer Institute, University College London, London, UK.
- Francis Crick Institute, London, UK.
| | - Can Zhang
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
| | | | - Sandra Robrecht
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
| | - Yoonha Choi
- Genentech Inc., South San Francisco, CA, USA
| | | | - Alex Kotak
- Roche Products Ltd, Welwyn Garden City, UK
| | | | - Anna Maria Fink
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
| | - Eugen Tausch
- Department III of Internal Medicine, Ulm University, Ulm, Germany
| | | | - Matthias Ritgen
- Department II of Internal Medicine, University of Schleswig Holstein, Kiel, Germany
| | - Karl-Anton Kreuzer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
| | | | | | - Christian P Pallasch
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
| | - Lukas P Frenzel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
| | - Martin Peifer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Translational Genomics, Cologne, Germany
| | - Barbara Eichhorst
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany
| | | | | | - Michael Hallek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany.
| | - Kirsten Fischer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Cologne, Germany.
| |
Collapse
|
34
|
Hartman ML, Czyz M. BCL-G: 20 years of research on a non-typical protein from the BCL-2 family. Cell Death Differ 2023:10.1038/s41418-023-01158-5. [PMID: 37031274 DOI: 10.1038/s41418-023-01158-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
Proteins from the BCL-2 family control cell survival and apoptosis in health and disease, and regulate apoptosis-unrelated cellular processes. BCL-Gonad (BCL-G, also known as BCL2-like 14) is a non-typical protein of the family as its long isoform (BCL-GL) consists of BH2 and BH3 domains without the BH1 motif. BCL-G is predominantly expressed in normal testes and different organs of the gastrointestinal tract. The complexity of regulatory mechanisms of BCL-G expression and post-translational modifications suggests that BCL-G may play distinct roles in different types of cells and disorders. While several genetic alterations of BCL2L14 have been reported, gene deletions and amplifications prevail, which is also confirmed by the analysis of sequencing data for different types of cancer. Although the studies validating the phenotypic consequences of genetic manipulations of BCL-G are limited, the role of BCL-G in apoptosis has been undermined. Recent studies using gene-perturbation approaches have revealed apoptosis-unrelated functions of BCL-G in intracellular trafficking, immunomodulation, and regulation of the mucin scaffolding network. These studies were, however, limited mainly to the role of BCL-G in the gastrointestinal tract. Therefore, further efforts using state-of-the-art methods and various types of cells are required to find out more about BCL-G activities. Deciphering the isoform-specific functions of BCL-G and the BCL-G interactome may result in the designing of novel therapeutic approaches, in which BCL-G activity will be either imitated using small-molecule BH3 mimetics or inhibited to counteract BCL-G upregulation. This review summarizes two decades of research on BCL-G.
Collapse
Affiliation(s)
- Mariusz L Hartman
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland.
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215, Lodz, Poland
| |
Collapse
|
35
|
Miyazaki K, Kishimoto H, Kobayashi H, Suzuki A, Higuchi K, Shirasaka Y, Inoue K. The Glycosylated N-Terminal Domain of MUC1 Is Involved in Chemoresistance by Modulating Drug Permeation Across the Plasma Membrane. Mol Pharmacol 2023; 103:166-175. [PMID: 36804202 DOI: 10.1124/molpharm.122.000597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/21/2022] [Indexed: 12/09/2022] Open
Abstract
Mucin 1 (MUC1) is aberrantly expressed in various cancers and implicated in cancer progression and chemoresistance. Although the C-terminal cytoplasmic tail of MUC1 is involved in signal transduction, promoting chemoresistance, the role of the extracellular MUC1 domain [N-terminal glycosylated domain (NG)-MUC1] remains unclear. In this study, we generated stable MCF7 cell lines expressing MUC1 and cytoplasmic tail-deficient MUC1 (MUC1ΔCT) and show that NG-MUC1 is involved in drug resistance by modulating the transmembrane permeation of various compounds without cytoplasmic tail signaling. Heterologous expression of MUC1ΔCT increased cell survival in treating anticancer drugs (such as 5-fluorouracil, cisplatin, doxorubicin, and paclitaxel), in particular by causing an approximately 150-fold increase in the IC50 of paclitaxel, a lipophilic drug, compared with the control [5-fluorouracil (7-fold), cisplatin (3-fold), and doxorubicin (18-fold)]. The uptake studies revealed that accumulations of paclitaxel and Hoechst 33342, a membrane-permeable nuclear staining dye, were reduced to 51% and 45%, respectively, in cells expressing MUC1ΔCT via ABCB1/P-gp-independent mechanisms. Such alterations in chemoresistance and cellular accumulation were not observed in MUC13-expressing cells. Furthermore, we found that MUC1 and MUC1ΔCT increased the cell-adhered water volume by 2.6- and 2.7-fold, respectively, suggesting the presence of a water layer on the cell surface created by NG-MUC1. Taken together, these results suggest that NG-MUC1 acts as a hydrophilic barrier element against anticancer drugs and contributes to chemoresistance by limiting the membrane permeation of lipophilic drugs. Our findings could help better the understanding of the molecular basis of drug resistance in cancer chemotherapy. SIGNIFICANCE STATEMENT: Membrane-bound mucin (MUC1), aberrantly expressed in various cancers, is implicated in cancer progression and chemoresistance. Although the MUC1 cytoplasmic tail is involved in proliferation-promoting signal transduction thereby leading to chemoresistance, the significance of the extracellular domain remains unclear. This study clarifies the role of the glycosylated extracellular domain as a hydrophilic barrier element to limit the cellular uptake of lipophilic anticancer drugs. These findings could help better the understanding of the molecular basis of MUC1 and drug resistance in cancer chemotherapy.
Collapse
Affiliation(s)
- Kaori Miyazaki
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences (K.M., H.Ki, H.Ko, A.S., K.H., and K.I.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (Y.S.)
| | - Hisanao Kishimoto
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences (K.M., H.Ki, H.Ko, A.S., K.H., and K.I.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (Y.S.)
| | - Hanai Kobayashi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences (K.M., H.Ki, H.Ko, A.S., K.H., and K.I.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (Y.S.)
| | - Ayaka Suzuki
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences (K.M., H.Ki, H.Ko, A.S., K.H., and K.I.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (Y.S.)
| | - Kei Higuchi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences (K.M., H.Ki, H.Ko, A.S., K.H., and K.I.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (Y.S.)
| | - Yoshiyuki Shirasaka
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences (K.M., H.Ki, H.Ko, A.S., K.H., and K.I.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (Y.S.)
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences (K.M., H.Ki, H.Ko, A.S., K.H., and K.I.) and Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University (Y.S.)
| |
Collapse
|
36
|
Abstract
The intrinsic apoptosis pathway is controlled by the BCL-2 family of proteins. Although the pro-survival members of this family can help cancer cells evade apoptosis, they may also produce apoptotic vulnerabilities that can potentially be exploited therapeutically. Apoptotic vulnerabilities can be driven by endogenous factors including altered genetics, signaling, metabolism, structure and lineage or differentiation state as well as imposed factors, the most prominent being exposure to anti-cancer agents. The recent development of BH3 mimetics that inhibit pro-survival BCL-2 family proteins has allowed these apoptotic vulnerabilities to be targeted with demonstrable clinical success. Here, we review the key concepts that are vital for understanding, uncovering, and exploiting apoptotic vulnerabilities in cancer for the potential improvement of patient outcomes.
Collapse
Affiliation(s)
- Kristopher A. Sarosiek
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kris C. Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| |
Collapse
|