1
|
Yoshino Y, Kikuta S, Chiba N. Assay for Site-Specific Homologous Recombination Activity in Adherent Cells, Suspension Cells, and Tumor Tissues. Bio Protoc 2025; 15:e5260. [PMID: 40224668 PMCID: PMC11986702 DOI: 10.21769/bioprotoc.5260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 04/15/2025] Open
Abstract
Homologous recombination (HR) is a major pathway to repair DNA double-strand breaks. Hereditary breast and ovarian cancer syndrome (HBOC) is caused by germline pathogenic variants of HR-related genes, such as BRCA1 and BRCA2 (BRCA1/2). Cancer cells with HR deficiency are sensitive to poly(ADP-ribose) polymerase (PARP) inhibitors. Therefore, accurate evaluation of HR activity is helpful to diagnose HBOC and predict the effects of PARP inhibitors. The direct-repeat GFP (DR-GFP) assay has been utilized to evaluate cellular HR activity. However, evaluation by the DR-GFP assay tends to be qualitative and requires the establishment of stable cell lines. Therefore, we developed an assay to quantitatively measure HR activity called Assay for Site-Specific HR Activity (ASHRA), which can be performed by transiently transfecting two plasmids. In ASHRA, we use Cas9 endonuclease to create DNA double-strand breaks at specific sites in the genome, enabling the targeting of any endogenous loci. Quantification of HR products by real-time PCR using genomic DNA allows HR activity evaluated at the DNA level. Thus, ASHRA is an easy and quantitative method to evaluate HR activity at any genomic locus in various samples. Here, we present the protocols for adherent cells, suspension cells, and tumor tissues. Key features • This assay quantitatively evaluates homologous recombination (HR) activity. • This assay can measure HR activity in adherent cells, suspension cells, and tumor tissues. • This real-time PCR-based assay does not require a flow cytometer or next-generation sequencer.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shin Kikuta
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Laboratory of Cancer Biology, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
2
|
Yoshino Y, Ichimiya K, Jingu K, Fujita Y, Chiba N. Nicaraven enhances the cytotoxicity of X-ray irradiation in cancer cells with homologous recombination deficiency. Biochem Biophys Res Commun 2025; 742:151153. [PMID: 39672008 DOI: 10.1016/j.bbrc.2024.151153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Poly (ADP-ribose) polymerase (PARP) is involved in the repair of DNA single-strand breaks. PARP inhibitors are cytotoxic to cancer cells with homologous recombination (HR) deficiency through a synthetic lethality mechanism. Nicaraven is a hydroxyl radical scavenger that has been investigated for the treatment of organ ischemia such as brain infarction. Nicaraven also shows PARP inhibitory and anti-cancer activity in vitro and in vivo. In this study, we investigated the potential synthetic lethality of nicaraven in cells with HR deficiency and whether the PARP inhibitory and radical scavenger activities of nicaraven contributes to its anti-cancer effects, especially in combination with exposure to ionizing radiation. The results showed that nicaraven was cytotoxic against cancer cells after knockdown of the HR factors BRCA1 or RAD51, indicating that nicaraven exerted synthetic lethal effects on cells with HR deficiency. X-ray irradiation-induced DNA double-strand breaks (DSBs) increased at 2 h and were largely repaired after 24 h in control cells, whereas nicaraven significantly increased the amounts of residual DSBs 24 h after X-ray irradiation, especially in HR-deficient cells. Nicaraven treatment enhanced the cytotoxicity of X-ray irradiation in HR-deficient cells, but not that in HR-proficient cells. These data suggest that the combination of nicaraven with X-ray irradiation selectively increases the cytotoxic effects of X-ray irradiation on HR-deficient cancer cells. Thus, nicaraven might be a valuable agent for cancer therapy, particularly in combination with radiotherapy.
Collapse
Affiliation(s)
- Yuki Yoshino
- Department of Cancer Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | | | - Keiichi Jingu
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Tohoku University, Sendai, 980-8574, Japan
| | - Yuhzo Fujita
- Science Technology Interact Co. Ltd, Tokyo, 103-0025, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan; Department of Cancer Biology, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan.
| |
Collapse
|
3
|
Bianco JR, Li Y, Petranyi A, Fabian Z. EWSR1::ATF1 Translocation: A Common Tumor Driver of Distinct Human Neoplasms. Int J Mol Sci 2024; 25:13693. [PMID: 39769457 PMCID: PMC11728112 DOI: 10.3390/ijms252413693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Cancer is among the leading causes of mortality in developed countries due to limited available therapeutic modalities and high rate of morbidity. Although malignancies might show individual genetic landscapes, recurring aberrations in the neoplastic genome have been identified in the wide range of transformed cells. These include translocations of frequently affected loci of the human genetic material like the Ewing sarcoma breakpoint region 1 (EWSR1) of chromosome 22 that results in malignancies with mesodermal origin. These cytogenetic defects frequently result in the genesis of fusion genes involving EWSR1 and a number of genes from partner loci. One of these chromosomal rearrangements is the reciprocal translocation between the q13 and q12 loci of chromosome 12 and 22, respectively, that is believed to initiate cancer formation by the genesis of a novel, chimeric transcription factor provoking dysregulated gene expression. Since soft-tissue neoplasms carrying t(12;22)(q13;q12) have very poor prognosis and clinical modalities specifically targeting t(12;22)(q13;q12)-harboring cells are not available to date, understanding this DNA aberration is not only timely but urgent. Here, we review our current knowledge of human malignancies carrying the specific subset of EWSR1 rearrangements that leads to the expression of the EWSR1::ATF1 tumor-driver chimeric protein.
Collapse
Affiliation(s)
- Julia Raffaella Bianco
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (J.R.B.); (Y.L.)
| | - YiJing Li
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (J.R.B.); (Y.L.)
| | - Agota Petranyi
- Centre of Excellence for Pancreatic Diseases, Semmelweis University, 1083 Budapest, Hungary;
| | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (J.R.B.); (Y.L.)
- Translocon Biotechnologies PLC, Akademia u. 6, 1056 Budapest, Hungary
| |
Collapse
|
4
|
Motonari T, Yoshino Y, Haruta M, Endo S, Sasaki S, Miyashita M, Tada H, Watanabe G, Kaneko T, Ishida T, Chiba N. Evaluating homologous recombination activity in tissues to predict the risk of hereditary breast and ovarian cancer and olaparib sensitivity. Sci Rep 2024; 14:7519. [PMID: 38589490 PMCID: PMC11001962 DOI: 10.1038/s41598-024-57367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Homologous recombination (HR) repairs DNA damage including DNA double-stranded breaks and alterations in HR-related genes results in HR deficiency. Germline alteration of HR-related genes, such as BRCA1 and BRCA2, causes hereditary breast and ovarian cancer (HBOC). Cancer cells with HR deficiency are sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors and DNA-damaging agents. Thus, accurately evaluating HR activity is useful for diagnosing HBOC and predicting the therapeutic effects of anti-cancer agents. Previously, we developed an assay for site-specific HR activity (ASHRA) that can quantitatively evaluate HR activity and detect moderate HR deficiency. HR activity in cells measured by ASHRA correlates with sensitivity to the PARP inhibitor, olaparib. In this study, we applied ASHRA to lymphoblastoid cells and xenograft tumor tissues, which simulate peripheral blood lymphocytes and tumor tissues, respectively, as clinically available samples. We showed that ASHRA could be used to detect HR deficiency in lymphoblastoid cells derived from a BRCA1 pathogenic variant carrier. Furthermore, ASHRA could quantitatively measure the HR activity in xenograft tumor tissues with HR activity that was gradually suppressed by inducible BRCA1 knockdown. The HR activity of xenograft tumor tissues quantitatively correlated with the effect of olaparib. Our data suggest that ASHRA could be a useful assay for diagnosing HBOC and predicting the efficacy of PARP inhibitors.
Collapse
Affiliation(s)
- Tokiwa Motonari
- Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Yuki Yoshino
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| | - Moe Haruta
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Shino Endo
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Shota Sasaki
- Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Minoru Miyashita
- Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiroshi Tada
- Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Gou Watanabe
- Tohoku Medical and Pharmaceutical University, 1-15-1 Fukumuro, Miyagino-ku, Sendai, 983-8512, Japan
| | - Toshiro Kaneko
- Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Takanori Ishida
- Breast and Endocrine Surgical Oncology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, Miyagi, 980-8575, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer (IDAC), Tohoku University, 4-1 Seiryomachi Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
- Department of Cancer Biology, Tohoku University Graduate School of Medicine, 4-1 Seiryomachi Aoba-Ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
5
|
Iida Y, Yanaihara N, Yoshino Y, Saito M, Saito R, Tabata J, Kawabata A, Takenaka M, Chiba N, Okamoto A. Bevacizumab increases the sensitivity of olaparib to homologous recombination-proficient ovarian cancer by suppressing CRY1 via PI3K/AKT pathway. Front Oncol 2024; 14:1302850. [PMID: 38420012 PMCID: PMC10899666 DOI: 10.3389/fonc.2024.1302850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
PARP inhibitors have changed the management of advanced high-grade epithelial ovarian cancer (EOC), especially homologous recombinant (HR)-deficient advanced high-grade EOC. However, the effect of PARP inhibitors on HR-proficient (HRP) EOC is limited. Thus, new therapeutic strategy for HRP EOC is desired. In recent clinical study, the combination of PARP inhibitors with anti-angiogenic agents improved therapeutic efficacy, even in HRP cases. These data suggested that anti-angiogenic agents might potentiate the response to PARP inhibitors in EOC cells. Here, we demonstrated that anti-angiogenic agents, bevacizumab and cediranib, increased the sensitivity of olaparib in HRP EOC cells by suppressing HR activity. Most of the γ-H2AX foci were co-localized with RAD51 foci in control cells. However, most of the RAD51 were decreased in the bevacizumab-treated cells. RNA sequencing showed that bevacizumab decreased the expression of CRY1 under DNA damage stress. CRY1 is one of the transcriptional coregulators associated with circadian rhythm and has recently been reported to regulate the expression of genes required for HR in cancer cells. We found that the anti-angiogenic agents suppressed the increase of CRY1 expression by inhibiting VEGF/VEGFR/PI3K pathway. The suppression of CRY1 expression resulted in decrease of HR activity. In addition, CRY1 inhibition also sensitized EOC cells to olaparib. These data suggested that anti-angiogenic agents and CRY1 inhibitors will be the promising candidate in the combination therapy with PARP inhibitors in HR-proficient EOC.
Collapse
Affiliation(s)
- Yasushi Iida
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Nozomu Yanaihara
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuki Yoshino
- Department of Cancer Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Misato Saito
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryosuke Saito
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Junya Tabata
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Ayako Kawabata
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masataka Takenaka
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Diabate M, Islam MM, Nagy G, Banerjee T, Dhar S, Smith N, Adamovich AI, Starita LM, Parvin JD. DNA repair function scores for 2172 variants in the BRCA1 amino-terminus. PLoS Genet 2023; 19:e1010739. [PMID: 37578980 PMCID: PMC10449183 DOI: 10.1371/journal.pgen.1010739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/24/2023] [Accepted: 07/16/2023] [Indexed: 08/16/2023] Open
Abstract
Single nucleotide variants are the most frequent type of sequence changes detected in the genome and these are frequently variants of uncertain significance (VUS). VUS are changes in DNA for which disease risk association is unknown. Thus, methods that classify the functional impact of a VUS can be used as evidence for variant interpretation. In the case of the breast and ovarian cancer specific tumor suppressor protein, BRCA1, pathogenic missense variants frequently score as loss of function in an assay for homology-directed repair (HDR) of DNA double-strand breaks. We previously published functional results using a multiplexed assay for 1056 amino acid substitutions residues 2-192 in the amino terminus of BRCA1. In this study, we have re-assessed the data from this multiplexed assay using an improved analysis pipeline. These new analysis methods yield functional scores for more variants in the first 192 amino acids of BRCA1, plus we report new results for BRCA1 amino acid residues 193-302. We now present the functional classification of 2172 BRCA1 variants in BRCA1 residues 2-302 using the multiplexed HDR assay. Comparison of the functional determinations of the missense variants with clinically known benign or pathogenic variants indicated 93% sensitivity and 100% specificity for this assay. The results from BRCA1 variants tested in this assay are a resource for clinical geneticists for evidence to evaluate VUS in BRCA1.
Collapse
Affiliation(s)
- Mariame Diabate
- The Ohio State University, Department of Biomedical Informatics, Columbus, Ohio, United States of America
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Muhtadi M. Islam
- The Ohio State University, Department of Biomedical Informatics, Columbus, Ohio, United States of America
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Gregory Nagy
- The Ohio State University, Department of Biomedical Informatics, Columbus, Ohio, United States of America
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Tapahsama Banerjee
- The Ohio State University, Department of Biomedical Informatics, Columbus, Ohio, United States of America
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Shruti Dhar
- The Ohio State University, Department of Biomedical Informatics, Columbus, Ohio, United States of America
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Nahum Smith
- The University of Washington, Department of Genome Sciences, Seattle, Washington, United States of America
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, United States of America
| | - Aleksandra I. Adamovich
- The Ohio State University, Department of Biomedical Informatics, Columbus, Ohio, United States of America
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Lea M. Starita
- The University of Washington, Department of Genome Sciences, Seattle, Washington, United States of America
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, United States of America
| | - Jeffrey D. Parvin
- The Ohio State University, Department of Biomedical Informatics, Columbus, Ohio, United States of America
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| |
Collapse
|
7
|
Yanaihara N, Yoshino Y, Noguchi D, Tabata J, Takenaka M, Iida Y, Saito M, Yanagida S, Iwamoto M, Kiyokawa T, Chiba N, Okamoto A. Paclitaxel sensitizes homologous recombination-proficient ovarian cancer cells to PARP inhibitor via the CDK1/BRCA1 pathway. Gynecol Oncol 2023; 168:83-91. [PMID: 36403366 DOI: 10.1016/j.ygyno.2022.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/06/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE An effective treatment strategy for epithelial ovarian cancer (EOC) with homologous recombination (HR)-proficient (HRP) phenotype has not been established, although poly (ADP-ribose) polymerase inhibitors (PARPi) impact the disease course with HR-deficient (HRD) phenotype. Here, we aimed to clarify the cellular effects of paclitaxel (PTX) on the DNA damage response and the therapeutic application of PTX with PARPi in HRP ovarian cancer. METHODS Two models with different PTX dosing schedules were established in HRP ovarian cancer OVISE cells. Growth inhibition and HR activity were analyzed in these models with or without PARPi. BRCA1 phosphorylation status was examined in OVISE cells by inhibiting CDK1, which was reduced by PTX treatment. CDK1 expression was evaluated in EOC patients treated with PTX-based neoadjuvant chemotherapy. RESULTS PTX suppressed CDK1 expression resulting in impaired BRCA1 phosphorylation in OVISE cells. The reduced CDK1 activity by PTX could decrease HR activity in response to DNA damage and therefore increase the sensitivity to PARPi. Immunohistochemistry showed that CDK1 expression was attenuated in samples collected after PTX-based chemotherapy compared to those collected before chemotherapy. The decrease in CDK1 expression was greater with dose-dense PTX schedule than with the conventional PTX schedule. CONCULSIONS PTX could act synergistically with PARPi in HRP ovarian cancer cells, suggesting that the combination of PTX with PARPi may be a novel treatment strategy extending the utility of PARPi to EOC. Our findings provide cules for future translational clinical trials evaluating the efficacy of PTX in combination with PARPi in HRP ovarian cancer.
Collapse
Affiliation(s)
- Nozomu Yanaihara
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Yuki Yoshino
- Department of Cancer Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
| | - Daito Noguchi
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Junya Tabata
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Masataka Takenaka
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yasushi Iida
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Misato Saito
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Satoshi Yanagida
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Masami Iwamoto
- Department of Pathology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Takako Kiyokawa
- Department of Pathology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Natsuko Chiba
- Department of Cancer Biology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryomachi, Aoba-ku, Sendai 980-8575, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
8
|
Qi H, Kikuchi M, Yoshino Y, Fang Z, Ohashi K, Gotoh T, Ideta R, Ui A, Endo S, Otsuka K, Shindo N, Gonda K, Ishioka C, Miki Y, Iwabuchi T, Chiba N. BRCA1 transports the DNA damage signal for CDDP-induced centrosome amplification through the centrosomal Aurora A. Cancer Sci 2022; 113:4230-4243. [PMID: 36082621 PMCID: PMC9746055 DOI: 10.1111/cas.15573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 12/15/2022] Open
Abstract
Breast cancer gene 1 (BRCA1) plays roles in DNA repair and centrosome regulation and is involved in DNA damage-induced centrosome amplification (DDICA). Here, the centrosomal localization of BRCA1 and the kinases involved in centrosome duplication were analyzed in each cell cycle phase after treatment with DNA crosslinker cisplatin (CDDP). CDDP treatment increased the centrosomal localization of BRCA1 in early S-G2 phase. BRCA1 contributed to the increased centrosomal localization of Aurora A in S phase and that of phosphorylated Polo-like kinase 1 (PLK1) in late S phase after CDDP treatment, resulting in centriole disengagement and overduplication. The increased centrosomal localization of BRCA1 and Aurora A induced by CDDP treatment involved the nuclear export of BRCA1 and BRCA1 phosphorylation by ataxia telangiectasia mutated (ATM). Patient-derived variants and mutations at phosphorylated residues of BRCA1 suppressed the interaction between BRCA1 and Aurora A, as well as the CDDP-induced increase in the centrosomal localization of BRCA1 and Aurora A. These results suggest that CDDP induces the phosphorylation of BRCA1 by ATM in the nucleus and its transport to the cytoplasm, thereby promoting the centrosomal localization Aurora A, which phosphorylates PLK1. The function of BRCA1 in the translocation of the DNA damage signal from the nucleus to the centrosome to induce centrosome amplification after CDDP treatment might support its role as a tumor suppressor.
Collapse
Affiliation(s)
- Huicheng Qi
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Megumi Kikuchi
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Yuki Yoshino
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Zhenzhou Fang
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kazune Ohashi
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Takato Gotoh
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Ryo Ideta
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Tohoku University School of MedicineSendaiJapan
| | - Ayako Ui
- Department of Molecular Oncology, Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
| | - Shino Endo
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Kei Otsuka
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| | - Norihisa Shindo
- Division of Molecular and Cellular OncologyMiyagi Cancer Center Research InstituteNatoriJapan
| | - Kohsuke Gonda
- Department of Medical PhysicsTohoku University Graduate School of MedicineSendaiJapan
| | - Chikashi Ishioka
- Department of Clinical OncologyTohoku University Graduate School of MedicineSendaiJapan
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research InstituteTokyo Medical and Dental UniversityTokyoJapan
| | - Tokuro Iwabuchi
- Faculty of Bioscience and BiotechnologyTokyo University of TechnologyTokyoJapan
| | - Natsuko Chiba
- Department of Cancer Biology; Institute of Development, Aging and CancerTohoku UniversitySendaiJapan
- Department of Cancer BiologyTohoku University Graduate School of MedicineSendaiJapan
- Laboratory of Cancer Biology, Graduate School of Life SciencesTohoku UniversitySendaiJapan
| |
Collapse
|