1
|
Slezak AJ, Chang K, Beckman TN, Refvik KC, Alpar AT, Lauterbach AL, Solanki A, Kwon JW, Gomes S, Mansurov A, Hubbell JA. Cysteine-binding adjuvant enhances survival and promotes immune function in a murine model of acute myeloid leukemia. Blood Adv 2024; 8:1747-1759. [PMID: 38324726 PMCID: PMC10985806 DOI: 10.1182/bloodadvances.2023012529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
ABSTRACT Therapeutic vaccination has long been a promising avenue for cancer immunotherapy but is often limited by tumor heterogeneity. The genetic and molecular diversity between patients often results in variation in the antigens present on cancer cell surfaces. As a result, recent research has focused on personalized cancer vaccines. Although promising, this strategy suffers from time-consuming production, high cost, inaccessibility, and targeting of a limited number of tumor antigens. Instead, we explore an antigen-agnostic polymeric in situ cancer vaccination platform for treating blood malignancies, in our model here with acute myeloid leukemia (AML). Rather than immunizing against specific antigens or targeting adjuvant to specific cell-surface markers, this platform leverages a characteristic metabolic and enzymatic dysregulation in cancer cells that produces an excess of free cysteine thiols on their surfaces. These thiols increase in abundance after treatment with cytotoxic agents such as cytarabine, the current standard of care in AML. The resulting free thiols can undergo efficient disulfide exchange with pyridyl disulfide (PDS) moieties on our construct and allow for in situ covalent attachment to cancer cell surfaces and debris. PDS-functionalized monomers are incorporated into a statistical copolymer with pendant mannose groups and TLR7 agonists to target covalently linked antigen and adjuvant to antigen-presenting cells in the liver and spleen after IV administration. There, the compound initiates an anticancer immune response, including T-cell activation and antibody generation, ultimately prolonging survival in cancer-bearing mice.
Collapse
Affiliation(s)
- Anna J. Slezak
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | - Kevin Chang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | - Taryn N. Beckman
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL
| | - Kirsten C. Refvik
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | - Aaron T. Alpar
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | | | - Ani Solanki
- Animal Resource Center, University of Chicago, Chicago, IL
| | - Jung Woo Kwon
- Department of Pathology, University of Chicago, Chicago, IL
| | - Suzana Gomes
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | - Aslan Mansurov
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
| | - Jeffrey A. Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL
- Committee on Immunology, University of Chicago, Chicago, IL
- Committee on Cancer Biology, University of Chicago, Chicago, IL
| |
Collapse
|
2
|
Awad RM, De Vlaeminck Y, Meeus F, Ertveldt T, Zeven K, Ceuppens H, Goyvaerts C, Verdonck M, Salguero G, Raes G, Devoogdt N, Breckpot K. In vitro modelling of local gene therapy with IL-15/IL-15Rα and a PD-L1 antagonist in melanoma reveals an interplay between NK cells and CD4 + T cells. Sci Rep 2023; 13:18995. [PMID: 37923822 PMCID: PMC10624833 DOI: 10.1038/s41598-023-45948-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
Blockade of the immune checkpoint axis consisting of programmed death-1 (PD-1) and its ligand PD-L1 alleviates the functional inhibition of tumor-infiltrating lymphoid cells yet weakly induces their expansion. Exogenous cytokines could further expand lymphoid cells and thus synergize with αPD-L1 therapy. However, systemic delivery of most cytokines causes severe toxicity due to unspecific expansion of immune cells in the periphery. Here, we modelled local delivery of cytokines and αPD-L1 therapeutics to immune cell-containing in vitro melanoma tumors. Three-dimensional tumor models consisting of 624-MEL cells were co-cultured with human peripheral blood lymphoid cells (PBLs) in presence of the cytokines IL-2, IL-7, IL-15, IL-21 and IFN-γ. To model local gene therapy, melanoma tumors were modified with lentiviral vectors encoding IL-15 fused to IL-15Rα (IL-15/IL-15Rα) and K2-Fc, a fusion of a human PD-L1 specific single domain antibody to immunoglobulin (Ig)G1 Fc. To evaluate the interplay between PBL fractions, NK cells, CD4+ T cells or CD8+ T cells were depleted. Tumor cell killing was followed up using real time imaging and immune cell expansion and activation was evaluated with flow cytometry. Among the tested cytokines, IL-15 was the most potent cytokine in stimulating tumor cell killing and expanding both natural killer (NK) cells and CD8+ T cells. Gene-based delivery of IL-15/IL-15Rα to tumor cells, shows expansion of NK cells, activation of NK cells, CD4+ and CD8+ T cells, and killing of tumor spheroids. Both NK cells and CD8+ T cells are necessary for tumor cell killing and CD4+ T-cell activation was reduced without NK cells. Co-delivery of K2-Fc improved tumor cell killing coinciding with increased activation of NK cells, which was independent of bystander T cells. CD4+ or CD8+ T cells were not affected by the co-delivery of K2-Fc even though NK-cell activation impacted CD4+ T-cell activation. This study demonstrates that gene-based delivery of IL-15/IL-15Rα to tumor cells effectively mediates anti-tumor activity and sensitizes the tumor microenvironment for therapy with αPD-L1 therapeutics mainly by impacting NK cells. These findings warrant further investigation of gene-based IL-15 and K2-Fc delivery in vivo.
Collapse
Affiliation(s)
- Robin Maximilian Awad
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium.
| | - Yannick De Vlaeminck
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Fien Meeus
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Thomas Ertveldt
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Katty Zeven
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Hannelore Ceuppens
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Cleo Goyvaerts
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Magali Verdonck
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium
| | - Gustavo Salguero
- Advanced Therapies Unit, Instituto Distrital de Ciencia Biotecnología e Innovación en Salud-IDCBIS, 111611, Bogotá, Colombia
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050, Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, VIB Center for Inflammation Research, 1050, Brussels, Belgium
- Laboratory of Dendritic Cell Biology and Cancer Immunotherapy, VIB Center for Inflammation Research, 1050, Brussels, Belgium
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory, Department of Medical Imaging, Vrije Universiteit Brussel, 1090, Brussels, Belgium
| | - Karine Breckpot
- Translational Oncology Research Center (TORC), Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences (BMWE), Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090, Brussels, Belgium.
| |
Collapse
|
3
|
Boulch M, Cazaux M, Cuffel A, Guerin MV, Garcia Z, Alonso R, Lemaître F, Beer A, Corre B, Menger L, Grandjean CL, Morin F, Thieblemont C, Caillat-Zucman S, Bousso P. Tumor-intrinsic sensitivity to the pro-apoptotic effects of IFN-γ is a major determinant of CD4 + CAR T-cell antitumor activity. NATURE CANCER 2023; 4:968-983. [PMID: 37248395 PMCID: PMC10368531 DOI: 10.1038/s43018-023-00570-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
CD4+ T cells and CD4+ chimeric antigen receptor (CAR) T cells display highly variable antitumor activity in preclinical models and in patients; however, the mechanisms dictating how and when CD4+ T cells promote tumor regression are incompletely understood. With the help of functional intravital imaging, we report that interferon (IFN)-γ production but not perforin-mediated cytotoxicity was the dominant mechanism for tumor elimination by anti-CD19 CD4+ CAR T cells. Mechanistically, mouse or human CD4+ CAR T-cell-derived IFN-γ diffused extensively to act on tumor cells at distance selectively killing tumors sensitive to cytokine-induced apoptosis, including antigen-negative variants. In anti-CD19 CAR T-cell-treated patients exhibiting elevated CAR CD4:CD8 ratios, strong induction of serum IFN-γ was associated with increased survival. We propose that the sensitivity of tumor cells to the pro-apoptotic activity of IFN-γ is a major determinant of CD4+ CAR T-cell efficacy and may be considered to guide the use of CD4+ T cells during immunotherapy.
Collapse
Affiliation(s)
- Morgane Boulch
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Marine Cazaux
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Alexis Cuffel
- Université de Paris Cité, Hôpital Saint-Louis, AP-HP Nord, Laboratoire d'Immunologie, Paris, France
- INSERM UMR976, Institut de Recherche St-Louis, Paris, France
| | - Marion V Guerin
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Zacarias Garcia
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Ruby Alonso
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Fabrice Lemaître
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Alexander Beer
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Béatrice Corre
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Laurie Menger
- Gustave Roussy, Villejuif, France; INSERM U1015, Villejuif, France
| | - Capucine L Grandjean
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Florence Morin
- Université de Paris Cité, Hôpital Saint-Louis, AP-HP Nord, Laboratoire d'Immunologie, Paris, France
| | - Catherine Thieblemont
- Service d'Hémato-Oncologie, Hôpital Saint-Louis, AP-HP, Université de Paris Cité, Paris, France
| | - Sophie Caillat-Zucman
- Université de Paris Cité, Hôpital Saint-Louis, AP-HP Nord, Laboratoire d'Immunologie, Paris, France
- INSERM UMR976, Institut de Recherche St-Louis, Paris, France
| | - Philippe Bousso
- Institut Pasteur, Université de Paris Cité, INSERM U1223, Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Paris, France.
| |
Collapse
|
4
|
Berger A, Colpitts SJ, Zych M, Paige CJ. Engineered murine IL-21-secreting leukemia cells induce granzyme B + T cells and CD4 +CD44 +CD62L - effector memory cells while suppressing regulatory T cells, leading to long-term survival. Cancer Immunol Immunother 2023:10.1007/s00262-023-03442-2. [PMID: 37061631 DOI: 10.1007/s00262-023-03442-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/28/2023] [Indexed: 04/17/2023]
Abstract
We have explored the use of an IL-21 cell-based anti-leukemia treatment in a mouse model of acute lymphoblastic leukemia. 70Z/3 leukemia cells, engineered to secrete IL-21 and injected into the peritoneum of syngeneic mice, induced a strong anti-leukemia response resulting in 100% survival. Mice that mounted an IL-21-induced anti-leukemia immune response were immune to the parent cell line (no IL-21) when rechallenged.Above a certain threshold, IL-21 secretion correlated with improved survival compared to mice injected with parent 70Z/3 cells. IL-21 was detected in serum with peak levels on day 7, correlating with the maximum expansion of IL-21-secreting 70Z/3 cells which subsequently were eliminated. Mice injected with IL-21-secreting leukemia cells had elevated numbers of granzyme B+ CD4+ and CD8+ T cells in the peritoneum, compared to mice injected with the parent cell line. Regulatory T cells, which increased greatly in 70Z/3-injected mice, failed to do so in mice injected with IL-21-secreting cells. Upon rechallenge, IL-21-primed mice went through a secondary immune response, primarily requiring CD4+ T cells, triggering a significant increase of CD4+CD44+CD62L- effector memory T cells. Adoptive transfer of T cells from IL21-primed/rechallenged hosts into naïve mice was successful, indicating that IL-21-primed antigen-experienced T cells convey immunity to naïve mice.Our study shows that delivery of IL-21 in a cell-based anti-leukemia protocol has the potential to induce a potent immune response leading to cancer elimination and long-term immunity-properties which make IL-21 an attractive candidate for cancer immunotherapy. Protecting against tumor antigens as well as improving cancer immunity is justified, as current strategies are limited.
Collapse
Affiliation(s)
- Alexandra Berger
- Princess Margaret Cancer Centre, University Health Network, Room 8-105, Toronto, ON, M5G 2M9, Canada.
| | - Sarah J Colpitts
- Princess Margaret Cancer Centre, University Health Network, Room 8-105, Toronto, ON, M5G 2M9, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Toronto General Hospital Research Institute, Ajmera Transplant Centre, University Health Network, Toronto, Canada
| | - Morgan Zych
- Princess Margaret Cancer Centre, University Health Network, Room 8-105, Toronto, ON, M5G 2M9, Canada
| | - Christopher J Paige
- Princess Margaret Cancer Centre, University Health Network, Room 8-105, Toronto, ON, M5G 2M9, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Rademacher MJ, Cruz A, Faber M, Oldham RAA, Wang D, Medin JA, Schloemer NJ. Sarcoma IL-12 overexpression facilitates NK cell immunomodulation. Sci Rep 2021; 11:8321. [PMID: 33859303 PMCID: PMC8050085 DOI: 10.1038/s41598-021-87700-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/30/2021] [Indexed: 01/04/2023] Open
Abstract
Interleukin-12 (IL-12) is an inflammatory cytokine that has demonstrated efficacy for cancer immunotherapy, but systemic administration has detrimental toxicities. Lentiviral transduction eliciting IL-12-producing human sarcoma for autologous reintroduction provides localized delivery for both innate and adaptive immune response augmentation. Sarcoma cell lines and primary human sarcoma samples were transduced with recombinant lentivirus engineering expression of human IL-12 (hu-IL-12). IL-12 expressing sarcomas were assessed in vitro and in vivo following implantation into humanized NSG and transgenic human IL-15 expressing (NSG.Tg(Hu-IL-15)) murine models. Lentiviral transduction (LV/hu-IL-12) of human osteosarcoma, Ewing sarcoma and rhabdomyosarcoma cell lines, as well as low-passage primary human sarcomas, engendered high-level expression of hu-IL-12. Hu-IL-12 demonstrated functional viability, eliciting specific NK cell-mediated interferon-γ (IFN-γ) release and cytotoxic growth restriction of spheroids in vitro. In orthotopic xenograft murine models, the LV/hu-IL-12 transduced human sarcoma produced detectable IL-12 and elicited an IFN-γ inflammatory immune response specific to mature human NK reconstitution in the NSG.Tg(Hu-IL-15) model while restricting tumor growth. We conclude that LV/hu-IL-12 transduction of sarcoma elicits a specific immune reaction and the humanized NSG.Tg(Hu-IL-15) xenograft, with mature human NK cells, can define in vivo anti-tumor effects and systemic toxicities. IL-12 immunomodulation through autologous tumor transduction and reintroduction merits exploration for sarcoma treatment.
Collapse
Affiliation(s)
- Mary Jo Rademacher
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Anahi Cruz
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mary Faber
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robyn A A Oldham
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Dandan Wang
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Jeffrey A Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Biochemisty, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Nathan J Schloemer
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
6
|
Thi VAD, Jeon HM, Park SM, Lee H, Kim YS. Cell-Based IL-15:IL-15Rα Secreting Vaccine as an Effective Therapy for CT26 Colon Cancer in Mice. Mol Cells 2019; 42:869-883. [PMID: 31760731 PMCID: PMC6939657 DOI: 10.14348/molcells.2019.0188] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/03/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Interleukin (IL)-15 is an essential immune-modulator with high potential for use in cancer treatment. Natural IL-15 has a low biological potency because of its short half-life and difficulties in mass-production. IL-15Rα, a member of the IL-15 receptor complex, is famous for its high affinity to IL-15 and its ability to lengthen the half-life of IL-15. We have double-transfected IL-15 and its truncated receptor IL-15Rα into CT26 colon cancer cells to target them for intracellular assembly. The secreted IL-15:IL-15Rα complexes were confirmed in ELISA and Co-IP experiments. IL-15:IL15Rα secreting clones showed a higher anti-tumor effect than IL-15 secreting clones. Furthermore, we also evaluated the vaccine and therapeutic efficacy of the whole cancercell vaccine using mitomycin C (MMC)-treated IL-15:IL15Rα secreting CT26 clones. Three sets of experiments were evaluated; (1) therapeutics, (2) vaccination, and (3) longterm protection. Wild-type CT26-bearing mice treated with a single dose of MMC-inactivated secreted IL-15:IL-15Rα clones prolonged survival compared to the control group. Survival of MMC-inactivated IL-15:IL-15Rα clone-vaccinated mice (without any further adjuvant) exceeded up to 100%. This protection effect even lasted for at least three months after the immunization. Secreted IL-15:IL-15Rα clones challenging trigger anti-tumor response via CD4+ T, CD8+ T, and natural killer (NK) cell-dependent cytotoxicity. Our result suggested that cell-based vaccine secreting IL-15:IL-15Rα, may offer the new tools for immunotherapy to treat cancer.
Collapse
Affiliation(s)
- Van Anh Do Thi
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Hyung Min Jeon
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Sang Min Park
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| | - Hayyoung Lee
- Institute of Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Young Sang Kim
- Department of Biochemistry, College of Natural Sciences, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
7
|
Berger A, Colpitts SJ, Seabrook MSS, Furlonger CL, Bendix MB, Moreau JM, McKillop WM, Medin JA, Paige CJ. Interleukin-15 in cancer immunotherapy: IL-15 receptor complex versus soluble IL-15 in a cancer cell-delivered murine leukemia model. J Immunother Cancer 2019; 7:355. [PMID: 31856922 PMCID: PMC6924073 DOI: 10.1186/s40425-019-0777-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/22/2019] [Indexed: 01/13/2023] Open
Abstract
Cytokines of the common γ-chain receptor family such as IL-15 are vital with respect to activating immune cells, sustaining healthy immune functions, and augmenting the anti-tumor activity of effector cells, making them ideal candidates for cancer immunotherapy. IL-15, either in its soluble form (IL-15sol) or complexed with IL-15Rα (IL-15Rc), has been shown to exhibit potent anti-tumor activities in various experimental cancer studies. Here we describe the impact of intraperitoneal IL-15 in a cancer cell-delivered IL-15 immunotherapy approach using the 70Z/3-L leukemia mouse model. Whereas both forms of IL-15 led to significantly improved survival rates compared to the parent cell line, there were striking differences in the extent of the improved survival: mice receiving cancer cells secreting IL-15sol showed significantly longer survival and protective long-term immunity compared to those producing IL-15Rc. Interestingly, injection of leukemia cells secreting IL-15sol lead to heightened expansion of CD4+ and CD8+ T-cell populations in the peritoneum compared to IL-15Rc. Cell-secreted IL-15Rc resulted in an influx and/or expansion of NK1.1+ cells in the peritoneum which was much less pronounced in the IL-15sol model. Furthermore, IL-15Rc but not IL-15sol lead to T-cell exhaustion and disease progression. To our knowledge, this is the first study detailing a significantly different biological effect of cell-delivered IL-15sol versus IL-15Rc in a mouse cancer immunotherapy study.
Collapse
Affiliation(s)
- Alexandra Berger
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 8-105, Toronto, Ontario, M5G 2M9, Canada.
| | - Sarah J Colpitts
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 8-105, Toronto, Ontario, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Canada
| | - Melanie S S Seabrook
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 8-105, Toronto, Ontario, M5G 2M9, Canada
| | - Caren L Furlonger
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 8-105, Toronto, Ontario, M5G 2M9, Canada
| | - Maura B Bendix
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 8-105, Toronto, Ontario, M5G 2M9, Canada
| | - Joshua M Moreau
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 8-105, Toronto, Ontario, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Canada.,Department of Dermatology, University of California San Francisco, San Francisco, USA
| | - William M McKillop
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 8-105, Toronto, Ontario, M5G 2M9, Canada.,Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, USA
| | - Jeffrey A Medin
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 8-105, Toronto, Ontario, M5G 2M9, Canada.,Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, USA.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Christopher J Paige
- Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Room 8-105, Toronto, Ontario, M5G 2M9, Canada.,Department of Immunology, University of Toronto, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Liu P, Jia S, Lou Y, He K, Xu LX. Cryo-thermal therapy inducing MI macrophage polarization created CXCL10 and IL-6-rich pro-inflammatory environment for CD4 + T cell-mediated anti-tumor immunity. Int J Hyperthermia 2019; 36:408-420. [PMID: 30892102 DOI: 10.1080/02656736.2019.1579373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE We previously developed a novel cryo-thermal therapy to treat malignant mammary carcinoma and melanoma in a mouse model; long-term survival and CD4+ T cell orchestrating anti-tumor immune memory response were achieved. Moreover, cryo-thermal-induced CD4+ T cell differentiation into Th1 and CD4+CTL sub-lineages, in which M1 macrophage polarization played a direct, important role. In particular, cryo-thermal therapy triggered M1 macrophage polarization with up-regulated expression of C-X-C motif ligand 10 (CXCL10) and Interleukin 6 (IL-6). But whether CXCL10 and IL-6 contribute to CD4+ T cell-mediated anti-tumor immunity remains unclear. In this study, the role of cryo-thermal-induced CXCL10 and IL-6 in anti-tumor immunity was determined. METHODS The level of CXCL10 and IL-6 in spleen and serum was determined by RT-PCR and ELISA on day 14 after cryo-thermal therapy. Splenic dendritic cells (DCs) and macrophages were isolated from cryo-thermal-treated mice on day 5 and 14, and the level of CXCL10 and IL-6 in macrophages and DCs was determined by ELISA. The transwell migration assay was performed to study immune cell migration. In vivo neutralization of CXCL10 or IL-6 was performed to investigate the phenotypic changes of immune cells. RESULTS Cryo-thermal therapy induced M1 macrophage polarization with up-regulation of CXCL10 and IL-6 expression in spleen. CXCL10 and IL-6 promoted DCs migration and maturation, and subsequently promoted CD4+ T cell migration and differentiation into Th1 and CD4+ CTL, moreover, reduced myeloid-derived suppressor cells (MDSCs) accumulation. CONCLUSIONS Cryo-thermal-induced CXCL10 and IL-6 created acute inflammatory environment to initiate a systemically cascading innate and adaptive anti-tumor immunity, which was more permissive for tumor eradication.
Collapse
Affiliation(s)
- Ping Liu
- a School of Biomedical Engineering and Med-X Research Institute , Shanghai Jiao Tong University , Shanghai , PR China
| | - Shengguo Jia
- a School of Biomedical Engineering and Med-X Research Institute , Shanghai Jiao Tong University , Shanghai , PR China
| | - Yue Lou
- a School of Biomedical Engineering and Med-X Research Institute , Shanghai Jiao Tong University , Shanghai , PR China
| | - Kun He
- a School of Biomedical Engineering and Med-X Research Institute , Shanghai Jiao Tong University , Shanghai , PR China
| | - Lisa X Xu
- a School of Biomedical Engineering and Med-X Research Institute , Shanghai Jiao Tong University , Shanghai , PR China
| |
Collapse
|
9
|
He K, Jia S, Lou Y, Liu P, Xu LX. Cryo-thermal therapy induces macrophage polarization for durable anti-tumor immunity. Cell Death Dis 2019; 10:216. [PMID: 30833570 PMCID: PMC6399266 DOI: 10.1038/s41419-019-1459-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 12/14/2022]
Abstract
Many cancer therapies are being developed for the induction of durable anti-tumor immunity, especially for malignant tumors. The activation of antigen-presenting cells (APCs), including macrophages and dendritic cells (DCs), can bridge innate and adaptive immune responses against tumors. However, APCs have an immunosuppressive phenotype and reversing it for effective tumor-specific antigen presenting is critical in developing new cancer treatment strategies. We previously developed a novel cryo-thermal therapy to treat malignant melanoma in a mouse model; long-term survival and durable anti-tumor immunity were achieved, but the mechanism involved was unclear. This study revealed cryo-thermal therapy-induced macrophage polarization to the M1 phenotype and modulated the phenotypic and functional maturation of DCs with high expression of co-stimulatory molecules, increased pro-inflammatory cytokine production, and downregulated immuno-inhibitory molecule expression. Further, we observed CD4+ T-cell differentiation into Th1 and cytotoxic T-cell sub-lineages and generation of cytotoxic CD8+ T cells, in which M1 macrophage polarization had a direct, important role. The results indicated that cryo-thermal-induced macrophage polarization to the M1 phenotype was essential to mediate durable anti-tumor immunity, leading to long-term survival. Thus, cryo-thermal therapy is a promising strategy to reshape host immunosuppression, trigger persistent memory immunity for tumor eradication, and inhibit metastasis in the long term.
Collapse
Affiliation(s)
- Kun He
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Shengguo Jia
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Lou
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China.
| | - Lisa X Xu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Nelles ME, Paige CJ. CD4 + T cell plasticity engenders robust immunity in response to cytokine therapy. Oncoimmunology 2015; 4:e994370. [PMID: 25949915 PMCID: PMC4404832 DOI: 10.4161/2162402x.2014.994370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 11/25/2014] [Indexed: 01/26/2023] Open
Abstract
CD4+ T cells represent an entire arm of the immune system that has hitherto been incompletely understood, but their potential to act as both helper and effector may make them optimal protagonists in immunotherapeutic approaches to treat cancer. Cytokine therapy can activate this population in a manner that ensures maximal diversification of effector function for a robust immune response.
Collapse
Affiliation(s)
- Megan E Nelles
- Ontario Cancer Institute; Princess Margaret Cancer Centre; University Health Network ; Toronto, Ontario, Canada ; Department of Medical Biophysics; University of Toronto ; Toronto, Ontario, Canada
| | - Christopher J Paige
- Ontario Cancer Institute; Princess Margaret Cancer Centre; University Health Network ; Toronto, Ontario, Canada ; Department of Medical Biophysics; University of Toronto ; Toronto, Ontario, Canada ; Department of Immunology; University of Toronto ; Toronto, Ontario, Canada
| |
Collapse
|