1
|
Ezzatizadeh F, Bolhassani A, Nematalahi FS, Fateh A. Immunotherapeutic effects of TCL-E5 and TCL-E5-pulsed DCs: two novel HPV therapeutic vaccine candidates. Immunotherapy 2025; 17:191-199. [PMID: 40099844 PMCID: PMC11951720 DOI: 10.1080/1750743x.2025.2478814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
AIM This study investigated the potential of HPV16 E5 oncoprotein-modified tumor cell lysate (TCL-E5) and dendritic cells (DCs) pulsed with TCL-E5 (TCL-E5-pulsed DCs) to enhance antitumor immunity in a murine model. MATERIALS AND METHODS For generation of TCL-E5, TC1 tumor cells were transduced with lentiviral particles harboring E5 protein. Moreover, the cell supernatants were prepared from DCs pulsed with TCL-E5. Their immunological responses and antitumor effects were investigated in a mouse model. RESULTS The TCL-E5-pulsed DCs regimen could direct immunity toward Th1 and CTL responses, leading to tumor volume reduction and high percentage of tumor-free mice. CONCLUSION The TCL-pulsed DCs regimen could not induce significant antitumor effects compared to TCL-E5-pulsed-DCs regimen indicating main role of E5 in vaccine development.
Collapse
Affiliation(s)
- Fahimeh Ezzatizadeh
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis, AIDS and Blood-Borne Diseases, Pasteur Institute of Iran, Tehran, Iran
| | | | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Rezvan A, Romain G, Fathi M, Heeke D, Martinez-Paniagua M, An X, Bandey IN, Montalvo MJ, Adolacion JRT, Saeedi A, Sadeghi F, Fousek K, Puebla-Osorio N, Cooper LJN, Bernatchez C, Singh H, Ahmed N, Mattie M, Bot A, Neelapu S, Varadarajan N. Identification of a clinically efficacious CAR T cell subset in diffuse large B cell lymphoma by dynamic multidimensional single-cell profiling. NATURE CANCER 2024; 5:1010-1023. [PMID: 38750245 DOI: 10.1038/s43018-024-00768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 04/10/2024] [Indexed: 05/24/2024]
Abstract
Chimeric antigen receptor (CAR) T cells used for the treatment of B cell malignancies can identify T cell subsets with superior clinical activity. Here, using infusion products of individuals with large B cell lymphoma, we integrated functional profiling using timelapse imaging microscopy in nanowell grids with subcellular profiling and single-cell RNA sequencing to identify a signature of multifunctional CD8+ T cells (CD8-fit T cells). CD8-fit T cells are capable of migration and serial killing and harbor balanced mitochondrial and lysosomal volumes. Using independent datasets, we validate that CD8-fit T cells (1) are present premanufacture and are associated with clinical responses in individuals treated with axicabtagene ciloleucel, (2) longitudinally persist in individuals after treatment with CAR T cells and (3) are tumor migrating cytolytic cells capable of intratumoral expansion in solid tumors. Our results demonstrate the power of multimodal integration of single-cell functional assessments for the discovery and application of CD8-fit T cells as a T cell subset with optimal fitness in cell therapy.
Collapse
Affiliation(s)
- Ali Rezvan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Gabrielle Romain
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | | | | | | | - Xingyue An
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Irfan N Bandey
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Melisa J Montalvo
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Jay R T Adolacion
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Arash Saeedi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Fatemeh Sadeghi
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA
| | - Kristen Fousek
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Nahum Puebla-Osorio
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Chantale Bernatchez
- Department of Biologics Development, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Harjeet Singh
- Divsion of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nabil Ahmed
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Mike Mattie
- Kite, a Gilead Company, Santa Monica, CA, USA
| | - Adrian Bot
- Kite, a Gilead Company, Santa Monica, CA, USA
| | - Sattva Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
3
|
Zhao R, Yanamandra AK, Qu B. A high-throughput 3D kinetic killing assay. Eur J Immunol 2023; 53:e2350505. [PMID: 37501396 DOI: 10.1002/eji.202350505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
Our work presents a high-throughput kinetic killing assay in the 3D matrix using high-content imaging that is a robust and powerful cytotoxicity assay for evaluating the killing efficiency of immune killer cells or conducting drug screening under physiologically and pathologically relevant scenarios, particularly in the context of solid tumors.
Collapse
Affiliation(s)
- Renping Zhao
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Archana K Yanamandra
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
- INM-Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Bin Qu
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
4
|
Slaats J, Wagena E, Smits D, Berends AA, Peters E, Bakker GJ, van Erp M, Weigelin B, Adema GJ, Friedl P. Adenosine A2a Receptor Antagonism Restores Additive Cytotoxicity by Cytotoxic T Cells in Metabolically Perturbed Tumors. Cancer Immunol Res 2022; 10:1462-1474. [PMID: 36162129 PMCID: PMC9716258 DOI: 10.1158/2326-6066.cir-22-0113] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 07/30/2022] [Accepted: 09/21/2022] [Indexed: 01/10/2023]
Abstract
Cytotoxic T lymphocytes (CTL) are antigen-specific effector cells with the ability to eradicate cancer cells in a contact-dependent manner. Metabolic perturbation compromises the CTL effector response in tumor subregions, resulting in failed cancer cell elimination despite the infiltration of tumor-specific CTLs. Restoring the functionality of these tumor-infiltrating CTLs is key to improve immunotherapy. Extracellular adenosine is an immunosuppressive metabolite produced within the tumor microenvironment. Here, by applying single-cell reporter strategies in 3D collagen cocultures in vitro and progressing tumors in vivo, we show that adenosine weakens one-to-one pairing of activated effector CTLs with target cells, thereby dampening serial cytotoxic hit delivery and cumulative death induction. Adenosine also severely compromised CTL effector restimulation and expansion. Antagonization of adenosine A2a receptor (ADORA2a) signaling stabilized and prolonged CTL-target cell conjugation and accelerated lethal hit delivery by both individual contacts and CTL swarms. Because adenosine signaling is a near-constitutive confounding parameter in metabolically perturbed tumors, ADORA2a targeting represents an orthogonal adjuvant strategy to enhance immunotherapy efficacy.
Collapse
Affiliation(s)
- Jeroen Slaats
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Esther Wagena
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Daan Smits
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Annemarie A. Berends
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ella Peters
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gert-Jan Bakker
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Merijn van Erp
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bettina Weigelin
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies,” University of Tübingen, Tübingen, Germany
| | - Gosse J. Adema
- Radiotherapy and Onco-Immunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter Friedl
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Genitourinary Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
5
|
Weigelin B, Friedl P. T cell-mediated additive cytotoxicity - death by multiple bullets. Trends Cancer 2022; 8:980-987. [PMID: 35965200 DOI: 10.1016/j.trecan.2022.07.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022]
Abstract
Immune effector cells, including cytotoxic T cells (CTLs), induce apoptosis and eliminate target cells by direct cell-cell contacts. In vivo, CTLs fail to efficiently kill solid tumor cells by individual contacts but rely upon multihit interactions by many CTLs (swarming). Recent evidence has indicated that multihit interactions by CTLs induce a series of sublethal damage events in target cells, including perforin-mediated membrane damage, induction of reactive oxygen species (ROS), nuclear envelope rupture, and DNA damage. Individual damage can be repaired, but when induced in rapid sequence, sublethal damage can accumulate and induce target cell death. Here, we summarize the sublethal damage and additive cytotoxicity concepts for CTL-induced and other cell stresses and discuss the implications for improving immunotherapy and multitargeted anticancer therapies.
Collapse
Affiliation(s)
- Bettina Weigelin
- Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany.
| | - Peter Friedl
- Department of Cell Biology, RIMLS, Radboud University Medical Center, Nijmegen, The Netherlands; David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Cancer Genomics Centre Netherlands (CGC.nl), Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Mao W. Overcoming current challenges to T-cell receptor therapy via metabolic targeting to increase antitumor efficacy, durability, and tolerability. Front Immunol 2022; 13:1056622. [PMID: 36479131 PMCID: PMC9720167 DOI: 10.3389/fimmu.2022.1056622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
The antitumor potential of personalized immunotherapy, including adoptive T-cell therapy, has been shown in both preclinical and clinical studies. Combining cell therapy with targeted metabolic interventions can further enhance therapeutic outcomes in terms of magnitude and durability. The ability of a T cell receptor to recognize peptides derived from tumor neoantigens allows for a robust yet specific response against cancer cells while sparing healthy tissue. However, there exist challenges to adoptive T cell therapy such as a suppressive tumor milieu, the fitness and survival of transferred cells, and tumor escape, all of which can be targeted to further enhance the antitumor potential of T cell receptor-engineered T cell (TCR-T) therapy. Here, we explore current strategies involving metabolic reprogramming of both the tumor microenvironment and the cell product, which can lead to increased T cell proliferation, survival, and anti-tumor cytotoxicity. In addition, we highlight potential metabolic pathways and targets which can be leveraged to improve engraftment of transferred cells and obviate the need for lymphodepletion, while minimizing off-target effects. Metabolic signaling is delicately balanced, and we demonstrate the need for thoughtful and precise interventions that are tailored for the unique characteristics of each tumor. Through improved understanding of the interplay between immunometabolism, tumor resistance, and T cell signaling, we can improve current treatment regimens and open the door to potential synergistic combinations.
Collapse
|