1
|
Zoldoš V, Biruš I, Muratovic E, Šatovic Z, Vojta A, Robin O, Pustahija F, Bogunic F, Vicic Bockor V, Siljak-Yakovlev S. Epigenetic Differentiation of Natural Populations of Lilium bosniacum Associated with Contrasting Habitat Conditions. Genome Biol Evol 2018; 10:291-303. [PMID: 29342280 PMCID: PMC5786246 DOI: 10.1093/gbe/evy010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2018] [Indexed: 12/25/2022] Open
Abstract
Epigenetic variation in natural populations with contrasting habitats might be an important element, in addition to the genetic variation, in plant adaptation to environmental stress. Here, we assessed genetic, epigenetic, and cytogenetic structure of the three Lilium bosniacum populations growing on distinct habitats. One population was growing under habitual ecological conditions for this species and the other two were growing under stress associated with high altitude and serpentine soil. Amplified fragment length polymorphism and methylation-sensitive amplification polymorphism analyses revealed that the three populations did not differentiate genetically, but were clearly separated in three distinct clusters according to DNA methylation profiles. Principal coordinate analysis showed that overall epigenetic variation was closely related to habitat conditions. A new methylation-sensitive amplification polymorphism scoring approach allowed identification of mainly unmethylated (φST = 0.190) and fully CpG methylated (φST = 0.118) subepiloci playing a role in overall population differentiation, in comparison with hemimethylated sites (φST = 0.073). In addition, unusual rDNA repatterning and the presence of B chromosomes bearing 5S rDNA loci were recorded in the population growing on serpentine soil, suggesting dynamic chromosome rearrangements probably linked to global genome demethylation, which might have reactivated some mobile elements. We discuss our results considering our earlier data on morphology and leaf anatomy of several L. bosniacum populations, and suggest a possible role of epigenetics as a key element in population differentiation associated with environmental stress in these particular lily populations.
Collapse
Affiliation(s)
- Vlatka Zoldoš
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Ivan Biruš
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Edina Muratovic
- Laboratory for Research and Protection of Endemic Resources, Department of Biology, Faculty of Sciences, University of Sarajevo, Bosnia and Herzegovina
| | - Zlatko Šatovic
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Croatia.,Centre of Excellence for Biodiversity and Molecular Plant Breeding (CroP-BioDiv), Zagreb, Croatia
| | - Aleksandar Vojta
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Odile Robin
- Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Fatima Pustahija
- Laboratory for Research and Protection of Endemic Resources, Department of Biology, Faculty of Sciences, University of Sarajevo, Bosnia and Herzegovina.,Faculty of Forestry, University of Sarajevo, Bosnia and Herzegovina
| | - Faruk Bogunic
- Laboratory for Research and Protection of Endemic Resources, Department of Biology, Faculty of Sciences, University of Sarajevo, Bosnia and Herzegovina.,Faculty of Forestry, University of Sarajevo, Bosnia and Herzegovina
| | - Vedrana Vicic Bockor
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Croatia
| | - Sonja Siljak-Yakovlev
- Laboratory for Research and Protection of Endemic Resources, Department of Biology, Faculty of Sciences, University of Sarajevo, Bosnia and Herzegovina.,Ecologie Systématique Evolution, University of Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
2
|
Transposable Elements in the Organization and Diversification of the Genome of Aegilops speltoides Tausch (Poaceae, Triticeae). Int J Genomics 2018; 2018:4373089. [PMID: 30356408 PMCID: PMC6178165 DOI: 10.1155/2018/4373089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 08/19/2018] [Indexed: 12/31/2022] Open
Abstract
Repetitive DNA-specifically, transposable elements (TEs)-is a prevailing genomic fraction in cereals that underlies extensive genome reshuffling and intraspecific diversification in the wild. Although large amounts of data have been accumulated, the effect of TEs on the genome architecture and functioning is not fully understood. Here, plant genome organization was addressed by means of cloning and sequencing TE fragments of different types, which compose the largest portion of the Aegilops speltoides genome. Individual genotypes were analyzed cytogenetically using the cloned TE fragments as the DNA probes for fluorescence in situ hybridization (FISH). The obtained TE sequences of the Ty1-copia, Ty3-gypsy, LINE, and CACTA superfamilies showed the relatedness of the Ae. speltoides genome to the Triticeae tribe and similarities to evolutionarily distant species. A significant number of clones consisted of intercalated fragments of TEs of various types, in which Fatima (Ty3-gypsy) sequences predominated. At the chromosomal level, different TE clones demonstrated sequence-specific patterning, emphasizing the effect of the TE fraction on the Ae. speltoides genome architecture and intraspecific diversification. Altogether, the obtained data highlight the current species-specific organization and patterning of the mobile element fraction and point to ancient evolutionary events in the genome of Ae. speltoides.
Collapse
|
3
|
Shams I, Raskina O. Intraspecific and intraorganismal copy number dynamics of retrotransposons and tandem repeat in Aegilops speltoides Tausch (Poaceae, Triticeae). PROTOPLASMA 2018; 255:1023-1038. [PMID: 29374788 DOI: 10.1007/s00709-018-1212-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/14/2018] [Indexed: 06/07/2023]
Abstract
Transposable elements (TE) and tandem repeats (TR) compose the largest fraction of the plant genome. The abundance and repatterning of repetitive DNA underlie intrapopulation polymorphisms and intraspecific diversification; however, the dynamics of repetitive elements in ontogenesis is not fully understood. Here, we addressed the genotype-specific and tissue-specific abundances and dynamics of the Ty1-copia, Ty3-gypsy, and LINE retrotransposons and species-specific Spelt1 tandem repeat in wild diploid goatgrass, Aegilops speltoides Tausch. Copy numbers of TEs and TR were estimated by real-time quantitative PCR in vegetative and generative tissues in original plants from contrasting allopatric populations and artificial intraspecific hybrids. The results showed that between leaves and somatic spike tissues as well as in progressive microsporogenesis of individual genotypes, the copy numbers of three TEs correlatively oscillated between 2- to 4-fold and the TR copy numbers fluctuated by 18- to 440-fold. Inter-individual and intraorganismal TEs and TR copy number dynamics demonstrate large-scale parallelism with extensive chromosomal rearrangements that were detected using fluorescent in situ hybridization in parental and hybrid genotypes. The data obtained indicate that tissue-specific differences in the abundance and pattern of repetitive sequences emerge during cell proliferation and differentiation in ontogenesis and reflect the reorganization of individual genomes in changing environments, especially in small peripheral population(s) under the influence of rapid climatic changes.
Collapse
Affiliation(s)
- Imad Shams
- Institute of Evolution and Department of Evolutionary and Environmental Biology, University of Haifa, Aba-Hushi Avenue 199, 3498838, Haifa, Mount Carmel, Israel
| | - Olga Raskina
- Institute of Evolution and Department of Evolutionary and Environmental Biology, University of Haifa, Aba-Hushi Avenue 199, 3498838, Haifa, Mount Carmel, Israel.
| |
Collapse
|
4
|
Ferreira de Carvalho J, de Jager V, van Gurp TP, Wagemaker NCAM, Verhoeven KJF. Recent and dynamic transposable elements contribute to genomic divergence under asexuality. BMC Genomics 2016; 17:884. [PMID: 27821059 PMCID: PMC5100183 DOI: 10.1186/s12864-016-3234-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 11/01/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are mobile pieces of genetic information with high mutagenic potential for the host genome. Transposition is often neutral or deleterious but may also generate potentially adaptive genetic variation. This additional source of variation could be especially relevant in non-recombining species reproducing asexually. However, evidence is lacking to determine the relevance of TEs in plant asexual genome evolution and their associated effects. Here, we characterize the repetitive fraction of the genome of the common dandelion, Taraxacum officinale and compare it between five accessions from the same apomictic lineage. The main objective of this study is to evaluate the extent of within-lineage divergence attributed to TE content and activity. We examined the repetitive genomic contribution, diversity, transcription and methylation changes to characterize accession-specific TEs. RESULTS Using low-coverage genomic sequencing, we report a highly heterogeneous TE compartment in the triploid apomict T. officinale representing up to 38.6 % of the homoploid genome. The repetitive compartment is dominated by LTR retrotransposon families accompanied by few non-LTR retrotransposons and DNA transposons. Up to half of the repeat clusters are biased towards very high read identity, indicating recent and potentially ongoing activity of these TE families. Interestingly, the five accessions are divided into two main clades based on their TE composition. Clade 2 is more dynamic than clade 1 with higher abundance of Gypsy Chromovirus sequences and transposons. Furthermore, a few low-abundant genomic TE clusters exhibit high level of transcription in two of the accessions analysed. Using reduced representation bisulfite sequencing, we detected 18.9 % of loci differentially methylated, of which 25.4 and 40.7 % are annotated as TEs or functional genes, respectively. Additionally, we show clear evidence for accession-specific TE families that are differentially transcribed and differentially methylated within the apomictic lineage, including one Copia Ale II LTR element and a PIF-Harbinger DNA transposon. CONCLUSION We report here a very young and dynamic repetitive compartment that enhances divergence within one asexual lineage of T. officinale. We speculate that accession-specific TE families that are both transcriptionally and epigenetically variable are more prone to trigger changes in expression on nearby coding sequences. These findings emphasize the potential of TE-induced mutations on functional genes during asexual genome evolution.
Collapse
Affiliation(s)
- Julie Ferreira de Carvalho
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Victor de Jager
- Bioinformatic Support Group, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Thomas P. van Gurp
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Niels C. A. M. Wagemaker
- Experimental Plant Ecology, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Koen J. F. Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
5
|
Identification and characterization of a LTR retrotransposon from the genome of Cyprinus carpio var. Jian. Genetica 2016; 144:325-33. [PMID: 27178280 DOI: 10.1007/s10709-016-9901-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
A Ty3/gypsy-retrotransposon-type transposon was found in the genome of the Jian carp (Cyprinus carpio var. Jian) in a previous study (unpublished), and was designated a JRE retrotransposon (Jian retrotransposon). The full-length JRE retrotransposon is 5126 bp, which includes two long terminal repeats of 470 bp at the 5' end and 453 bp at the 3' end, and two open reading frames between them: 4203 bp encoding the group-specific antigen (GAG) and polyprotein (POL). The pol gene has a typical Ty3/gypsy retrotransposon structure, and the gene order is protease, reverse transcriptase, RNase H, and integrase (PR-RT-RH-IN). A phylogenetic analysis of the pol gene showed that it has similarities of 40.7, 40, and 32.8 %, to retrotransposons of Azumapecten farreri, Mizuhopecten yessoensis, and Xiphophorus maculatus, respectively. Therefore, JRE might belong to the JULE retrotransposon family. The copy number of the JRE transposon in the genome of the Jian carp is 124, determined with real-time quantitative PCR. The mRNA of the JRE retrotransposon is expressed in five Jian carp tissues, the liver, kidney, blood, muscle, and gonad, and slightly higher in the kidney and liver than in the other tissues.
Collapse
|
6
|
Chromosomal distribution of a new centromeric Ty3-gypsy retrotransposon sequence in Dasypyrum and related Triticeae species. J Genet 2013; 91:343-8. [PMID: 23271019 DOI: 10.1007/s12041-012-0181-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Yuyama PM, Pereira LFP, dos Santos TB, Sera T, Vilas-Boas LA, Lopes FR, Carareto CMA, Vanzela ALL. FISH using a gag-like fragment probe reveals a common Ty3-gypsy-like retrotransposon in genome of Coffea species. Genome 2012; 55:825-33. [PMID: 23231601 DOI: 10.1139/gen-2012-0081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The genus Coffea possesses about 100 species, and the most economically important are Coffea canephora and Coffea arabica. The latter is predominantly self-compatible with 2n = 4x = 44, while the others of the genus are diploid with 2n = 2x = 22 and mostly self-incompatible. Studies using molecular markers have been useful to detect differences between genomes in Coffea; however, molecular and cytogenetic studies have produced only limited information on the karyotypes organization. We used DOP-PCR to isolate repetitive elements from genome of Coffea arabica var. typica. The pCa06 clone, containing a fragment of 775 bp length, was characterized by sequencing and used as a probe in chromosomes of C. arabica and six other species: C. canephora, Coffea eugenioides, Coffea kapakata, Coffea liberica var. dewevrei, Coffea racemosa, and Coffea stenophylla. This insert shows similarities with a gag protein of the Ty3-gypsy-like super-family. Dot blot and FISH analyses demonstrated that pCa06 is differentially accumulated between species and chromosomes. Signals appeared scattered and clustered on the chromosomes and were also associated with heterochromatic regions. While the literature shows that there is a high karyotype similarity between Coffea species, our results point out differences in the accumulation and dispersion of this Ty3-gypsy-like retrotransposon during karyotype differentiation of Coffea.
Collapse
Affiliation(s)
- Priscila Mary Yuyama
- Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Caixa Postal 6001, CEP 86051-990 Londrina, PR, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Evolutionary dynamics of rRNA gene clusters in cichlid fish. BMC Evol Biol 2012; 12:198. [PMID: 23035959 PMCID: PMC3503869 DOI: 10.1186/1471-2148-12-198] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 09/25/2012] [Indexed: 11/30/2022] Open
Abstract
Background Among multigene families, ribosomal RNA (rRNA) genes are the most frequently studied and have been explored as cytogenetic markers to study the evolutionary history of karyotypes among animals and plants. In this report, we applied cytogenetic and genomic methods to investigate the organization of rRNA genes among cichlid fishes. Cichlids are a group of fishes that are of increasing scientific interest due to their rapid and convergent adaptive radiation, which has led to extensive ecological diversity. Results The present paper reports the cytogenetic mapping of the 5S rRNA genes from 18 South American, 22 African and one Asian species and the 18S rRNA genes from 3 African species. The data obtained were comparatively analyzed with previously published information related to the mapping of rRNA genes in cichlids. The number of 5S rRNA clusters per diploid genome ranged from 2 to 15, with the most common pattern being the presence of 2 chromosomes bearing a 5S rDNA cluster. Regarding 18S rDNA mapping, the number of sites ranged from 2 to 6, with the most common pattern being the presence of 2 sites per diploid genome. Furthermore, searching the Oreochromis niloticus genome database led to the identification of a total of 59 copies of 5S rRNA and 38 copies of 18S rRNA genes that were distributed in several genomic scaffolds. The rRNA genes were frequently flanked by transposable elements (TEs) and spread throughout the genome, complementing the FISH analysis that detect only clustered copies of rRNA genes. Conclusions The organization of rRNA gene clusters seems to reflect their intense and particular evolutionary pathway and not the evolutionary history of the associated taxa. The possible role of TEs as one source of rRNA gene movement, that could generates the spreading of ribosomal clusters/copies, is discussed. The present paper reinforces the notion that the integration of cytogenetic data and genomic analysis provides a more complete picture for understanding the organization of repeated sequences in the genome.
Collapse
|
9
|
Cabral-de-Mello DC, Cabrero J, López-León MD, Camacho JPM. Evolutionary dynamics of 5S rDNA location in acridid grasshoppers and its relationship with H3 histone gene and 45S rDNA location. Genetica 2011; 139:921-31. [PMID: 21755328 DOI: 10.1007/s10709-011-9596-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 07/01/2011] [Indexed: 10/18/2022]
|
10
|
Fukushima K, Imamura K, Nagano K, Hoshi Y. Contrasting patterns of the 5S and 45S rDNA evolutions in the Byblis liniflora complex (Byblidaceae). JOURNAL OF PLANT RESEARCH 2011; 124:231-44. [PMID: 20623155 PMCID: PMC3040357 DOI: 10.1007/s10265-010-0366-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 06/11/2010] [Indexed: 05/07/2023]
Abstract
To clarify the evolutionary dynamics of ribosomal RNA genes (rDNAs) in the Byblis liniflora complex (Byblidaceae), we investigated the 5S and 45S rDNA genes through (1) chromosomal physical mapping by fluorescence in situ hybridization (FISH) and (2) phylogenetic analyses using the nontranscribed spacer of 5S rDNA (5S-NTS) and the internal transcribed spacer of 45S rDNA (ITS). In addition, we performed phylogenetic analyses based on rbcL and trnK intron. The complex was divided into 2 clades: B. aquatica-B. filifolia and B. guehoi-B. liniflora-B. rorida. Although members of the complex had conservative symmetric karyotypes, they were clearly differentiated on chromosomal rDNA distribution patterns. The sequence data indicated that ITS was almost homogeneous in all taxa in which two or four 45S rDNA arrays were frequently found at distal regions of chromosomes in the somatic karyotype. ITS homogenization could have been prompted by relatively distal 45S rDNA positions. In contrast, 2-12 5S rDNA arrays were mapped onto proximal/interstitial regions of chromosomes, and some paralogous 5S-NTS were found in the genomes harboring 4 or more arrays. 5S-NTS sequence type-specific FISH analysis showed sequence heterogeneity within and between some 5S rDNA arrays. Interlocus homogenization may have been hampered by their proximal location on chromosomes. Chromosomal location may have affected the contrasting evolutionary dynamics of rDNAs in the B. liniflora complex.
Collapse
Affiliation(s)
- Kenji Fukushima
- Department of Basic Biology, The Graduate University for Advanced Studies, Hayama, Kanagawa 240-0193 Japan
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585 Japan
| | - Kaori Imamura
- Department of Plant Science, School of Agriculture, Tokai University, Kawayou, Minamiaso-mura, Aso-gun, Kumamoto, 869-1404 Japan
- Japan Software Management Co. Ltd., 5-32 KinKou-cho, Kanagawa-ku, Yokohama, Kanagawa 221-0056 Japan
| | - Katsuya Nagano
- Department of Plant Science, School of Agriculture, Tokai University, Kawayou, Minamiaso-mura, Aso-gun, Kumamoto, 869-1404 Japan
| | - Yoshikazu Hoshi
- Department of Plant Science, School of Agriculture, Tokai University, Kawayou, Minamiaso-mura, Aso-gun, Kumamoto, 869-1404 Japan
| |
Collapse
|
11
|
Belyayev AA, Raskina OM. Dynamics of highly repetitive DNA fraction as indicator of speciation in species of the family Poaceae. RUSS J GENET+ 2010. [DOI: 10.1134/s1022795410090280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Cioffi MB, Martins C, Bertollo LAC. Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol 2010; 10:271. [PMID: 20815941 PMCID: PMC2944182 DOI: 10.1186/1471-2148-10-271] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/06/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The fish, Erythrinus erythrinus, shows an interpopulation diversity, with four karyomorphs differing by chromosomal number, chromosomal morphology and heteromorphic sex chromosomes. Karyomorph A has a diploid number of 2n = 54 and does not have differentiated sex chromosomes. Karyomorph D has 2n = 52 chromosomes in females and 2n = 51 in males, and it is most likely derived from karyomorph A by the differentiation of a multiple X1X2Y sex chromosome system. In this study, we analyzed karyomorphs A and D by means of cytogenetic approaches to evaluate their evolutionary relationship. RESULTS Conspicuous differences in the distribution of the 5S rDNA and Rex3 non-LTR retrotransposon were found between the two karyomorphs, while no changes in the heterochromatin and 18S rDNA patterns were found between them. Rex3 was interstitially dispersed in most chromosomes. It had a compartmentalized distribution in the centromeric regions of only two acrocentric chromosomes in karyomorph A. In comparison, in karyomorph D, Rex3 was found in 22 acrocentric chromosomes in females and 21 in males. All 5S rDNA sites co-localized with Rex3, suggesting that these are associated in the genome. In addition, the origin of the large metacentric Y chromosome in karyomorph D by centric fusion was highlighted by the presence of internal telomeric sites and 5S rDNA/Rex3 sites on this chromosome. CONCLUSION We demonstrated that some repetitive DNAs (5S rDNA, Rex3 retroelement and (TTAGGG)n telomeric repeats) were crucial for the evolutionary divergence inside E. erythrinus. These elements were strongly associated with the karyomorphic evolution of this species. Our results indicate that chromosomal rearrangements and genomic modifications were significant events during the course of evolution of this fish. We detected centric fusions that were associated with the differentiation of the multiple sex chromosomes in karyomorph D, as well as a surprising increase of associated 5S rDNA/Rex3 loci, in contrast to karyomorph A. In this sense, E. erythrinus emerges as an excellent model system for better understanding the evolutionary mechanisms underlying the huge genome diversity in fish. This organism can also contribute to understanding vertebrate genome evolution as a whole.
Collapse
Affiliation(s)
- Marcelo B Cioffi
- Universidade Federal de São Carlos, Departamento de Genética e Evolução, São Carlos, SP, Brazil.
| | | | | |
Collapse
|
13
|
Fat element—a new marker for chromosome and genome analysis in the Triticeae. Chromosome Res 2010; 18:697-709. [DOI: 10.1007/s10577-010-9151-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 07/05/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
|
14
|
Belyayev A, Kalendar R, Brodsky L, Nevo E, Schulman AH, Raskina O. Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat. Mob DNA 2010; 1:6. [PMID: 20226076 PMCID: PMC2836003 DOI: 10.1186/1759-8753-1-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 02/01/2010] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND How new forms arise in nature has engaged evolutionary biologists since Darwin's seminal treatise on the origin of species. Transposable elements (TEs) may be among the most important internal sources for intraspecific variability. Thus, we aimed to explore the temporal dynamics of several TEs in individual genotypes from a small, marginal population of Aegilops speltoides. A diploid cross-pollinated grass species, it is a wild relative of the various wheat species known for their large genome sizes contributed by an extraordinary number of TEs, particularly long terminal repeat (LTR) retrotransposons. The population is characterized by high heteromorphy and possesses a wide spectrum of chromosomal abnormalities including supernumerary chromosomes, heterozygosity for translocations, and variability in the chromosomal position or number of 45S and 5S ribosomal DNA (rDNA) sites. We propose that variability on the morphological and chromosomal levels may be linked to variability at the molecular level and particularly in TE proliferation. RESULTS Significant temporal fluctuation in the copy number of TEs was detected when processes that take place in small, marginal populations were simulated. It is known that under critical external conditions, outcrossing plants very often transit to self-pollination. Thus, three morphologically different genotypes with chromosomal aberrations were taken from a wild population of Ae. speltoides, and the dynamics of the TE complex traced through three rounds of selfing. It was discovered that: (i) various families of TEs vary tremendously in copy number between individuals from the same population and the selfed progenies; (ii) the fluctuations in copy number are TE-family specific; (iii) there is a great difference in TE copy number expansion or contraction between gametophytes and sporophytes; and (iv) a small percentage of TEs that increase in copy number can actually insert at novel locations and could serve as a bona fide mutagen. CONCLUSIONS We hypothesize that TE dynamics could promote or intensify morphological and karyotypical changes, some of which may be potentially important for the process of microevolution, and allow species with plastic genomes to survive as new forms or even species in times of rapid climatic change.
Collapse
Affiliation(s)
- Alexander Belyayev
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
| | - Ruslan Kalendar
- MTT/BI Plant Genomics Laboratory, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
| | - Leonid Brodsky
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
| | - Alan H Schulman
- MTT/BI Plant Genomics Laboratory, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Helsinki, Finland
- Plant Genomics, Biotechnology and Food Research, MTT Agrifood Research, Jokioinen, Finland
| | - Olga Raskina
- Institute of Evolution, University of Haifa, Mount Carmel, Haifa, Israel
| |
Collapse
|
15
|
Morse AM, Peterson DG, Islam-Faridi MN, Smith KE, Magbanua Z, Garcia SA, Kubisiak TL, Amerson HV, Carlson JE, Nelson CD, Davis JM. Evolution of genome size and complexity in Pinus. PLoS One 2009; 4:e4332. [PMID: 19194510 PMCID: PMC2633040 DOI: 10.1371/journal.pone.0004332] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 12/24/2008] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. CONCLUSIONS/SIGNIFICANCE Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes.
Collapse
Affiliation(s)
- Alison M. Morse
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, United States of America
| | - Daniel G. Peterson
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - M. Nurul Islam-Faridi
- Southern Institute of Forest Genetics, USDA Forest Service Southern Research Station, Saucier, Mississippi, United States of America
| | - Katherine E. Smith
- Southern Institute of Forest Genetics, USDA Forest Service Southern Research Station, Saucier, Mississippi, United States of America
| | - Zenaida Magbanua
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Saul A. Garcia
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Thomas L. Kubisiak
- Southern Institute of Forest Genetics, USDA Forest Service Southern Research Station, Saucier, Mississippi, United States of America
| | - Henry V. Amerson
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, United States of America
| | - John E. Carlson
- School of Forest Resources, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - C. Dana Nelson
- Southern Institute of Forest Genetics, USDA Forest Service Southern Research Station, Saucier, Mississippi, United States of America
| | - John M. Davis
- School of Forest Resources and Conservation, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
16
|
Raskina O, Barber JC, Nevo E, Belyayev A. Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 2008; 120:351-7. [PMID: 18504364 DOI: 10.1159/000121084] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2007] [Indexed: 11/19/2022] Open
Abstract
Chromosomal change is one of the more hotly debated potential mechanisms of speciation. It has long been argued over whether--and to what degree--changes in chromosome structure contribute to reproductive isolation and, ultimately, speciation. In this review we do not aim to completely analyze accumulated data about chromosomal speciation but wish to draw attention to several critical points of speciation-related chromosomal change, namely: (a) interrelations between chromosomal rearrangements and repetitive DNA fraction; (b) mobility of ribosomal DNA clusters; and (c) rDNA and transposable elements as perpetual generators of genome instability.
Collapse
Affiliation(s)
- O Raskina
- Institute of Evolution, University of Haifa, Israel
| | | | | | | |
Collapse
|
17
|
Mallabaeva DS, Ignatov AN, Sheiko IA, Isikov VP, Gelyuta VP, Boiko NG, Seryapin AA, Dorokhov DB. Use of RAPD and ITE molecular markers in studying the genetic structure of the Crimean population of T. boeoticum Boiss. CYTOL GENET+ 2007. [DOI: 10.3103/s0095452707030085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Wang RRC, Zhang JY, Lee BS, Jensen KB, Kishii M, Tsujimoto H. Variations in abundance of 2 repetitive sequences in Leymus and Psathyrostachys species. Genome 2006; 49:511-9. [PMID: 16767176 DOI: 10.1139/g05-126] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ns genome of the genus Psathyrostachys is a component of the polyploid genome in the genus Leymus. Using fluorescence in situ hybridization (FISH), the occurrence and abundance of 2 tandem repetitive sequences from Leymus racemosus (Lam.) Tzvelev, pLrTaiI-1 (TaiI family) and pLrPstI-1 (1 class of 350-bp family), were assayed in 4 species of the genera Psathyrostachys and Leymus. The pLrPstI-1 sequence was absent in all 4 Psathyrostachys species. While P. fragilis and P. huashanica did not have the pLrTaiI-1 sequence, 15 accessions of P. juncea and 2 accessions of P. lanuginosa had pLrTaiI-1 sites ranging in number from 7 to 16 and from 2 to 21, respectively. The numbers of pLrTaiI-1 and pLrPstI-1 sites were 1-24 and 0-30, respectively, in L. ramosus; 2-31 and 5-36 in L. racemosus; 0-4 and 0 in L. mollis; 2-9 and 24-27 in L. secalinus. The FISH assay on pLrTaiI-1 was successfully converted to a sequence-tagged-site polymerase chain reaction (STS-PCR) test using a primer pair designed from the sequence of this repetitive DNA. Seventy-three accessions representing 27 Leymus species were assayed for the abundance of pLrTaiI-1 by STS-PCR. With a few exceptions of uniformity in some accessions, nearly all Leymus species observed were heterogeneous for the abundance of pLrTaiI-1 sequence and no Leymus species was totally devoid of this repetitive sequence. These findings may have significance for the understanding of phylogeny, nature of polyploidy, adaptive ranges, and breeding potential of Leymus species.
Collapse
Affiliation(s)
- R R-C Wang
- Laboratory of Plant Genetics and Breeding Science, Faculty of Agriculture, Tottori University, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Altinkut A, Kotseruba V, Kirzhner VM, Nevo E, Raskina O, Belyayev A. Ac-like transposons in populations of wild diploid Triticeae species: comparative analysis of chromosomal distribution. Chromosome Res 2006; 14:307-17. [PMID: 16628501 DOI: 10.1007/s10577-006-1048-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2005] [Accepted: 02/22/2006] [Indexed: 11/25/2022]
Abstract
Data are presented on the intra- and interspecific differences/similarities in chromosomal patterns of Ac-like elements (hAT family) in ecologically contrasted populations of three Triticeae species - Aegilops speltoides, Triticum urartu, and Hordeum spontaneum. Application of original computer software made it possible to precisely map transposon clusters and to link them to known chromosomal markers (rDNA sites, centromeres, and heterochromatin regions). From our data we can specify the most visible features of Ac-like elements chromosomal distribution: preferential concentration in chromosomal proximal regions; high percentage of clusters on the border between euchromatin and heterochromatin; complementary chromosomal arrangement towards En/Spm transposons (CACTA); population-specific insertions into centromeres; more differences in total cluster numbers between populations of self-pollinated species than between populations of cross-pollinated species. The application of statistical simulation (Resampling) method to analysis of data indicates that ecology may play a certain role in dynamics of Ac-like elements. Comparison of real Ayala distances, as well as real chromosomal distribution of Ac-like elements in populations of two species with different mating systems with the same but randomly simulated parameters, revealed that non-random population structure in the Mediterranean floral zone suffers and becomes chaotic in the Irano-Turanian zone.
Collapse
Affiliation(s)
- Ahu Altinkut
- Institute of Evolution, University of Haifa, Mt Carmel, Haifa, 31905, Israel
| | | | | | | | | | | |
Collapse
|