1
|
David V, Succar BB, de Moraes JA, Saldanha-Gama RFG, Barja-Fidalgo C, Zingali RB. Recombinant and Chimeric Disintegrins in Preclinical Research. Toxins (Basel) 2018; 10:E321. [PMID: 30087285 PMCID: PMC6116119 DOI: 10.3390/toxins10080321] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 01/31/2023] Open
Abstract
Disintegrins are a family of small cysteine-rich peptides, found in a wide variety of snake venoms of different phylogenetic origin. These peptides selectively bind to integrins, which are heterodimeric adhesion receptors that play a fundamental role in the regulation of many physiological and pathological processes, such as hemostasis and tumor metastasis. Most disintegrins interact with integrins through the RGD (Arg-Gly-Asp) sequence loop, resulting in an active site that modulates the integrin activity. Some variations in the tripeptide sequence and the variability in its neighborhood result in a different specificity or affinity toward integrin receptors from platelets, tumor cells or neutrophils. Recombinant forms of these proteins are obtained mainly through Escherichia coli, which is the most common host used for heterologous expression. Advances in the study of the structure-activity relationship and importance of some regions of the molecule, especially the hairpin loop and the C-terminus, rely on approaches such as site-directed mutagenesis and the design and expression of chimeric peptides. This review provides highlights of the biological relevance and contribution of recombinant disintegrins to the understanding of their binding specificity, biological activities and therapeutic potential. The biological and pharmacological relevance on the newest discoveries about this family of integrin-binding proteins are discussed.
Collapse
Affiliation(s)
- Victor David
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, Brazil.
| | - Barbara Barbosa Succar
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, Brazil.
| | - João Alfredo de Moraes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, Brazil.
| | - Roberta Ferreira Gomes Saldanha-Gama
- Laboratório de Farmacologia Celular e Molecular, Departamento de Biologia Celular, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20.551-030, Brazil.
| | - Christina Barja-Fidalgo
- Laboratório de Farmacologia Celular e Molecular, Departamento de Biologia Celular, IBRAG, Universidade do Estado do Rio de Janeiro, Rio de Janeiro 20.551-030, Brazil.
| | - Russolina Benedeta Zingali
- Laboratório de Hemostase e Venenos, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21.941-902, Brazil.
| |
Collapse
|
2
|
Chang YT, Shiu JH, Huang CH, Chen YC, Chen CY, Chang YS, Chuang WJ. Effects of the RGD loop and C-terminus of rhodostomin on regulating integrin αIIbβ3 recognition. PLoS One 2017; 12:e0175321. [PMID: 28399159 PMCID: PMC5388508 DOI: 10.1371/journal.pone.0175321] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/23/2017] [Indexed: 11/24/2022] Open
Abstract
Rhodostomin (Rho) is a medium disintegrin containing a 48PRGDMP motif. We here showed that Rho proteins with P48A, M52W, and P53N mutations can selectively inhibit integrin αIIbβ3. To study the roles of the RGD loop and C-terminal region in disintegrins, we expressed Rho 48PRGDMP and 48ARGDWN mutants in Pichia pastoris containing 65P, 65PR, 65PRYH, 65PRNGLYG, and 65PRNPWNG C-terminal sequences. The effect of C-terminal region on their integrin binding affinities was αIIbβ3 > αvβ3 ≥ α5β1, and the 48ARGDWN-65PRNPWNG protein was the most selective integrin αIIbβ3 mutant. The 48ARGDWN-65PRYH, 48ARGDWN-65PRNGLYG, and 48ARGDWN-65PRNPWNG mutants had similar activities in inhibiting platelet aggregation and the binding of fibrinogen to platelet. In contrast, 48ARGDWN-65PRYH and 48ARGDWN-65PRNGLYG exhibited 2.9- and 3.0-fold decreases in inhibiting cell adhesion in comparison with that of 48ARGDWN-65PRNPWNG. Based on the results of cell adhesion, platelet aggregation and the binding of fibrinogen to platelet inhibited by ARGDWN mutants, integrin αIIbβ3 bound differently to immobilized and soluble fibrinogen. NMR structural analyses of 48ARGDWN-65PRYH, 48ARGDWN-65PRNGLYG, and 48ARGDWN-65PRNPWNG mutants demonstrated that their C-terminal regions interacted with the RGD loop. In particular, the W52 sidechain of 48ARGDWN interacted with H68 of 65PRYH, L69 of 65PRNGLYG, and N70 of 65PRNPWNG, respectively. The docking of the 48ARGDWN-65PRNPWNG mutant into integrin αIIbβ3 showed that the N70 residue formed hydrogen bonds with the αIIb D159 residue, and the W69 residue formed cation-π interaction with the β3 K125 residue. These results provide the first structural evidence that the interactions between the RGD loop and C-terminus of medium disintegrins depend on their amino acid sequences, resulting in their functional differences in the binding and selectivity of integrins.
Collapse
Affiliation(s)
- Yao-Tsung Chang
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, Tainan, Taiwan
| | - Jia-Hau Shiu
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, Tainan, Taiwan
| | - Chun-Hao Huang
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, Tainan, Taiwan
| | - Yi-Chun Chen
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, Tainan, Taiwan
| | - Chiu-Yueh Chen
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, Tainan, Taiwan
| | - Yung-Sheng Chang
- Institute of Biopharmaceutical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
| | - Woei-Jer Chuang
- Institute of Basic Medical Sciences and Department of Biochemistry and Molecular Biology, Tainan, Taiwan
- Institute of Biopharmaceutical Sciences, National Cheng Kung University College of Medicine, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
3
|
He W, Chan CML, Wong SCC, Au TCC, Ho WS, Chan AKC, Chan ASK, Ma BBY, Chan ATC. Jagged 2 silencing inhibits motility and invasiveness of colorectal cancer cell lines. Oncol Lett 2016; 12:5193-5198. [PMID: 28105228 DOI: 10.3892/ol.2016.5321] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 06/27/2016] [Indexed: 12/22/2022] Open
Abstract
Although the Notch pathway has been reported to be activated in colorectal cancer (CRC), limited information is available regarding the expression and role of its ligand, Jagged 2 (JAG2), in CRC. Using immunohistochemistry, the present study demonstrated that JAG2 protein expression may be detected in up to 95% of CRC cases and is 3-fold upregulated in tumor cells compared to surrounding normal tissues. This finding suggests that JAG2 may have a role in the tumorigenicity of CRC. To further investigate the cellular functions of JAG2 expression in CRC, two different small interfering RNAs (siRNAs) were used to downregulate JAG2 expression in CRC cell lines (HCT116, DLD-1 and HT-29). The results indicated that JAG2 knockdown inhibits the motility and invasiveness of CRC cell lines without significantly affecting cell proliferation. These findings implicate JAG2 in promoting aggressiveness of CRC, and lay the foundation for its future development as a therapeutic target for the treatment of CRC.
Collapse
Affiliation(s)
- Wan He
- Department of Oncology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, Guangdong 518029, P.R. China
| | - Charles Ming Lok Chan
- State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hong Kong SAR, P.R. China
| | - Thomas Chi Chuen Au
- State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Wing Shan Ho
- State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | | | - Andrew Sai Kit Chan
- State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Brigette Buig Yue Ma
- State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Anthony Tak Cheung Chan
- State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, Department of Clinical Oncology, Hong Kong Cancer Institute and Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| |
Collapse
|
4
|
Isolation and characterization of four medium-size disintegrins from the venoms of Central American viperid snakes of the genera Atropoides, Bothrops, Cerrophidion and Crotalus. Biochimie 2015; 107 Pt B:376-84. [PMID: 25457103 DOI: 10.1016/j.biochi.2014.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/12/2014] [Indexed: 01/06/2023]
Abstract
Four disintegrins were isolated from the venoms of the Central American viperid snakes Atropoides mexicanus (atropoimin), Bothrops asper (bothrasperin), Cerrophidion sasai (sasaimin), and Crotalus simus (simusmin). Purifications were performed by reverse-phase HPLC. The four disintegrins have biochemical characteristics, i.e. molecular mass and location of Cys, which allow their classification within the group of medium-size disintegrins. All of them present the canonical RGD sequence, which determines their interaction with integrins in cell membranes. The disintegrins inhibited ADP and collagen-induced human platelet aggregation, with similar IC50s in the nM range. In addition, disintegrins inhibited the adhesion of an endothelial cell line and a melanoma cell line to the extracellular matrix proteins type I collagen, laminin, fibronectin, and vitronectin, albeit showing variable ability to exert this activity. This study expands the inventory of this family of viperid venom proteins, and reports, for the first time, disintegrins from the venoms of species of the genera Atropoides and Cerrophidion.
Collapse
|
5
|
Lucena SE, Jia Y, Soto JG, Parral J, Cantu E, Brannon J, Lardner K, Ramos CJ, Seoane AI, Sánchez EE. Anti-invasive and anti-adhesive activities of a recombinant disintegrin, r-viridistatin 2, derived from the Prairie rattlesnake (Crotalus viridis viridis). Toxicon 2012; 60:31-9. [PMID: 22465495 DOI: 10.1016/j.toxicon.2012.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 02/28/2012] [Accepted: 03/13/2012] [Indexed: 01/01/2023]
Abstract
Snake venom disintegrins inhibit platelet aggregation and have anti-cancer activities. In this study, we report the cloning, expression, and functional activities of a recombinant disintegrin, r-viridistatin 2 (GenBank ID: JQ071899), from the Prairie rattlesnake. r-Viridistatin 2 was tested for anti-invasive and anti-adhesive activities against six different cancer cell lines (human urinary bladder carcinoma (T24), human fibrosarcoma (HT-1080), human skin melanoma (SK-Mel-28), human colorectal adenocarcinoma (CaCo-2), human breast adenocarcinoma (MDA-MB-231) and murine skin melanoma (B16F10)). r-Viridistatin 2 shares 96% and 64% amino acid identity with two other Prairie rattlesnake medium-sized disintegrins, viridin and viridistatin, respectively. r-Viridistatin 2 was able to inhibit adhesion of T24, SK-MEL-28, HT-1080, CaCo-2 and MDA-MB-231 to various extracellular matrix proteins with different affinities. r-Viridistatin 2 decreased the ability of T24 and SK-MEL-28 cells to migrate by 62 and 96% respectively, after 24 h of incubation and the invasion of T24, SK-MEL-28, HT-1080 and MDA-MB-231 cells were inhibited by 80, 85, 65 and 64% respectively, through a reconstituted basement membrane using a modified Boyden chamber. Finally, r-viridistatin 2 effectively inhibited lung colonization of murine melanoma cells in BALB/c mice by 71%, suggesting that r-viridistatin 2 could be a potent anti-cancer agent in vivo.
Collapse
Affiliation(s)
- Sara E Lucena
- National Natural Toxins Research Center-NNTRC, Texas A&M University-Kingsville, MSC 158, 975 West Avenue B, Kingsville, TX 78363, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Li YY, Chang JWC, Hsieh LL, Yeh KY. Neutralization of interleukin (IL)-10 released by monocytes/macrophages enhances the up-regulatory effect of monocyte/macrophage-derived IL-6 on expressions of IL-6 and MUC1, and migration in HT-29 colon cancer cells. Cell Immunol 2010; 265:164-71. [PMID: 20851386 DOI: 10.1016/j.cellimm.2010.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/21/2010] [Accepted: 07/26/2010] [Indexed: 12/20/2022]
Abstract
The interactions between monocyte-derived IL-6 and IL-10 in colon cancer are unknown. We continued previous work that showed monocyte/macrophage-derived IL-6 induces IL-6 and MUC1 expression in HT-29 cancer cells, and evaluated if IL-10 present in monocyte/macrophage is involved in this IL-6-mediated effect. We treated HT-29 cells with monocyte/macrophage supernatant following neutralization of monocyte/macrophage-released IL-10. Neutralization markedly enhanced monocyte/macrophage-derived IL-6 effects on HT-29 cells including IL-6 and MUC1 production and cell migration. Double blocking of IL-6 and IL-10 in monocyte/macrophage supernatants abolished this enhancement. Western blot analysis of STAT3 phosphorylation showed that this augmented response in HT-29 cells following IL-10 neutralization is probably mediated through enhanced IL-6-induced phosphorylation (Tyr(705)) of STAT3 proteins. Therefore, monocytes/macrophages have the capacity to release the functionally associated cytokines IL-6 and IL-10 whose interactions can account for the pathogenesis and progression of colon cancer.
Collapse
Affiliation(s)
- Ying-Ying Li
- Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung and Chang Gung University, College of Medicine, Taiwan
| | | | | | | |
Collapse
|
7
|
Sánchez EE, Lucena SE, Reyes S, Soto JG, Cantu E, Lopez-Johnston JC, Guerrero B, Salazar AM, Rodríguez-Acosta A, Galán JA, Tao WA, Pérez JC. Cloning, expression, and hemostatic activities of a disintegrin, r-mojastin 1, from the mohave rattlesnake (Crotalus scutulatus scutulatus). Thromb Res 2010; 126:e211-9. [PMID: 20598348 DOI: 10.1016/j.thromres.2010.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 05/21/2010] [Accepted: 06/03/2010] [Indexed: 11/29/2022]
Abstract
Interactions with exposed subendothelial extracellular proteins and cellular integrins (endothelial cells, platelets and lymphocytes) can cause alterations in the hemostatic system associated with atherothrombotic processes. Many molecules found in snake venoms induce pathophysiological changes in humans, cause edema, hemorrhage, and necrosis. Disintegrins are low molecular weight, non-enzymatic proteins found in snake venom that mediate changes by binding to integrins of platelets or other cells and prevent binding of the natural ligands such as fibrinogen, fibronectin or vitronectin. Disintegrins are of great biomedical importance due to their binding affinities resulting in the inhibition of platelet aggregation, adhesion of cancer cells, and induction of signal transduction pathways. RT-PCR was used to obtain a 216 bp disintegrin cDNA from a C. s. scutulatus snake venom gland. The cloned recombinant disintegrin called r-mojastin 1 codes for 71 amino acids, including 12 cysteines, and an RGD binding motif. r-Mojastin 1 inhibited platelet adhesion to fibronectin with an IC50 of 58.3 nM and ADP-induced platelet aggregation in whole blood with an IC50 of 46 nM. r-Mojastin 1 was also tested for its ability to inhibit platelet ATP release using PRP resulting with an IC50 of 95.6 nM. MALDI-TOF mass spectrum analysis showed that r-mojastin has a mass of 7.95676 kDa.
Collapse
Affiliation(s)
- Elda E Sánchez
- Natural Toxins Research Center, College of Arts and Sciences, 975 W. Avenue B. MSC 158, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
RETRACTED: Pigment epithelium-derived factor inhibits erythropoietin-induced retinal endothelial cell angiogenesis by suppression of PI3K/Akt pathway. Exp Eye Res 2010; 90:726-33. [DOI: 10.1016/j.exer.2010.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Revised: 12/23/2009] [Accepted: 03/10/2010] [Indexed: 01/22/2023]
|
9
|
Yeom CH, Lee G, Park JH, Yu J, Park S, Yi SY, Lee HR, Hong YS, Yang J, Lee S. High dose concentration administration of ascorbic acid inhibits tumor growth in BALB/C mice implanted with sarcoma 180 cancer cells via the restriction of angiogenesis. J Transl Med 2009; 7:70. [PMID: 19671184 PMCID: PMC2732919 DOI: 10.1186/1479-5876-7-70] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Accepted: 08/11/2009] [Indexed: 12/15/2022] Open
Abstract
To test the carcinostatic effects of ascorbic acid, we challenged the mice of seven experimental groups with 1.7 × 10-4 mol high dose concentration ascorbic acid after intraperitoneal administrating them with sarcoma S-180 cells. The survival rate was increased by 20% in the group that received high dose concentration ascorbic acid, compared to the control. The highest survival rate was observed in the group in which 1.7 × 10-4 mol ascorbic acid had been continuously injected before and after the induction of cancer cells, rather than just after the induction of cancer cells. The expression of three angiogenesis-related genes was inhibited by 0.3 times in bFGF, 7 times in VEGF and 4 times in MMP2 of the groups with higher survival rates. Biopsy Results, gene expression studies, and wound healing analysis in vivo and in vitro suggested that the carcinostatic effect induced by high dose concentration ascorbic acid occurred through inhibition of angiogenesis.
Collapse
Affiliation(s)
- Chang-Hwan Yeom
- Department of Palliative Medicine, Seoul St Mary's Hospital, The Catholic University of Korea, Seoul, 137-701, Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Saxena NK, Sharma D, Ding X, Lin S, Marra F, Merlin D, Anania FA. Concomitant activation of the JAK/STAT, PI3K/AKT, and ERK signaling is involved in leptin-mediated promotion of invasion and migration of hepatocellular carcinoma cells. Cancer Res 2007; 67:2497-507. [PMID: 17363567 PMCID: PMC2925446 DOI: 10.1158/0008-5472.can-06-3075] [Citation(s) in RCA: 378] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Various epidemiologic studies have shown that obesity is associated with hepatocellular carcinoma. Leptin, the key player in the regulation of energy balance and body weight control, also acts as a growth factor on certain organs in both normal and disease states. It is plausible that leptin acts to promote hepatocellular carcinogenesis directly affecting malignant properties of liver cancer cells. However, a direct role for leptin in hepatocellular carcinoma has not been shown. In this study, we analyzed the role of leptin and the mechanism(s) underlying its action in hepatocellular carcinoma cells, which express both short and long isoforms of leptin receptors. Treatment with leptin resulted in increased proliferation of both HepG2 and Huh7 cells and involves activation of signal transducers and activators of transcription 3 (STAT3), AKT, and extracellular signal-regulated kinase (ERK) signaling pathways. Leptin-induced phosphorylation of ERK and AKT was dependent on Janus-activated kinase (JAK)/STAT activation. Intriguingly, we also found that leptin potently induces invasion of hepatocellular carcinoma cells in Matrigel invasion and electric cell-substrate impedance-sensing assays. Leptin-stimulated invasion was effectively blocked by pharmacologic inhibitors of JAK/STAT and, to a lesser extent, by ERK and phosphatidylinositol 3-kinase (PI3K) inhibition. Importantly, leptin also induced the migration of both HepG2 and Huh7 cells on fibronectin matrix. Inhibition of JAK/STAT, ERK, and PI3K activation using pharmacologic inhibitors effectively blocked leptin-induced migration of HepG2 and Huh7 cells. Taken together, these data indicate that leptin promotes hepatocellular carcinoma growth, invasiveness, and migration and implicate the JAK/STAT pathway as a critical mediator of leptin action. Our findings have potential clinical implications for hepatocellular carcinoma progression in obese patients.
Collapse
Affiliation(s)
- Neeraj K. Saxena
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Dipali Sharma
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Xiaokun Ding
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Songbai Lin
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Fabio Marra
- Dipartimento di Medicina Interna University of Florence, Florence, Italy
| | - Didier Merlin
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Frank A. Anania
- Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
11
|
Tian J, Paquette-Straub C, Sage EH, Funk SE, Patel V, Galileo D, McLane MA. Inhibition of melanoma cell motility by the snake venom disintegrin eristostatin. Toxicon 2007; 49:899-908. [PMID: 17316731 PMCID: PMC1948081 DOI: 10.1016/j.toxicon.2006.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 12/06/2006] [Accepted: 12/11/2006] [Indexed: 11/28/2022]
Abstract
Eristostatin, an RGD-containing disintegrin isolated from the venom of Eristicophis macmahoni, inhibits lung or liver colonization of melanoma cells in a mouse model. In this study, transwell migration and in vitro wound closure assays were used to determine the effect of eristostatin on the migration of melanoma cells. Eristostatin significantly impaired the migration of five human melanoma cell lines. Furthermore, it specifically inhibited cell migration on fibronectin in a concentration-dependent manner, but not that on collagen IV or laminin. In contrast, eristostatin was found to have no effect on cell proliferation or angiogenesis. These results indicate that the interaction between eristostatin and melanoma cells may involve fibronectin-binding integrins that mediate cell migration. Mutations to alanine of seven residues within the RGD loop of eristostatin and four residues outside the RGD loop of eristostatin resulted in significantly less potency in both platelet aggregation and wound closure assays. For six of the mutations, however, decreased activity was found only in the latter assay. We conclude that a different mechanism and/or integrin is involved in these two cell activities.
Collapse
Affiliation(s)
- Jing Tian
- Department of Medical Technology, University of Delaware, 305G Willard Hall, Education Building, Newark, DE 19716, USA
| | | | | | | | | | | | | |
Collapse
|