1
|
Zeng MT, Huang LY, Zheng XH, Fu YQ, Weng CF. Ethanolic Extracts of Cupressaceae Species Conifers Provide Rapid Protection against Barium Chloride-Induced Cardiac Arrhythmia. Pharmaceuticals (Basel) 2024; 17:1003. [PMID: 39204108 PMCID: PMC11356987 DOI: 10.3390/ph17081003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/03/2024] Open
Abstract
Sudden cardiac death (SCD) is responsible for a high percentage of cardiovascular fatalities, with ventricular arrhythmias being the most common cause. Despite numerous clinically available antiarrhythmic drugs (AADs), AADs retain some undesirable arrhythmic effects, and their inappropriate use can lead to severe adverse reactions. The exploration of new therapeutic options against arrhythmias with fewer unreceptive effects is of utmost importance. The ethanolic extracts of seven Cupressaceae species, namely, Chamaecyparis obtusa, Juniperus chinensis (L.) Ant., Sabina chinensis (L.) Ant. cv. Kaizuca, Platycladus orientalis (L.) Franco, Juniperus sabina L., Fokienia hodginsii, and Juniperus chinensis 'Pyramidalis' were investigated for their pharmacological effects on barium chloride (BaCl2)-induced arrhythmia using normal II lead electrocardiogram (ECG) measurements in a mouse model. According to the ECG profiles, pretreatment with C. obtusa, P. orientalis, and J. sabina extracts provoked dose-dependent protection against BaCl2-induced arrhythmia, while pretreatment with the other four species and amiodarone did not exert cardioprotective effects. The treatment effects were confirmed using a rat model. The therapeutic effects of C. obtusa, P. orientalis, and J. sabina extracts on the M2 and M3 receptors but not the M1 receptor were mediated by the inhibition of the M2 receptor blocker (methoctramine tetrahydrochloride), M3 antagonist (4-DAMP), or M1 receptor blocker (pirenzepine dihydrochloride). This first-line evidence illustrates that certain Cupressaceae species possess active antiarrhythmic components. The first line of key findings revealed that active components of certain Cupressaceae species have cardioprotective effects, suggesting that these innovative phytochemicals have promising potential for preventing the occurrence of cardiac arrhythmia and reducing sudden cardiac death.
Collapse
Affiliation(s)
- Meng-Ting Zeng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.-T.Z.); (L.-Y.H.); (X.-H.Z.); (Y.-Q.F.)
| | - Li-Yue Huang
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.-T.Z.); (L.-Y.H.); (X.-H.Z.); (Y.-Q.F.)
| | - Xiao-Hui Zheng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.-T.Z.); (L.-Y.H.); (X.-H.Z.); (Y.-Q.F.)
| | - Yan-Qi Fu
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.-T.Z.); (L.-Y.H.); (X.-H.Z.); (Y.-Q.F.)
| | - Ching-Feng Weng
- Functional Physiology Section, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China; (M.-T.Z.); (L.-Y.H.); (X.-H.Z.); (Y.-Q.F.)
- Institute of Respiratory Disease, Department of Basic Medical Science, Xiamen Medical College, Xiamen 361023, China
- LEADTEK Research, Inc., New Taipei City 235603, Taiwan
| |
Collapse
|
2
|
Liu X, Yu Y, Zhang H, Zhang M, Liu Y. The Role of Muscarinic Acetylcholine Receptor M 3 in Cardiovascular Diseases. Int J Mol Sci 2024; 25:7560. [PMID: 39062802 PMCID: PMC11277046 DOI: 10.3390/ijms25147560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The muscarinic acetylcholine receptor M3 (M3-mAChR) is involved in various physiological and pathological processes. Owing to specific cardioprotective effects, M3-mAChR is an ideal diagnostic and therapeutic biomarker for cardiovascular diseases (CVDs). Growing evidence has linked M3-mAChR to the development of multiple CVDs, in which it plays a role in cardiac protection such as anti-arrhythmia, anti-hypertrophy, and anti-fibrosis. This review summarizes M3-mAChR's expression patterns, functions, and underlying mechanisms of action in CVDs, especially in ischemia/reperfusion injury, cardiac hypertrophy, and heart failure, opening up a new research direction for the treatment of CVDs.
Collapse
Affiliation(s)
- Xinxing Liu
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
| | - Yi Yu
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
| | - Haiying Zhang
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
| | - Min Zhang
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
| | - Yan Liu
- Hainan Academy of Medical Sciences, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (X.L.); (Y.Y.); (H.Z.)
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
- International Joint Research Center of Human–Machine Intelligent Collaborative for Tumor Precision Diagnosis and Treatment of Hainan Province, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
- Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
3
|
Oliveira ÍMD, Silva Júnior ELD, Martins YDO, Rocha HAL, Scanavacca MI, Gutierrez PS. Cardiac Autonomic Nervous System Remodeling May Play a Role in Atrial Fibrillation: A Study of the Autonomic Nervous System and Myocardial Receptors. Arq Bras Cardiol 2021; 117:999-1007. [PMID: 34406322 PMCID: PMC8682090 DOI: 10.36660/abc.20200725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/25/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The primary factors that originate and perpetuate atrial fibrillation (AF) are electrical and anatomical substrate alterations. However, the central mechanisms governing AF perpetuation have not been elucidated yet, which is reflected on the modest results of the treatment in patients with long persistent AF. OBJECTIVE To evaluate if human intrinsic cardiac autonomic nervous system (ICANS) remodeling, including nervous system fibers and muscarinic and β-adrenergic receptors, play a role in permanent AF. METHODS Heart necropsy samples from thirteen patients with heart disease and permanent AF and thirteen controls without AF were used. By using immunoperoxidase and histomorphometry quantification, we identified the following: the density of all fibers of the ICANS, sympathetic and parasympathetic fibers; and the percentage of myocardium positive for β-adrenergic receptors 1, 2 and 3; G protein-coupled receptor kinase-5 (GRK-5); and muscarinic receptors M1 to M5. The results were compared using ANOVA and nested ANOVA and were adjusted according to the left atrium volume for all variables, and β-blocker use to evaluate the expression of β-receptors and GRK-5. RESULTS There was an overall increase in the density of fibers of the ICANS (p=0.006), especially in atrial sympathetic nerve fibers (p=0.017). Only M1 muscarinic receptors were increased (5.87 vs 2.35, p=0.032). For adrenergic receptors, the results were positive for increased expression of β-3 (37.41 vs 34.18, p=0.039) and GRK-5 (51.16 vs 47.66; p<0.001). β-blocker use had no impact on β-receptor expression. CONCLUSION Increased ICANS innervation and remodeling receptor expression in regions prone to triggering AF may play a role in permanent AF.
Collapse
Affiliation(s)
- Ítalo Martins de Oliveira
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil.,Hospital Messejana de Coração e Pulmão Dr. Carlos Alberto Studart Gomes , Fortaleza , CE - Brasil
| | - Evilásio Leobino da Silva Júnior
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil.,Hospital Messejana de Coração e Pulmão Dr. Carlos Alberto Studart Gomes , Fortaleza , CE - Brasil
| | | | | | - Maurício Ibrahim Scanavacca
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| | - Paulo Sampaio Gutierrez
- Instituto do Coração (InCor), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo , São Paulo , SP - Brasil
| |
Collapse
|
4
|
Zhao L, Chen T, Hang P, Li W, Guo J, Pan Y, Du J, Zheng Y, Du Z. Choline Attenuates Cardiac Fibrosis by Inhibiting p38MAPK Signaling Possibly by Acting on M 3 Muscarinic Acetylcholine Receptor. Front Pharmacol 2019; 10:1386. [PMID: 31849653 PMCID: PMC6900736 DOI: 10.3389/fphar.2019.01386] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/31/2019] [Indexed: 01/08/2023] Open
Abstract
Choline has been reported to produce a variety of cellular functions including cardioprotection via activating M3 muscarinic acetylcholine receptor (M3R) under various insults. However, whether choline offers similar beneficial effects via the same mechanism in cardiac fibrosis remained unexplored. The present study aimed to investigate the effects of choline on cardiac fibrosis and the underlying signaling mechanisms, particularly the possible involvement of M3R. Transverse aortic constriction (TAC) mouse model was established to simulate the cardiac fibrosis. Transforming growth factor (TGF)-β1 treatment was employed to induce proliferation of cardiac fibroblasts in vitro. Choline chloride and M3R antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) were used to unravel the potential role of M3R. Cardiac function was assessed by echocardiography and interstitial fibrosis was quantified by Masson staining. Protein levels of collagens I and III were determined by Western blot analysis. The role of M3R in the proliferation cardiac fibroblasts was validated by silencing M3R with specific small interference RNA (siRNA). Furthermore, the mitogen-activated protein kinase (MAPK) signaling pathway including p38MAPK and ERK1/2 as well as the TGF-β1/Smad pathway were analyzed. M3R protein was found abundantly in cardiac fibroblasts. M3R protein level, as identified by Western blotting, was higher in mice with excessive cardiac fibrosis and in TGF-β1-induced cardiac fibrosis as well. Choline significantly inhibited interstitial fibrosis, and this beneficial action was reversed by 4-DAMP. Production of collagens I and III was reduced after choline treatment but restored by 4-DAMP. Expression silence of endogenous M3R using siRNA increased the level of collagen I. Furthermore, the TGF-β1/Smad2/3 and the p38MAPK pathways were both suppressed by choline. In summary, choline produced an anti-fibrotic effect both in vivo and in vitro by regulating the TGF-β1/Smad2/3 and p38MAPK pathways. These findings unraveled a novel pharmacological property of choline linked to M3R, suggesting that choline regulates cardiac fibrosis and the associated heart diseases possibly by acting on M3R.
Collapse
Affiliation(s)
- Lihui Zhao
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Tingting Chen
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Pengzhou Hang
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wen Li
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jing Guo
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yang Pan
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jingjing Du
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuyang Zheng
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhimin Du
- Institute of Clinical Pharmacology, the Second Affiliated Hospital of Harbin Medical University (The University Key Laboratory of Drug Research, Heilongjiang Province), Harbin, China.,Department of Clinical Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.,State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| |
Collapse
|
5
|
Heijman J, Kirchner D, Kunze F, Chrétien EM, Michel-Reher MB, Voigt N, Knaut M, Michel MC, Ravens U, Dobrev D. Muscarinic type-1 receptors contribute to I K,ACh in human atrial cardiomyocytes and are upregulated in patients with chronic atrial fibrillation. Int J Cardiol 2017; 255:61-68. [PMID: 29290419 DOI: 10.1016/j.ijcard.2017.12.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/13/2017] [Accepted: 12/19/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Basal and acetylcholine-gated inward-rectifier K+-currents (IK1 and IK,ACh, respectively) are altered in atrial fibrillation (AF). Gi-protein-coupled muscarinic (M) receptors type-2 are considered the predominant receptors activating IK,ACh. Although a role for Gq-coupled non-M2-receptor subtypes has been suggested, the precise regulation of IK,ACh by multiple M-receptor subtypes in the human atrium is unknown. Here, we investigated M1-receptor-mediated IK,ACh regulation and its remodeling in chronic AF (cAF). METHODS AND RESULTS M1-receptor mRNA and protein abundance were increased in atrial cardiomyocyte fractions and atrial homogenates from cAF patients, whereas M2-receptor levels were unchanged. The regulation of IK,ACh by M1-receptors was investigated in right-atrial cardiomyocytes using two applications of the M-receptor agonist carbachol (CCh, 2μM), with pharmacological interventions during the second application. CCh application produced a rapid current increase (Peak-IK,ACh), which declined to a quasi-steady-state level (Qss-IK,ACh). In sinus rhythm (Ctl) the selective M1-receptor antagonists pirenzepine (10nM) and muscarinic toxin-7 (MT-7, 10nM) significantly inhibited CCh-activated Peak-IK,ACh, whereas in cAF they significantly reduced both Peak- and Qss-IK,ACh, with no effects on basal inward-rectifier currents in either group. Conversely, the selective M1-receptor agonist McN-A-343 (100μM) induced a current similar to the CCh-activated current in Ctl atrial cardiomyocytes pretreated with pertussis toxin to inhibit M2-receptor-mediated Gi-protein signaling, which was abolished by MT-7. Computational modeling indicated that M1- and M2-receptors redundantly activate IK,ACh to abbreviate APD, albeit with predominant effects of M2-receptors. CONCLUSION Our data suggest that Gq-coupled M1-receptors also regulate human atrial IK,ACh and that their relative contribution to IK,ACh activation is increased in cAF patients. We provide novel insights about the role of non-M2-receptors in human atrial cardiomyocytes, which may have important implications for understanding AF pathophysiology.
Collapse
Affiliation(s)
- Jordi Heijman
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany; Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Dorit Kirchner
- Department of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Dresden University of Technology, Dresden, Germany
| | - Franziska Kunze
- Department of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Dresden University of Technology, Dresden, Germany
| | - Eva Maria Chrétien
- Department of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Dresden University of Technology, Dresden, Germany
| | | | - Niels Voigt
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Michael Knaut
- Heart Surgery, Heart Center Dresden, Carl Gustav Carus Medical Faculty, Dresden University of Technology, Dresden, Germany
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| | - Ursula Ravens
- Department of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Dresden University of Technology, Dresden, Germany; Institute of Experimental Cardiovascular Medicine, University Heart Center Freiburg-Bad Krozingen, Freiburg, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany; Department of Pharmacology and Toxicology, Carl Gustav Carus Medical Faculty, Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
6
|
Xue RQ, Sun L, Yu XJ, Li DL, Zang WJ. Vagal nerve stimulation improves mitochondrial dynamics via an M 3 receptor/CaMKKβ/AMPK pathway in isoproterenol-induced myocardial ischaemia. J Cell Mol Med 2017; 21:58-71. [PMID: 27491814 PMCID: PMC5192749 DOI: 10.1111/jcmm.12938] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial dynamics-fission and fusion-are associated with ischaemic heart disease (IHD). This study explored the protective effect of vagal nerve stimulation (VNS) against isoproterenol (ISO)-induced myocardial ischaemia in a rat model and tested whether VNS plays a role in preventing disorders of mitochondrial dynamics and function. Isoproterenol not only caused cardiac injury but also increased the expression of mitochondrial fission proteins [dynamin-related peptide1 (Drp1) and mitochondrial fission protein1 (Fis-1)) and decreased the expression of fusion proteins (optic atrophy-1 (OPA1) and mitofusins1/2 (Mfn1/2)], thereby disrupting mitochondrial dynamics and leading to increase in mitochondrial fragments. Interestingly, VNS restored mitochondrial dynamics through regulation of Drp1, Fis-1, OPA1 and Mfn1/2; enhanced ATP content and mitochondrial membrane potential; reduced mitochondrial permeability transition pore (MPTP) opening; and improved mitochondrial ultrastructure and size. Furthermore, VNS reduced the size of the myocardial infarction and ameliorated cardiomyocyte apoptosis and cardiac dysfunction induced by ISO. Moreover, VNS activated AMP-activated protein kinase (AMPK), which was accompanied by phosphorylation of Ca2+ /calmodulin-dependent protein kinase kinase β (CaMKKβ) during myocardial ischaemia. Treatment with subtype-3 of muscarinic acetylcholine receptor (M3 R) antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide or AMPK inhibitor Compound C abolished the protective effects of VNS on mitochondrial dynamics and function, suggesting that M3 R/CaMKKβ/AMPK signalling are involved in mediating beneficial effects of VNS. This study demonstrates that VNS modulates mitochondrial dynamics and improves mitochondrial function, possibly through the M3 R/CaMKKβ/AMPK pathway, to attenuate ISO-induced cardiac damage in rats. Targeting mitochondrial dynamics may provide a novel therapeutic strategy in IHD.
Collapse
Affiliation(s)
- Run-Qing Xue
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Lei Sun
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Xiao-Jiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Dong-Ling Li
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| |
Collapse
|
7
|
Ho HT, Belevych AE, Liu B, Bonilla IM, Radwański PB, Kubasov IV, Valdivia HH, Schober K, Carnes CA, Györke S. Muscarinic Stimulation Facilitates Sarcoplasmic Reticulum Ca Release by Modulating Ryanodine Receptor 2 Phosphorylation Through Protein Kinase G and Ca/Calmodulin-Dependent Protein Kinase II. Hypertension 2016; 68:1171-1178. [PMID: 27647848 DOI: 10.1161/hypertensionaha.116.07666] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 08/21/2016] [Indexed: 01/01/2023]
Abstract
Although the effects and the underlying mechanism of sympathetic stimulation on cardiac Ca handling are relatively well established both in health and disease, the modes of action and mechanisms of parasympathetic modulation are poorly defined. Here, we demonstrate that parasympathetic stimulation initiates a novel mode of excitation-contraction coupling that enhances the efficiency of cardiac sarcoplasmic reticulum Ca store utilization. This efficient mode of excitation-contraction coupling involves reciprocal changes in the phosphorylation of ryanodine receptor 2 at Ser-2808 and Ser-2814. Specifically, Ser-2808 phosphorylation was mediated by muscarinic receptor subtype 2 and activation of PKG (protein kinase G), whereas dephosphorylation of Ser-2814 involved activation of muscarinic receptor subtype 3 and decreased reactive oxygen species-dependent activation of CaMKII (Ca/calmodulin-dependent protein kinase II). The overall effect of these changes in phosphorylation of ryanodine receptor 2 is an increase in systolic Ca release at the low sarcoplasmic reticulum Ca content and a paradoxical reduction in aberrant Ca leak. Accordingly, cholinergic stimulation of cardiomyocytes isolated from failing hearts improved Ca cycling efficiency by restoring altered ryanodine receptor 2 phosphorylation balance.
Collapse
Affiliation(s)
- Hsiang-Ting Ho
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.)
| | - Andriy E Belevych
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.)
| | - Bin Liu
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.)
| | - Ingrid M Bonilla
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.)
| | - Przemysław B Radwański
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.)
| | - Igor V Kubasov
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.)
| | - Héctor H Valdivia
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.)
| | - Karsten Schober
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.)
| | - Cynthia A Carnes
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.)
| | - Sándor Györke
- From the Department of Physiology and Cell Biology (H.-T.H., A.E.B., B.L., P.B.R., S.G.), College of Pharmacy (I.M.B., P.B.R., C.A.C.), and College of Veterinary Medicine (K.S.), The Ohio State University, Columbus; Davis Heart and Lung Research Institute, Columbus, OH (H.-T.H., A.E.B., B.L., I.M.B., P.B.R., C.A.C., S.G.); Department of Medicine, Duke University, Durham, NC (H.-T.H.); Laboratory of Neuromuscular Physiology, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Petersburg, Russia (I.V.K.); and Center for Arrhythmia Research, Cardiovascular Division of the Department of Internal Medicine, University of Michigan, Ann Arbor (H.H.V.).
| |
Collapse
|
8
|
Abraham G. The importance of muscarinic receptors in domestic animal diseases and therapy: Current and future perspectives. Vet J 2016; 208:13-21. [DOI: 10.1016/j.tvjl.2015.10.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 10/06/2015] [Accepted: 10/08/2015] [Indexed: 01/24/2023]
|
9
|
Olshansky B. Vagus nerve modulation of inflammation: Cardiovascular implications. Trends Cardiovasc Med 2016; 26:1-11. [DOI: 10.1016/j.tcm.2015.03.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/30/2015] [Accepted: 03/30/2015] [Indexed: 12/26/2022]
|
10
|
Patanè S. M3 muscarinic acetylcholine receptor in cardiology and oncology. Int J Cardiol 2014; 177:646-9. [PMID: 25449471 DOI: 10.1016/j.ijcard.2014.09.178] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 09/27/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Salvatore Patanè
- Cardiologia Ospedale San Vincenzo - Taormina (Me) Azienda Sanitaria Provinciale di Messina, Contrada Sirina, 98039 Taormina (Messina), Italy. patane-@libero.it
| |
Collapse
|
11
|
Liu Y, Wang S, Wang C, Song H, Han H, Hang P, Jiang Y, Wei L, Huo R, Sun L, Gao X, Lu Y, Du Z. Upregulation of M₃ muscarinic receptor inhibits cardiac hypertrophy induced by angiotensin II. J Transl Med 2013; 11:209. [PMID: 24028210 PMCID: PMC3819674 DOI: 10.1186/1479-5876-11-209] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 09/04/2013] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND M₃ muscarinic acetylcholine receptor (M₃-mAChR) is stably expressed in the myocardium, but its pathophysiological role remains largely undefined. This study aimed to investigate the role of M₃-mAChR in cardiac hypertrophy induced by angiotensin II (Ang II) and elucidate the underlying mechanisms. METHODS Cardiac-specific M₃-mAChR overexpression transgenic (TG) mice and rat H9c2 cardiomyoblasts with ectopic expression of M₃-mAChR were established. Models of cardiac hypertrophy were induced by transverse aortic constriction (TAC) or Ang II infusion in the mice in vivo, and by isoproterenol (ISO) or Ang II treatment of H9c2 cells in vitro. Cardiac hypertrophy was evaluated by electrocardiography (ECG) measurement, hemodynamic measurement and histological analysis. mRNA and protein expression were detected by real-time RT-PCR and Western blot analysis. RESULTS M₃-mAChR was upregulated in hypertrophic heart, while M₂-mAChR expression did not change significantly. M₃-mAChR overexpression significantly attenuated the increased expression of atrial natriuretic peptide and β-myosin heavy chain induced by Ang II both in vivo and in vitro. In addition, M₃-mAChR overexpression downregulated AT1 receptor expression and inhibited the activation of MAPK signaling in the heart. CONCLUSION The upregulation of M₃-mAChR during myocardial hypertrophy could relieve the hypertrophic response provoked by Ang II, and the mechanism may involve the inhibition of MAPK signaling through the downregulation of AT1 receptor.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmacology (State-Province key lab of China), Harbin Medical University, Heilongjiang 150081, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lu X, Costantini T, Lopez NE, Wolf PL, Hageny AM, Putnam J, Eliceiri B, Coimbra R. Vagal nerve stimulation protects cardiac injury by attenuating mitochondrial dysfunction in a murine burn injury model. J Cell Mol Med 2013; 17:664-71. [PMID: 23577721 PMCID: PMC3822819 DOI: 10.1111/jcmm.12049] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 02/07/2013] [Indexed: 01/29/2023] Open
Abstract
Mitochondria play a central role in the integration and execution of a wide variety of apoptotic signals. In the present study, we examined the deleterious effects of burn injury on heart tissue. We explored the effects of vagal nerve stimulation (VNS) on cardiac injury in a murine burn injury model, with a focus on the protective effect of VNS on mitochondrial dysfunction in heart tissue. Mice were subjected to a 30% total body surface area, full-thickness steam burn followed by right cervical VNS for 10 min. and compared to burn alone. A separate group of mice were treated with the M3-muscarinic acetylcholine receptor (M3-AchR) antagonist 4-DAMP or phosphatidylinositol 3 Kinase (PI3K) inhibitor LY294002 prior to burn and VNS. Heart tissue samples were collected at 6 and 24 hrs after injury to measure changes in apoptotic signalling pathways. Burn injury caused significant cardiac pathological changes, cardiomyocyte apoptosis, mitochondrial swelling and decrease in myocardial ATP content at 6 and 24 hrs after injury. These changes were significantly attenuated by VNS. VNS inhibited release of pro-apoptotic protein cytochrome C and apoptosis-inducing factor from mitochondria to cytosol by increasing the expression of Bcl-2, and the phosphorylation level of Bad (pBad136) and Akt (pAkt308). These protective changes were blocked by 4-DAMP or LY294002. We demonstrated that VNS protected against burn injury–induced cardiac injury by attenuating mitochondria dysfunction, likely through the M3-AchR and the PI3K/Akt signalling pathways.
Collapse
Affiliation(s)
- Xiaojiong Lu
- Division of Trauma, Surgical Critical Care and Burns, Department of Surgery, University of California San Diego Health Sciences, San Diego, CA 92103, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Differential densities of cholinergic nerves in canine supraventricular regions of hearts. J Cardiol 2013; 61:232-6. [PMID: 23403370 DOI: 10.1016/j.jjcc.2012.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Revised: 11/13/2012] [Accepted: 12/04/2012] [Indexed: 11/22/2022]
Abstract
PURPOSE Cholinergic nerve plays an important role in the induction and maintenance of atrial fibrillation (AF). Cholinergic innervation at supraventricular tissues is considered to be the histological basis and intervention-associated target site for the arrhythmia; however, the distribution of cholinergic nerve in supraventricular tissues has not been clearly studied. In this study, we investigated the cholinergic nerve innervation in canine supraventricular regions of hearts. METHODS We performed histological and immunohistochemical staining on canine tissues of left atrial appendage (LAA), right atrial appendage (RAA), left atrium (LA), right atrium (RA), atrial septum (AS), crista terminalis (CT), pulmonary vein (PV), and super vena cava (SVC) using hematoxylin and eosin (H&E) and antibodies to choline acetyltransferase. RESULTS Normal canine cardiovascular histological structures were shown from H&E staining. Cholinergic nerve densities at LAA and RAA were significantly higher than LA, which was higher than RA, but no significant difference was observed between LAA and RAA. Furthermore, RA was significantly higher than AS, CT, PV, and SVC and there were no significant differences among the latter four. CONCLUSION The heterogeneity of different densities of cholinergic nerve innervation of canine supraventricular regions establishes the histological basis of cholinergic nerve-mediated pathological conditions.
Collapse
|
14
|
Wang S, Han HM, Pan ZW, Hang PZ, Sun LH, Jiang YN, Song HX, Du ZM, Liu Y. Choline inhibits angiotensin II-induced cardiac hypertrophy by intracellular calcium signal and p38 MAPK pathway. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:823-31. [PMID: 22569796 DOI: 10.1007/s00210-012-0740-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 02/07/2012] [Indexed: 02/07/2023]
Abstract
Choline, an agonist of M(3) muscarinic acetylcholine receptors, is a precursor and metabolite of acetylcholine and is also a functional modulator of cellular membrane. However, the effect of choline on cardiac hypertrophy is not fully understood. The present study was therefore designed to explore whether choline could prevent cardiac hypertrophy induced by angiotensin II (Ang II) and clarify its potential mechanisms. Cardiac hypertrophy was induced by 0.6 mg kg(-1) day(-1) Ang II for 2 weeks in the presence or absence of choline pretreatment, while cardiomyocyte hypertrophy was induced by Ang II 0.1 μM for 48 h. We found that choline pretreatment attenuated the increment cell size of cardiomyocytes induced by Ang II both in vivo and in vitro. The high ANP and β-MHC levels induced by Ang II were also reversed by choline in cardiomyocytes. Meanwhile, choline pretreatment prevented the augment of reactive oxygen species (ROS) and intracellular calcium concentration in Ang II-treated cardiomyocytes. Furthermore, the upregulated phospho-p38 mitogen-activated protein kinase (MAPK) and calcineurin levels by Ang II in ventricular myocytes were attenuated by choline. In conclusion, choline prevents Ang II-induced cardiac hypertrophy through inhibition of ROS-mediated p38 MAPK activation as well as regulation of Ca(2+)-mediated calcineurin signal transduction pathway. Our results provide new insights into the pharmacological role of choline in cardiovascular diseases.
Collapse
Affiliation(s)
- Shu Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang 150081, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Grandi E, Workman AJ, Pandit SV. Altered Excitation-Contraction Coupling in Human Chronic Atrial Fibrillation. J Atr Fibrillation 2012; 4:495. [PMID: 28496736 DOI: 10.4022/jafib.495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 02/10/2012] [Accepted: 03/19/2012] [Indexed: 12/19/2022]
Abstract
This review focuses on the (mal)adaptive processes in atrial excitation-contraction coupling occurring in patients with chronic atrial fibrillation. Cellular remodeling includes shortening of the atrial action potential duration and effective refractory period, depressed intracellular Ca2+ transient, and reduced myocyte contractility. Here we summarize the current knowledge of the ionic bases underlying these changes. Understanding the molecular mechanisms of excitation-contraction-coupling remodeling in the fibrillating human atria is important to identify new potential targets for AF therapy.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California at Davis, Davis, CA, USA
| | - Antony J Workman
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Sandeep V Pandit
- Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Zhou Y, Xu W, Han R, Zhou J, Pan Z, Rong H, Li J, Xu C, Qiao G, Lu Y. Matrine inhibits pacing induced atrial fibrillation by modulating I(KM3) and I(Ca-L). Int J Biol Sci 2011; 8:150-8. [PMID: 22211113 PMCID: PMC3248657 DOI: 10.7150/ijbs.8.150] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 12/04/2011] [Indexed: 11/06/2022] Open
Abstract
AIM To elucidate the protective effects of Matrine on atrial fibrillation (AF) induced by electric pacing in mice and underlying molecular and ion channel mechanisms. METHODS AF was introduced by electric pacing in mice and the incidence and duration of AF were evaluated. Functional expression of M(3) receptor (M(3)-R) and Cav1.2 were explored by western and Real-time PCR, action potential (AP) and the density of (I(KM3)) L-type calcium channel (I(Ca-L)) were both recorded using whole-cell patch in isolated atrial cardiomyocytes. RESULTS In control group, incidence and duration of AF induced by electric pacing were 50 ± 17% and 3.68 ± 1.84 s, respectively; after application of carbachol 50 µg/kg both incidence and duration of AF were significantly increased to 86 ± 24% and 65.2 ± 29.0 s. Compared with control group, pretreatment of Matrine for 15 days significantly reduced AF incidence and duration in dose-dependent manner. Atrial membrane-protein expression of M(3)-R was decreased and membrane Cav1.2 expression was up-regulated. In single Matrine-treated atrial cardiomyocyte the density of I(KM3) was significantly decreased by 39% as well compared with control group, P < 0.05, whereas, I(Ca-L) density of atrium was increased by 40%. CONCLUSION These data demonstrated at the first time that the anti-AF effects of Matrine may due, at least in part, to down-regulation of I(KM3) density and M(3)-R expression and up-regulation of I(Ca-L )density and α1C/Cav1.2 expression.
Collapse
Affiliation(s)
- Yuhong Zhou
- 1. Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Wei Xu
- 2. Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University
| | - Ruyi Han
- 1. Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Jiaying Zhou
- 1. Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Zhenwei Pan
- 1. Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Huo Rong
- 1. Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Junnan Li
- 1. Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Changqing Xu
- 3. Department of Pathophysiology, Harbin Medical University, Harbin, China
| | - Guofen Qiao
- 1. Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Yanjie Lu
- 1. Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| |
Collapse
|
17
|
Linz D, Schotten U, Neuberger HR, Böhm M, Wirth K. Combined blockade of early and late activated atrial potassium currents suppresses atrial fibrillation in a pig model of obstructive apnea. Heart Rhythm 2011; 8:1933-9. [PMID: 21767520 DOI: 10.1016/j.hrthm.2011.07.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 07/12/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND Negative tracheal pressure (NTP) during tracheal obstruction in obstructive apnea increases vagal tone and causes pronounced shortening of the atrial effective refractory period (AERP), thereby perpetuating atrial fibrillation (AF). The role of different atrial potassium channels under those conditions has not been investigated. OBJECTIVE The purpose of this study was to evaluate the atrial effects of blockade of the late activated potassium current (I(Kr)) by sotalol, of blockade of the early activated potassium currents (I(Kur)/I(to)) by AVE0118, and of the multichannel blocker amiodarone during tracheal occlusions with applied NTP. METHODS Twenty-one pigs were anesthetized, and an endotracheal tube was placed to apply NTP (up to -100 mbar) comparable to clinically observed obstructive sleep apnea for 2 minutes. Right AERP and AF inducibility were measured transvenously by a monophasic action potential recording and stimulation catheter. RESULTS Tracheal occlusion with applied NTP caused pronounced AERP shortening. AF was inducible during all NTP maneuvers. Blockade of I(Kr) by sotalol, blockade of I(Kur)/I(to) by AVE0118, and amiodarone did not affect NTP-induced AERP shortening, although they prolonged the AERP during normal breathing. Atropine given after amiodarone completely inhibited NTP-induced AERP shortening. The combined blockade of I(Kr) and I(Kur)/I(to) by sotalol plus AVE0118, however, attenuated NTP-induced AERP shortening and AF inducibility independent of the order of administration. CONCLUSION The atrial proarrhythmic effect of NTP simulating obstructive apneas is difficult to inhibit by class III antiarrhythmic drugs. Neither amiodarone nor blockade of I(Kr) or I(Kur)/I(to) attenuated NTP-induced AERP shortening. However, the combined blockade of I(Kur)/I(to) and I(Kr) suppressed NTP-induced AERP shortening.
Collapse
Affiliation(s)
- Dominik Linz
- Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Homburg/Saar, Germany.
| | | | | | | | | |
Collapse
|
18
|
Liu Y, Sun L, Pan Z, Bai Y, Wang N, Zhao J, Xu C, Li Z, Li B, Du Z, Lu Y, Gao X, Yang B. Overexpression of M₃ muscarinic receptor is a novel strategy for preventing sudden cardiac death in transgenic mice. Mol Med 2011; 17:1179-87. [PMID: 21785809 DOI: 10.2119/molmed.2011.00093] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/13/2011] [Indexed: 11/06/2022] Open
Abstract
The present study was designed to investigate the cardiac benefits of M₃ muscarinic receptor (M₃-mAChR) overexpression and whether these effects are related to the regulation of the inward rectifying K⁺ channel by microRNA-1 (miR-1) in a conditional overexpression mouse model. A cardiac-specific M₃-mAChR transgenic mouse model was successfully established for the first time in this study using microinjection, and the overexpression was confirmed by both reverse transcriptase-polymerase chain reaction and Western blot techniques. We demonstrated that M₃-mAChR overexpression dramatically reduced the incidence of arrhythmias and decreased the mortality in a mouse model of myocardial ischemia-reperfusion (I/R). By using whole-cell patch techniques, M₃-mAChR overexpression significantly shortened the action potential duration and restored the membrane repolarization by increasing the inward rectifying K⁺ current. By using Western blot techniques, M₃-mAChR overexpression also rescued the expression of the inward rectifying K⁺ channel subunit Kir2.1 after myocardial I/R injury. This result was accompanied by suppression of upregulation miR-1. We conclude that M₃-mAChR overexpression reduced the incidence of arrhythmias and mortality after myocardial I/R by protecting the myocardium from ischemia in mice. This effect may be mediated by increasing the inward rectifying K⁺ current by downregulation of arrhythmogenic miR-1 expression, which might partially be a novel strategy for antiarrhythmias, leading to sudden cardiac death.
Collapse
Affiliation(s)
- Yan Liu
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine and Pharmaceutics, Harbin, Heilongjiang, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev 2011; 91:265-325. [PMID: 21248168 DOI: 10.1152/physrev.00031.2009] [Citation(s) in RCA: 885] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Atrial fibrillation (AF) is an arrhythmia that can occur as the result of numerous different pathophysiological processes in the atria. Some aspects of the morphological and electrophysiological alterations promoting AF have been studied extensively in animal models. Atrial tachycardia or AF itself shortens atrial refractoriness and causes loss of atrial contractility. Aging, neurohumoral activation, and chronic atrial stretch due to structural heart disease activate a variety of signaling pathways leading to histological changes in the atria including myocyte hypertrophy, fibroblast proliferation, and complex alterations of the extracellular matrix including tissue fibrosis. These changes in electrical, contractile, and structural properties of the atria have been called "atrial remodeling." The resulting electrophysiological substrate is characterized by shortening of atrial refractoriness and reentrant wavelength or by local conduction heterogeneities caused by disruption of electrical interconnections between muscle bundles. Under these conditions, ectopic activity originating from the pulmonary veins or other sites is more likely to occur and to trigger longer episodes of AF. Many of these alterations also occur in patients with or at risk for AF, although the direct demonstration of these mechanisms is sometimes challenging. The diversity of etiological factors and electrophysiological mechanisms promoting AF in humans hampers the development of more effective therapy of AF. This review aims to give a translational overview on the biological basis of atrial remodeling and the proarrhythmic mechanisms involved in the fibrillation process. We pay attention to translation of pathophysiological insights gained from in vitro experiments and animal models to patients. Also, suggestions for future research objectives and therapeutical implications are discussed.
Collapse
Affiliation(s)
- Ulrich Schotten
- Department of Physiology, University Maastricht, Maastricht, The Netherlands.
| | | | | | | |
Collapse
|
20
|
Cazzola M, Calzetta L, Matera MG. The cardiovascular risk of tiotropium: is it real? Expert Opin Drug Saf 2010; 9:783-92. [DOI: 10.1517/14740338.2010.500611] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Tuomi JM, Chidiac P, Jones DL. Evidence for enhanced M3 muscarinic receptor function and sensitivity to atrial arrhythmia in the RGS2-deficient mouse. Am J Physiol Heart Circ Physiol 2009; 298:H554-61. [PMID: 19966055 DOI: 10.1152/ajpheart.00779.2009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Atrial fibrillation (AF) is the most common arrhythmia seen in general practice. Muscarinic ACh receptors (M2R, M3R) are involved in vagally induced AF. M2R and M3R activate the heterotrimeric G proteins, G(i) and G(q), respectively, by promoting GTP binding, and these in turn activate distinct K(+) channels. Signaling is terminated by GTP hydrolysis, a process accelerated by regulator of G protein signaling (RGS) proteins. RGS2 is selective for G(q) and thus may regulate atrial M3R signaling. We hypothesized that knockout of RGS2 (RGS2(-/-)) would render the atria more susceptible to electrically induced AF. One-month-old male RGS2(-/-) and C57BL/6 wild-type (WT) mice were instrumented for intracardiac electrophysiology. Atrial effective refractory periods (AERPs) were also determined in the absence and presence of carbachol, atropine, and/or the selective M3R antagonist darifenacin. Susceptibility to electrically induced AF used burst pacing and programmed electrical stimulation with one extrastimulus. Real-time RT-PCR measured atrial and ventricular content of RGS2, RGS4, M2R, M3R, and M4R mRNA. AERP was lower in RGS2(-/-) compared with WT mice in both the high right atrium (HRA) (30 +/- 1 vs. 34 +/- 1 ms, P < 0.05) and mid right atrium (MRA) (21 +/- 1 vs. 24 +/- 1 ms, P < 0.05). Darifenacin eliminated this difference (HRA: 37 +/- 2 vs. 39 +/- 2 ms, and MRA: 30 +/- 2 vs. 30 +/- 1, P > 0.4). RGS2(-/-) were more susceptible than WT mice to atrial tachycardia/fibrillation (AT/F) induction (11/22 vs. 1/25, respectively, P < 0.05). Muscarinic receptor expression did not differ between strains, whereas M2R expression was 70-fold higher than M3R (P < 0.01). These results suggest that RGS2 is an important cholinergic regulator in the atrium and that RGS2(-/-) mice have enhanced susceptibility to AT/F via enhanced M3 muscarinic receptor activity.
Collapse
Affiliation(s)
- Jari M Tuomi
- Department of Physiology and Pharmacology, University of Western Ontario, London Health Science Center, London, Ontario, Canada
| | | | | |
Collapse
|
22
|
Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation 2008; 118:863-71. [PMID: 18711023 DOI: 10.1161/circulationaha.107.760405] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Brian Olshansky
- Division of Cardiology, University of Iowa Hospitals, 200 Hawkins Dr 4426a JCP, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
23
|
Li GR, Wang HB, Qin GW, Jin MW, Tang Q, Sun HY, Du XL, Deng XL, Zhang XH, Chen JB, Chen L, Xu XH, Cheng LC, Chiu SW, Tse HF, Vanhoutte PM, Lau CP. Acacetin, a natural flavone, selectively inhibits human atrial repolarization potassium currents and prevents atrial fibrillation in dogs. Circulation 2008; 117:2449-57. [PMID: 18458165 DOI: 10.1161/circulationaha.108.769554] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The development of atrium-selective antiarrhythmic agents is a current strategy for inhibiting atrial fibrillation (AF). The present study investigated whether the natural flavone acacetin from the traditional Chinese medicine Xuelianhua would be an atrium-selective anti-AF agent. METHODS AND RESULTS The effects of acacetin on human atrial ultrarapid delayed rectifier K(+) current (I(Kur)) and other cardiac ionic currents were studied with a whole-cell patch technique. Acacetin suppressed I(Kur) and the transient outward K(+) current (IC(50) 3.2 and 9.2 mumol/L, respectively) and prolonged action potential duration in human atrial myocytes. The compound blocked the acetylcholine-activated K(+) current; however, it had no effect on the Na(+) current, L-type Ca(2+) current, or inward-rectifier K(+) current in guinea pig cardiac myocytes. Although acacetin caused a weak reduction in the hERG and hKCNQ1/hKCNE1 channels stably expressed in HEK 293 cells, it did not prolong the corrected QT interval in rabbit hearts. In anesthetized dogs, acacetin (5 mg/kg) prolonged the atrial effective refractory period in both the right and left atria 1 to 4 hours after intraduodenal administration without prolongation of the corrected QT interval, whereas sotalol at 5 mg/kg prolonged both the atrial effective refractory period and the corrected QT interval. Acacetin prevented AF induction at doses of 2.5 mg/kg (50%), 5 mg/kg (85.7%), and 10 mg/kg (85.7%). Sotalol 5 mg/kg also prevented AF induction (60%). CONCLUSIONS The present study demonstrates that the natural compound acacetin is an atrium-selective agent that prolongs the atrial effective refractory period without prolonging the corrected QT interval and effectively prevents AF in anesthetized dogs after intraduodenal administration. These results indicate that oral acacetin is a promising atrium-selective agent for the treatment of AF.
Collapse
Affiliation(s)
- Gui-Rong Li
- Department of Medicine, Li Ka Shing Faculty of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Rd, Pokfulam, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Yeh YH, Qi X, Shiroshita-Takeshita A, Liu J, Maguy A, Chartier D, Hebert T, Wang Z, Nattel S. Atrial tachycardia induces remodelling of muscarinic receptors and their coupled potassium currents in canine left atrial and pulmonary vein cardiomyocytes. Br J Pharmacol 2007; 152:1021-1032. [PMID: 17618308 PMCID: PMC2095106 DOI: 10.1038/sj.bjp.0707376] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 05/16/2007] [Accepted: 05/30/2007] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Both parasympathetic tone and atrial tachycardia (AT) remodelling of ion channels play important roles in atrial fibrillation (AF) pathophysiology. Different muscarinic cholinergic receptor (mAChR) subtypes (M2, M3, M4) in atrial cardiomyocytes are coupled to distinct K+-currents (called IKM2, IKM3, IKM4, respectively). Pulmonary veins (PVs) are important in AF and differential cholinergic current responses are a potential underlying mechanism. This study investigated AT-induced remodelling of mAChR subtypes and K+-currents in left-atrial (LA) and PV cardiomyocytes. EXPERIMENTAL APPROACH Receptor expression was assayed by western blot. IKM2, IKM3 and IKM4 were recorded with whole-cell patch-clamp in LA and PV cardiomyocytes of nonpaced control dogs and dogs after 7 days of AT-pacing (400 bpm). KEY RESULTS Current densities of IKM2, IKM3 and IKM4 were significantly reduced by AT-pacing in LA and PV cardiomyocytes. PV cardiomyocyte current-voltage relations were similar to LA for all three cholinergic currents, both in control and AT remodelling. Membrane-protein expression levels corresponding to M2, M3 and M4 subtypes were decreased significantly (by about 50%) after AT pacing. Agonist concentration-response relations for all three currents were unaffected by AT pacing. CONCLUSIONS AND IMPLICATIONS AT downregulated all three mAChR-coupled K+-current subtypes, along with corresponding mAChR protein expression. These changes in cholinergic receptor-coupled function may play a role in AF pathophysiology. Cholinergic receptor-coupled K+-currents in PV cardiomyocytes were similar to those in LA under control and AT-pacing conditions, suggesting that differential cholinergic current properties do not explain the role of PVs in AF.
Collapse
MESH Headings
- Animals
- Atrial Fibrillation/metabolism
- Atrial Fibrillation/physiopathology
- Blotting, Western
- Cardiac Pacing, Artificial
- Cells, Cultured
- Disease Models, Animal
- Dogs
- Down-Regulation
- Electrophysiologic Techniques, Cardiac
- Evoked Potentials
- Heart Atria/metabolism
- Heart Atria/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Patch-Clamp Techniques
- Potassium Channels, Inwardly Rectifying/metabolism
- Pulmonary Veins/metabolism
- Pulmonary Veins/pathology
- Receptors, Muscarinic/biosynthesis
- Receptors, Muscarinic/metabolism
- Tachycardia, Ectopic Atrial/metabolism
- Tachycardia, Ectopic Atrial/physiopathology
- Time Factors
Collapse
Affiliation(s)
- Y-H Yeh
- Department of Medicine, Université de Montréal and Research Center, Montreal Heart Institute Quebec, Canada
- Department of Medicine, Université de Montréal Quebec, Canada
- First Cardiovascular Division, Department of Medicine, Chang Gung Memorial Hospital, Chang Gung University Tao-Yuan, Taiwan
| | - X Qi
- Department of Medicine, Université de Montréal and Research Center, Montreal Heart Institute Quebec, Canada
- Department of Medicine, Université de Montréal Quebec, Canada
| | - A Shiroshita-Takeshita
- Department of Medicine, Université de Montréal and Research Center, Montreal Heart Institute Quebec, Canada
- Department of Medicine, Université de Montréal Quebec, Canada
| | - J Liu
- Department of Medicine, Université de Montréal and Research Center, Montreal Heart Institute Quebec, Canada
- Department of Medicine, Université de Montréal Quebec, Canada
| | - A Maguy
- Department of Medicine, Université de Montréal and Research Center, Montreal Heart Institute Quebec, Canada
- Department of Medicine, Université de Montréal Quebec, Canada
| | - D Chartier
- Department of Medicine, Université de Montréal and Research Center, Montreal Heart Institute Quebec, Canada
- Department of Medicine, Université de Montréal Quebec, Canada
| | - T Hebert
- Department of Pharmacology and Therapeutics, McGill University Quebec, Canada
| | - Z Wang
- Department of Medicine, Université de Montréal and Research Center, Montreal Heart Institute Quebec, Canada
- Department of Medicine, Université de Montréal Quebec, Canada
| | - S Nattel
- Department of Medicine, Université de Montréal and Research Center, Montreal Heart Institute Quebec, Canada
- Department of Medicine, Université de Montréal Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University Quebec, Canada
| |
Collapse
|
25
|
James AF, Hancox JC. More types than one: multiple muscarinic receptor coupled K+ currents undergo remodelling in an experimental model of atrial fibrillation. Br J Pharmacol 2007; 152:981-3. [PMID: 17828293 PMCID: PMC2095112 DOI: 10.1038/sj.bjp.0707437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The common cardiac arrhythmia atrial fibrillation (AF) tends to show progression in its severity, which is associated with 'remodelling': structural and electrophysiological changes that facilitate arrhythmia induction and maintenance. In this issue of the BJP, Yeh and colleagues demonstrate for the first time, down-regulation of three types of muscarinic cholinergic receptor (mAChR) coupled K+ currents (IKM2, IKM3 and IKM4) and of M2, M3 and M4 mAChR subtype proteins, in a canine model of atrial tachycardia (AT) induced remodelling. The IKMs and their extent of AT-induced remodelling were similar in left-atrial and pulmonary vein (PV) myocytes, so remodelling of M2-M4 receptor-linked currents appears not to underlie the unique contribution of PVs to AF. Parasympathetic stimulation can increase susceptibility to AF; thus remodelling of M2-M4 receptors and K+ currents could be adaptive in AT. Further work is warranted to determine whether or not remodelling of multiple mAChRs and currents also contributes to human AF.
Collapse
Affiliation(s)
- A F James
- Department of Physiology and Pharmacology, and Bristol Heart Institute Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol Bristol, UK
- Department of Cell Physiology, National Institute for Physiological Sciences Okazaki, Japan
- Author for correspondence:
| | - J C Hancox
- Department of Physiology and Pharmacology, and Bristol Heart Institute Cardiovascular Research Laboratories, School of Medical Sciences, University of Bristol Bristol, UK
- Author for correspondence:
| |
Collapse
|
26
|
Nattel S, Maguy A, Le Bouter S, Yeh YH. Arrhythmogenic Ion-Channel Remodeling in the Heart: Heart Failure, Myocardial Infarction, and Atrial Fibrillation. Physiol Rev 2007; 87:425-56. [PMID: 17429037 DOI: 10.1152/physrev.00014.2006] [Citation(s) in RCA: 623] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rhythmic and effective cardiac contraction depends on appropriately timed generation and spread of cardiac electrical activity. The basic cellular unit of such activity is the action potential, which is shaped by specialized proteins (channels and transporters) that control the movement of ions across cardiac cell membranes in a highly regulated fashion. Cardiac disease modifies the operation of ion channels and transporters in a way that promotes the occurrence of cardiac rhythm disturbances, a process called “arrhythmogenic remodeling.” Arrhythmogenic remodeling involves alterations in ion channel and transporter expression, regulation and association with important protein partners, and has important pathophysiological implications that contribute in major ways to cardiac morbidity and mortality. We review the changes in ion channel and transporter properties associated with three important clinical and experimental paradigms: congestive heart failure, myocardial infarction, and atrial fibrillation. We pay particular attention to K+, Na+, and Ca2+channels; Ca2+transporters; connexins; and hyperpolarization-activated nonselective cation channels and discuss the mechanisms through which changes in ion handling processes lead to cardiac arrhythmias. We highlight areas of future investigation, as well as important opportunities for improved therapeutic approaches that are being opened by an improved understanding of the mechanisms of arrhythmogenic remodeling.
Collapse
Affiliation(s)
- Stanley Nattel
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Quebec, Canada.
| | | | | | | |
Collapse
|
27
|
Abstract
1. Since the initial identification of the M3 subtype of muscarinic acetylcholine receptors (M3-mAChR) in the heart, there have been increasing interest and advances in studies on the pathophysiological roles of M3-mAChR in the heart. Recent studies from several laboratories have provided compelling and solid evidence in support of the important roles of M3-mAChR in regulation and maintenance of cardiac function and in generation and progression of heart disease as well. 2. The functions of the cardiac M3-mAChR revealed thus far include (i) M3-mAChR regulation of heart rate and cardiac repolarization, (ii) modulation of inotropic effects, (iii) cytoprotection against ischaemic injuries of myocardium, (iv) regulation of cell-to-cell communication, and (v) participation in generation and maintenance of atrial fibrillation. 3. Signal transduction mechanisms underlying these pathophysiological functions have also been studied, which have allowed us to get insight into the following mechanistic aspects. (i) M3-mAChR activates a delayed rectifying K+ current I(KM3) to participate in cardiac repolarization, negative chronotropic actions, and anti-dysrhythmic (suppresses ischaemic dysrhythmias) as well as pro-dysrhythmic (facilitates atrial fibrillation) actions. (ii) M3-mAChR interacts with gap-junctional channel connexin 43 to maintain cell-cell communication and excitation propagation. (iii) M3-mAChR regulates intracellular phosphoinositide hydrolysis to improve cardiac contraction and haemodynamic function. (iv) M3-mAChR activate anti-apoptotic signalling molecules, enhances endogenous antioxidant capacity, and diminishes intracellular Ca2+ overload, all of which contribute to protecting the heart against ischaemic injuries. 4. This article provides an overview of the potential roles of the M3-mAChR in parasympathetic control of heart function under normal physiological conditions and in the setting of a variety of pathological processes including heart failure, myocardial ischaemia and dysrhythmias.
Collapse
Affiliation(s)
- H Wang
- Research Center, Montreal Heart Institute, 5000 Belanger East, Montreal, QC H1T 1C8
| | | | | |
Collapse
|
28
|
Huang CX, Zhao QY, Liang JJ, Chen H, Yang B, Jiang H, Li GS. Differential Densities of Muscarinic Acetylcholine Receptor and I K,ACh in Canine Supraventricular Tissues and the Effect of Amiodarone on Cholinergic Atrial Fibrillation and I K,ACh. Cardiology 2006; 106:36-43. [PMID: 16612067 DOI: 10.1159/000092597] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Accepted: 01/24/2006] [Indexed: 11/19/2022]
Abstract
BACKGROUND Vagal nerve plays an important role in the induction and maintenance of atrial fibrillation (AF). This study investigated the differential densities of M2 receptor and acetylcholine-induced inward rectifier K+ current (I(K,ACh)) in atrial appendage, atrium, pulmonary vein (PV) and super vena cava (SVC) to discuss the role of atrial appendage and PV in cholinergic AF. METHODS AND RESULTS In 10 dogs, action potential duration was determined at 24 sites during bilateral cervical vagal stimulation and amiodarone administration. AF could be induced at first in right atrial appendage (RAA) and right atrium (RA) without left atrial appendage (LAA) and left atrium (LA). Amiodarone decreased the initiation of AF in vivo. Western blot and patch clamp were used to determine M2 receptor and I(K,ACh) in RAA, LAA, RA, LA, PV and SVC. The densities of M2 receptor and I(K,ACh) in LAA, RAA and LA were higher than that in RA, PV and SVC (21.34 +/- 0.92 vs. 8.24 +/- 0.45 pA/pF, p < 0.05). Furthermore, the densities of the M2 receptor and I(K,ACh) in LAA and RAA were higher than that in LA (21.34 +/- 0.92 vs. 14.17 +/- 0.65 pA/pF, p < 0.05). After amiodarone administration, densities of I(K,ACh) in LA and RA were not different, but densities of I(K,ACh )were also less in atrium than in atrial appendage. CONCLUSIONS Densities of the M2 receptor and I(K,ACh) are higher in atrial appendage than other sites. Atrial appendage perhaps plays an important role in initiation of cholinergic AF. However, PV and SVC less often play an important role in vagotonic paroxysmal AF. Reduced dispersion of I(K,ACh) is the mechanism for amiodarone to therapy AF.
Collapse
Affiliation(s)
- Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Wang TM, Luk HN, Sheu JR, Wu HP, Chiang CE. Inducibility of abnormal automaticity and triggered activity in myocardial sleeves of canine pulmonary veins. Int J Cardiol 2005; 104:59-66. [PMID: 16137511 DOI: 10.1016/j.ijcard.2004.10.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 09/22/2004] [Accepted: 10/04/2004] [Indexed: 11/26/2022]
Abstract
BACKGROUND To study the cellular mechanisms governing cardiac atrial arrhythmias initiated by ectopic focus (or foci) from pulmonary veins (PVs). METHODS In the present in vitro study, we applied the conventional microelectrode technique to record intracellular action potentials in PV sleeves from dogs. RESULTS In 80 normal healthy dogs, all action potentials recorded in cardiomyocytes from PV sleeves were fast-response. The pharmacological responses to quinidine, nisoldipine, D-sotalol, 4-aminopyridine, isoproterenol, acetylcholine, and adenosine were characteristic of those in atrial cells. Diastolic depolarization and spontaneous activity could be induced by 1 mmol/L Ba2+ in all the 22 PV specimens being tested, but only in 3 of 11 of left atrial specimens (p<0.0001). In the presence of 1 mmol/L Ba2+, the diastolic slope was only slightly affected by Ni2+ (500 micromol/L), but was significantly suppressed by Cd2+ (200 micromol/L). Ryanodine (2 micromol/L) caused a transient increase, followed by a marked decrease of Ba2+-induced spontaneous activity. Isoproterenol shortened and acetylcholine prolonged the cycle length of the Ba2+-induced automatic activity. In the presence of isoproterenol, washout of acetylcholine induced a rebound phenomenon, which triggered a short period of spontaneous activity. The results suggest an important role of intracellular cytoplasmic Ca2+ loading. Under conditions that mimic ischemia/hypoxia, the resting membrane potential depolarized, upstroke of the action potential became depressed and the action potential duration shortened. In the presence of isoproterenol and elevated external K+, spontaneous activity was generated. CONCLUSIONS These findings indicate a lack of arrhythmogenic activity in normal healthy PV sleeves. Abnormal automaticity and triggered activity occurred exclusively under simulated pathologic conditions. Ba2+-induced automaticity was more easily induced in PV than in the left atrium. The same conditions might also favor the genesis of reentry in the in vivo condition.
Collapse
Affiliation(s)
- Tsui-Min Wang
- Graduate Institute of Medical Science, Taipei Medical University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
30
|
Abstract
Mechanisms responsible for atrial fibrillation are not completely understood but the autonomic nervous system is a potentially potent modulator of the initiation, maintenance, termination and ventricular rate determination of atrial fibrillation. Complex interactions exist between the parasympathetic and sympathetic nervous systems on the central, ganglionic, peripheral, tissue, cellular and subcellular levels that could be responsible for alterations in conduction and refractoriness properties of the heart as well as the presence and type of triggered activity, all of which could contribute to atrial fibrillation. These dynamic inter-relationships may also be altered dependent upon other neurohumoral modulators and cardiac mechanical effects from ventricular dysfunction and congestive heart failure. The clinical implications regarding the effects of the autonomic nervous system in atrial fibrillation are widespread. The effects of modulating ganglionic input into the atria may alter the presence or absence of atrial fibrillation as has been highlighted from ablation investigations. This article reviews what is known regarding the inter-relationships between the autonomic nervous system and atrial fibrillation and provides state of the art information at all levels of autonomic interactions.
Collapse
Affiliation(s)
- Brian Olshansky
- Department of Internal Medicine, University of Iowa Hospitals, Iowa City, IA 52242, USA.
| |
Collapse
|
31
|
Yang B, Lin H, Xu C, Liu Y, Wang H, Han H, Wang Z. Choline produces cytoprotective effects against ischemic myocardial injuries: evidence for the role of cardiac m3 subtype muscarinic acetylcholine receptors. Cell Physiol Biochem 2005; 16:163-174. [PMID: 16301817 DOI: 10.1159/000089842] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2005] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Accumulating evidence indicates the presence of functional M3 subtype of acetylcholine muscarinic receptors (M(3)-mAChR), in addition to the well-recognized M(2)-mAChR, in the heart of various species including man. However, the pathophysiological role of the cardiac M(3)-mAChR remain undefined. This study was designed to explore the possible role of M(3)-mAChR in cytoprotection of myocardial infarction and several related signaling pathways as potential mechanisms. METHODS Studies were performed in a rat model of myocardial infarction and in isolated myocytes. RESULTS We found that choline relieved myocardial injuries during ischemia or under oxidative stress, which was achieved by correcting hemodynamic impairment, diminishing ventricular arrhythmias and protecting cardiomyocytes from apoptotic death. The beneficial effects of choline were reversed by the M(3)-selective antagonists but not by the M(2)-selective antagonist. Choline/M(3)-mAChR activated several survival signaling molecules (antiapoptotic proteins Bcl-2 and ERKs), increased endogenous antioxidant reserve (SOD), and reduced apoptotic mediators (proapoptotic proteins Fas and p38 MAPK) and intracellular Ca2+ overload. CONCLUSION Choline improves cardiac function and reduces ischemic myocardial injuries via stimulating the cardiac M(3)-mAChRs which in turn result in alterations of multiple signaling pathways leading to cytoprotection. The findings suggest M(3)-mAChR as a new target for drug development for improving cardiac function and preventing cardiac injuries during ischemia/reperfusion.
Collapse
Affiliation(s)
- Baofeng Yang
- Department of Pharmacology, State-Province Key Laboratory, Harbin Medical University, Harbin, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Eglen RM. Muscarinic Receptor Subtype Pharmacology and Physiology. PROGRESS IN MEDICINAL CHEMISTRY 2005; 43:105-36. [PMID: 15850824 DOI: 10.1016/s0079-6468(05)43004-0] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Richard M Eglen
- DiscoveRx Corporation, Albrae Street, Fremont, CA 94538, USA
| |
Collapse
|
33
|
Wang Z, Shi H, Wang H. Functional M3 muscarinic acetylcholine receptors in mammalian hearts. Br J Pharmacol 2004; 142:395-408. [PMID: 15148264 PMCID: PMC1574958 DOI: 10.1038/sj.bjp.0705787] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2004] [Revised: 03/08/2004] [Accepted: 03/10/2004] [Indexed: 11/08/2022] Open
Abstract
In contrast to most peripheral tissues where multiple subtypes of muscarinic acetylcholine receptor (mAChR) coexist, with each of them playing its part in the orchestra of parasympathetic innervation, the myocardium has been traditionally considered to possess a single mAChR subtype. Although there is much evidence to support the notion that one receptor subtype (M2) orchestrates myocardial muscarinic transduction, there is emerging evidence that M1 and M3 receptors are also expressed and are of potential physiological, pathophysiological and pharmacological relevance. Clarifying this issue has a profound impact on our thinking about the cholinergic control of the heart function and disease and approaches to new drug development for the treatment of heart disease associated with parasympathetic dysfunction. This review article presents evidence for the presence of the M3 receptor subtype in the heart, and analyzes the controversial data from published pharmacological, functional and molecular studies. The potential roles of the M3 receptors, in parasympathetic control of heart function under normal physiological conditions and in heart failure, myocardial ischemia and arrhythmias, are discussed. On the basis of these considerations, we have made some proposals concerning the future of myocardial M3 receptor research.
Collapse
Affiliation(s)
- Zhiguo Wang
- Research Center, Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
34
|
Shi H, Wang H, Yang B, Xu D, Wang Z. The M3 receptor-mediated K(+) current (IKM3), a G(q) protein-coupled K(+) channel. J Biol Chem 2004; 279:21774-21778. [PMID: 15140874 DOI: 10.1074/jbc.c400100200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stimulation of muscarinic acetylcholine receptors (mAChRs) can activate an inward rectifier K(+) current (I(KACh)), which is mediated by the M(2) subtype of mAChR in cardiac myocytes. Recently, a novel delayed rectifier-like K(+) current mediated by activation of the cardiac M(3) receptors (designated I(KM3)) was identified, which is distinct from I(KACh) and other known K(+) currents. While I(KACh) is known to be a G(i) protein-gated K(+) channel, the signal transduction mechanisms for I(KM3) activation remained unexplored. We studied I(KM3) with whole-cell patch clamp and macropatch clamp techniques. Whole cell I(KM3) activated by choline persisted with minimal rundown over 2 h in presence of internal GTP. When GTP was replaced by guanyl-5'-yl thiophosphate, I(KM3) demonstrated rapid and extensive rundown. While I(KACh) (induced by ACh) was markedly reduced in cells pretreated with pertussis toxin, I(KM3) was unaltered. Intracellular application of antibodies targeting alpha-subunit of G(i/o) protein suppressed I(KACh) without affecting I(KM3). Antibodies targeting the N and the C terminus, respectively, of G(q) protein alpha-subunit substantially depressed I(KM3) but failed to alter I(KACh). The antibody against beta-subunits of G proteins inhibited both I(KACh) and I(KM3). I(KM3) activated by choline in the cell-attached mode of macropatches persisted in the cell-free configuration. Application of purified G(q) protein alpha-subunit or betagamma-subunit of G proteins or guanosine 5'-O-(thiotriphosphate) to the internal solution activated I(KM3)-like currents in inside-out patches. Our findings revealed a novel aspect of receptor-channel signal transduction mechanisms, and I(KM3) represents the first G(q) protein-coupled K(+) channel. We propose that the G protein-coupled K(+) channel family could be divided into two subfamilies: G(i) protein-coupled K(+) channel subfamily and G(q) protein-coupled K(+) channel subfamily.
Collapse
Affiliation(s)
- Hong Shi
- Research Center, Montreal Heart Institute, Montreal, Quebec H1T 1C8, Canada
| | | | | | | | | |
Collapse
|