1
|
Vetrici MA, Yevtushenko DP, Misra S. Overexpression of Douglas-Fir LEAFY COTYLEDON1 ( PmLEC1) in Arabidopsis Induces Embryonic Programs and Embryo-like Structures in the lec1-1 Mutant but Not in Wild Type Plants. PLANTS 2021; 10:plants10081526. [PMID: 34451571 PMCID: PMC8397997 DOI: 10.3390/plants10081526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
Somatic embryogenesis (SE) is the most promising method for the quick propagation of desirable plant genotypes. However, application of SE to conifers remains challenging due to our limited knowledge about the genes involved in embryogenesis and the processes that lead to somatic embryo formation. Douglas-fir, an economically important lumber species, possesses a homolog of the angiosperm embryo-regulatory LEC1 gene. In the present study, we analyzed the potential of Douglas-fir PmLEC1 to induce embryonic programs in the vegetative cells of a heterologous host, Arabidopsis thaliana. PmLEC1 complemented the Arabidopsis lec1-1 null mutant and led to a variety of phenotypes ranging from normal morphology to developmental arrest at various stages in the T1 generation. PmLEC1 did not affect the morphology of wild type Arabidopsis T1 plants. More profound results occurred in T2 generations. PmLEC1 expression induced formation of recurrent somatic embryo-like structures in vegetative tissues of the rescued lec1-1 mutant but loss of apical dominance (bushy phenotype) in wild type plants. The activation of embryonic programs in the lec1-1PmLEC1 T2 plants was confirmed by the presence of the embryo-specific transcripts, OLEOSIN and CRUCIFERIN. In contrast, no embryo-like structures, and no OLEOSIN or CRUCIFERIN were observed in PmLEC1-expressing bushy wild type T2 plants.
Collapse
Affiliation(s)
- Mariana A. Vetrici
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada;
- Centre for Forest Biology, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada;
- Correspondence: ; Tel.: +1-403-317-2879
| | - Dmytro P. Yevtushenko
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 3M4, Canada;
| | - Santosh Misra
- Centre for Forest Biology, Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada;
| |
Collapse
|
2
|
Botchway SW, Farooq S, Sajid A, Robinson IK, Yusuf M. Contribution of advanced fluorescence nano microscopy towards revealing mitotic chromosome structure. Chromosome Res 2021; 29:19-36. [PMID: 33686484 DOI: 10.1007/s10577-021-09654-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/07/2023]
Abstract
The organization of chromatin into higher-order structures and its condensation process represent one of the key challenges in structural biology. This is important for elucidating several disease states. To address this long-standing problem, development of advanced imaging methods has played an essential role in providing understanding into mitotic chromosome structure and compaction. Amongst these are two fast evolving fluorescence imaging technologies, specifically fluorescence lifetime imaging (FLIM) and super-resolution microscopy (SRM). FLIM in particular has been lacking in the application of chromosome research while SRM has been successfully applied although not widely. Both these techniques are capable of providing fluorescence imaging with nanometer information. SRM or "nanoscopy" is capable of generating images of DNA with less than 50 nm resolution while FLIM when coupled with energy transfer may provide less than 20 nm information. Here, we discuss the advantages and limitations of both methods followed by their contribution to mitotic chromosome studies. Furthermore, we highlight the future prospects of how advancements in new technologies can contribute in the field of chromosome science.
Collapse
Affiliation(s)
- S W Botchway
- Central Laser Facility, Science and Technology Facilities Council (STFC) Rutherford Appleton Laboratory, Research Complex at Harwell, Oxford, UK
| | - S Farooq
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, P.O.Box 3500, Karachi, 74800, Pakistan
| | - A Sajid
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, P.O.Box 3500, Karachi, 74800, Pakistan
| | - I K Robinson
- London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK.,Brookhaven National Lab, Upton, NY, 11973, USA
| | - M Yusuf
- Centre for Regenerative Medicine and Stem Cell Research, Aga Khan University, P.O.Box 3500, Karachi, 74800, Pakistan. .,London Centre for Nanotechnology, University College London, London, WC1H 0AH, UK.
| |
Collapse
|
3
|
Tanaka S, Honda Y, Takaku S, Koike T, Oe S, Hirahara Y, Yoshida T, Takizawa N, Takamori Y, Kurokawa K, Kodama T, Yamada H. Involvement of PLAGL1/ZAC1 in hypocretin/orexin transcription. Int J Mol Med 2019; 43:2164-2176. [PMID: 30896835 PMCID: PMC6445593 DOI: 10.3892/ijmm.2019.4143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 03/19/2019] [Indexed: 12/16/2022] Open
Abstract
The hypocretin/orexin neuropeptide system coordinates the regulation of various physiological processes. Our previous study reported that a reduction in the expression of pleomorphic adenoma gene-like 1 (Plagl1), which encodes a C2H2 zinc-finger transcription factor, occurs in hypocretin neuron-ablated transgenic mice, suggesting that PLAGL1 is co-expressed in hypocretin neurons and regulates hypocretin transcription. The present study examined whether canonical prepro-hypocretin transcription is functionally modulated by PLAGL1. Double immunostaining indicated that the majority of hypocretin neurons were positive for PLAGL1 immunore-activity in the nucleus. Notably, PLAGL1 immunoreactivity in hypocretin neurons was altered in response to several conditions affecting hypocretin function. An uneven localization of PLAGL1 was detected in the nuclei of hypocretin neurons following sleep deprivation. Chromatin immunoprecipitation revealed that endogenous PLAGL1 may bind to a putative PLAGL1-binding site in the proximal region of the hypocretin gene, in the murine hypothalamus. In addition, electroporation of the PLAGL1 expression vector into the fetal hypothalamus promoted hypothalamic hypocretin transcription. These results suggested that PLAGL1 may regulate hypothalamic hypocretin transcription.
Collapse
Affiliation(s)
- Susumu Tanaka
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Yoshiko Honda
- SLEEP Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156‑8506, Japan
| | - Shizuka Takaku
- SLEEP Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156‑8506, Japan
| | - Taro Koike
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Souichi Oe
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Yukie Hirahara
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Takashi Yoshida
- Department of Urology and Andrology, Kansai Medical University, Hirakata, Osaka 573‑1191, Japan
| | - Nae Takizawa
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Yasuharu Takamori
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Kiyoshi Kurokawa
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| | - Tohru Kodama
- SLEEP Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156‑8506, Japan
| | - Hisao Yamada
- Department of Anatomy and Cell Science, Kansai Medical University, Hirakata, Osaka 573‑1010, Japan
| |
Collapse
|
4
|
Wang S, Huang Y, Mu X, Qi T, Qiao S, Lu Z, Li H. DNA methylation is a common molecular alteration in colorectal cancer cells and culture method has no influence on DNA methylation. Exp Ther Med 2018; 15:3173-3180. [PMID: 29545832 PMCID: PMC5841015 DOI: 10.3892/etm.2018.5809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 04/21/2017] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to explore whether culture method had an influence on DNA methylation in colorectal cancer (CRC). In the present study, CRC cells were cultured in two-dimensional (2D), three-dimensional (3D) and mouse orthotopic transplantation (Tis) cultures. Principal component analysis (PCA) was used for global visualization of the three samples. A Venn diagram was applied for intersection and union analysis for different comparisons. The methylation condition of 5′-C-phosphate-G-3′ (CpG) location was determined using unsupervised clustering analysis. Scatter plots and histograms of the mean β values between 3D vs. 2D, 3D vs. Tis and Tis vs. 2D were constructed. In order to explore the biological function of the genes, gene ontology and Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analyses were utilized. To explore the influence of culture condition on genes, quantitative methylation specific polymerase chain reaction (QMSP) was performed. The three samples connected with each other closely, as demonstrated by PCA. Venn diagram analysis indicated that some differential methylation positions were commonly shared in the three groups of samples and 16 CpG positions appeared hypermethylated in the three samples. The methylation patterns between the 3D and 2D cultures were more similar than those of 3D and Tis, and Tis and 2D. Results of gene ontology demonstrated that differentially expressed genes were involved in molecular function, cellular components and biological function. KEGG analysis indicated that genes were enriched in 13 pathways, of which four pathways were the most evident. These pathways were pathways in cancer, mitogen-activated protein kinase signaling, axon guidance and insulin signaling. Furthermore, QMSP demonstrated that methylation of mutL homolog, phosphatase and tensin homolog, runt-related transcription factor, Ras association family member, cadherin-1, O-6-methylguanine-DNA-methyltransferase and P16 genes had no obvious difference in 2D, 3D and Tis culture conditions. In conclusion, the culture method had no influence on DNA methylation in CRC cells.
Collapse
Affiliation(s)
- Shibao Wang
- Department of Oncology and Hematology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Yinghui Huang
- Science Research Center, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xupeng Mu
- Science Research Center, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Tianyang Qi
- Science Research Center, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Sha Qiao
- Department of Oncology and Hematology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhenxia Lu
- Department of Oncology and Hematology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| | - Hongjun Li
- Physical Examination Center, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
5
|
Symonová R, Majtánová Z, Arias-Rodriguez L, Mořkovský L, Kořínková T, Cavin L, Pokorná MJ, Doležálková M, Flajšhans M, Normandeau E, Ráb P, Meyer A, Bernatchez L. Genome Compositional Organization in Gars Shows More Similarities to Mammals than to Other Ray-Finned Fish. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 328:607-619. [DOI: 10.1002/jez.b.22719] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 11/13/2016] [Accepted: 11/22/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Radka Symonová
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
- Department of Zoology; Faculty of Science; Charles University; Prague 2 Czech Republic
- Research Institute for Limnology; University of Innsbruck; Mondsee Austria
| | - Zuzana Majtánová
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
- Department of Zoology; Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Lenin Arias-Rodriguez
- División Académica de Ciencias Biológicas; Universidad Juárez Autónoma de Tabasco (UJAT); Villahermosa Tabasco México
| | - Libor Mořkovský
- Department of Zoology; Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Tereza Kořínková
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
| | - Lionel Cavin
- Muséum d'Histoire Naturelle; Geneva 6 Switzerland
| | - Martina Johnson Pokorná
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
- Department of Ecology; Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Marie Doležálková
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
- Department of Zoology; Faculty of Science; Charles University; Prague 2 Czech Republic
| | - Martin Flajšhans
- Faculty of Fisheries and Protection of Waters; South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses; University of South Bohemia in České Budějovice; Vodňany Czech Republic
| | - Eric Normandeau
- IBIS, Department of Biology, University Laval, Pavillon Charles-Eugène-Marchand; Avenue de la Médecine Quebec City; Canada
| | - Petr Ráb
- Laboratory of Fish Genetics; Institute of Animal Physiology and Genetics; The Czech Academy of Sciences; Liběchov Czech Republic
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology; Department of Biology; University of Konstanz; Konstanz Germany
| | - Louis Bernatchez
- IBIS, Department of Biology, University Laval, Pavillon Charles-Eugène-Marchand; Avenue de la Médecine Quebec City; Canada
| |
Collapse
|
6
|
Vieira-da-Silva A, Adega F, Guedes-Pinto H, Chaves R. LINE-1 distribution in six rodent genomes follow a species-specific pattern. J Genet 2016; 95:21-33. [PMID: 27019429 DOI: 10.1007/s12041-015-0595-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
L1 distribution in mammal's genomes is yet a huge riddle. However, these repetitive sequences were already found in all chromosomic regions, and in general, they seem to be nonrandomly distributed in the genome. It also seems that after insertion and when they are not deleterious, they are always involved in dynamic processes occurring on that particular chromosomic region. Furthermore, it seems that large-scale genome rearrangements and L1 activity and accumulation are somehow interconnected. In the present study, we analysed L1 genomic distribution in Tatera gambiana (Muridae, Gerbillinae), Acomys sp. (Muridae, Deomyinae), Cricetomys sp. (Nesomyidae, Cricetomyinae), Microtus arvalis (Cricetidae, Arvicolinae), Phodopus roborovskii and P. sungorus (Cricetidae, Cricetinae). All the species studied here seems to exhibit a species-specific pattern.Possible mechanisms, and processes involved in L1 distribution and preferential accumulation in certain regions are di scussed.
Collapse
Affiliation(s)
- A Vieira-da-Silva
- Department of Genetics and Biotechnology (DGB), Laboratory of Cytogenomics and Animal Genomics (CAG), University of Trάs-os-Montes and Alto Douro (UTAD), 5001, 801 Vila Real,
| | | | | | | |
Collapse
|
7
|
Integration of HIV in the Human Genome: Which Sites Are Preferential? A Genetic and Statistical Assessment. Int J Genomics 2016; 2016:2168590. [PMID: 27294106 PMCID: PMC4880676 DOI: 10.1155/2016/2168590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/24/2016] [Indexed: 12/17/2022] Open
Abstract
Chromosomal fragile sites (FSs) are loci where gaps and breaks may occur and are preferential integration targets for some viruses, for example, Hepatitis B, Epstein-Barr virus, HPV16, HPV18, and MLV vectors. However, the integration of the human immunodeficiency virus (HIV) in Giemsa bands and in FSs is not yet completely clear. This study aimed to assess the integration preferences of HIV in FSs and in Giemsa bands using an in silico study. HIV integration positions from Jurkat cells were used and two nonparametric tests were applied to compare HIV integration in dark versus light bands and in FS versus non-FS (NFSs). The results show that light bands are preferential targets for integration of HIV-1 in Jurkat cells and also that it integrates with equal intensity in FSs and in NFSs. The data indicates that HIV displays different preferences for FSs compared to other viruses. The aim was to develop and apply an approach to predict the conditions and constraints of HIV insertion in the human genome which seems to adequately complement empirical data.
Collapse
|
8
|
Abdurakhmonov IY, Ayubov MS, Ubaydullaeva KA, Buriev ZT, Shermatov SE, Ruziboev HS, Shapulatov UM, Saha S, Ulloa M, Yu JZ, Percy RG, Devor EJ, Sharma GC, Sripathi VR, Kumpatla SP, van der Krol A, Kater HD, Khamidov K, Salikhov SI, Jenkins JN, Abdukarimov A, Pepper AE. RNA Interference for Functional Genomics and Improvement of Cotton (Gossypium sp.). FRONTIERS IN PLANT SCIENCE 2016; 7:202. [PMID: 26941765 PMCID: PMC4762190 DOI: 10.3389/fpls.2016.00202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/05/2016] [Indexed: 02/05/2023]
Abstract
RNA interference (RNAi), is a powerful new technology in the discovery of genetic sequence functions, and has become a valuable tool for functional genomics of cotton (Gossypium sp.). The rapid adoption of RNAi has replaced previous antisense technology. RNAi has aided in the discovery of function and biological roles of many key cotton genes involved in fiber development, fertility and somatic embryogenesis, resistance to important biotic and abiotic stresses, and oil and seed quality improvements as well as the key agronomic traits including yield and maturity. Here, we have comparatively reviewed seminal research efforts in previously used antisense approaches and currently applied breakthrough RNAi studies in cotton, analyzing developed RNAi methodologies, achievements, limitations, and future needs in functional characterizations of cotton genes. We also highlighted needed efforts in the development of RNAi-based cotton cultivars, and their safety and risk assessment, small and large-scale field trials, and commercialization.
Collapse
Affiliation(s)
- Ibrokhim Y. Abdurakhmonov
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
| | - Mirzakamol S. Ayubov
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
| | - Khurshida A. Ubaydullaeva
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
| | - Zabardast T. Buriev
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
| | - Shukhrat E. Shermatov
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
| | - Haydarali S. Ruziboev
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
| | - Umid M. Shapulatov
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
- Laboratory of Plant Physiology, Wageningen UniversityWageningen, Netherlands
| | - Sukumar Saha
- Crop Science Research Laboratory, United States Department of Agriculture – Agricultural Research Service, StarkvilleMS, USA
| | - Mauricio Ulloa
- Plant Stress and Germplasm Development Research, United States Department of Agriculture – Agricultural Research Service, LubbockTX, USA
| | - John Z. Yu
- Crop Germplasm Research Unit, United States Department of Agriculture – Agricultural Research Service, College StationTX, USA
| | - Richard G. Percy
- Crop Germplasm Research Unit, United States Department of Agriculture – Agricultural Research Service, College StationTX, USA
| | - Eric J. Devor
- Department of Obstetrics and Gynecology, University of Iowa Carver College of Medicine, Iowa CityIA, USA
| | - Govind C. Sharma
- Department of Biological and Environmental Sciences, Alabama A&M University, NormalAL, USA
| | | | | | | | - Hake D. Kater
- Agricultural and Environmental Research, CaryNC, USA
| | - Khakimdjan Khamidov
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
| | - Shavkat I. Salikhov
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
| | - Johnie N. Jenkins
- Crop Science Research Laboratory, United States Department of Agriculture – Agricultural Research Service, StarkvilleMS, USA
| | - Abdusattor Abdukarimov
- Center of Genomics and Bioinformatics, Structural and Functional Genomics, Academy of Sciences the Republic of Uzbekistan, Ministry of Agriculture and Water Resources the Republic of Uzbekistan and “Uzpakhtasanoat” AssociationKibray, Uzbekistan
| | - Alan E. Pepper
- Department of Biology, Texas A&M University, Colleges StationTX, USA
| |
Collapse
|
9
|
Matharu N, Ahituv N. Minor Loops in Major Folds: Enhancer-Promoter Looping, Chromatin Restructuring, and Their Association with Transcriptional Regulation and Disease. PLoS Genet 2015; 11:e1005640. [PMID: 26632825 PMCID: PMC4669122 DOI: 10.1371/journal.pgen.1005640] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The organization and folding of chromatin within the nucleus can determine the outcome of gene expression. Recent technological advancements have enabled us to study chromatin interactions in a genome-wide manner at high resolution. These studies have increased our understanding of the hierarchy and dynamics of chromatin domains that facilitate cognate enhancer–promoter looping, defining the transcriptional program of different cell types. In this review, we focus on vertebrate chromatin long-range interactions as they relate to transcriptional regulation. In addition, we describe how the alteration of boundaries that mark discrete regions in the genome with high interaction frequencies within them, called topological associated domains (TADs), could lead to various phenotypes, including human diseases, which we term as “TADopathies.”
Collapse
Affiliation(s)
- Navneet Matharu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California, United States of America
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Efimova OA, Pendina AA, Tikhonov AV, Fedorova ID, Krapivin MI, Chiryaeva OG, Shilnikova EM, Bogdanova MA, Kogan IY, Kuznetzova TV, Gzgzyan AM, Ailamazyan EK, Baranov VS. Chromosome hydroxymethylation patterns in human zygotes and cleavage-stage embryos. Reproduction 2014; 149:223-33. [PMID: 25504867 DOI: 10.1530/rep-14-0343] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We report the sequential changes in 5-hydroxymethylcytosine (5hmC) patterns in the genome of human preimplantation embryos during DNA methylation reprogramming. We have studied chromosome hydroxymethylation and methylation patterns in triploid zygotes and blastomeres of cleavage-stage embryos. Using indirect immunofluorescence, we have analyzed the localization of 5hmC and its co-distribution with 5-methylcytosine (5mC) on the QFH-banded metaphase chromosomes. In zygotes, 5hmC accumulates in both parental chromosome sets, but hydroxymethylation is more intensive in the poorly methylated paternal set. In the maternal set, chromosomes are highly methylated, but contain little 5hmC. Hydroxymethylation is highly region specific in both parental chromosome sets: hydroxymethylated loci correspond to R-bands, but not G-bands, and have well-defined borders, which coincide with the R/G-band boundaries. The centromeric regions and heterochromatin at 1q12, 9q12, 16q11.2, and Yq12 contain little 5mC and no 5hmC. We hypothesize that 5hmC may mark structural/functional genome 'units' corresponding to chromosome bands in the newly formed zygotic genome. In addition, we suggest that the hydroxymethylation of R-bands in zygotes can be treated as a new characteristic distinguishing them from G-bands. At cleavages, chromosomes with asymmetrical hydroxymethylation of sister chromatids appear. They decrease in number during cleavages, whereas totally non-hydroxymethylated chromosomes become numerous. Taken together, our findings suggest that, in the zygotic genome, 5hmC is distributed selectively and its pattern is determined by both parental origin of chromosomes and type of chromosome bands - R, G, or C. At cleavages, chromosome hydroxymethylation pattern is dynamically changed due to passive and non-selective overall loss of 5hmC, which coincides with that of 5mC.
Collapse
Affiliation(s)
- Olga A Efimova
- D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia
| | - Anna A Pendina
- D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Pet
| | - Andrei V Tikhonov
- D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Pet
| | - Irina D Fedorova
- D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia
| | - Mikhail I Krapivin
- D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia
| | - Olga G Chiryaeva
- D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Pet
| | - Evgeniia M Shilnikova
- D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia
| | - Mariia A Bogdanova
- D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia
| | - Igor Yu Kogan
- D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia
| | - Tatyana V Kuznetzova
- D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia
| | - Alexander M Gzgzyan
- D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia
| | - Edward K Ailamazyan
- D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Pet
| | - Vladislav S Baranov
- D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Petersburg, Russia D.O. Ott Research Institute of Obstetrics and GynecologyMendeleevskaya line, 3, 199034 St Petersburg, RussiaSt Petersburg State UniversityUniversitetskaya nab.7/9, 199034 St Petersburg, RussiaCenter for Medical GeneticsTobolskaya ul., 5, 194044 St Petersburg, RussiaSt Petersburg State Pediatric Medical UniversityLitovskaya ul., 2, 194100 St Petersburg, RussiaS.M. Kirov Military Medical AcademyLebedeva ul., 6, 194044 St Petersburg, RussiaN.I. Pirogov National Medical-Surgery CenterSt Petersburg Clinic Complex, nab. Fontanki, 154, 190103 St Petersburg, RussiaI.P. Pavlov First St Petersburg State Medical UniversityL'va Tolstogo ul., 6/8, 197022 St Pet
| |
Collapse
|
11
|
Liddle P, Lafon-Hughes L, Di Tomaso MV, Reyes-Ábalos AL, Jara J, Cerda M, Härtel S, Folle GA. Bleomycin-induced γH2AX foci map preferentially to replicating domains in CHO9 interphase nuclei. Chromosome Res 2014; 22:463-81. [DOI: 10.1007/s10577-014-9433-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 12/28/2022]
|
12
|
Dimitriadou E, Van der Aa N, Cheng J, Voet T, Vermeesch JR. Single cell segmental aneuploidy detection is compromised by S phase. Mol Cytogenet 2014; 7:46. [PMID: 25075223 PMCID: PMC4114140 DOI: 10.1186/1755-8166-7-46] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/25/2014] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Carriers of balanced translocations are at high risk for unbalanced gametes which can result in recurrent miscarriages or birth defects. Preimplantation genetic diagnosis (PGD) is often offered to select balanced embryos. This selection is currently mainly performed by array CGH on blastomeres. Current methodology does not take into account the phase of the cell cycle, despite the variable copy number status of different genomic regions in S phase. RESULTS Cell lines derived from 3 patients with different chromosomal imbalances were used to evaluate the accuracy of single cell array CGH. The different cell cycle phases were sorted by flow cytometry and 10 single cells were picked per cell line per cell cycle phase, whole genome amplified and analyzed by BAC arrays, the most commonly used platform for PGD purposes. In contrast to G phase, where the imbalances were efficiently identified, less than half of the probes in the regions of interest indicated the presence of the aberration in 17 S-phase cells, resulting in reduced accuracy. CONCLUSIONS The results demonstrate that the accuracy to detect segmental chromosomal imbalances is reduced in S-phase cells, which could be a source of misdiagnosis in PGD. Hence, the cell cycle phase of the analyzed cell is of great importance and should be taken into account during the analysis. This knowledge may guide future technological improvements.
Collapse
Affiliation(s)
- Eftychia Dimitriadou
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Niels Van der Aa
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Jiqiu Cheng
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Joris R Vermeesch
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
13
|
Mmeka EC, Adesoye A, Ubaoji KI, Nwokoye AB. Gene Silencing Technologies in Creating Resistance to Plant Diseases. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ijpbg.2014.100.120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Oliver TR, Middlebrooks CD, Tinker SW, Allen EG, Bean LJH, Begum F, Feingold E, Chowdhury R, Cheung V, Sherman SL. An examination of the relationship between hotspots and recombination associated with chromosome 21 nondisjunction. PLoS One 2014; 9:e99560. [PMID: 24926858 PMCID: PMC4057233 DOI: 10.1371/journal.pone.0099560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 05/15/2014] [Indexed: 11/22/2022] Open
Abstract
Trisomy 21, resulting in Down Syndrome (DS), is the most common autosomal trisomy among live-born infants and is caused mainly by nondisjunction of chromosome 21 within oocytes. Risk factors for nondisjunction depend on the parental origin and type of meiotic error. For errors in the oocyte, increased maternal age and altered patterns of recombination are highly associated with nondisjunction. Studies of normal meiotic events in humans have shown that recombination clusters in regions referred to as hotspots. In addition, GC content, CpG fraction, Poly(A)/Poly(T) fraction and gene density have been found to be significant predictors of the placement of sex-averaged recombination in the human genome. These observations led us to ask whether the altered patterns of recombination associated with maternal nondisjunction of chromosome 21 could be explained by differences in the relationship between recombination placement and recombination-related genomic features (i.e., GC content, CpG fraction, Poly(A)/Poly(T) fraction or gene density) on 21q or differential hot-spot usage along the nondisjoined chromosome 21. We found several significant associations between our genomic features of interest and recombination, interestingly, these results were not consistent among recombination types (single and double proximal or distal events). We also found statistically significant relationships between the frequency of hotspots and the distribution of recombination along nondisjoined chromosomes. Collectively, these findings suggest that factors that affect the accessibility of a specific chromosome region to recombination may be altered in at least a proportion of oocytes with MI and MII errors.
Collapse
Affiliation(s)
- Tiffany Renee Oliver
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Candace D. Middlebrooks
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Stuart W. Tinker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Emily Graves Allen
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lora J. H. Bean
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ferdouse Begum
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Eleanor Feingold
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Human Genetics, Graduate School of Public Health University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Reshmi Chowdhury
- Department of Human Genetics, Graduate School of Public Health University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Vivian Cheung
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Stephanie L. Sherman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
15
|
Determining epithelial contribution to in vivo mesenchymal tumour expression signature using species-specific microarray profiling analysis of xenografts. Genet Res (Camb) 2013; 95:14-29. [PMID: 23497823 DOI: 10.1017/s0016672313000013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gene expression profiling using microarrays and xenograft transplants of human cancer cell lines are both popular tools to investigate human cancer. However, the undefined degree of cross hybridization between the mouse and human genomes hinders the use of microarrays to characterize gene expression of both the host and the cancer cell within the xenograft. Since an increasingly recognized aspect of cancer is the host response (or cancer-stroma interaction), we describe here a bioinformatic manipulation of the Affymetrix profiling that allows interrogation of the gene expression of both the mouse host and the human tumour. Evidence of microenvironmental regulation of epithelial mesenchymal transition of the tumour component in vivo is resolved against a background of mesenchymal gene expression. This tool could allow deeper insight to the mechanism of action of anti-cancer drugs, as typically novel drug efficacy is being tested in xenograft systems.
Collapse
|
16
|
Abstract
Breast cancer incidence is rising worldwide with an increase in aggressive neoplasias in young women. Possible factors involved include lifestyle changes, notably diet that is known to make an impact on gene transcription. However, among dietary factors, there is sufficient support for only greater body weight and alcohol consumption whereas numerous studies revealing an impact of specific diets and nutrients on breast cancer risk show conflicting results. Also, little information is available from middle- and low-income countries. The diversity of gene expression profiles found in breast cancers indicates that transcription control is critical for the outcome of the disease. This suggests the need for studies on nutrients that affect epigenetic mechanisms of transcription, such as DNA methylation and post-translational modifications of histones. In the present review, a new examination of the relationship between diet and breast cancer based on transcription control is proposed in light of epidemiological, animal and clinical studies. The mechanisms underlying the impact of diets on breast cancer development and factors that impede reaching clear conclusions are discussed. Understanding the interaction between nutrition and epigenetics (gene expression control via chromatin structure) is critical in light of the influence of diet during early stages of mammary gland development on breast cancer risk, suggesting a persistent effect on gene expression as shown by the influence of certain nutrients on DNA methylation. Successful development of breast cancer prevention strategies will require appropriate models, identification of biological markers for rapid assessment of preventive interventions, and coordinated worldwide research to discern the effects of diet.
Collapse
|
17
|
Jackson D, Wang X, Rudner DZ. Spatio-temporal organization of replication in bacteria and eukaryotes (nucleoids and nuclei). Cold Spring Harb Perspect Biol 2012; 4:a010389. [PMID: 22855726 DOI: 10.1101/cshperspect.a010389] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here we discuss the spatio-temporal organization of replication in eubacteria and eukaryotes. Although there are significant differences in how replication is organized in cells that contain nuclei from those that do not, you will see that organization of replication in all organisms is principally dictated by the structured arrangement of the chromosome. We will begin with how replication is organized in eubacteria with particular emphasis on three well studied model organisms. We will then discuss spatial and temporal organization of replication in eukaryotes highlighting the similarities and differences between these two domains of life.
Collapse
Affiliation(s)
- Dean Jackson
- University of Manchester, Faculty of Life Sciences, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
18
|
Testoni AF, Althoff SL, Nascimento AP, Steiner-Souza F, Sbalqueiro IJ. Description of the karyotype of Rhagomys rufescens Thomas, 1886 (Rodentia, Sigmodontinae) from Southern Brazil Atlantic forest. Genet Mol Biol 2011; 33:479-85. [PMID: 21637420 PMCID: PMC3036123 DOI: 10.1590/s1415-47572010005000071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 03/26/2010] [Indexed: 12/04/2022] Open
Abstract
Rhagomys rufescens (Rodentia: Sigmodontinae) is an endemic species of the Atlantic forest from Southern and Southeastern Brazil. Some authors consider Rhagomys as part of the tribe Thomasomyini; but its phylogenetic relationships remain unclear. Chromosomal studies on eight specimens of Rhagomys rufescens revealed a diploid number of 2n = 36 and a number of autosome arms FN = 50. GTG, CBG and Ag-NOR banding and CMA3 /DAPI staining were performed on metaphase chromosomes. Eight biarmed and nine acrocentric pairs were found in the karyotype of this species. The X and Y chromosomes were both acrocentric. Most of the autosomes and the sex chromosomes showed positive C-bands in the pericentromeric region. The X chromosome showed an additional heterochromatic block in the proximal region of the long arm. Nucleolus organizer regions (NORs) were located in the pericentromeric region of three biarmed autosomes (pairs 4, 6 and 8) and in the telomeric region of the short arm of three acrocentrics (pairs 10, 12 and 17). CMA 3 /DAPI staining produced fluorescent signals in many autosomes, especially in pairs 4, 6, and 8. This study presents cytogenetic data of Rhagomys rufescens for the first time.
Collapse
Affiliation(s)
- André Filipe Testoni
- Laboratório de Citogenética Animal, Departamento de Genética, Universidade Federal do Paraná, Curitiba, PR Brazil
| | | | | | | | | |
Collapse
|
19
|
Albo MJ, Postiglioni A. Sex chromosomes behavior and G-banding treatment of male meiosis in nuptial gift-giving spiders of the family Trechaleidae. Integr Zool 2011; 6:56-62. [PMID: 21392362 DOI: 10.1111/j.1749-4877.2010.00230.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Preliminary genetic studies in Trechaleidae spider family show high variation in sex chromosomes and high heterocigocity, suggesting high chromatin plasticity. The trechaleids Paratrechalea ornata, Trechalea bucculenta and Trechaleoides biocellata are present in Uruguay. Males offering nuptial gifts during courtship have been reported in P. ornata and T. bucculenta but not in T. biocellata. Nuptial gifts are an inherited trait probably highly affected by environmental factors, which play an important role in gene expression. We hypothesize that this trait could be associated with tissue-specific genes existing in G-bands. We investigate the male meiosis in these 3 species, their sex chromosome system and the effects of G-banding on their chromosomes, and elucidate genetic differences among them. Meiotic stages of the 3 species were submitted to Giemsa-staining and G-banding treatments. We observed a haploid number of n= 11 in P. ornata and n= 13 in both T. bucculenta and T. biocellata. Males from the 3 species presented an X(1) X(2) 0 sex chromosome system, which is suggested as ancestral in Araneae. In P. ornata and T. bucculenta, both sex chromosomes were together and aligned in parallel until the segregation during anaphase I. In contrast to these species, sex chromosomes of T. biocellata usually remained distant from each other until diakinesis when they were observed associated in parallel disposition. Interstitial G-bands were similar in P. ornata and T. bucculenta, and they both differed from those in T. biocellata. The special behavior of sex chromosomes in T. biocellata as well as the different G-banding pattern of this species suggests the existence of novel modifications in this species.
Collapse
Affiliation(s)
- Maria J Albo
- Laboratory of Ethology, Ecology and Evolution, Clemente Estable Biological Research Institute, Montevideo, Uruguay.
| | | |
Collapse
|
20
|
Feitoza L, Guerra M. Different types of plant chromatin associated with modified histones H3 and H4 and methylated DNA. Genetica 2011; 139:305-14. [PMID: 21327493 DOI: 10.1007/s10709-011-9550-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 01/12/2011] [Indexed: 11/26/2022]
Abstract
Eukaryotic chromosomes are organized into two large and distinct domains, euchromatin and heterochromatin, which are cytologically characterized by different degrees of chromatin compaction during interphase/prophase and by post-synthesis modifications of histones and DNA methylation. Typically, heterochromatin remains condensed during the entire cell cycle whereas euchromatin is decondensed at interphase. However, a fraction of the euchromatin can also remain condensed during interphase and appears as early condensing prophase chromatin. 5S and 45S rDNA sites and telomere DNA were used to characterize these regions in metaphase and interphase nuclei. We investigated the chromosomal distribution of modified histones and methylated DNA in the early and late condensing prophase chromatin of two species with clear differentiation between these domains. Both species, Costus spiralis and Eleutherine bulbosa, additionally have a small amount of classical heterochromatin detected by CMA/DAPI staining. The distribution of H4 acetylated at lysine 5 (H4K5ac), H3 phosphorylated at serine 10 (H3S10ph), H3 dimethylated at lysine 4 or 9 (H3K4me2, H3K9me2), and 5-methylcytosine was compared in metaphase, prophase, and interphase cells by immunostaining with specific antibodies. In both species, the late condensing prophase chromatin was highly enriched in H4K5ac and H3K4me2 whereas the early condensing chromatin was very poor in these marks. H3K9me2 was apparently uniformly distributed along the chromosomes whereas the early condensing chromatin was slightly enriched in 5-methylcytosine. Signals of H3S10ph were restricted to the pericentromeric region of all chromosomes. Notably, none of these marks distinguished classical heterochromatin from the early condensing euchromatin. It is suggested that the early condensing chromatin is an intermediate type between classical heterochromatin and euchromatin.
Collapse
Affiliation(s)
- Lidiane Feitoza
- Laboratory of Plant Cytogenetics, Department of Botany, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
21
|
Abstract
Classical cytogenetics by karyotyping has been utilized in clinical research laboratories for more than 50 years and remains the key method used in the stem cell laboratory to assess the genetic stability of stem cell cultures. It is currently the most readily accessible method for detecting chromosomal abnormalities in pluripotent stem cell cultures. This chapter will describe (1) how to prepare a culture to maximize the number of metaphase cells, (2) how to prepare slides containing chromosome spreads (3) methods used to stain chromosomes, and (4) how to interpret the cytogenetic report.
Collapse
Affiliation(s)
- Steven E Bates
- Department of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
22
|
Beck J, Urnovitz HB, Mitchell WM, Schütz E. Next generation sequencing of serum circulating nucleic acids from patients with invasive ductal breast cancer reveals differences to healthy and nonmalignant controls. Mol Cancer Res 2010; 8:335-42. [PMID: 20215424 DOI: 10.1158/1541-7786.mcr-09-0314] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Circulating nucleic acids (CNA) isolated from serum or plasma are increasingly recognized as biomarkers for cancers. Recently developed next generation sequencing provides high numbers of DNA sequences to detect the trace amounts of unique serum biomarkers associated with breast carcinoma. Serum CNA of 38 women with ductal carcinoma was extracted and sequenced on a 454/Roche high-throughput GS-FLX platform and compared with healthy controls and patients with other medical conditions. Repetitive elements present in CNA were detected and classified, and each repetitive element was normalized based on total sequence count or repeat count. Multivariate regression models were calculated using an information-theoretical approach and multimodel inference. A total of 423,150 and 953,545 sequences for the cancer patients and controls, respectively, were obtained. Data from 26 patients with stages II to IV tumors and from 67 apparently healthy female controls were used as the training data set. Using a bootstrap method to avoid sampling bias, a five-parameter model was developed. When this model was applied to a validation data set consisting of patients with tumor stage I (n = 10) compared with healthy and nonmalignant disease controls (n = 87; 1,261,561 sequences) a sensitivity of 70% at a specificity of 100% was obtained. At a diagnostic specificity level of 95%, a sensitivity of 90% was calculated. Identification of specific breast cancer-related CNA sequences provides the basis for the development of a serum-based routine laboratory test for breast cancer screening and monitoring.
Collapse
Affiliation(s)
- Julia Beck
- Chronix Biomedical GmbH, Goettingen, Germany
| | | | | | | |
Collapse
|
23
|
Zhao F, Chen Y, Li R, Liu Y, Wen L, Zhang C. Triptolide alters histone H3K9 and H3K27 methylation state and induces G0/G1 arrest and caspase-dependent apoptosis in multiple myeloma in vitro. Toxicology 2010; 267:70-9. [DOI: 10.1016/j.tox.2009.10.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2009] [Revised: 10/17/2009] [Accepted: 10/19/2009] [Indexed: 12/15/2022]
|
24
|
Effects of 5-azacytidine on lymphocyte-metaphases of Creole cows carrying the rob(1;29). Res Vet Sci 2009; 88:263-6. [PMID: 19926102 DOI: 10.1016/j.rvsc.2009.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 10/09/2009] [Accepted: 10/19/2009] [Indexed: 11/22/2022]
Abstract
The Robertsonian translocation rob(1;29) is the most important chromosomal abnormality in cattle. It has been demonstrated that carriers of this chromosomal alteration exhibit reduced fertility due to an early embryonic loss. In the present study we analyzed the effects of DNA methylation inhibitor 5-azacytidine (5-aza-C) on metaphase lymphocytes from Uruguayan Creole cows carrying the rob(1;29). The analysis was focused on the chromatin structure of rob(1;29) comparing it to active and inactive BTAX chromosomes. Lymphocyte cultures were treated with 5-aza-C (1 x 10(-3)M) for 2 h to analyze regions of chromatin decondensation. A comparative analysis of chromatin decondensation among rob(1;29), active BTAX and inactive BTAX showed significant differences (p=1.07 x 10(-7)). Post-hoc pair-wise comparisons using the Mann-Whitney U-test showed significant differences between rob(1;29) and active BTAX (p=1.97 x 10(-5)) and between the active BTAX and inactive BTAX (p=2.55 x 10(-7)). Nevertheless, rob(1;29) did not show significant differences when compared to inactive BTAX (p=0.078). Robertsonian translocation rob(1;29) showed a despiralization pattern similar to the inactive X chromosome. Pericentromeric despiralization in rob(1;29) and the inactive X chromosome was similar, with an average value and standard error of 0.75+/-0.11 and 0.75+/-0.083, respectively. A single condensed region was observed in the inactive X chromosome, whereas in rob(1;29) two regions of condensation, one proximal to the centromere and another proximal to the telomere were detected. Our results show that rob(1;29) and the inactive X chromosome present instability regions susceptible to 5-aza-C. Further studies will be needed to understand the nature and expression pattern of genes located in chromatin condensed regions of rob(1;29).
Collapse
|
25
|
Kosyakova N, Weise A, Mrasek K, Claussen U, Liehr T, Nelle H. The hierarchically organized splitting of chromosomal bands for all human chromosomes. Mol Cytogenet 2009; 2:4. [PMID: 19171032 PMCID: PMC2636822 DOI: 10.1186/1755-8166-2-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Accepted: 01/26/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromosome banding is widely used in cytogenetics. However, the biological nature of hierarchically organized splitting of chromosomal bands of human chromosomes is an enigma and has not been, as yet, studied. RESULTS Here we present for the first time the hierarchically organized splitting of chromosomal bands in their sub-bands for all human chromosomes. To do this, array-proved multicolor banding (aMCB) probe-sets for all human chromosomes were applied to normal metaphase spreads of three different G-band levels. We confirmed for all chromosomes to be a general principle that only Giemsa-dark bands split into dark and light sub-bands, as we demonstrated previously by chromosome stretching. Thus, the biological band splitting is in > 50% of the sub-bands different than implemented by the ISCN nomenclature suggesting also a splitting of G-light bands. Locus-specific probes exemplary confirmed the results of MCB. CONCLUSION Overall, the present study enables a better understanding of chromosome architecture. The observed difference of biological and ISCN band-splitting may be an explanation why mapping data from human genome project do not always fit the cytogenetic mapping.
Collapse
Affiliation(s)
- Nadezda Kosyakova
- Universitätsklinikum Jena, Institut für Humangenetik und Anthropologie, Jena, Germany
| | - Anja Weise
- Universitätsklinikum Jena, Institut für Humangenetik und Anthropologie, Jena, Germany
| | - Kristin Mrasek
- Universitätsklinikum Jena, Institut für Humangenetik und Anthropologie, Jena, Germany
| | - Uwe Claussen
- Universitätsklinikum Jena, Institut für Humangenetik und Anthropologie, Jena, Germany
| | - Thomas Liehr
- Universitätsklinikum Jena, Institut für Humangenetik und Anthropologie, Jena, Germany
| | - Heike Nelle
- Universitätsklinikum Jena, Institut für Humangenetik und Anthropologie, Jena, Germany
| |
Collapse
|
26
|
Abstract
Using a methylated-DNA enrichment technique (methylated CpG island recovery assay, MIRA) in combination with whole-genome tiling arrays, we have characterized by MIRA-chip the entire B cell "methylome" of an individual human at 100-bp resolution. We find that at the chromosome level high CpG methylation density is correlated with subtelomeric regions and Giemsa-light bands (R bands). The majority of the most highly methylated regions that could be identified on the tiling arrays were associated with genes. Approximately 10% of all promoters in B cells were found to be methylated, and this methylation correlates with low gene expression. Notably, apparent exceptions to this correlation were the result of transcription from previously unidentified, unmethylated transcription start sites, suggesting that methylation may control alternate promoter usage. Methylation of intragenic (gene body) sequences was found to correlate with increased, not decreased, transcription, and a methylated region near the 3' end was found in approximately 12% of all genes. The majority of broad regions (10-44 kb) of high methylation were at segmental duplications. Our data provide a valuable resource for the analysis of CpG methylation patterns in a differentiated human cell type and provide new clues regarding the function of mammalian DNA methylation.
Collapse
|
27
|
Antezana MA, Jordan IK. Highly conserved regimes of neighbor-base-dependent mutation generated the background primary-structural heterogeneities along vertebrate chromosomes. PLoS One 2008; 3:e2145. [PMID: 18478116 PMCID: PMC2366069 DOI: 10.1371/journal.pone.0002145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Accepted: 03/17/2008] [Indexed: 01/01/2023] Open
Abstract
The content of guanine+cytosine varies markedly along the chromosomes of homeotherms and great effort has been devoted to studying this heterogeneity and its biological implications. Already before the DNA-sequencing era, however, it was established that the dinucleotides in the DNA of mammals in particular, and of most organisms in general, show striking over- and under-representations that cannot be explained by the base composition. Here we show that in the coding regions of vertebrates both GC content and codon occurrences are strongly correlated with such "motif preferences" even though we quantify the latter using an index that is not affected by the base composition, codon usage, and protein-sequence encoding. These correlations are likely to be the result of the long-term shaping of the primary structure of genic and non-genic DNA by a regime of mutation of which central features have been maintained by natural selection. We find indeed that these preferences are conserved in vertebrates even more rigidly than codon occurrences and we show that the occurrence-preference correlations are stronger in intronic and non-genic DNA, with the R(2)s reaching 99% when GC content is approximately 0.5. The mutation regime appears to be characterized by rates that depend markedly on the bases present at the site preceding and at that following each mutating site, because when we estimate such rates of neighbor-base-dependent mutation (NBDM) from substitutions retrieved from alignments of coding, intronic, and non-genic mammalian DNA sorted and grouped by GC content, they suffice to simulate DNA sequences in which motif occurrences and preferences as well as the correlations of motif preferences with GC content and with motif occurrences, are very similar to the mammalian ones. The best fit, however, is obtained with NBDM regimes lacking strand effects, which indicates that over the long term NBDM switches strands in the germline as one would expect for effects due to loosely contained background transcription. Finally, we show that human coding regions are less mutable under the estimated NBDM regimes than under matched context-independent mutation and that this entails marked differences between the spectra of amino-acid mutations that either mutation regime should generate. In the Discussion we examine the mechanisms likely to underlie NBDM heterogeneity along chromosomes and propose that it reflects how the diversity and activity of lesion-bypass polymerases (LBPs) track the landscapes of scheduled and non-scheduled genome repair, replication, and transcription during the cell cycle. We conclude that the primary structure of vertebrate genic DNA at and below the trinucleotide level has been governed over the long term by highly conserved regimes of NBDM which should be under direct natural selection because they alter drastically missense-mutation rates and hence the somatic and the germline mutational loads. Therefore, the non-coding DNA of vertebrates may have been shaped by NBDM only epiphenomenally, with non-genic DNA being affected mainly when found in the proximity of genes.
Collapse
Affiliation(s)
- Marcos A Antezana
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America.
| | | |
Collapse
|
28
|
Lafon-Hughes L, Di Tomaso MV, Méndez-Acuña L, Martínez-López W. Chromatin-remodelling mechanisms in cancer. Mutat Res 2008; 658:191-214. [PMID: 18403253 DOI: 10.1016/j.mrrev.2008.01.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 01/29/2008] [Accepted: 01/29/2008] [Indexed: 02/06/2023]
Abstract
Chromatin-remodelling mechanisms include DNA methylation, histone-tail acetylation, poly-ADP-ribosylation, and ATP-dependent chromatin-remodelling processes. Some epigenetic modifications among others have been observed in cancer cells, namely (1) local DNA hypermethylation and global hypomethylation, (2) alteration in histone acetylation/deacetylation balance, (3) increased or decreased poly-ADP-ribosylation, and (4) failures in ATP-dependent chromatin-remodelling mechanisms. Moreover, these alterations can influence the response to classical anti-tumour treatments. Drugs targeting epigenetic alterations are under development. Currently, DNA methylation and histone deacetylase inhibitors are in use in cancer therapy, and poly-ADP-ribosylation inhibitors are undergoing clinical trials. Epigenetic therapy is gaining in importance in pharmacology as a new tool to improve anti-cancer therapies.
Collapse
Affiliation(s)
- Laura Lafon-Hughes
- Genetic Toxicology Department, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | | | |
Collapse
|
29
|
Bullaughey K, Przeworski M, Coop G. No effect of recombination on the efficacy of natural selection in primates. Genome Res 2008; 18:544-54. [PMID: 18199888 DOI: 10.1101/gr.071548.107] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Population genetic theory suggests that natural selection should be less effective in regions of low recombination, potentially leading to differences in rates of adaptation among recombination environments. To date, this prediction has mainly been tested in Drosophila, with somewhat conflicting results. We investigated the association between human recombination rates and adaptation in primates, by considering rates of protein evolution (measured by d(N)/d(S)) between human, chimpanzee, and rhesus macaque. We found no correlation between either broad- or fine-scale rates of recombination and rates of protein evolution, once GC content is taken into account. Moreover, genes in regions of very low recombination, which are expected to show the most pronounced reduction in the efficacy of selection, do not evolve at a different rate than other genes. Thus, there is no evidence for differences in the efficacy of selection across recombinational environments. An interesting implication is that indirect selection for recombination modifiers has probably been a weak force in primate evolution.
Collapse
Affiliation(s)
- Kevin Bullaughey
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
30
|
Hirano Y, Takahashi H, Kumeta M, Hizume K, Hirai Y, Otsuka S, Yoshimura SH, Takeyasu K. Nuclear architecture and chromatin dynamics revealed by atomic force microscopy in combination with biochemistry and cell biology. Pflugers Arch 2008; 456:139-53. [PMID: 18172599 DOI: 10.1007/s00424-007-0431-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/29/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
The recent technical development of atomic force microscopy (AFM) has made nano-biology of the nucleus an attractive and promising field. In this paper, we will review our current understanding of nuclear architecture and dynamics from the structural point of view. Especially, special emphases will be given to: (1) How to approach the nuclear architectures by means of new techniques using AFM, (2) the importance of the physical property of DNA in the construction of the higher-order structures, (3) the significance and implication of the linker and core histones and the nuclear matrix/scaffold proteins for the chromatin dynamics, (4) the nuclear proteins that contribute to the formation of the inner nuclear architecture. Spatio-temporal analyses using AFM, in combination with biochemical and cell biological approaches, will play important roles in the nano-biology of the nucleus, as most of nuclear structures and events occur in nanometer, piconewton and millisecond order. The new applications of AFM, such as recognition imaging, fast-scanning imaging, and a variety of modified cantilevers, are expected to be powerful techniques to reveal the nanostructure of the nucleus.
Collapse
Affiliation(s)
- Yasuhiro Hirano
- Kyoto University Graduate School of Biostudies, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Clark PR, Pober JS, Kluger MS. Knockdown of TNFR1 by the sense strand of an ICAM-1 siRNA: dissection of an off-target effect. Nucleic Acids Res 2007; 36:1081-97. [PMID: 18096615 PMCID: PMC2275081 DOI: 10.1093/nar/gkm630] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tumor necrosis factor (TNF) initiates local inflammation by triggering endothelial cells (EC) to express adhesion molecules for leukocytes such as intercellular adhesion molecule-1 (ICAM-1 or CD54). A prior study identified siRNA molecules that reduce ICAM-1 expression in cultured human umbilical vein EC (HUVEC). One of these, ISIS 121736, unexpectedly inhibits TNF-mediated up-regulation of additional molecules on EC, including E-selectin (CD62E), VCAM-1 (CD106) and HLA-A,B,C. 736 siRNA transfection was not toxic for EC nor was there any evidence of an interferon response. 736 Transfection of EC blocked multiple early TNF-related signaling events, including activation of NF-kappaB. IL-1 activation of these same pathways was not inhibited. A unifying explanation is that 736 siRNA specifically reduced expression of mRNA encoding tumor necrosis factor receptor 1 (TNFR1) as well as TNFR1 surface expression. A sequence with high identity to the 736 antisense strand (17 of 19 bases) is present within the 3'UTR of human TNFR1 mRNA. An EGFP construct incorporating the 3'UTR of TNFR1 was silenced by 736 siRNA and this effect was lost by mutagenesis of this complementary sequence. Chemical modification and mismatches within the sense strand of 736 also inhibited silencing activity. In summary, an siRNA molecule selected to target ICAM-1 through its antisense strand exhibited broad anti-TNF activities. We show that this off-target effect is mediated by siRNA knockdown of TNFR1 via its sense strand. This may be the first example in which the off-target effect of an siRNA is actually responsible for the anticipated effect by acting to reduce expression of a protein (TNFR1) that normally regulates expression of the intended target (ICAM-1).
Collapse
Affiliation(s)
- Paul R Clark
- Department of Dermatology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | |
Collapse
|
32
|
Bowers CW, Singer-Sam J. Unique retrotransposon LINE-1 distribution at the Prader-Willi Angelman syndrome locus. J Mol Evol 2007; 65:475-84. [PMID: 17932619 DOI: 10.1007/s00239-007-9043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/13/2007] [Accepted: 09/18/2007] [Indexed: 11/27/2022]
Abstract
We analyzed the distribution of long interspersed nuclear elements (LINE)-1 (L1) along mouse autosomes at a 1-Mb scale, and found a unique combination of high density and strand asymmetry of L1 elements at the imprinted Prader-Willi syndrome/Angelman syndrome (PWS/AS) locus on mouse chromosome 7. This L1 signature overlaps the paternally expressed domain of the locus, excluding the maternally expressed Ube3a gene, and is conserved in rat and human. Unlike the PWS/AS locus, other instances of high L1 density and strand asymmetry in the mouse are not associated with imprinted regions and are not evolutionarily conserved in human. The evolutionary conservation of the L1 signature at the PWS/AS locus despite differences in composition of L1 elements between rodent and human, requires a mechanism for active perpetuation of L1 asymmetry during bursts of L1 activity, and indicates a possible functional role for L1 elements at this locus. Aside from the PWS/AS locus, rodents have a far greater correlation of L1 densities between DNA strands than do humans; we provide evidence that this difference in interstrand correlation between the two taxa is due largely to the difference in average age of the dominant L1 families.
Collapse
Affiliation(s)
- Chauncey W Bowers
- Division of Neurosciences, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | |
Collapse
|
33
|
Kowalska A, Bozsaky E, Ramsauer T, Rieder D, Bindea G, Lörch T, Trajanoski Z, Ambros PF. A new platform linking chromosomal and sequence information. Chromosome Res 2007; 15:327-39. [PMID: 17406992 DOI: 10.1007/s10577-007-1129-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/24/2007] [Accepted: 01/24/2007] [Indexed: 10/23/2022]
Abstract
We have tested whether a direct correlation of sequence information and staining properties of chromosomes is possible and whether this combined information can be used to precisely map any position on the chromosome. Despite huge differences of compaction between the naked DNA and the DNA packed in chromosomes we found a striking correlation when visualizing the GGCC density on both levels. Software was developed that allows one to superimpose chromosomal fluorescence intensity profiles generated by chromolysin A3 (CMA3) staining with GGCC density extracted from the Ensembl database. Thus, any position along the chromosome can be defined in megabase pairs (Mb) besides the cytoband information, enabling direct alignment of chromosomal information with the sequence data. The mapping tool was validated using 13 different BAC clones, resulting in a mean difference from Ensembl data of 2 Mb (ranging from 0.79 to 3.57 Mb). Our results indicate that the sequence density information and information gained with sequence-specific fluorochromes are superimposable. Thus, the visualized GGCC motif density along the chromosome (sequence bands) provides a unique platform for comparing different types of genomic information.
Collapse
Affiliation(s)
- Agata Kowalska
- CCRI, Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, 1090, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Li W, Zhang J, Liu X, Xu R, Zhang Y. Correlation of appearance of metastasis-associated protein1 (Mta1) with spermatogenesis in developing mouse testis. Cell Tissue Res 2007; 329:351-62. [PMID: 17401724 DOI: 10.1007/s00441-007-0412-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Accepted: 03/05/2007] [Indexed: 12/20/2022]
Abstract
Mta1, a representative of the MTA gene family, is believed to be involved in the metastasis of malignant tumors. However, a systematic study of its physiological function has not been performed. It has been found in normal mouse organs at relatively low levels, except for in testis, suggesting a potential function in the male reproductive system. In order to explore the role of Mta1 protein during spermatogenesis, its expression in adult mouse testis was compared with that in developing mouse testis and in testis from adult mice treated with methoxyacetic acid, which selectively depletes primary spermatocytes. Quantitative analysis revealed that Mta1 protein gradually increased in the testis from 14 days postnatally. Immunolocalization analysis demonstrated strong signals in the seminiferous tubules, and Mta1 was predominantly present in the nucleus of primary spermatocytes and spermatogonia from 14 days postnatally. The most intensive staining was located in the nucleus of pachytene spermatocytes in mature testes. The expression pattern of Mta1 during spermatogenesis was also shown to be stage-specific by immunohistochemistry analysis. Finally, dramatic loss of Mta1 expression from pachytene spermatocytes was observed in the spermatogenic-arrested adult mouse testis. These results collectively demonstrate that Mta1 appears during postnatal testis development and suggest that this expression may be crucial for spermatogenesis.
Collapse
Affiliation(s)
- Wei Li
- Department of Histology and Embryology, The Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | | | | | | | | |
Collapse
|