1
|
Liang J, Nie Y, Ren X, Li R, Xiong Z, Ai L, Tian Y. Gellan Gum Biosynthesis in Microorganisms: Current Status and Future Directions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40396223 DOI: 10.1021/acs.jafc.5c02818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Gellan gum is a widely used gel polysaccharide that is gaining market preference because of its unique gel characteristics. Although the biological synthesis of gellan gum dates back to the 1970s, research into its synthetic metabolic pathways has lagged behind that of other polysaccharides because of a lack of clarity. In recent years, driven by growing market demand and advancements in our understanding of metabolic pathways, as well as the rapid development of genetic engineering tools, the biological synthesis of gellan gum has progressed significantly. This article summarizes the developmental history of Sphingomonas paucimobilis ATCC 31461 and the structure of gellan gum, with a particular focus on the metabolic pathway involved in the production of gellan gum by these strains. This review discusses the metabolic engineering and research progress of key genes at different stages of the synthesis pathway. Additionally, this article introduces strategies for obtaining high-titer strains using traditional breeding methods and metabolic engineering approaches. Finally, it addresses the methods for producing low-molecular-weight-gellan gum. We discuss ongoing disputes in the field and highlight promising directions for future research. This review aims to address the bottlenecks in gellan gum production by promoting a greener and more sustainable manufacturing process.
Collapse
Affiliation(s)
- Jiayuan Liang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yupeng Nie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xuebing Ren
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruiguo Li
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology, Jinan 250013, China
| | - Zhiqiang Xiong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lianzhong Ai
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yanjun Tian
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
2
|
Balíková K, Farkas B, Matúš P, Urík M. Prospects of Biogenic Xanthan and Gellan in Removal of Heavy Metals from Contaminated Waters. Polymers (Basel) 2022; 14:polym14235326. [PMID: 36501719 PMCID: PMC9737242 DOI: 10.3390/polym14235326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Biosorption is considered an effective technique for the treatment of heavy-metal-bearing wastewaters. In recent years, various biogenic products, including native and functionalized biopolymers, have been successfully employed in technologies aiming for the environmentally sustainable immobilization and removal of heavy metals at contaminated sites, including two commercially available heteropolysaccharides-xanthan and gellan. As biodegradable and non-toxic fermentation products, xanthan and gellan have been successfully tested in various remediation techniques. Here, to highlight their prospects as green adsorbents for water decontamination, we have reviewed their biosynthesis machinery and chemical properties that are linked to their sorptive interactions, as well as their actual performance in the remediation of heavy metal contaminated waters. Their sorptive performance in native and modified forms is promising; thus, both xanthan and gellan are emerging as new green-based materials for the cost-effective and efficient remediation of heavy metal-contaminated waters.
Collapse
|
3
|
Li H, Zhang Z, Liu J, Guo Z, Chen M, Li B, Xue H, Ji S, Li H, Qin L, Zhu L, Wang J, Zhu H. Identification of the Key Enzymes in WL Gum Biosynthesis and Critical Composition in Viscosity Control. Front Bioeng Biotechnol 2022; 10:918687. [PMID: 35711643 PMCID: PMC9197254 DOI: 10.3389/fbioe.2022.918687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
As an important microbial exopolysaccharide, the sphingan WL gum could be widely used in petroleum, food, and many other fields. However, its lower production is still limiting its wider application. Therefore, to gain insights into the bottlenecks of WL gum production by identifying the key enzymes in the WL gum biosynthesis pathway, more than 20 genes were over-expressed in Sphingomonas sp. WG and their effects on WL gum production and structure were investigated. Compared to the control strain, the WL gum production of welB over-expression strain was increased by 19.0 and 21.0% at 36 and 84 h, respectively. The WL gum production of both atrB and atrD over-expression strains reached 47 g/L, which was approximately 34.5% higher than that of the control strain at 36 h. Therefore, WelB, AtrB, and AtrD may be the key enzymes in WL production. Interestingly, the broth viscosity of most over-expression strains decreased, especially the welJ over-expression strain whose viscosity decreased by 99.3% at 84 h. Polysaccharides' structural features were investigated to find the critical components in viscosity control. The uronic acid content and total sugar content was affected by only a few genes, therefore, uronic acid and total sugar content may be not the key composition. In comparison, the acetyl degrees were enhanced by over-expression of most genes, which meant that acetyl content may be the critical factor and negatively correlated with the apparent viscosity of WL gum. This work provides useful information on the understanding of the bottlenecks of WL gum biosynthesis and will be helpful for the construction of high WL gum-yielding strains and rheological property controlling in different industries.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Zaimei Zhang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Jianlin Liu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Zhongrui Guo
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Mengqi Chen
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Benchao Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Han Xue
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Sixue Ji
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Hang Li
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Lijian Qin
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Ling Zhu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Jiqian Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China
| | - Hu Zhu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, China.,Engineering Research Center of Industrial Biocatalysis, Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China.,College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, China
| |
Collapse
|
4
|
The evolutionary life cycle of the polysaccharide biosynthetic gene cluster based on the Sphingomonadaceae. Sci Rep 2017; 7:46484. [PMID: 28429731 PMCID: PMC5399355 DOI: 10.1038/srep46484] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 03/21/2017] [Indexed: 11/08/2022] Open
Abstract
Although clustering of genes from the same metabolic pathway is a widespread phenomenon, the evolution of the polysaccharide biosynthetic gene cluster remains poorly understood. To determine the evolution of this pathway, we identified a scattered production pathway of the polysaccharide sanxan by Sphingomonas sanxanigenens NX02, and compared the distribution of genes between sphingan-producing and other Sphingomonadaceae strains. This allowed us to determine how the scattered sanxan pathway developed, and how the polysaccharide gene cluster evolved. Our findings suggested that the evolution of microbial polysaccharide biosynthesis gene clusters is a lengthy cyclic process comprising cluster 1 → scatter → cluster 2. The sanxan biosynthetic pathway proved the existence of a dispersive process. We also report the complete genome sequence of NX02, in which we identified many unstable genetic elements and powerful secretion systems. Furthermore, nine enzymes for the formation of activated precursors, four glycosyltransferases, four acyltransferases, and four polymerization and export proteins were identified. These genes were scattered in the NX02 genome, and the positive regulator SpnA of sphingans synthesis could not regulate sanxan production. Finally, we concluded that the evolution of the sanxan pathway was independent. NX02 evolved naturally as a polysaccharide producing strain over a long-time evolution involving gene acquisitions and adaptive mutations.
Collapse
|
5
|
Becker A. Challenges and perspectives in combinatorial assembly of novel exopolysaccharide biosynthesis pathways. Front Microbiol 2015. [PMID: 26217319 PMCID: PMC4496566 DOI: 10.3389/fmicb.2015.00687] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Because of their rheological properties various microbial polysaccharides are applied as thickeners and viscosifiers both in food and non-food industries. A broad variety of microorganisms secrete structurally diverse exopolysaccharides (EPS) that contribute to their surface attachment, protection against abiotic or biotic stress factors, and nutrient gathering. Theoretically, a massive number of EPS structures are possible through variations in monosaccharide sequences, condensation linkages and non-sugar decorations. Given the already-high diversity of EPS structures, taken together with the principal of combinatorial biosynthetic pathways, microbial polysaccharides are an attractive class of macromolecules with which to generate novel structures via synthetic biology approaches. However, previous manipulations primarily focused on increasing polysaccharide yield, with structural modifications restricted to removal of side chains or non-sugar decorations. This article outlines the biosynthetic pathways of the bacterial heteroexopolysaccharides xanthan and succinoglycan, which are used as thickening and stabilizing agents in food and non-food industries. Challenges and perspectives of combining synthetic biology approaches with directed evolution to overcome obstacles in assembly of novel EPS biosynthesis pathways are discussed.
Collapse
Affiliation(s)
- Anke Becker
- LOEWE Center for Synthetic Microbiology and Faculty of Biology, Philipps-University of Marburg , Marburg, Germany
| |
Collapse
|
6
|
Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: biosynthesis pathways and engineering strategies. Front Microbiol 2015; 6:496. [PMID: 26074894 PMCID: PMC4443731 DOI: 10.3389/fmicb.2015.00496] [Citation(s) in RCA: 341] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/06/2015] [Indexed: 12/13/2022] Open
Abstract
Bacteria produce a wide range of exopolysaccharides which are synthesized via different biosynthesis pathways. The genes responsible for synthesis are often clustered within the genome of the respective production organism. A better understanding of the fundamental processes involved in exopolysaccharide biosynthesis and the regulation of these processes is critical toward genetic, metabolic and protein-engineering approaches to produce tailor-made polymers. These designer polymers will exhibit superior material properties targeting medical and industrial applications. Exploiting the natural design space for production of a variety of biopolymer will open up a range of new applications. Here, we summarize the key aspects of microbial exopolysaccharide biosynthesis and highlight the latest engineering approaches toward the production of tailor-made variants with the potential to be used as valuable renewable and high-performance products for medical and industrial applications.
Collapse
Affiliation(s)
- Jochen Schmid
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technische Universität MünchenStraubing, Germany
| | - Bernd Rehm
- Institute of Fundamental Sciences, Massey UniversityPalmerston North, New Zealand
- The MacDiarmid Institute for Advanced Materials and NanotechnologyPalmerston North, New Zealand
| |
Collapse
|
7
|
Schmid J, Sieber V. Enzymatic Transformations Involved in the Biosynthesis of Microbial Exo-polysaccharides Based on the Assembly of Repeat Units. Chembiochem 2015; 16:1141-7. [DOI: 10.1002/cbic.201500035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Indexed: 12/12/2022]
|
8
|
A comparison of genes involved in sphingan biosynthesis brought up to date. Appl Microbiol Biotechnol 2014; 98:7719-33. [DOI: 10.1007/s00253-014-5940-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 10/25/2022]
|
9
|
Abstract
Microbial ester kinases identified in the past 3 decades came as a surprise, as protein phosphorylation on Ser, Thr, and Tyr amino acids was thought to be unique to eukaryotes. Current analysis of available microbial genomes reveals that "eukaryote-like" protein kinases are prevalent in prokaryotes and can converge in the same signaling pathway with the classical microbial "two-component" systems. Most microbial tyrosine kinases lack the "eukaryotic" Hanks domain signature and are designated tyrosine kinases based upon their biochemical activity. These include the tyrosine kinases termed bacterial tyrosine kinases (BY-kinases), which are responsible for the majority of known bacterial tyrosine phosphorylation events. Although termed generally as bacterial tyrosine kinases, BY-kinases can be considered as one family belonging to the superfamily of prokaryotic protein-tyrosine kinases in bacteria. Other members of this superfamily include atypical "odd" tyrosine kinases with diverse mechanisms of protein phosphorylation and the "eukaryote-like" Hanks-type tyrosine kinases. Here, we discuss the distribution, phylogeny, and function of the various prokaryotic protein-tyrosine kinases, focusing on the recently discovered Mycobacterium tuberculosis PtkA and its relationship with other members of this diverse family of proteins.
Collapse
Affiliation(s)
- Joseph D Chao
- From the Department of Microbiology and Immunology and
| | | | | |
Collapse
|
10
|
Javens J, Wan Z, Hardy GG, Brun YV. Bypassing the need for subcellular localization of a polysaccharide export-anchor complex by overexpressing its protein subunits. Mol Microbiol 2013; 89:350-71. [PMID: 23714375 DOI: 10.1111/mmi.12281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2013] [Indexed: 11/30/2022]
Abstract
Subcellular protein localization is thought to promote protein-protein interaction by increasing the effective concentration and enabling spatial co-ordination and proper segregation of proteins. We found that protein overexpression allowed the assembly of a productive polysaccharide biosynthesis-export-anchoring complex in the absence of polar localization in Caulobacter crescentus. Polar localization of the holdfast export protein, HfsD, depends on the presence of the other export proteins, HfsA and HfsB, and on the polar scaffold protein PodJ. The holdfast deficiency of hfsB and podJ mutants is suppressed by the overexpression of export proteins. Restored holdfasts are randomly positioned and colocalize with a holdfast anchor protein in these strains, indicating that functional complexes can form at non-polar sites. Therefore, overexpression of export proteins surpasses a concentration threshold necessary for holdfast synthesis. Restoration of holdfast synthesis at non-polar sites reduces surface adhesion, consistent with the need to spatially co-ordinate the holdfast synthesis machinery with the flagellum and pili. These strains lack the cell-specific segregation of the holdfast, resulting in the presence of holdfasts in motile daughter cells. Our results highlight the fact that multiple facets of subcellular localization can be coupled to improve the phenotypic outcome of a protein assembly.
Collapse
Affiliation(s)
- June Javens
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | | | | | |
Collapse
|
11
|
Bacterial tyrosine-kinases: structure-function analysis and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1804:628-34. [PMID: 19716442 DOI: 10.1016/j.bbapap.2009.08.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 08/07/2009] [Accepted: 08/17/2009] [Indexed: 11/21/2022]
Abstract
Since the characterization of genes encoding Ser/Thr-kinases and Tyr-kinases in bacteria, in 1991 and 1997, respectively, a growing body of evidence has been reported showing the important role of these enzymes in the regulation of bacterial physiology. While most Ser/Thr-kinases share structural similarity with their eukaryotic counterparts, it seems that bacteria have developed their own Tyr-kinases to catalyze protein phosphorylation on tyrosine. Different types of Tyr-kinases have been identified in bacteria and a large number of them are similar to ATP-binding proteins with Walker motifs. These enzymes have been grouped in the same family (BY-kinases) and the crystal structures of two of them have been recently characterized. Phosphoproteome analysis suggest that BY-kinases are involved in several cellular processes and to date, the best-characterized role of BY-kinases concerns the control of extracellular polysaccharide synthesis. Knowing the role of these compounds in the virulence of bacterial pathogens, BY-kinases can be considered as promising targets to combat some diseases. Here, we review the current knowledge on BY-kinases and discuss their potential for the development of new antibiotics.
Collapse
|
12
|
Occurrence, production, and applications of gellan: current state and perspectives. Appl Microbiol Biotechnol 2008; 79:889-900. [DOI: 10.1007/s00253-008-1496-0] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2008] [Revised: 04/03/2008] [Accepted: 04/05/2008] [Indexed: 10/22/2022]
|
13
|
Coleman RJ, Patel YN, Harding NE. Identification and organization of genes for diutan polysaccharide synthesis from Sphingomonas sp. ATCC 53159. J Ind Microbiol Biotechnol 2008; 35:263-74. [DOI: 10.1007/s10295-008-0303-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 12/20/2007] [Indexed: 12/01/2022]
|
14
|
Granja AT, Popescu A, Marques AR, Sá-Correia I, Fialho AM. Biochemical characterization and phylogenetic analysis of UDP-glucose dehydrogenase from the gellan gum producer Sphingomonas elodea ATCC 31461. Appl Microbiol Biotechnol 2007; 76:1319-27. [PMID: 17668199 DOI: 10.1007/s00253-007-1112-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 07/03/2007] [Accepted: 07/04/2007] [Indexed: 10/23/2022]
Abstract
Sphingomonas elodea ATCC 31461 synthesizes in high yield the exopolysaccharide gellan, which is a water-soluble gelling agent with many applications. In this study, we describe the cloning and sequence analysis of the ugdG gene, encoding a UDP-glucose dehydrogenase (47.2 kDa; UDPG-DH; EC 1.1.1.22), required for the synthesis of the gellan gum precursor UDP-glucuronic acid. UgdG protein shows homology to members of the UDP-glucose/GDP-mannose dehydrogenase superfamily. The Neighbor-Joining method was used to determine phylogenetic relationships among prokaryotic and eukaryotic UDPG-DHs. UgdG from S. elodea and UDPG-DHs from Novosphingobium, Zymomonas, Agrobacterium, and Caulobacter species form a divergent phylogenetic group with a close evolutionary relationship with eukaryotic UDPG-DHs. The ugdG gene was recombinantly expressed in Escherichia coli with and N-terminal 6-His tag and purified for biochemical characterization. The enzyme has an optimum temperature and pH of 37 degrees C and 8.7, respectively. The estimated apparent K(m) values for UDP-glucose and NAD(+) were 0.87 and 0.4 mM, respectively. DNA sequencing of chromosomal regions adjacent to ugdG gene and sequence similarity studies suggests that this gene maps together with others presumably involved in the biosynthesis of S. elodea cell wall polysaccharides.
Collapse
Affiliation(s)
- Ana Teresa Granja
- IBB - Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
15
|
Ferreira AS, Leitão JH, Sousa SA, Cosme AM, Sá-Correia I, Moreira LM. Functional analysis of Burkholderia cepacia genes bceD and bceF, encoding a phosphotyrosine phosphatase and a tyrosine autokinase, respectively: role in exopolysaccharide biosynthesis and biofilm formation. Appl Environ Microbiol 2006; 73:524-34. [PMID: 17114319 PMCID: PMC1796985 DOI: 10.1128/aem.01450-06] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biosynthesis of the exopolysaccharide (EPS) cepacian by Burkholderia cepacia complex strains requires the 16.2-kb bce cluster of genes. Two of the clustered genes, bceD and bceF, code for two proteins homologous to phosphotyrosine phosphatases and tyrosine kinases, respectively. We show experimental evidence indicating that BceF is phosphorylated on tyrosine and that the conserved lysine residue present at position 563 in the Walker A ATP-binding motif is required for this autophosphorylation. It was also proved that BceD is capable of dephosphorylating the phosphorylated BceF. Using the artificial substrate p-nitrophenyl phosphate (PNPP), BceD exhibited a V(max) of 8.8 mumol of PNPP min(-1) mg(-1) and a K(m) of 3.7 mM PNPP at 30 degrees C. The disruption of bceF resulted in the abolishment of cepacian accumulation in the culture medium, but 75% of the parental strain's EPS production yield was still registered for the bceD mutant. The exopolysaccharide produced by the bceD mutant led to less viscous solutions and exhibited the same degree of acetylation as the wild-type cepacian, suggesting a lower molecular mass for this mutant biopolymer. The size of the biofilm produced in vitro by bceD and bceF mutant strains is smaller than the size of the biofilm formed by the parental strain, and this phenotype was confirmed by complementation assays, indicating that BceD and BceF play a role in the establishment of biofilms of maximal size.
Collapse
Affiliation(s)
- Ana S Ferreira
- Institute for Biotechnology and Bioengineering, Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
16
|
Cozzone AJ. Role of Protein Phosphorylation on Serine/Threonine and Tyrosine in the Virulence of Bacterial Pathogens. J Mol Microbiol Biotechnol 2006; 9:198-213. [PMID: 16415593 DOI: 10.1159/000089648] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacterial pathogens have developed a diversity of strategies to interact with host cells, manipulate their behaviors, and thus to survive and propagate. During the process of pathogenesis, phosphorylation of proteins on hydroxyl amino acids (serine, threonine, tyrosine) occurs at different stages, including cell-cell interaction and adherence, translocation of bacterial effectors into host cells, and changes in host cellular structure and function induced by infection. The phosphorylation reactions are catalyzed in a reversible fashion by specific protein kinases and phosphatases that belong to either the invading bacterial cells or the infected eukaryotic host cells. Among the various virulence factors involved in bacterial pathogenesis, special attention has been paid recently to the cell wall components, exopolysaccharides. A major breakthrough has been made by showing the existence of a biological link between the activity of certain protein-tyrosine kinases/phosphatases and the production and/or transport of surface polysaccharides. In addition, genetic studies have revealed a key role played by some serine/threonine kinases in pathogenesis. Considering the structural organization and membrane topology of these different kinases, it can be envisaged that they operate as one-component systems in signal transduction pathways, in the form of single proteins containing input and output domains on the same polypeptide chain. From a general standpoint, the demonstration of a direct relationship between protein phosphorylation on serine/threonine/tyrosine and bacterial virulence represents a novel concept of great importance in deciphering the molecular and cellular mechanisms that underlie pathogenesis.
Collapse
Affiliation(s)
- Alain J Cozzone
- Institute of Biology and Chemistry of Proteins, University of Lyon/CNRS, Lyon, France.
| |
Collapse
|