1
|
Plewa P, Kiełbowski K, Mentel O, Figiel K, Bakinowska E, Becht R, Banach B, Pawlik A. Bacteria and Carcinogenesis and the Management of Cancer: A Narrative Review. Pathogens 2025; 14:509. [PMID: 40430828 PMCID: PMC12114594 DOI: 10.3390/pathogens14050509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/17/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
There is a widely known relationship between certain microbes and cancer progression. For instance, Helicobacter pylori is associated with the occurrence of gastric cancer, while HPV is associated with cervical and head and neck cancers. Recent studies have uncovered novel and important associations between bacterial presence and tumor formation and treatment response. Apart from the influence of the intestinal microbiome on cancer, the local activity of bacteria affects disease properties as well. Bacteria can localize within tumors in less vascularized niches. Their presence mediates the activity of signaling pathways, which contribute to tumorigenesis. Furthermore, they affect the composition of the tumor microenvironment, a highly complex structure composed of immunoregulatory cells and secreted inflammatory mediators. Recently, researchers have analyzed the properties of bacteria to develop novel anticancer strategies. The aim of this review is to discuss the latest findings regarding the relationships between bacteria and cancer and the properties of bacteria that could be used to kill cancer cells.
Collapse
Affiliation(s)
- Paulina Plewa
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Oliwia Mentel
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
| | - Karolina Figiel
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
| | - Rafał Becht
- Department of Clinical Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Bolesław Banach
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (P.P.)
| |
Collapse
|
2
|
Nobels A, van Marcke C, Jordan BF, Van Hul M, Cani PD. The gut microbiome and cancer: from tumorigenesis to therapy. Nat Metab 2025; 7:895-917. [PMID: 40329009 DOI: 10.1038/s42255-025-01287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 03/20/2025] [Indexed: 05/08/2025]
Abstract
The gut microbiome has a crucial role in cancer development and therapy through its interactions with the immune system and tumour microenvironment. Although evidence links gut microbiota composition to cancer progression, its precise role in modulating treatment responses remains unclear. In this Review, we summarize current knowledge on the gut microbiome's involvement in cancer, covering its role in tumour initiation and progression, interactions with chemotherapy, radiotherapy and targeted therapies, and its influence on cancer immunotherapy. We discuss the impact of microbial metabolites on immune responses, the relationship between specific bacterial species and treatment outcomes, and potential microbiota-based therapeutic strategies, including dietary interventions, probiotics and faecal microbiota transplantation. Understanding these complex microbiota-immune interactions is critical for optimizing cancer therapies. Future research should focus on defining microbial signatures associated with treatment success and developing targeted microbiome modulation strategies to enhance patient outcomes.
Collapse
Affiliation(s)
- Amandine Nobels
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
| | - Cédric van Marcke
- UCLouvain, Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique (IREC), Pole of Medical Imaging, Radiotherapy and Oncology (MIRO), Brussels, Belgium
- Department of Medical Oncology, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
- Breast Clinic, King Albert II Cancer Institute, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Bénédicte F Jordan
- UCLouvain, Université catholique de Louvain, Biomedical Magnetic Resonance group (REMA), Louvain Drug Research Institute (LDRI), Brussels, Belgium
| | - Matthias Van Hul
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
| | - Patrice D Cani
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute (LDRI), Metabolism and Nutrition Research Group (MNUT), Brussels, Belgium.
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), WELBIO department, WEL Research Institute, Wavre, Belgium.
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research (IREC), Brussels, Belgium.
| |
Collapse
|
3
|
Sameni F, Elkhichi PA, Dadashi A, Sadeghi M, Goudarzi M, Eshkalak MP, Dadashi M. Global prevalence of Fusobacterium nucleatum and Bacteroides fragilis in patients with colorectal cancer: an overview of case reports/case series and meta-analysis of prevalence studies. BMC Gastroenterol 2025; 25:71. [PMID: 39930345 PMCID: PMC11808969 DOI: 10.1186/s12876-025-03664-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the second deadliest carcinoma across the globe and has been known as a multi-factor induced-disease. Emerging research have demonstrated that bacterial colonization may contribute to the initiation and promotion of the CRC. The presence of Fusobacterium nucleatum (F. nucleatum) and Bacteroides fragilis (B. fragilis) in the gut is associated with the development of CRC. In this study, the prevalence of F. nucleatum and B. fragilis among CRC patients has been assessed worldwide through a systematic review and meta-analysis. METHODS The extensive search was performed using "Fusobacterium nucleatum", "Bacteroides fragilis", "Colorectal cancer" and all relevant keywords. Then, a systematic paper screening was done following a comprehensive search in Embase, Web of Science, and PubMed databases while the time range was limited between the years 2000 and 2024. Afterwards, statistical analysis was performed utilizing the comprehensive meta-analysis (CMA) software (version 2.0, Biostat, USA). RESULTS According to the meta-analysis of prevalence studies, the prevalence of F. nucleatum among 19 countries and B. fragilis among 10 countries were indicated to be 38.9% (95% CI 33.7-44.3%) and 42.5% (95% CI 34.4-51.1%), respectively, among the CRC patients. It was then revealed that Asia had the highest prevalence of F. nucleatum while most of the B. fragilis isolates in CRC cases were reported in European countries. Moreover, the data suggested that the most common comorbidity observed among the CRC cases was diabetes. CONCLUSION Our results emphasized the high prevalence of F. nucleatum and B. fragilis in CRC patients. Based on this meta-analysis review, regulating the gut microbiota in CRC patients seemed to be a promising approach to improving the efficacy of CRC therapy.
Collapse
Affiliation(s)
- Fatemeh Sameni
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
- Molecular Microbiology Research Center, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Parisa Abedi Elkhichi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Dadashi
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Mohammad Sadeghi
- EA7375-EC2M3: Early, Detection of Colonic Cancer by Using Microbial & Molecular Markers,, Paris East Créteil University (UPEC), Créteil, 94010, France
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Masoud Dadashi
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
4
|
Sherif ZA, Ogunwobi OO, Ressom HW. Mechanisms and technologies in cancer epigenetics. Front Oncol 2025; 14:1513654. [PMID: 39839798 PMCID: PMC11746123 DOI: 10.3389/fonc.2024.1513654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/04/2024] [Indexed: 01/23/2025] Open
Abstract
Cancer's epigenetic landscape, a labyrinthine tapestry of molecular modifications, has long captivated researchers with its profound influence on gene expression and cellular fate. This review discusses the intricate mechanisms underlying cancer epigenetics, unraveling the complex interplay between DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs. We navigate through the tumultuous seas of epigenetic dysregulation, exploring how these processes conspire to silence tumor suppressors and unleash oncogenic potential. The narrative pivots to cutting-edge technologies, revolutionizing our ability to decode the epigenome. From the granular insights of single-cell epigenomics to the holistic view offered by multi-omics approaches, we examine how these tools are reshaping our understanding of tumor heterogeneity and evolution. The review also highlights emerging techniques, such as spatial epigenomics and long-read sequencing, which promise to unveil the hidden dimensions of epigenetic regulation. Finally, we probed the transformative potential of CRISPR-based epigenome editing and computational analysis to transmute raw data into biological insights. This study seeks to synthesize a comprehensive yet nuanced understanding of the contemporary landscape and future directions of cancer epigenetic research.
Collapse
Affiliation(s)
- Zaki A. Sherif
- Department of Biochemistry & Molecular Biology, Howard University College of Medicine, Washington, DC, United States
| | - Olorunseun O. Ogunwobi
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Habtom W. Ressom
- Department of Oncology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
5
|
DSouza D, Bik L, Giwa O, Cohen S, Barazany H, Siegal T, Frenkel-Morgenstern M. ChiTaRS 8.0: the comprehensive database of chimeric transcripts and RNA-seq data with applications in liquid biopsy. Nucleic Acids Res 2025; 53:D1302-D1312. [PMID: 39676654 PMCID: PMC11701575 DOI: 10.1093/nar/gkae1126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/24/2024] [Accepted: 11/08/2024] [Indexed: 12/17/2024] Open
Abstract
Gene fusions are nucleotide sequences formed due to errors in replication and transcription control. These errors, resulting from chromosomal translocation, transcriptional errors or trans-splicing, vary from cell to cell. The identification of fusions has become critical as key biomarkers for disease diagnosis and therapy in various cancers, significantly influencing modern medicine. Chimeric Transcripts and RNA-Sequencing database version 8.0 (ChiTaRS 8.0; http://biosrv.org/chitars) is a specialized repository for human chimeric transcripts, containing 47 445 curated RNA transcripts and over 100 000 chimeric sequences in humans. This updated database provides unique information on 1055 chimeric breakpoints derived from public datasets using chromosome conformation capture techniques (the Hi-C datasets). It also includes an expanded list of gene fusions that are potential drug targets, and chimeric breakpoints across 934 cell lines, positioning ChiTaRS 8.0 as a valuable resource for testing personalized cancer therapies. By utilizing text mining on a curated selection of disease-specific RNA-sequencing data from public datasets, as well as patient blood and plasma samples, we have identified novel chimeras-particularly in diseases such as oral squamous cell carcinoma and glioblastoma-now catalogued in ChiTaRS. Thus, ChiTaRS 8.0 serves as an enhanced fusion transcript repository that incorporates insights into the functional landscape of chimeras in cancers and other complex diseases, based on liquid biopsy results.
Collapse
Affiliation(s)
- Dylan DSouza
- Azrieli Faculty of Medicine, Bar Ilan University, Henrieta Szold 8, Safed, 1311502, Israel
| | - Lihi Bik
- Scojen Institute of Synthetic Biology, Reichman University, Hauniversita 8, Herzliya, 4010101, Israel
| | - Olawumi Giwa
- Azrieli Faculty of Medicine, Bar Ilan University, Henrieta Szold 8, Safed, 1311502, Israel
| | - Shahaf Cohen
- Scojen Institute of Synthetic Biology, Reichman University, Hauniversita 8, Herzliya, 4010101, Israel
| | - Hilit Levy Barazany
- Scojen Institute of Synthetic Biology, Reichman University, Hauniversita 8, Herzliya, 4010101, Israel
| | - Tali Siegal
- Rabin Medical Center (Beilinson Campus), Zeev Jabotinsky St 39, Petah Tikva, 49100, Israel
| | - Milana Frenkel-Morgenstern
- Azrieli Faculty of Medicine, Bar Ilan University, Henrieta Szold 8, Safed, 1311502, Israel
- Scojen Institute of Synthetic Biology, Reichman University, Hauniversita 8, Herzliya, 4010101, Israel
| |
Collapse
|
6
|
Liu CC, Grencewicz D, Chakravarthy K, Li L, Liepold R, Wolf M, Sangwan N, Tzeng A, Hoyd R, Jhawar SR, Grobmyer SR, Al-Hilli Z, Sciallis AP, Spakowicz D, Ni Y, Eng C. Breast tumor microbiome regulates anti-tumor immunity and T cell-associated metabolites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.29.620864. [PMID: 39554133 PMCID: PMC11565759 DOI: 10.1101/2024.10.29.620864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Background Breast cancer, the most common cancer type among women, was recently found to contain a specific tumor microbiome, but its impact on host biology remains unclear. CD8+ tumor-infiltrating lymphocytes (TILs) are pivotal effectors of anti-tumor immunity that influence cancer prognosis and response to therapy. This study aims to elucidate interactions between CD8+ TILs and the breast tumor microbiome and metabolites, as well as how the breast tumor microbiome may affect the tumor metabolome. Methods We investigated the interplay among CD8+ TILs, the tumor microbiome, and the metabolome in a cohort of 46 breast cancer patients with mixed subtypes (Cohort A). We characterized the tumor metabolome by mass spectrometry and CD8+ TILs by immunohistochemistry. Microbiome composition and T cell gene transcript levels were obtained from data from our previous study, which utilized 16S rRNA gene sequencing and a targeted mRNA expression panel. To examine interactions between intratumoral Staphylococcus and specific breast cancer subtypes, we analyzed RNA sequencing data from an independent cohort of 370 breast cancer patients (Cohort B). We explored the functions of the tumor microbiome using mouse models of triple-negative breast cancer (TNBC). Results In tumors from Cohort A, the relative abundance of Staphylococcus positively correlated with the expression of T cell activation genes. The abundances of multiple metabolites exhibited significant correlations with CD8+ TILs, of which NADH, γ-glutamyltryptophan, and γ-glutamylglutamate displayed differential abundance in Staphylococcus-positive versus Staphylococcus-negative breast tumors. In a larger breast cancer cohort (Cohort B), we observed positive correlations between tumoral Staphylococcus and CD8+ TIL activity exclusively in TNBC. Preclinical experiments demonstrated that intratumoral administration of S. aureus, the predominant species of Staphylococcus in human breast tumors, resulted in a depletion of total NAD metabolites, and reduced the growth of TNBC tumors by activating CD8+ TILs. Conclusions We identified specific metabolites and microbial taxa associated with CD8+ TILs, delineated interactions between the breast tumor microbiome and metabolome, and demonstrated that intratumoral Staphylococcus influences anti-tumor immunity and TIL-associated metabolites. These findings highlight the role of low-biomass microbes in tumor tissues and provide potential biomarkers and therapeutic agents for breast cancer immunotherapy that merit further investigation.
Collapse
Affiliation(s)
- Chin-Chih Liu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dennis Grencewicz
- The Ohio State University College of Medicine, Columbus, OH 43201, USA
| | - Karthik Chakravarthy
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center, 460 W12th Ave., BRT 480, Columbus, OH 43220, USA
| | - Lin Li
- Center for Immunotherapy and Precision Immuno-oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ruth Liepold
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Matthew Wolf
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Microbiome Composition and Analytics Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Alice Tzeng
- Department of Medical Oncology, Dana–Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215, USA
| | - Rebecca Hoyd
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center, 460 W12th Ave., BRT 480, Columbus, OH 43220, USA
| | - Sachin R. Jhawar
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Stephen R. Grobmyer
- Cleveland Clinic Abu Dhabi, Oncology Institute, Abu Dhabi, United Arab Emirates
| | - Zahraa Al-Hilli
- Department of General Surgery, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Andrew P. Sciallis
- Department of Anatomic Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Daniel Spakowicz
- Pelotonia Institute for Immuno-Oncology at The Ohio State University Comprehensive Cancer Center, 460 W12th Ave., BRT 480, Columbus, OH 43220, USA
| | - Ying Ni
- Center for Immunotherapy and Precision Immuno-oncology, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Center for Personalized Genetic Healthcare, Medical Specialties Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Germline High-Risk Cancer Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|