1
|
Afsar A, Zhang L. Putative Molecular Mechanisms Underpinning the Inverse Roles of Mitochondrial Respiration and Heme Function in Lung Cancer and Alzheimer's Disease. BIOLOGY 2024; 13:185. [PMID: 38534454 DOI: 10.3390/biology13030185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
Mitochondria are the powerhouse of the cell. Mitochondria serve as the major source of oxidative stress. Impaired mitochondria produce less adenosine triphosphate (ATP) but generate more reactive oxygen species (ROS), which could be a major factor in the oxidative imbalance observed in Alzheimer's disease (AD). Well-balanced mitochondrial respiration is important for the proper functioning of cells and human health. Indeed, recent research has shown that elevated mitochondrial respiration underlies the development and therapy resistance of many types of cancer, whereas diminished mitochondrial respiration is linked to the pathogenesis of AD. Mitochondria govern several activities that are known to be changed in lung cancer, the largest cause of cancer-related mortality worldwide. Because of the significant dependence of lung cancer cells on mitochondrial respiration, numerous studies demonstrated that blocking mitochondrial activity is a potent strategy to treat lung cancer. Heme is a central factor in mitochondrial respiration/oxidative phosphorylation (OXPHOS), and its association with cancer is the subject of increased research in recent years. In neural cells, heme is a key component in mitochondrial respiration and the production of ATP. Here, we review the role of impaired heme metabolism in the etiology of AD. We discuss the numerous mitochondrial effects that may contribute to AD and cancer. In addition to emphasizing the significance of heme in the development of both AD and cancer, this review also identifies some possible biological connections between the development of the two diseases. This review explores shared biological mechanisms (Pin1, Wnt, and p53 signaling) in cancer and AD. In cancer, these mechanisms drive cell proliferation and tumorigenic functions, while in AD, they lead to cell death. Understanding these mechanisms may help advance treatments for both conditions. This review discusses precise information regarding common risk factors, such as aging, obesity, diabetes, and tobacco usage.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
2
|
Capuozzo M, Celotto V, Landi L, Ferrara F, Sabbatino F, Perri F, Cascella M, Granata V, Santorsola M, Ottaiano A. Beyond Body Size: Adiponectin as a Key Player in Obesity-Driven Cancers. Nutr Cancer 2023; 75:1848-1862. [PMID: 37873648 DOI: 10.1080/01635581.2023.2272343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 10/25/2023]
Abstract
Obesity, a complex and multifactorial disease influenced by genetic, environmental, and psychological factors, has reached epidemic proportions globally, posing a significant health challenge. In addition to its established association with cardiovascular disease and type II diabetes, obesity has been implicated as a risk factor for various cancers. However, the precise biological mechanisms linking obesity and cancer remain largely understood. Adipose tissue, an active endocrine organ, produces numerous hormones and bioactive molecules known as adipokines, which play a crucial role in metabolism, immune responses, and systemic inflammation. Notably, adiponectin (APN), the principal adipocyte secretory protein, exhibits reduced expression levels in obesity. In this scoping review, we explore and discuss the role of APN in influencing cancer in common malignancies, including lung, breast, colorectal, prostate, gastric, and endometrial cancers. Our review aims to emphasize the critical significance of investigating this field, as it holds great potential for the development of innovative treatment strategies that specifically target obesity-related malignancies. Furthermore, the implementation of more rigorous and comprehensive prevention and treatment policies for obesity is imperative in order to effectively mitigate the risk of associated diseases, such as cancer.
Collapse
Affiliation(s)
| | | | | | | | - Francesco Sabbatino
- Oncology Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Salerno, Italy
| | - Francesco Perri
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Marco Cascella
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | - Vincenza Granata
- Istituto Nazionale Tumori di Napoli, IRCCS "G. Pascale", Naples, Italy
| | | | | |
Collapse
|
3
|
Sun Y, Zhou L, Shan T, Ouyang Q, Li X, Fan Y, Li Y, Gong H, Alolga RN, Ma G, Ge Y, Zhang H. Variability of body mass index and risks of prostate, lung, colon, and ovarian cancers. Front Public Health 2022; 10:937877. [PMID: 36091512 PMCID: PMC9452651 DOI: 10.3389/fpubh.2022.937877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/25/2022] [Indexed: 01/25/2023] Open
Abstract
Objective We investigated the association between cancer incidence and body mass index (BMI) variability calculated from the recall of weight at decades of age by participants in the USA Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Methods A total of 89,822 individuals' BMI were recorded as recalled the participant's aged 30, 40, 50, 60, 70 years, and baseline. BMI variability was assessed using four indices: SD, coefficient of variation (CV), variability independent of the mean (VIM), and average real variability (ARV). The multivariate Cox regression analysis was performed to calculate hazard ratios (HRs) of these measures for incident cancers and corresponding 95% CIs. Results During the median follow-up of 11.8 years, there were newly diagnosed 5,012 cases of prostate cancer, 792 cases of lung cancer, 994 cases of colon cancer, and 132 cases of ovarian cancer. Compared with the lowest quartile (Q1) group, the highest quartile (Q4) group of BMI variability indices was associated with increased lung cancer risk, including BMI_SD (HR, 1.58; 95% CI, 1.17-2.12), BMI_CV (HR, 1.46; 95% CI, 1.10-1.94), BMI_VIM (HR, 1.73; 95% CI, 1.33-2.25), and BMI_ARV (HR, 2.17; 95% CI, 1.62-2.91). Associations between BMI variability and prostate, colon, and ovarian cancer incidences were of limited significance. Conclusion The findings imply that maintaining a stable weight across adulthood is associated with a decreased incidence of lung cancer.
Collapse
Affiliation(s)
- Yangyang Sun
- Department of Pharmacy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China,State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Lingling Zhou
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Shan
- Department of Anesthesiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiong Ouyang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China,Department of Pharmacy, JiangXi PingXiang People's Hospital, Pingxiang, China
| | - Xu Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Yuanming Fan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Ying Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Hang Gong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Raphael N. Alolga
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Gaoxiang Ma
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China,Clinical Metabolomics Center, China Pharmaceutical University, Nanjing, China
| | - Yuqiu Ge
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China,Yuqiu Ge
| | - Heng Zhang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Heng Zhang
| |
Collapse
|
4
|
Essa N, O'Connell F, Prina-Mello A, O'Sullivan J, Marcone S. Gold nanoparticles and obese adipose tissue microenvironment in cancer treatment. Cancer Lett 2022; 525:1-8. [PMID: 34662546 DOI: 10.1016/j.canlet.2021.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 02/07/2023]
Abstract
The epidemiological correlation between obesity and cancer is well characterized, but the biological mechanisms which regulate tumor development and response to therapy in obese cancer patients remain unclear. The tumor microenvironment plays an important role in protecting cancer cells by altering the delivery of anticancer therapy to the tumor tissue, reducing the efficacy of treatment. Obese tumor microenvironment provides additional benefits to the survival of tumor cells against anticancer therapies by altering the extracellular matrix composition, angiogenesis processes and the immune cells profile. Nanotechnology, and in particular gold nanoparticles, are being researched as a theranostic strategy for cancer treatment due to their ability to sensitize cancer cells to radiation and photodynamic therapy, enhance delivery of drugs to tumor cells, and in diagnostic applications. Adipose tissue and the obese tumor microenvironment may alter the activity of nanotherapeutics. In this article, we reviewed the current state of our understanding about the mechanisms by which the obese tumor microenvironment may alter the delivery and efficacy of anti-cancer treatments, and why the use of gold nanoparticles may represent an interesting strategy for cancer treatment in the obesity setting.
Collapse
Affiliation(s)
- Noor Essa
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland; Master in Science Degree in Translational Oncology, Trinity College Dublin, Dublin, Ireland
| | - Fiona O'Connell
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Adriele Prina-Mello
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM) and Nanomedicine Group, Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland.
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Simone Marcone
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
5
|
Nigro E, Daniele A, Salzillo A, Ragone A, Naviglio S, Sapio L. AdipoRon and Other Adiponectin Receptor Agonists as Potential Candidates in Cancer Treatments. Int J Mol Sci 2021; 22:5569. [PMID: 34070338 PMCID: PMC8197554 DOI: 10.3390/ijms22115569] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/20/2021] [Accepted: 05/23/2021] [Indexed: 12/18/2022] Open
Abstract
The high mortality rate together with an ever-growing number of annual cases have defined neoplastic disorders as "the real 21st-century disease". Its dubious distinction also results from conventional therapy failure, which has made cancer an orphan disease. Therefore, innovative and alternative therapeutic strategies are mandatory. The ability to leverage human naturally occurring anti-tumor defenses has always represented a fascinating perspective, and the immuno blockage approval in cancer treatment represents in timeline the latest success. As a multifunctional organ, adipose tissue releases a large amount of adipokines having both carcinogenic and antitumor properties. The negative correlation between serum levels and risk for developing malignancies, as well as the huge number of existing preclinical studies, have identified adiponectin as a potential anticancer adipokine. Nevertheless, its usage in clinical has constantly clashed with the inability to reproduce a mimic synthetic compound. Between 2011 and 2013, two distinct adiponectin receptor agonists were recognized, opening new scenarios even in cancer. Here, we review the first orally active adiponectin receptor agonists AdipoRon, from the discovery to the anticancer evidence. Including our latest findings in osteosarcoma models, we summarize AdipoRon and other existing agonists state-of-art, questioning about the feasibility assessment of this strategy in cancer treatment.
Collapse
Affiliation(s)
- Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (E.N.); (A.D.)
- CEINGE-Biotecnologie Avanzate Scarl, 80145 Napoli, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy; (E.N.); (A.D.)
- CEINGE-Biotecnologie Avanzate Scarl, 80145 Napoli, Italy
| | - Alessia Salzillo
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (A.S.); (A.R.); (L.S.)
| | - Angela Ragone
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (A.S.); (A.R.); (L.S.)
| | - Silvio Naviglio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (A.S.); (A.R.); (L.S.)
| | - Luigi Sapio
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania “Luigi Vanvitelli”, 80138 Napoli, Italy; (A.S.); (A.R.); (L.S.)
| |
Collapse
|
6
|
Álvarez-Artime A, García-Soler B, Sainz RM, Mayo JC. Emerging Roles for Browning of White Adipose Tissue in Prostate Cancer Malignant Behaviour. Int J Mol Sci 2021; 22:5560. [PMID: 34074045 PMCID: PMC8197327 DOI: 10.3390/ijms22115560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
In addition to its well-known role as an energy repository, adipose tissue is one of the largest endocrine organs in the organism due to its ability to synthesize and release different bioactive molecules. Two main types of adipose tissue have been described, namely white adipose tissue (WAT) with a classical energy storage function, and brown adipose tissue (BAT) with thermogenic activity. The prostate, an exocrine gland present in the reproductive system of most mammals, is surrounded by periprostatic adipose tissue (PPAT) that contributes to maintaining glandular homeostasis in conjunction with other cell types of the microenvironment. In pathological conditions such as the development and progression of prostate cancer, adipose tissue plays a key role through paracrine and endocrine signaling. In this context, the role of WAT has been thoroughly studied. However, the influence of BAT on prostate tumor development and progression is unclear and has received much less attention. This review tries to bring an update on the role of different factors released by WAT which may participate in the initiation, progression and metastasis, as well as to compile the available information on BAT to discuss and open a new field of knowledge about the possible protective role of BAT in prostate cancer.
Collapse
Affiliation(s)
- Alejandro Álvarez-Artime
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Belén García-Soler
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
| | - Rosa María Sainz
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| | - Juan Carlos Mayo
- Departamento de Morfología y Biología Celular, Redox Biology Unit, University of Oviedo, Facultad de Medicina, Julián Clavería 6, 33006 Oviedo, Spain; (A.Á.-A.); (B.G.-S.); (R.M.S.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Santiago Gascón Building, Fernando Bongera s/n, 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avda. Hospital Universitario s/n, 33011 Oviedo, Spain
| |
Collapse
|
7
|
Zhou W, Liu G, Hung RJ, Haycock PC, Aldrich MC, Andrew AS, Arnold SM, Bickeböller H, Bojesen SE, Brennan P, Brunnström H, Melander O, Caporaso NE, Landi MT, Chen C, Goodman GE, Christiani DC, Cox A, Field JK, Johansson M, Kiemeney LA, Lam S, Lazarus P, Marchand LL, Rennert G, Risch A, Schabath MB, Shete SS, Tardón A, Zienolddiny S, Shen H, Amos CI. Causal relationships between body mass index, smoking and lung cancer: Univariable and multivariable Mendelian randomization. Int J Cancer 2021; 148:1077-1086. [PMID: 32914876 PMCID: PMC7845289 DOI: 10.1002/ijc.33292] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022]
Abstract
At the time of cancer diagnosis, body mass index (BMI) is inversely correlated with lung cancer risk, which may reflect reverse causality and confounding due to smoking behavior. We used two-sample univariable and multivariable Mendelian randomization (MR) to estimate causal relationships of BMI and smoking behaviors on lung cancer and histological subtypes based on an aggregated genome-wide association studies (GWASs) analysis of lung cancer in 29 266 cases and 56 450 controls. We observed a positive causal effect for high BMI on occurrence of small-cell lung cancer (odds ratio (OR) = 1.60, 95% confidence interval (CI) = 1.24-2.06, P = 2.70 × 10-4 ). After adjustment of smoking behaviors using multivariable Mendelian randomization (MVMR), a direct causal effect on small cell lung cancer (ORMVMR = 1.28, 95% CI = 1.06-1.55, PMVMR = .011), and an inverse effect on lung adenocarcinoma (ORMVMR = 0.86, 95% CI = 0.77-0.96, PMVMR = .008) were observed. A weak increased risk of lung squamous cell carcinoma was observed for higher BMI in univariable Mendelian randomization (UVMR) analysis (ORUVMR = 1.19, 95% CI = 1.01-1.40, PUVMR = .036), but this effect disappeared after adjustment of smoking (ORMVMR = 1.02, 95% CI = 0.90-1.16, PMVMR = .746). These results highlight the histology-specific impact of BMI on lung carcinogenesis and imply mediator role of smoking behaviors in the association between BMI and lung cancer.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| | - Geoffrey Liu
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Rayjean J. Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Epidemiology Division, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Philip C. Haycock
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Bristol Medical School, Population Health Sciences, University of Bristol, Bristol, UK
| | - Melinda C. Aldrich
- Department of Thoracic Surgery and Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Angeline S. Andrew
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | | | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Stig E. Bojesen
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Paul Brennan
- Genetic Epidemology Group, International Agency for Research on Cancer, Lyon, France
| | | | | | - Neil E. Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - Chu Chen
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center and Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| | - Gary E. Goodman
- Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center and Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| | - David C. Christiani
- Departments of Environmental Health and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Angela Cox
- Academic Unit of Clinical Oncology, University of Sheffield, Sheffield, UK
| | - John K. Field
- Department of Molecular and Clinical Cancer Medicine, Roy Castle Lung Cancer Research Programme, The University of Liverpool Cancer Research Centre, Liverpool, UK
| | | | - Lambertus A. Kiemeney
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stephen Lam
- Department of Integrative Oncology, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Carmel Medical Center and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and Clalit National Cancer Control Center, Haifa, Israel
| | - Angela Risch
- Department of Biosciences, Allergy-Cancer-BioNano Research Centre, University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, University of Salzburg, Salzburg, Austria
- Division of Cancer Epigenomics, DKFZ – German Cancer Research Center, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Matthew B. Schabath
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Sanjay S. Shete
- Department of Biostatistics, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Adonina Tardón
- Faculty of Medicine, University of Oviedo and ISPA and CIBERESP, Oviedo, Spain
| | | | - Hongbing Shen
- Department of Epidemiology, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Christopher I. Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
8
|
Implications of the Adiponectin System in Non-Small Cell Lung Cancer Patients: A Case-Control Study. Biomolecules 2020; 10:biom10060926. [PMID: 32570854 PMCID: PMC7356727 DOI: 10.3390/biom10060926] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/05/2020] [Accepted: 06/16/2020] [Indexed: 02/07/2023] Open
Abstract
Alterations of adipose tissue occurring in obesity have been recognized as a major risk factor for several cancers. The relationship between adipose tissue and lung cancer, which is the main cancer-related cause of death worldwide, still requires investigation. Perturbations in the adipokine system are likely to interfere with inter-organ crosstalk in lung cancer, which may influence the lung tumor microenvironment. Adiponectin (Acrp30) expression is deregulated in several cancer types. Acrp30 circulates as oligomers with a Low (LMW), Medium (MMW), and High Molecular Weight (HMW), with the latter mediating the main biological effects. Acrp30 acts through AdipoR1 and AdipoR2 receptors. T-cadherin has been described as a non-signaling receptor. This study's aim was to investigate the regulation of serum Acrp30 and its receptors in sample tissue from non-small cell lung cancer (NSCLC) patients. We recruited 72 NSCLC patients and 60 healthy controls, whom we evaluated in terms of their Acpr30 levels and oligomeric profile. In addition, the expression of AdipoRs in tissues from lung cancer specimens was also measured and compared to coupled healthy lung samples. Our findings show a significant reduction of total Acrp30 levels in NSCLC patients compared to normal subjects, with a specific down-regulation of HMW oligomers. Acrp30 expression was lower in lung adenocarcinoma than other subtypes, regardless of other factors. A significantly higher expression of AdipoR1 was observed, while no differences in R2 and a lower expression of T-cadherin were found in lung cancer specimens compared to normal healthy lung tissues. Involvement of the Acrp30 system in lung cancer may provide new insight into the interaction between adipose tissue and lung and sheds light on its potential ability to influence the lung tumor microenvironment.
Collapse
|
9
|
Firouzabadi N, Haghnegahdar M, Khalvati B, Dehshahri A, Bahramali E. Overexpression of Adiponectin Receptors in Opium Users with and without Cancer. Clin Pharmacol 2020; 12:59-65. [PMID: 32607004 PMCID: PMC7304683 DOI: 10.2147/cpaa.s256289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/05/2020] [Indexed: 11/23/2022] Open
Abstract
Aim Opium addiction is a serious public health concern in the Middle East countries causing various illnesses. Opium use is associated with an increased risk of several cancers; however, the underlying mechanisms are not yet fully elucidated. Altered levels of adiponectin and its related main receptors, Adiponectin receptor 1 and 2 (AdipoR1 and AdipoR2) have been associated with several malignancies. Opium users are at risk of various cancers. All together let us to the hypothesis that probable overexpression of AdipoRs in opium users might be linked to the occurrence of cancer in this population. Methods One hundred opium users along with 100 healthy non-opium users were enrolled in the study. Opium users were followed up for 5 years (2014–2019) to evaluate the occurrence of malignancies. AdipoR1 and AdipoR2 expressions were measured using a flow cytometry method. Results Expression of AdipoR1 and AdipoR2 was significantly higher in opium users compared with the healthy control group (P=0.0001 and 0.0001, respectively). Eight opium users developed cancer during the follow-up period. Subjects abusing opium developed cancer by 8.6 folds comparing to non-opium users (P=0.034; OR=8.6; 95% CI (1.06–70.1)). Expression of these two receptors was significantly higher in opium users developing cancer compared with cancer-free opium (P=0.001). Conclusion Considering the significant overexpression of AdipoR1 and AdipoR2 in opium users and in opium users who developed malignancies and the association between upregulation of these receptors in most cancers affecting opium users and assessment of AdipoRs may serve as an early detection tool of cancer in this population.
Collapse
Affiliation(s)
- Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Non-Communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Maral Haghnegahdar
- Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bahman Khalvati
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Bahramali
- Digestive Disease Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Jin X, Xu L, Guan Y, Zhang Z, Li H. Bioinformatics Analysis of Microarray Datasets to Identify Prognostic Factors in Lung Adenocarcinoma. DNA Cell Biol 2020; 39:965-974. [PMID: 32330391 DOI: 10.1089/dna.2019.5203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Most patients with lung adenocarcinoma (LUAD) present high recurrence rate and poor prognosis after therapy. Therefore, the purpose of this study was to identify prognostic factors involved in LUAD. Five microarray datasets (including GSE75037, GSE63459, GSE43458, GSE32863, and GSE10072) were downloaded. After data preprocessing and quality control, meta-analysis was performed to screen differentially expressed genes (DEGs) using the MetaDE.ES method in MetaDE package. Subsequently, network construction and module identification were conducted by the Weighted Gene Co-expression Network Analysis method. Moreover, survival-associated genes were identified using the univariate and multivariate Cox regression method in survival package. The risk score model was constructed by prognosis associated genes, followed by the Kaplan-Meier survival analysis. Oncomine expressions analysis of several prognosis associated genes was conducted. The expression levels of key genes were detected using quantitative real-time PCR experiments. A total of 1434 DEGs between LUAD and normal samples were identified. Nine disease-associated modules were identified, in which M8 module was most correlated with LAUD phenotype. A total of 89 indicators (including T stage, M stage, and ADIPOR2) were significantly associated with LAUD prognosis, while only T stage and 9 DEGs (e.g., ARHGEF3, GTSE1, RBM15 and CD52) were retained as the potential prognostic factors following multivariate COX regression analysis. The upregulated adiponectin receptor 2 (ADIPOR2), rho guanine nucleotide exchange factor 3 (ARHGEF3), and CD52 molecule (CD52), and downregulated GTSE1 were validated in LAUD samples of Oncomine database. Importantly, ADIPOR2 and ARHGEF3 were confirmed to be down-regulated in LUAD tissues. ADIPOR2, ARHGEF3, G2 and S-phase expressed 1 (GTSE1) and CD52 might be promising prognostic factors in LUAD.
Collapse
Affiliation(s)
- Xiang Jin
- Department of Respiration, The First Hospital of Jilin University, Changchun, China
| | - Lijun Xu
- Department of Respiration, The First Hospital of Jilin University, Changchun, China
| | - Yinghui Guan
- Department of Respiration, The First Hospital of Jilin University, Changchun, China
| | - Zhen Zhang
- PICU, The First Hospital of Jilin University, Changchun, China
| | - Hongyu Li
- Department of Respiration, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Di Zazzo E, Polito R, Bartollino S, Nigro E, Porcile C, Bianco A, Daniele A, Moncharmont B. Adiponectin as Link Factor between Adipose Tissue and Cancer. Int J Mol Sci 2019; 20:ijms20040839. [PMID: 30781341 PMCID: PMC6412253 DOI: 10.3390/ijms20040839] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue is a key regulator of energy balance playing an active role in lipid storage as well as in synthesizing several hormones directly involved in the pathogenesis of obesity. Obesity represents a peculiar risk factor for a growing list of cancers and is frequently associated to poor clinical outcome. The mechanism linking obesity and cancer is not completely understood, but, amongst the major players, there are both chronic low-grade inflammation and deregulation of adipokines secretion. In obesity, the adipose tissue is pervaded by an abnormal number of immune cells that create an inflammatory environment supporting tumor cell proliferation and invasion. Adiponectin (APN), the most abundant adipokine, shows anti-inflammatory, anti-proliferative and pro-apoptotic properties. Circulating levels of APN are drastically decreased in obesity, suggesting that APN may represent the link factor between obesity and cancer risk. The present review describes the recent advances on the involvement of APN and its receptors in the etiology of different types of cancer.
Collapse
Affiliation(s)
- Erika Di Zazzo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso 86100, Italy.
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples 80131, Italy.
| | - Rita Polito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Caserta 81100, Italy.
- CEINGE-Biotecnologie Avanzate Scarl, Napoli 80145, Italy.
| | - Silvia Bartollino
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso 86100, Italy.
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Caserta 81100, Italy.
- Dipartimento di Scienze Cardio-Toraciche e Respiratorie, Università degli Studi della Campania "Luigi Vanvitelli", Napoli 80131, Italy.
| | - Carola Porcile
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso 86100, Italy.
| | - Andrea Bianco
- Dipartimento di Scienze Cardio-Toraciche e Respiratorie, Università degli Studi della Campania "Luigi Vanvitelli", Napoli 80131, Italy.
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Caserta 81100, Italy.
- CEINGE-Biotecnologie Avanzate Scarl, Napoli 80145, Italy.
| | - Bruno Moncharmont
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso 86100, Italy.
| |
Collapse
|
12
|
Nigro E, Stiuso P, Matera MG, Monaco ML, Caraglia M, Maniscalco M, Perrotta F, Mazzarella G, Daniele A, Bianco A. The anti-proliferative effects of adiponectin on human lung adenocarcinoma A549 cells and oxidative stress involvement. Pulm Pharmacol Ther 2019; 55:25-30. [PMID: 30654148 DOI: 10.1016/j.pupt.2019.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/14/2019] [Indexed: 01/19/2023]
Abstract
Adiponectin (Acrp30) plays an important role in energy metabolism and inflammation. Recently, in vivo serum Acrp30 levels have been reported to be correlated to risk of developing several types of cancers such as lung cancer, and in vitro studies have demonstrated a role for Acrp30 in the control of cell proliferation and survival. However, the molecular effects of Acrp30 on lung cancer have not yet been clearly defined. In the present study, we investigated the effects of different concentrations of Acrp30 on the A549 human alveolar epithelial cell line, an in vitro model of lung adenocarcinoma. A549 cells were exposed to various concentrations of Acrp30 and successively, proliferation, apoptosis and oxidative stress were evaluated by MTT test, caspase activity assay, flow-cytometry and western blotting analysis. Our results demonstrated that Acrp30 causes, in a time- and dose-dependent manner, a reduction of cell viability and duplication together with an increase in cell apoptosis rate. In addition, we found that Acrp30 induces an increase of lipid peroxidation evaluated by TBARS assay and a concomitant reduction of nitric oxide release, both markers of cellular oxidative stress. Taken together, our data on A549 cells provides new insight into potential involvement of Acrp30 on physio-pathologic mechanisms of lung diseases through interference with proliferation, apoptosis and oxidative status.
Collapse
Affiliation(s)
- E Nigro
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy; CEINGE-Advanced Biotechnologies, Scarl, Napoli, Italy
| | - P Stiuso
- Department of Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - M G Matera
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - M L Monaco
- CEINGE-Advanced Biotechnologies, Scarl, Napoli, Italy
| | - M Caraglia
- Pulmonary Rehabilitation Unit, ICS Maugeri SpA SB, Institute of Telese Terme, Benevento, Italy
| | - M Maniscalco
- Department of Medicine and Health Sciences "V Tiberio", University of Molise, Campobasso, Italy
| | - F Perrotta
- Department of Medicine and Health Sciences "V Tiberio", University of Molise, Campobasso, Italy
| | - G Mazzarella
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - A Daniele
- CEINGE-Advanced Biotechnologies, Scarl, Napoli, Italy; Department of Environmental, Biological, Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| | - A Bianco
- Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| |
Collapse
|
13
|
Sotiropoulos GP, Dalamaga M, Antonakos G, Marinou I, Vogiatzakis E, Kotopouli M, Karampela I, Christodoulatos GS, Lekka A, Papavassiliou AG. Chemerin as a biomarker at the intersection of inflammation, chemotaxis, coagulation, fibrinolysis and metabolism in resectable non-small cell lung cancer. Lung Cancer 2018; 125:291-299. [PMID: 30429035 DOI: 10.1016/j.lungcan.2018.10.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Chemerin is an emerging adipocytokine at the intersection of inflammation, chemotaxis, thrombosis, fibrinolysis and metabolism. Our aims were 1) to explore circulating chemerin in resectable non-small cell lung cancer (NSCLC) taking into account its several interfaces; 2) to study its diagnostic potential; and 3) to assess its associations with clinicopathological features of NSCLC. MATERIALS AND METHODS In a large case-control study, serum chemerin, insulin resistance and lipid parameters, classic adipocytokines, inflammatory, coagulation, fibrinolysis and tumor biomarkers were determined in 110 consecutive patients with resectable NSCLC and 110 healthy controls matched on age (± 5 years), gender and date of blood draw (± 1 month). RESULTS NSCLC cases exhibited significantly elevated circulating chemerin compared to controls (p < 0.001). In NSCLC cases, chemerin was positively associated with Homeostasis model assessment score of insulin resistance (HOMA-IR), fibrinogen, plasminogen activity, tumor and inflammatory biomarkers, adiponectin, number of infiltrated lymph nodes and NSCLC stage. In control participants, circulating chemerin was positively correlated with somatometric, metabolic, lipid, hemostatic and inflammatory biomarkers, and leptin. Serum chemerin was independently associated with NSCLC, above and beyond NSCLC risk factors (OR: 2.20, 95% CI: 1.09-4.40, p = 0.03). In cases, hemostatic parameters (platelet count and plasminogen activity), HOMA-IR, CYFRA 21-1, creatinine and plant food consumption emerged as independent predictors of circulating chemerin (p < 0.05). Serum chemerin greater than 220 μg/L (cut-off point) yielded a sensitivity and a specificity of 63% and 91.8% respectively with a modest discriminative ability (AUC = 0.72, 95% C.I. 0.64-0.79) for the diagnosis of NSCLC. CONCLUSION Chemerin may represent a potentially useful biomarker in NSCLC integrating tumor-promoting networks, inflammatory and hemostatic mechanisms, and cancer-related metabolic pathways. More preclinical, prospective and longitudinal studies highlighting the pathogenetic role of chemerin in NSCLC are needed to corroborate and extend these data.
Collapse
Affiliation(s)
- George P Sotiropoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias street, 11527 Athens, Greece; Department of Thoracic Surgery, 'Sotiria' General Hospital, 152 Mesogeion Avenue, 11527 Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias street, 11527 Athens, Greece.
| | - Georgios Antonakos
- Laboratory of Clinical Biochemistry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini street, Chaidari, 12462 Athens, Greece
| | - Ioanna Marinou
- Laboratory of Microbiology, 'Sotiria'General Hospital, 152 Mesogeion Avenue, 11527 Athens, Greece
| | - Evaggelos Vogiatzakis
- Laboratory of Microbiology, 'Sotiria'General Hospital, 152 Mesogeion Avenue, 11527 Athens, Greece
| | - Marianna Kotopouli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias street, 11527 Athens, Greece
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 1 Rimini street, Chaidari, 12462 Athens, Greece
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias street, 11527 Athens, Greece
| | - Antigoni Lekka
- Department of Laboratory Hematology, NIMTS General Hospital, Monis Petraki 10-12, 11521 Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias street, 11527 Athens, Greece
| |
Collapse
|
14
|
Tzanavari T, Tasoulas J, Vakaki C, Mihailidou C, Tsourouflis G, Theocharis S. The Role of Adipokines in the Establishment and Progression of Head and Neck Neoplasms. Curr Med Chem 2018; 26:4726-4748. [PMID: 30009699 DOI: 10.2174/0929867325666180713154505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 03/13/2018] [Accepted: 07/06/2018] [Indexed: 12/15/2022]
Abstract
Adipokines constitute a family of protein factors secreted by white adipose tissue (WAT), that regulate the functions of WAT and other sites. Leptin, adiponectin and resistin, are the main adipokines present in serum and saliva, targeting several tissues and organs, including vessels, muscles, liver and pancreas. Besides body mass regulation, adipokines affect glucose homeostasis, inflammation, angiogenesis, cell proliferation and apoptosis, and other crucial cell procedures. Their involvement in tumor formation and growth is well established and deregulation of adipokine and adipokine receptors' expression is observed in several malignancies including those located in the head and neck region. Intracellular effects of adipokines are mediated by a plethora of receptors that activate several signaling cascades including Janus kinase/ Signal transducer and activator of transcription (JAK/ STAT pathway), Phospatidylinositol kinase (PI3/ Akt/ mTOR) and Peroxisome proliferator-activated receptor (PPAR). The present review summarizes the current knowledge on the role of adipokines family members in carcinogenesis of the head and neck region. The diagnostic and prognostic significance of adipokines and their potential role as serum and saliva biomarkers are also discussed.
Collapse
Affiliation(s)
- Theodora Tzanavari
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Jason Tasoulas
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Chrysoula Vakaki
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Chrysovalantou Mihailidou
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| | - Gerasimos Tsourouflis
- Second Department of Propaedeutic Surgery, Medical School, National and Kapodistrian, University of Athens, Athens, 11527, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece
| |
Collapse
|
15
|
Bossé Y, Amos CI. A Decade of GWAS Results in Lung Cancer. Cancer Epidemiol Biomarkers Prev 2018; 27:363-379. [PMID: 28615365 PMCID: PMC6464125 DOI: 10.1158/1055-9965.epi-16-0794] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/06/2016] [Accepted: 04/20/2017] [Indexed: 01/03/2023] Open
Abstract
Genome-wide association studies (GWAS) were successful to identify genetic factors robustly associated with lung cancer. This review aims to synthesize the literature in this field and accelerate the translation of GWAS discoveries into results that are closer to clinical applications. A chronologic presentation of published GWAS on lung cancer susceptibility, survival, and response to treatment is presented. The most important results are tabulated to provide a concise overview in one read. GWAS have reported 45 lung cancer susceptibility loci with varying strength of evidence and highlighted suspected causal genes at each locus. Some genetic risk loci have been refined to more homogeneous subgroups of lung cancer patients in terms of histologic subtypes, smoking status, gender, and ethnicity. Overall, these discoveries are an important step for future development of new therapeutic targets and biomarkers to personalize and improve the quality of care for patients. GWAS results are on the edge of offering new tools for targeted screening in high-risk individuals, but more research is needed if GWAS are to pay off the investment. Complementary genomic datasets and functional studies are needed to refine the underlying molecular mechanisms of lung cancer preliminarily revealed by GWAS and reach results that are medically actionable. Cancer Epidemiol Biomarkers Prev; 27(4); 363-79. ©2018 AACRSee all articles in this CEBP Focus section, "Genome-Wide Association Studies in Cancer."
Collapse
Affiliation(s)
- Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec, Canada.
- Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Christopher I Amos
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
16
|
Wei T, Ye P, Peng X, Wu LL, Yu GY. Circulating adiponectin levels in various malignancies: an updated meta-analysis of 107 studies. Oncotarget 2018; 7:48671-48691. [PMID: 27119501 PMCID: PMC5217047 DOI: 10.18632/oncotarget.8932] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/16/2016] [Indexed: 01/11/2023] Open
Abstract
Early detection of cancers is challenging for lack of specific biomarkers. Adiponectin is an adipokine predominantly derived from adipocytes and hypoadiponectinemia has been reported to associate with risk of many types of cancers. However, available evidence is controversial. Some studies show that increased adiponectin levels correlate with cancer risk. Therefore, we performed a meta-analysis of the association between circulating adiponectin levels and cancer development. A systematic search of PubMed, EMBASE, Wiley Online Library and Cochrane Library was conducted for eligible studies involving circulating adiponectin and malignancies from inception to August 8, 2015. Standard mean differences (SMDs) with 95% confidence intervals (95% CIs) were calculated by use of a random-effect model. Funnel plot and Egger's linear regression test were conducted to examine the risk of publication bias. 107 studies were included with 19,319 cases and 25,675 controls. The pooled analysis indicated that circulating adiponectin levels were lower in patients with various cancers than in controls, with a pooled SMD of −0.334 μg/ml (95% CI, −0.465 to −0.203, P = 0.000). No evidence of publication bias was observed. Circulating high molecular weight adiponectin levels were also lower in cancer patients than in controls, with a pooled SMD of −0.502 μg/ml (95% CI, −0.957 to −0.047, P = 0.000). This meta-analysis provides further evidence that decreased adiponectin levels is associated with risk of various cancers. Hypoadiponectinemia may represent a useful biomarker for early detection of cancers.
Collapse
Affiliation(s)
- Tai Wei
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Peng Ye
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Li-Ling Wu
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, and Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Guang-Yan Yu
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
17
|
Li Y, Li C, Ma Q, Zhang Y, Yao Y, Liu S, Zhang X, Hong C, Tan F, Shi L, Yao Y. Genetic variation in CDH13 gene was associated with non-small cell lung cancer (NSCLC): A population-based case-control study. Oncotarget 2017; 9:881-891. [PMID: 29416663 PMCID: PMC5787520 DOI: 10.18632/oncotarget.22971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 11/15/2017] [Indexed: 12/27/2022] Open
Abstract
Cadherin 13 (CDH13, T-cadherin, H-cadherin) has been identified as an anti-oncogene in various cancers. Recent studies have reported that downregulation of H-cadherin in cancers is associated with CDH13 promoter hypermethylation, which could be affected by the single nucleotide polymorphisms (SNPs) near CpG sites in the CDH13 promoter. In the current study, we investigated and analyzed the association of seven SNPs (rs11646213, rs12596316, rs3865188, rs12444338, rs4783244, rs12051272 and rs7195409) with non-small cell lung cancer (NSCLC) using logistic regression analysis. SNPs rs11646213, rs12596316, rs3865188 and rs12444338 are located in the promoter region, rs4783244 and rs12051272 are located in intron 1, and rs7195409 is located in intron 7. A total of 454 patients with NSCLC were placed into a NSCLC group and 444 healthy controls were placed into a control group, all participants were recruited to genotype the SNPs using Taqman assay. Our results showed that the allelic frequencies of rs11646213 were significantly different between NSCLC and control groups (P = 0.006). In addition, the association analysis of these SNPs stratified into NSCLC pathologic stages I+II and III+IV showed that the allelic frequencies rs7195409 had a significant difference between NSCLC pathologic stages I+II and III+IV (P = 0.006). Our results indicated that the rs11646213 and rs7195409 in CDH13 could be associated with NSCLC or its pathologic stages in the Chinese Han population.
Collapse
Affiliation(s)
- Yingfu Li
- Department of Geriatrics, The No.1 Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Qianli Ma
- Department of Thoracic Surgery, The No.3 Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Yu Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Yueting Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Xinwen Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Chao Hong
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Fang Tan
- Department of Geriatrics, The No.1 Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, 650118, China
| |
Collapse
|
18
|
Wang X, Liu W, Xie X. Energy imbalance and cancer: Cause or consequence? IUBMB Life 2017; 69:776-784. [PMID: 28858429 DOI: 10.1002/iub.1674] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Abstract
Obesity has been an epidemic worldwide over the past decades and significantly increases the risk of developing a variety of deadly diseases including type 2 diabetes, cardiovascular diseases and many cancers. The relationship between obesity and type 2 diabetes and cardiovascular disease has been well documented. The drastically increased frequency of a number of cancers in obesity has attracted growing interest. On one hand, how increased adiposity promotes cancer development remains poorly understood, despite the fact that considerable epidemiological evidence has suggested links between them. On the other hand, however, numerous studies have shown that tumorigenesis leads to substantial weight loss in a large portion of cancer patients. Here, we summarize the recent advances on our understanding of the link between obesity and cancer development with a focus on the molecular mechanisms accounting for the rising cancer incidence in the context of obesity. In addition, we also discuss how cancer-associated anorexia and cachexia causes weight loss. © 2017 IUBMB Life, 69(10):776-784, 2017.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Wei Liu
- Department of Neurology, Beijing Haidian Hospital, Beijing 100080, China
| | - Xiangyang Xie
- Department of Neuroscience, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| |
Collapse
|
19
|
Illiano M, Nigro E, Sapio L, Caiafa I, Spina A, Scudiero O, Bianco A, Esposito S, Mazzeo F, Pedone PV, Daniele A, Naviglio S. Adiponectin down-regulates CREB and inhibits proliferation of A549 lung cancer cells. Pulm Pharmacol Ther 2017; 45:114-120. [PMID: 28506662 DOI: 10.1016/j.pupt.2017.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Adipokines are known to play a relevant role in a number of cancer related molecular pathways. Adiponectin is a major adipokine with anti-inflammatory and beneficial metabolic actions. Furthermore, it has been shown to exert anti-carcinogenic effects in various tumor models and some clinical studies suggested an inverse relationship between circulating levels of adiponectin and an increased risk for development of malignancies. On the other hand, the cyclic AMP response element binding (CREB) transcription factor has been clearly linked to lung cancer. METHODS we analyzed cell proliferation, cell cycle of A549 cells treated with adiponectin as well as CREB activation status in human lung adenocarcinoma A549 cells and in non-small cell lung cancer (NSCLC) samples. RESULTS adiponectin treatment, at concentrations ranging between 5 and 50 μg/ml mimicking human serum levels, has a significant effect on reducing tumor cell proliferation of A549 cells, mainly by altering cell cycle progression. Importantly, we provide evidence that adiponectin clearly inhibits in a dose- and time-dependent manner CREB phosphorylation (activation) and, at least in part, also the level of CREB protein itself, preceding and accompanying the anti-proliferative effects in response to adiponectin. Moreover, in agreement with previous studies demonstrating that CREB over-expression occurs in many tumors, we also show by western-blotting from lung specimen that CREB is significantly up-regulated in NSCLC samples compared to adjacent normal tissues from six patients. CONCLUSIONS Overall, our results represent the first evidence of CREB inhibition by adiponectin and may provide new insight into therapeutic strategies for lung cancer.
Collapse
Affiliation(s)
- Michela Illiano
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Medical School, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, University of Campania "Luigi Vanvitelli", Via G. Vivaldi 42, 81100 Caserta, Italy; CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Luigi Sapio
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Medical School, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Ilaria Caiafa
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Medical School, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Annamaria Spina
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Medical School, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Olga Scudiero
- CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145 Napoli, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via S. Pansini 5, 80131 Napoli, Italy
| | - Andrea Bianco
- Dipartimento di Scienze Cardio-Toraciche e Respiratorie, University of Campania "Luigi Vanvitelli", Via L. Bianchi, 80131, Napoli, Italy
| | - Sabrina Esposito
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, University of Campania "Luigi Vanvitelli", Via G. Vivaldi 42, 81100 Caserta, Italy
| | - Filomena Mazzeo
- Dipartimento di Scienze e Tecnologie, Università di Napoli Partenope, Napoli, Italy
| | - Paolo Vincenzo Pedone
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, University of Campania "Luigi Vanvitelli", Via G. Vivaldi 42, 81100 Caserta, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, University of Campania "Luigi Vanvitelli", Via G. Vivaldi 42, 81100 Caserta, Italy; CEINGE-Biotecnologie Avanzate Scarl, Via G. Salvatore 486, 80145 Napoli, Italy.
| | - Silvio Naviglio
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Medical School, Via L. De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
20
|
|
21
|
Abstract
Adiponectin (APN), an adipokine produced by adipocytes, has been shown to have a critical role in the pathogenesis of obesity-associated malignancies. Through its receptor interactions, APN may exert its anti-carcinogenic effects including regulating cell survival, apoptosis and metastasis via a plethora of signalling pathways. Despite the strong evidence supporting this notion, some work may indicate otherwise. Our review addresses all controversies critically. On the whole, hypoadiponectinaemia is associated with increased risk of several malignancies and poor prognosis. In addition, various genetic polymorphisms may predispose individuals to increased risk of obesity-associated malignancies. We also provide an updated summary on therapeutic interventions to increase APN levels that are of key interest in this field. To date efforts to manipulate APN levels have been promising, but much work remains to be done.
Collapse
Affiliation(s)
- Arnav Katira
- UCL Medical School, UCL Faculty of Medical Science, University College London, London WC1E 6BT, UK
| | - Peng H Tan
- UCL Medical School, UCL Faculty of Medical Science, University College London, London WC1E 6BT, UK; Breast Unit, Whittington Health, London N19 5NF, UK
| |
Collapse
|
22
|
Tsai JR, Liu PL, Chen YH, Chou SH, Cheng YJ, Hwang JJ, Chong IW. Curcumin Inhibits Non-Small Cell Lung Cancer Cells Metastasis through the Adiponectin/NF-κb/MMPs Signaling Pathway. PLoS One 2015; 10:e0144462. [PMID: 26656720 PMCID: PMC4675518 DOI: 10.1371/journal.pone.0144462] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/18/2015] [Indexed: 01/06/2023] Open
Abstract
Adipose tissue is now considered as an endocrine organ involved in metabolic and inflammatory reactions. Adiponectin, a 244-amino acid peptide hormone, is associated with insulin resistance and carcinogenesis. Curcumin (diferuloylmethane) is the principal curcuminoid of the popular Indian spice, turmeric. Curcumin possesses antitumor effects, including the inhibition of neovascularization and regulation of cell cycle and apoptosis. However, the effects of adiponectin and curcumin on non-small cell lung cancer (NSCLC) remain unclear. In this study, we evaluated the expression of adiponectin in paired tumors and normal lung tissues from 77 patients with NSCLC using real-time polymerase chain reaction, western blotting, and immunohistochemistry. Kaplan-Meier survival analysis showed that patients with low adiponectin expression ratio (<1) had significantly longer survival time than those with high expression ratio (>1) (p = 0.015). Curcumin inhibited the migratory and invasive ability of A549 cells via the inhibition of adiponectin expression by blocking the adiponectin receptor 1. Curcumin treatment also inhibited the in vivo tumor growth of A549 cells and adiponectin expression. These results suggest that adiponectin can be a prognostic indicator of NSCLC. The effect of curcumin in decreasing the migratory and invasive ability of A549 cells by inhibiting adiponectin expression is probably mediated through NF-κB/MMP pathways. Curcumin could be an important potential adjuvant therapeutic agent for lung cancer in the future.
Collapse
Affiliation(s)
- Jong-Rung Tsai
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Shah-Hwa Chou
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Division of Chest Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Jen Cheng
- Department of Health Management, Division of Thoracic Surgery, Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Jhi-Jhu Hwang
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Inn-Wen Chong
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
23
|
Boura P, Loukides S, Grapsa D, Achimastos A, Syrigos K. The diverse roles of adiponectin in non-small-cell lung cancer: current data and future perspectives. Future Oncol 2015; 11:2193-203. [DOI: 10.2217/fon.15.96] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, there is growing research interest for the biological role of adipose tissue-derived bioactive factors, mainly including adipokines, in various forms of cancer. Adiponectin (APN) is the most abundant circulating adipokine, and a key mediator of several cancer-related processes, such as cell proliferation, apoptosis, regulation of tumor cell invasion and angiogenesis. In this review we summarize and critically discuss the published literature on the diverse roles of APN in non-small-cell lung cancer, including its implication in lung cancer development, its use as a diagnostic and prognostic biomarker, and its correlation with cancer-related cachexia. The main challenges and future perspectives, mainly with regard to the potential development of APN-targeted therapeutic agents in cancer therapeutics, are also briefly presented and discussed.
Collapse
Affiliation(s)
- Paraskevi Boura
- Oncology Unit GPP, ‘Sotiria’ General Hospital, Athens School of Medicine, Mesogion 152, 11527, Athens, Greece
| | - Stylianos Loukides
- Oncology Unit GPP, ‘Sotiria’ General Hospital, Athens School of Medicine, Mesogion 152, 11527, Athens, Greece
| | - Dimitra Grapsa
- Oncology Unit GPP, ‘Sotiria’ General Hospital, Athens School of Medicine, Mesogion 152, 11527, Athens, Greece
| | - Apostolos Achimastos
- Oncology Unit GPP, ‘Sotiria’ General Hospital, Athens School of Medicine, Mesogion 152, 11527, Athens, Greece
| | - Konstantinos Syrigos
- Oncology Unit GPP, ‘Sotiria’ General Hospital, Athens School of Medicine, Mesogion 152, 11527, Athens, Greece
| |
Collapse
|
24
|
Single Nucleotide Polymorphisms in VTI1A Gene Contribute to the Susceptibility of Chinese Population to Non-Small Cell Lung cancer. Int J Biol Markers 2015; 30:e286-93. [PMID: 25744365 DOI: 10.5301/jbm.5000140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2015] [Indexed: 11/20/2022]
Abstract
Background Genome-wide association studies (GWAS) have determined a new single nucleotide polymorphism (SNP) called VTI1A (rs7086803) that induces lung cancer susceptibility in nonsmoking women in Asia. This study aimed to evaluate the association between the VTI1A gene and the susceptibility of Chinese patients to lung cancer; it was also conducted to investigate the relationship between VTI1A SNP and adiponectin receptor 1 expression. Methods A total of 887 subjects were enrolled in this study. VTI1A (rs7086803) genotypes were determined by genotyping. Overall survival (OS) was evaluated using Kaplan-Meier analysis with a log-rank test. Results Multivariate regression analysis results indicated that the AA genotype of VTI1A (rs7086803) polymorphism was associated with an increased risk of developing non-small cell lung carcinoma (NSCLC) compared with the GG genotype (AA vs. GG: odds ratio [OR] = 2.020; 95% confidence interval [95% CI], 1.033-3.949, p = 0.037). The AA genotype of VTI1A (rs7086803) in smokers predicted significantly shorter OS (median survival time [MST]: AA 9.8 months, AG 19.3 months, GG 12.2 months, p = 0.017). Adiponectin receptor 1 expression in tumor tissues with the AA genotype was significantly lower than that for other genotypes (mean rank: AA 18.55, AG 25, GG 45.76, p = 0.001). Conclusions The presence of the allele A of VTI1A (rs7086803) may be the allele contributing to the risk of lung cancer susceptibility in Chinese population. Smoking lung cancer patients with the AA genotype of VTI1A gene (rs7086803) had a poor survival rate. Adiponectin receptor 1 expression may be correlated with the susceptibility of the allele A of VTI1A.
Collapse
|
25
|
Li Y, Yao Y, Qian X, Shi L, Zhou J, Ma Q, Yao Y. The association of adiponectin gene promoter variations with non-small cell lung cancer in a Han Chinese population. PLoS One 2015; 10:e0127751. [PMID: 26018909 PMCID: PMC4446305 DOI: 10.1371/journal.pone.0127751] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/20/2015] [Indexed: 11/18/2022] Open
Abstract
Recently, in vitro studies have demonstrated that adiponectin has antiangiogenic and tumor growth-limiting properties. Additionally, serum adiponectin levels have been associated with the risk of several cancers; specifically, serum adiponectin was significantly lower in lung cancer patients with advanced-stage disease. In this study, we examined the association of adiponectin gene promoter variations associated with adiponectin gene expression and plasma levels in non-small cell lung cancer (NSCLC) in a Han Chinese population. A total of 319 patients with NSCLC and 489 healthy individuals were recruited to evaluate the association of four adiponectin gene promoter single-nucleotide polymorphisms (SNPs) (SNP-12140G>A, SNP-11426A>G, SNP-11391G>A and SNP-11377C>G) with NSCLS risk. Additionally, we constructed haplotypes of these four SNPs and evaluated the association of these haplotypes with NSCLS risk. Our results showed that among these four SNPs, only SNP-12140G>A was associated with NSCLC risk (P<0.05). The haplotype analysis showed that no haplotype was associated with NSCLC after performing a Bonferroni correction (P>0.05). Additionally, an association analysis of the four SNPs stratified into pathologic stages I+II and III+IV showed that these SNPs did not exhibit significant differences between pathologic stages I+II and III+IV. Moreover, we did not observe any differences in allele and genotype frequency for these SNPs between adenocarcinoma and squamous cell carcinoma. Our results indicated that the G allele of SNP-12140 may be a risk factor for NSCLC (OR = 1.516; 95% CI: 1.098-2.094) in this Han Chinese population.
Collapse
Affiliation(s)
- Yingfu Li
- Department of Geriatrics, The No.1 Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yueting Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, 650118, China
| | - Xu Qian
- Department of Cardiothoracic Surgery, Yan`an Hospital of Kunming, Kunming, 650051, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, 650118, China
| | - Jingxian Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, 650118, China
| | - Qianli Ma
- Department of Thoracic Surgery, The No.3 Affiliated Hospital of Kunming Medical University, Kunming, 650118, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, 650118, China
| |
Collapse
|
26
|
Katira A, Tan PH. Adiponectin and its receptor signaling: an anti-cancer therapeutic target and its implications for anti-tumor immunity. Expert Opin Ther Targets 2015; 19:1105-25. [DOI: 10.1517/14728222.2015.1035710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Ayyildiz T, Dolar E, Ugras N, Dizdar OS, Adim SB, Yerci O. Lack of any prognostic relationship between adiponectin receptor (Adipo R1/R2) expression for early/advanced stage gastric cancer. Asian Pac J Cancer Prev 2015; 15:4711-6. [PMID: 24969908 DOI: 10.7314/apjcp.2014.15.11.4711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION Adiponectin (ApN) is a complement C1q-related protein, mainly secreted from adipose tissue, that signals through ApN receptor 1 (Adipo-R1) and ApN receptor 2 (Adipo-R2). Low serum ApN concentrations are associated with obesity-related malignancies. However, there are very few studies on any prognostic role of ApN receptors in gastric cancer. OBJECTIVES The aim of this study is to investigate the relationship between AdipoR1/R2 expression and early/advanced stage gastric cancer in terms of clinicopathologic characteristics and survival. MATERIALS AND METHODS Eighteen patients with early and 39 with advanced stage gastric cancer who underwent surgical gastric resection were included in this study. RESULTS Adipo-R1 expression was low in 2 of the 18 patients with early stage gastric cancer (11.1%), while 4 had low Adipo-R2 expression (22.2%). In those with advanced stage gastric cancer, 7 of 39 had low Adipo-R1 expression (17.9%) and 16 had low Adipo-R2 expression (41%). Adipo-R2 expression was significantly higher (p=0.011) in moderately differentiated tumors when compared to well-differentiated tumors. While there was nearly a statistically significant relationship between TNM stage (T, tumor size; N, regional lymph node; M, whether distant metastases exist) and Adipo-R2 expression (p=0.054), there was no relationship between Adipo-R1/-R2 expression with tumor stage and survival. CONCLUSION Adipo-R1/-R2 expression has no prognostic significance of in early/advanced stage gastric cancer.
Collapse
Affiliation(s)
- Talat Ayyildiz
- Department of Gastroenterology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey E-mail : A
| | | | | | | | | | | |
Collapse
|
28
|
Berthon BS, Wood LG. Nutrition and respiratory health--feature review. Nutrients 2015; 7:1618-43. [PMID: 25751820 PMCID: PMC4377870 DOI: 10.3390/nu7031618] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/15/2015] [Accepted: 02/15/2015] [Indexed: 01/08/2023] Open
Abstract
Diet and nutrition may be important modifiable risk factors for the development, progression and management of obstructive lung diseases such as asthma and chronic obstructive pulmonary disease (COPD). This review examines the relationship between dietary patterns, nutrient intake and weight status in obstructive lung diseases, at different life stages, from in-utero influences through childhood and into adulthood. In vitro and animal studies suggest important roles for various nutrients, some of which are supported by epidemiological studies. However, few well-designed human intervention trials are available to definitively assess the efficacy of different approaches to nutritional management of respiratory diseases. Evidence for the impact of higher intakes of fruit and vegetables is amongst the strongest, yet other dietary nutrients and dietary patterns require evidence from human clinical studies before conclusions can be made about their effectiveness.
Collapse
Affiliation(s)
- Bronwyn S Berthon
- Centre for Asthma and Respiratory Diseases, Level 2, Hunter Medical Research Institute, University of Newcastle, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia.
| | - Lisa G Wood
- Centre for Asthma and Respiratory Diseases, Level 2, Hunter Medical Research Institute, University of Newcastle, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
29
|
Blüher M, Mantzoros CS. From leptin to other adipokines in health and disease: facts and expectations at the beginning of the 21st century. Metabolism 2015; 64:131-45. [PMID: 25497344 DOI: 10.1016/j.metabol.2014.10.016] [Citation(s) in RCA: 283] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/20/2022]
Abstract
This year marks the 20th anniversary of the discovery of leptin, which has tremendously stimulated translational obesity research. The discovery of leptin has led to realizations that have established adipose tissue as an endocrine organ, secreting bioactive molecules including hormones now termed adipokines. Through adipokines, the adipose tissue influences the regulation of several important physiological functions including but not limited to appetite, satiety, energy expenditure, activity, insulin sensitivity and secretion, glucose and lipid metabolism, fat distribution, endothelial function, hemostasis, blood pressure, neuroendocrine regulation, and function of the immune system. Adipokines have a great potential for clinical use as potential therapeutics for obesity, obesity related metabolic, cardiovascular and other diseases. After 20 years of intense research efforts, recombinant leptin and the leptin analog metreleptin are already available for the treatment of congenital leptin deficiency and lipodystrophy. Other adipokines are also emerging as promising candidates for urgently needed novel pharmacological treatment strategies not only in obesity but also other disease states associated with and influenced by adipose tissue size and activity. In addition, prediction of reduced type 2 diabetes risk by high circulating adiponectin concentrations suggests that adipokines have the potential to be used as biomarkers for individual treatment success and disease progression, to monitor clinical responses and to identify non-responders to anti-obesity interventions. With the growing number of adipokines there is an increasing need to define their function, molecular targets and translational potential for the treatment of obesity and other diseases. In this review we present research data on adipose tissue secreted hormones, the discovery of which followed the discovery of leptin 20 years ago pointing to future research directions to unravel mechanisms of action for adipokines.
Collapse
Affiliation(s)
- Matthias Blüher
- Department of Medicine, University of Leipzig, Leipzig, Germany; Department of Endocrinology, Metabolism and Diabetes, VA Boston Medical Health Center, Boston, MA, USA.
| | - Christos S Mantzoros
- Department of Medicine, University of Leipzig, Leipzig, Germany; Department of Endocrinology, Metabolism and Diabetes, VA Boston Medical Health Center, Boston, MA, USA
| |
Collapse
|
30
|
Wu X, Chen P, Ou Y, Liu J, Li C, Wang H, Qiang F. Association of variants on ADIPOQ and AdipoR1 and the prognosis of gastric cancer patients after gastrectomy treatment. Mol Biol Rep 2014; 42:355-61. [PMID: 25270251 DOI: 10.1007/s11033-014-3775-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 09/20/2014] [Indexed: 01/12/2023]
Abstract
Adiponectin is a protein hormone secreted exclusively by adipocytes and it is responsible for insulin sensitization in the human body. Deregulation of adiponectin and its downstream signaling pathway genes have been found to be involved in the gastric cancer carcinogenesis; however, whether the variants on adiponectin (ADIPOQ) and adiponectin receptor 1 (ADIPOR1) affect the prognosis of gastric cancer patients are still unknown. Here we have recruited 455 gastric cancer patients, who have received the gastrectomy treatment to evaluate the prognostic effects of variants on ADIPOQ (rs266729 and rs822395) and AdipoR1 (rs12733285 and rs1342387) for the gastric cancer patients. No significant association between the four variants and the overall survival of the gastric cancer patients was found. However, for those patients without a previous history of alcohol drinking, the rs266729 GG/CG genotype carriers showed a significantly decreased gastric cancer mortality compared to homogeneity CC patients (HR 0.74, 95 % CI 0.56-0.97; p = 0.032) after adjustment for variants age, sex, smoking status, tumor stage, tumor location and post-surgery chemotherapy. No significant association between the variant rs266729 genotypes and overall survival for the gastric cancer patients with an alcohol drinking habit. These data suggested that the variant rs266729 was an independent prognostic factor for the never drinking gastric cancer patients who received surgical treatment.
Collapse
Affiliation(s)
- Xuming Wu
- Nantong Tumor Hospital, Nantong, 226000, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
31
|
New insight into adiponectin role in obesity and obesity-related diseases. BIOMED RESEARCH INTERNATIONAL 2014; 2014:658913. [PMID: 25110685 PMCID: PMC4109424 DOI: 10.1155/2014/658913] [Citation(s) in RCA: 400] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/12/2014] [Indexed: 02/07/2023]
Abstract
Obesity is a major health problem strongly increasing the risk for various severe related complications such as metabolic syndrome, cardiovascular diseases, respiratory disorders, diabetic retinopathy, and cancer. Adipose tissue is an endocrine organ that produces biologically active molecules defined “adipocytokines,” protein hormones with pleiotropic functions involved in the regulation of energy metabolism as well as in appetite, insulin sensitivity, inflammation, atherosclerosis, cell proliferation, and so forth. In obesity, fat accumulation causes dysregulation of adipokine production that strongly contributes to the onset of obesity-related diseases. Several advances have been made in the treatment and prevention of obesity but current medical therapies are often unsuccessful even in compliant patients. Among the adipokines, adiponectin shows protective activity in various processes such as energy metabolism, inflammation, and cell proliferation. In this review, we will focus on the current knowledge regarding the protective properties of adiponectin and its receptors, AdipoRs (“adiponectin system”), on metabolic complications in obesity and obesity-related diseases. Adiponectin, exhibiting antihyperglycemic, antiatherogenic, and anti-inflammatory properties, could have important clinical benefits in terms of development of therapies for the prevention and/or for the treatment of obesity and obesity-related diseases.
Collapse
|
32
|
Shin E, Yu YD, Kim DS, Won NH. Adiponectin receptor expression predicts favorable prognosis in cases of hepatocellular carcinoma. Pathol Oncol Res 2014; 20:667-75. [PMID: 24619866 DOI: 10.1007/s12253-014-9747-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 02/06/2014] [Indexed: 12/14/2022]
Abstract
Obesity influences risk, progression and prognosis of various cancers including hepatocellular carcinoma (HCC). Adipose-tissue-derived adipokines has been considered to be involved in tumorigenesis and adiponecin, one such adipokine, has antiproliferative effect on obesity-related malignancies, though variable signal pathway mediated by adiponectin receptors-AdipoR1 and AdipoR2. In this study, we investigated expression of adiponectin and adiponectin receptors in tumor and non-tumorous hepatic tissues of HCC patients and its clinicopathological significance. We collected 75 HCC tissues and 70 non-tumorous hepatic tissues from HCC patients who underwent surgical resection. The tissue microarrays were constructed and immunohistochemical study for adiponectin, AdipoR1 and AipoR2 was performed. Adiponectin and AdipoR1 expression rates were significantly lower in HCC than non-neoplastic hepatic tissues (82.7 % vs. 97.1 % and 24.0 % vs. 90 %, P = 0.005 and <0.001, respectively). Immunopositivity for adiponectin was associated with small tumor size, low Edmonson-Steiner grade and absence of other organ invasion (P = 0.015, 0.021 and 0.028, respectively). AdipoR1 expression had association with absence of vascular invasion (P = 0.028) and AdipoR2 expression was correlated with lower histologic grade and low pathologic T-stage (P = 0.003 and 0.008, respectively). Cox regression analysis revealed that low expression of AdipoR1 and AdipoR2 were associated with increased risk of recurrence and death, respectively (hazard ration = 3.222 and 14.797, respectively). These findings suggest that loss of adiponectin, and adiponectin receptors expression is associated with aggressive clinicopathological features of HCC and AdipoR1 and AdipoR2 might serve as the independent prognostic factors for HCC patients.
Collapse
Affiliation(s)
- Eun Shin
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumiro, Bundang-gu, Seongnam, Gyeonggi, 463-707, South Korea
| | | | | | | |
Collapse
|
33
|
Abstract
Obesity is linked to increased cancer risk. Pathological expansion of adipose tissue impacts adipocyte function and secretion of hormonal factors regulating tissue homeostasis and metabolism. Adiponectin is an adipocyte-secreted, circulating hormone with pleiotropic functions in lipid and glucose metabolism, and beneficial roles in cardiovascular functions and inflammation. In obesity, decreased Adiponectin plasma levels correlate with tumor development and progression. The association of Adiponectin with potential tumor-limiting functions has raised significant interest in exploring this adipokine as a target for cancer-diagnostic and therapeutic applications. Recent studies, however, also implicate Adiponectin in supporting malignancy. This review highlights the evidence that links Adiponectin signaling to either cancer-protective or cancer-supporting functions. In this context, we discuss Adiponectin interactions with its receptors and associated signaling pathways. Despite significant advances in understanding Adiponectin functions and signaling mechanisms, its role in cancer remains multifaceted and subject to controversy.
Collapse
Affiliation(s)
- Lionel Hebbard
- Storr Liver Unit, Westmead Millennium Institute and The University of Sydney, PO Box 412, Darcy Road, Westmead, NSW 2145, Australia.
| | - Barbara Ranscht
- Sanford-Burnham Medical Research Institute, NIH-designated Cancer Center, Tumor Microenvironment Program, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
34
|
Yeung CY, Tso AWK, Xu A, Wang Y, Woo YC, Lam TH, Lo SV, Fong CHY, Wat NMS, Woo J, Cheung BMY, Lam KSL. Pro-inflammatory adipokines as predictors of incident cancers in a Chinese cohort of low obesity prevalence in Hong Kong. PLoS One 2013; 8:e78594. [PMID: 24205276 PMCID: PMC3813474 DOI: 10.1371/journal.pone.0078594] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 09/20/2013] [Indexed: 12/19/2022] Open
Abstract
Background Cytokines released from adipose tissues induce chronic low-grade inflammation, which may enhance cancer development. We investigated whether indices of obesity and circulating adipokine levels could predict incident cancer risk. Materials and Methods This longitudinal community-based study included subjects from the Hong Kong Cardiovascular Risk Factors Prevalence Study (CRISPS) study commenced in 1995-1996 (CRISP-1) with baseline assessments including indices of obesity. Subjects were reassessed in 2000-2004 (CRISPS-2) with measurement of serum levels of adipokines including interleukin-6 (IL-6), soluble tumor necrosis factor receptor 2 (sTNFR2; as a surrogate marker of tumor necrosis factor-α activity), leptin, lipocalin 2, adiponectin and adipocyte-fatty acid binding protein (A-FABP). Incident cancer cases were identified up to 31 December 2011. Results 205 of 2893 subjects recruited at CRISPS-1 had developed incident cancers. More of the subjects who developed cancers were obese (22.1 vs 16.1%) or had central obesity (36.6 vs 24.5%) according to Asian cut-offs. Waist circumference (adjusted HR 1.02 [1.00-1.03] per cm; p=0.013), but not body mass index (adjusted HR 1.04 [1.00-1.08] per kg/m2; p=0.063), was a significant independent predictor for incident cancers after adjustment for age, sex and smoking status. 99 of 1899 subjects reassessed at CRISPS-2 had developed cancers. Subjects who developed cancers had significantly higher level of hsCRP, IL-6, sTNFR2 and lipocalin 2. After adjustment for conventional risk factors, only IL-6 (HR 1.51, 95% CI 1.18-1.95) and sTNFR2 (HR 3.27, 95%CI 1.65-6.47) predicted cancer development. Conclusions Our data supported the increased risk of malignancy by chronic low grade inflammation related to central obesity.
Collapse
Affiliation(s)
- Chun-Yip Yeung
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Annette Wai-Kwan Tso
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
- Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Aimin Xu
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
- Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Yu Wang
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
- Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Yu-Cho Woo
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Tai-Hing Lam
- School of Public Health, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Su-Vui Lo
- Department of Strategy and Planning, the Hospital Authority, Kowloon, Hong Kong
| | - Carol Ho-Yee Fong
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Nelson Ming-Sang Wat
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
| | - Jean Woo
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Bernard Man-Yung Cheung
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
- Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
- * E-mail: (BMYC); (KSLL)
| | - Karen Siu-Ling Lam
- Department of Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
- Research Centre of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Pokfulam, Hong Kong
- * E-mail: (BMYC); (KSLL)
| |
Collapse
|
35
|
Bianco A, Mazzarella G, Turchiarelli V, Nigro E, Corbi G, Scudiero O, Sofia M, Daniele A. Adiponectin: an attractive marker for metabolic disorders in Chronic Obstructive Pulmonary Disease (COPD). Nutrients 2013; 5:4115-25. [PMID: 24128974 PMCID: PMC3820062 DOI: 10.3390/nu5104115] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/18/2013] [Accepted: 09/23/2013] [Indexed: 12/15/2022] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a chronic inflammatory lung disease which may be complicated by development of co-morbidities including metabolic disorders. Metabolic disorders commonly associated with this disease contribute to lung function impairment and mortality. Systemic inflammation appears to be a major factor linking COPD to metabolic alterations. Adipose tissue seems to interfere with systemic inflammation in COPD patients by producing a large number of proteins, known as “adipokines”, involved in various processes such as metabolism, immunity and inflammation. There is evidence that adiponectin is an important modulator of inflammatory processes implicated in airway pathophysiology. Increased serum levels of adiponectin and expression of its receptors on lung tissues of COPD patients have recently highlighted the importance of the adiponectin pathway in this disease. Further, in vitro studies have demonstrated an anti-inflammatory activity for this adipokine at the level of lung epithelium. This review focuses on mechanisms by which adiponectin is implicated in linking COPD with metabolic disorders.
Collapse
Affiliation(s)
- Andrea Bianco
- Department of Medicine and Health Sciences, University of Molise, Via Giovanni Paolo II, Loc. Tappino, Campobasso 86100, Italy; E-Mails: (V.T.); (G.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-0874-409-263; Fax: +39-0874-404-752
| | - Gennaro Mazzarella
- Department of Cardiothoracic and Respiratory Sciences, Second University of Naples, Via Leonardo Bianchi, Monaldi Hospital, Naples 80131, Italy; E-Mail:
| | - Viviana Turchiarelli
- Department of Medicine and Health Sciences, University of Molise, Via Giovanni Paolo II, Loc. Tappino, Campobasso 86100, Italy; E-Mails: (V.T.); (G.C.)
| | - Ersilia Nigro
- CEINGE Biotecnologie Avanzate Scarl, Via Gaetano Salvatore 486, Naples 80145, Italy; E-Mails: (E.N.); (O.S.); (A.D.)
- IRCCS–Fondazione SDN, Naples 80131, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Sciences, University of Molise, Via Giovanni Paolo II, Loc. Tappino, Campobasso 86100, Italy; E-Mails: (V.T.); (G.C.)
| | - Olga Scudiero
- CEINGE Biotecnologie Avanzate Scarl, Via Gaetano Salvatore 486, Naples 80145, Italy; E-Mails: (E.N.); (O.S.); (A.D.)
| | - Matteo Sofia
- Department of Respiratory Medicine, AO Monaldi, University of Naples Federico II, Via Leonardo Bianchi, Monaldi Hospital, Naples 80131, Italy; E-Mail:
| | - Aurora Daniele
- CEINGE Biotecnologie Avanzate Scarl, Via Gaetano Salvatore 486, Naples 80145, Italy; E-Mails: (E.N.); (O.S.); (A.D.)
- IRCCS–Fondazione SDN, Naples 80131, Italy
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Seconda Università degli Studi di Napoli, Via Vivaldi 43, Caserta 81100, Italy
| |
Collapse
|
36
|
Cheng SP, Liu CL, Hsu YC, Chang YC, Huang SY, Lee JJ. Expression and biologic significance of adiponectin receptors in papillary thyroid carcinoma. Cell Biochem Biophys 2013; 65:203-10. [PMID: 22907586 DOI: 10.1007/s12013-012-9419-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Obesity is associated with a higher incidence of thyroid cancer. Adiponectin is one of the most abundant adipokines with a pleiotropic role in metabolism and in the development and progression of cancer. It has been shown that circulating adiponectin level is inversely associated with the risk of thyroid cancer. This study aimed to investigate the possible association between the expression of adiponectin receptors (AdipoR1 and AdipoR2) and clinicopathological variables in papillary thyroid cancer. We found that protein levels of AdipoR1 and AdipoR2 were increased in some thyroid cancer specimens compared with adjacent normal thyroid tissues. Thyroid cancer cells expressed AdipoR1 and AdipoR2, which were attenuated by histone deacetylase inhibitors valproic acid and trichostatin A. Adiponectin stimulated AMP-activated protein kinase phosphorylation in thyroid cancer cells. We further determined the expression of AdipoR1 and AdipoR2 by immunohistochemical staining in primary tumor samples and metastatic lymph nodes. AdipoR1 was expressed in 27 % of primary tumors and AdipoR2 in 47 %. Negative expression of both adiponectin receptors was significantly associated with extrathyroidal invasion, multicentricity, and higher TNM stage. There was a trend toward decreased disease-free survival in patients with negative tumor expression of AdipoR1 and AdipoR2 (log-rank P = 0.051). Collectively, overexpression of adiponectin receptors was observed in some tumor tissues of papillary thyroid cancer and was associated with a better prognosis.
Collapse
Affiliation(s)
- Shih-Ping Cheng
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Ntikoudi E, Kiagia M, Boura P, Syrigos KN. Hormones of adipose tissue and their biologic role in lung cancer. Cancer Treat Rev 2013; 40:22-30. [PMID: 23870486 DOI: 10.1016/j.ctrv.2013.06.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 05/27/2013] [Accepted: 06/23/2013] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Adipose tissue secretes numerous bioactive peptides, collectively termed "adipocytokines" or "adipokines". Adipokines act in a paracrine, autocrine, or endocrine manner and regulate several physiological and pathological processes. Increasing evidence indicates that adipokines are implicated also in several malignancies, including lung cancer as well. AIM The aim of this study is to summarize data concerning adipokines in lung cancer pathogenesis, prognosis and survival; the role of adipokines in lung cancer cachexia is also examined. MATERIALS AND METHODS A systematic literature search was performed in the electronic database of Medline. Several studies and review articles met the inclusion criteria. RESULTS Leptin and adiponectin are the best studied adipokines. The majority of the relevant studies has investigated the potential correlations mainly between leptin, adiponectin, and sometimes also resistin, and nutritional status, systemic inflammation of lung cancer or lung cancer cachexia and have also assessed their prognostic significance. Few other studies have studied genetic variations in leptin, leptin receptor and adiponectin genes and their association with lung cancer susceptibility and prognosis. The ongoing list of adipokines associated with lung cancer also includes resistin, chemerin, and visfatin. CONCLUSIONS Increasing evidence points to the involvement of certain adipocytokines in lung cancer development, progression and prognosis. No conclusive evidence exists so far with regards to the role of adipocytokines in lung cancer cachexia. Future, longitudinal studies are warranted in order to clarify the role of adipocytokines in lung cancer and also uncover adipocytokines as novel therapeutic targets.
Collapse
Affiliation(s)
- E Ntikoudi
- Oncology Unit, Third Department of Medicine, Athens University School of Medicine, Sotiria General Hospital, Building Z, 152 Mesogion Avenue, 115 27 Athens, Greece.
| | | | | | | |
Collapse
|
38
|
Abdul-Ghafar J, Oh SS, Park SM, Wairagu P, Lee SN, Jeong Y, Eom M, Yong SJ, Jung SH. Expression of adiponectin receptor 1 is indicative of favorable prognosis in non-small cell lung carcinoma. TOHOKU J EXP MED 2013; 229:153-62. [PMID: 23358237 DOI: 10.1620/tjem.229.153] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Lung cancer is a major cause of cancer-related death worldwide. It is believed that obesity-related malignancies such as breast, endometrial, colorectal, and kidney carcinomas have lower plasma level and/or tissue expression of adiponectin receptors. However, the association between adiponectin receptors and lung cancer, a non obesity-related malignancy, is still unknown. We evaluated the tissue expression of adiponectin receptor (AdipoR) 1 and AdipoR2 in 83 cases of non-small cell lung carcinoma (NSCLC) and matched non-neoplastic lung tissues by immunohistochemistry and real-time polymerase chain reaction (PCR). Clinicopathological data, including smoking history, smoker's bronchiolitis, emphysema, lymph node metastasis, and T-stage were collected and evaluated. Expression of immunohistochemically stained AdipoR1 and AdipoR2 was observed in all samples of non-neoplastic lung tissues. Both receptors showed higher mRNA expression in non-neoplastic than neoplastic tissues (p < 0.05). In NSCLC tissues, AdipoR1 immunohistochemical expression was not observed in most of patients with squamous cell carcinoma and current smoking history (31/42, p = 0.04 and 25/29, p = 0.003, respectively). Additionally, AdipoR1 mRNA expression was significantly lower in patients with lymph node metastasis (p = 0.05). Meanwhile, AdipoR2 immunohistochemical stain expression was inversely correlated with T-stage (p = 0.05) and AdipoR2 mRNA expression was significantly lower in patients with smoker's bronchiolitis (p = 0.01) and emphysema (p = 0.03). Patients with expression of AdipoR1 had longer overall survival. AdipoR2 expression was not correlated with patients' survival. In conclusion, we suggest that expression of AdipoR1 is indicative of favorable prognosis and may be used as prognostic marker in NSCLC.
Collapse
Affiliation(s)
- Jamshid Abdul-Ghafar
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Garcia P, Sood A. Adiponectin in pulmonary disease and critically ill patients. Curr Med Chem 2013; 19:5493-500. [PMID: 22876927 DOI: 10.2174/092986712803833263] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/09/2012] [Accepted: 03/22/2012] [Indexed: 01/03/2023]
Abstract
Adiponectin is a predominantly anti-inflammatory protein produced by adipose tissue with possible signalling activity in the lung. It is increasingly associated with inflammatory pulmonary diseases, such as asthma and chronic obstructive pulmonary disease (COPD), and in critical illness. Although mouse studies indicate causative associations between adiponectin and asthma and COPD, the human literature in this regard is inconclusive. Some, but not all, studies demonstrate that serum adiponectin concentrations are inversely associated with asthma prevalence among premenopausal women and peripubertal girls. On the other hand, serum adiponectin concentrations are associated with lower asthma severity among boys but greater severity among men. Further, case-control studies demonstrate higher systemic and airway adiponectin concentrations in primarily male COPD patients than controls. Systemic adiponectin is positively associated with lung function in healthy adults but inversely associated in studies of male subjects with COPD. Murine and human studies further show contradictory associations of systemic adiponectin with critical illness. Higher premorbid systemic adiponectin concentrations are associated with improved survival from sepsis in mice. On the other hand, higher systemic adiponectin concentrations on day 1 of critical illness are associated with lower survival in critically ill patients with respiratory failure. In the absence of adequate longitudinal data, it is not possible to determine whether the adiponectin derangements are the consequence or the cause of the disease studied. Future research will determine whether modulation of adiponectin, independent of BMI, may be helpful in the prevention or treatment of asthma, COPD or critical illness.
Collapse
Affiliation(s)
- P Garcia
- University of New Mexico Health Sciences Center School of Medicine, Department of Medicine, 1 University of New Mexico, MSC 10 5550, Albuquerque, NM 87131, USA.
| | | |
Collapse
|
40
|
Shin E, Park DJ, Kim HH, Won NH, Choe G, Lee HS. Adiponectin receptor expression in gastric carcinoma: implications in tumor development and progression. J Cancer Res Clin Oncol 2013; 139:709-18. [PMID: 23358721 DOI: 10.1007/s00432-013-1379-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 01/16/2013] [Indexed: 12/13/2022]
Abstract
PURPOSE Adiponectin, an adipocyte-secreted endogenous insulin sensitizer, appears to play an important role in progression of several malignancies. Expression of adiponectin receptors--AdipoR1 and AdipoR2--has been documented in gastric cancer (GC) cell lines, but its role in GCs is still controversial. We investigated expression level of 2 adiponectin receptors and correlated their expression with prognosis in GC patients. METHODS We immunohistochemically evaluated AdipoR1 and AdipoR2 expression in 59 non-neoplastic gastric mucosas, 48 gastric adenomas, 250 GCs, and 58 lymph nodes involved by metastatic GC and assessed its association with clinicopathologic characteristics. RESULTS Expression rates of both receptors increased stepwise in non-neoplastic gastric mucosa, gastric adenoma, intestinal-type GC, and metastatic GC (p < 0.001). AdipoR1 and AdipoR2 expression was observed in 85 (34.0 %) and 118 (47.2 %) GC cases, respectively. Expression rates were higher in intestinal-type GC than in diffuse-type GC (p < 0.001 and 0.016, respectively). AdipoR1 and AdipoR2 expression was more frequent in advanced GC than in early GC (p < 0.001, each) and was associated with lymphatic invasion (p = 0.046 and 0.001, respectively). AdipoR2 expression was associated with poor overall and disease-free survival (p = 0.001 and 0.007, respectively). AdipoR1 expression was associated with poor disease-free survival for intestinal-type GC patients (p = 0.046). In multivariate analysis, AdipoR2 was an independent prognostic factor for intestinal-type GC (p = 0.017). CONCLUSIONS Adiponectin receptor expression is related to GC development and progression, especially intestinal-type GC. Thus, adiponectin receptor expression can serve as a prognostic marker in GC patients.
Collapse
Affiliation(s)
- Eun Shin
- Department of Pathology, Seoul National University Bundang Hospital, 173-82 Gumiro, Bundang-gu, Seongnam, Gyeonggi 463-707, South Korea
| | | | | | | | | | | |
Collapse
|
41
|
Nigro E, Scudiero O, Sarnataro D, Mazzarella G, Sofia M, Bianco A, Daniele A. Adiponectin affects lung epithelial A549 cell viability counteracting TNFα and IL-1ß toxicity through AdipoR1. Int J Biochem Cell Biol 2013; 45:1145-53. [PMID: 23500159 DOI: 10.1016/j.biocel.2013.03.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/26/2013] [Accepted: 03/06/2013] [Indexed: 11/19/2022]
Abstract
Adiponectin (Acrp30) exerts protective functions on metabolic and cellular processes as energy metabolism, cell proliferation and differentiation by two widely expressed receptors, AdipoR1 and AdipoR2. To date, the biological role of Acrp30 in lung has not been completely assessed but altered levels of Acrp30 and modulated expression of both AdipoRs have been related to establishment and progression of chronic obstructive pulmonary disease (COPD) and lung cancer. Here, we investigated the effects of Acrp30 on A549, a human alveolar epithelial cell line, showing how, in a time and dose-dependent manner, it decreases cell viability and increases apoptosis through ERK1/2 and AKT. Furthermore, we examined the effects of Acrp30 on A549 cells exposed to TNFα and/or IL-1ß, two potent lung inflammatory cytokines. We showed that Acrp30, in dose- and time-dependent manner, reduces cytotoxic effects of TNFα and/or IL-1ß improving cell viability and decreasing apoptosis. In addition, Acrp30 inhibits NF-κB nuclear trans-activation and induces the expression of the anti-inflammatory IL-10 cytokine without modifying that of pro-inflammatory IL-6, IL-8, and MCP-1 molecules via ERK1/2 and AKT. Finally, specifically silencing AdipoR1 or AdipoR2, we observed that NF-κB inhibition is mainly mediated by AdipoR1. Taken together, our data provides novel evidence for a direct effect of Acrp30 on the proliferation and inflammation status of A549 cells strongly supporting the hypothesis for a protective role of Acrp30 in lung. Further studies are needed to fully elucidate the Acrp30 lung effects in vivo but our results confirm this adipokine as a promising therapeutic target in lung diseases.
Collapse
|
42
|
Kerenidi T, Lada M, Tsaroucha A, Georgoulias P, Mystridou P, Gourgoulianis KI. Clinical significance of serum adipokines levels in lung cancer. Med Oncol 2013; 30:507. [PMID: 23430445 DOI: 10.1007/s12032-013-0507-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/11/2013] [Indexed: 12/17/2022]
Abstract
Adipokines have a significant effect on metabolism, immunoinflammatory responses as well as on carcinogenesis; therefore, we aimed at evaluating their potential predictive and prognostic significance in lung cancer. Eighty patients--mean age 62.9 ± 9.2 years--with previously untreated lung cancer (61 NSCLC and 19 SCLC) of all stages and 40 healthy individuals were enrolled in this study. Serum levels of leptin, adiponectin and ghrelin were measured using human Radioimmunoassay kits. Serum leptin levels in lung cancer patients were lower compared to control (p < 0.0001), while adiponectin and ghrelin levels were significantly increased in patients (p = 0.0003 and p = 0.0043, respectively). Additionally, the leptin/adiponectin ratio was significantly lower in the patients group compared to controls (p < 0.0001]. There was no association between serum levels of adipokines and any of the patient clinicopathological characteristics or response to therapy. Nevertheless, patients with lower values of serum leptin had shorter overall survival (p = 0.014), whereas multivariate analysis revealed leptin levels as an independent prognostic factor for survival (p = 0.024, HR 0.452, CI 95 % 0.232-0.899). These results suggest that adipokines may play a role in the pathogenesis of lung cancer, while leptin serum levels might provide useful prognostic information.
Collapse
Affiliation(s)
- Theodora Kerenidi
- Respiratory Department, University Hospital of Larissa, University of Thessaly, 41110 Larissa, Greece.
| | | | | | | | | | | |
Collapse
|
43
|
Hefetz-Sela S, Scherer PE. Adipocytes: impact on tumor growth and potential sites for therapeutic intervention. Pharmacol Ther 2013; 138:197-210. [PMID: 23353703 DOI: 10.1016/j.pharmthera.2013.01.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 12/12/2022]
Abstract
The prevalence of obesity has increased dramatically in recent decades, reaching epidemic proportions. It is becoming clear that obesity is associated not only with type 2 diabetes mellitus and cardiovascular disease, but also with multiple types of cancer. Obesity is characterized by impaired adipose tissue function, leading to adipocyte hypertrophy, inflammation, hypoxia and induced angiogenesis, extracellular matrix remodeling and fibrosis as well as additional stress responses. While epidemiological data indicate that obesity is a well-established risk factor for certain malignancies, the molecular mechanisms underlying the link between obesity and cancer are still poorly understood. Recent data implicates systemic and paracrine factors secreted from adipose tissue during the obese state, promoting cancer development and progression. Here, we focus on the obesity-associated adipose tissue remodeling that may not only lead to metabolic complications, but also to a permissive pro-tumorigenic environment. Particular attention is given to the local pro-tumorigenic effects derived from adipocytes that present an important part of the tumor microenvironment of at least some cancers, in an attempt to describe the nature of the major players of the adipocyte-cancer cell crosstalk that dictates to a large extent tumor progression.
Collapse
Affiliation(s)
- Simona Hefetz-Sela
- Touchstone Diabetes Center, Departments of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
44
|
Guo XH, Wang JY, Gao Y, Gao M, Yu GY, Xiang RL, Li L, Yang NY, Cong X, Xu XY, Li SL, Peng X, Wu LL. Decreased adiponectin level is associated with aggressive phenotype of tongue squamous cell carcinoma. Cancer Sci 2013. [PMID: 23181352 DOI: 10.1111/cas.12077] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Circulating adiponectin levels are inversely associated with risk of various obesity-related cancers. However, the effect of adiponectin on carcinogenesis and progression of tongue squamous cell carcinoma (TSCC) remains unknown. We measured serum adiponectin levels in 59 patients with TSCC and 50 healthy controls. Expression of adiponectin and its receptors in paired tumor and paracancerous specimens were determined by immunohistochemical staining (n = 37) and western blot (n = 30), respectively. Serum adiponectin level was lower in patients than in controls (5.0 ± 2.4 vs 8.4 ± 3.5 μg/mL, P < 0.01), and was inversely associated with histological grade and lymph node metastasis but not tumor size. Local adiponectin levels in tumor tissue gradually decreased as tumor-node-metastasis stage increased, while the expression of adiponectin receptors was unchanged. In addition, serum adiponectin levels in the TSCC patients without metabolic and cardiovascular diseases, or without smoking and drinking habits, were still lower than in controls. Furthermore, adiponectin inhibited the migration, but not proliferation, of SCC15 cells in vitro. These results indicate that a decreased adiponectin level is associated with risk of TSCC. Hypoadiponectinemia might be used as a biomarker to predict an aggressive phenotype of TSCC.
Collapse
Affiliation(s)
- Xiao-Hong Guo
- Center for Salivary Gland Diseases of Peking University School and Hospital of Stomatology, Department of Physiology and Pathophysiology, Peking University Health Science Center and Key Laboratory of Molecular Cardiovascular Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lan Q, Hsiung CA, Matsuo K, Hong YC, Seow A, Wang Z, Hosgood HD, Chen K, Wang JC, Chatterjee N, Hu W, Wong MP, Zheng W, Caporaso N, Park JY, Chen CJ, Kim YH, Kim YT, Landi MT, Shen H, Lawrence C, Burdett L, Yeager M, Yuenger J, Jacobs KB, Chang IS, Mitsudomi T, Kim HN, Chang GC, Bassig BA, Tucker M, Wei F, Yin Z, Wu C, An SJ, Qian B, Lee VHF, Lu D, Liu J, Jeon HS, Hsiao CF, Sung JS, Kim JH, Gao YT, Tsai YH, Jung YJ, Guo H, Hu Z, Hutchinson A, Wang WC, Klein R, Chung CC, Oh IJ, Chen KY, Berndt SI, He X, Wu W, Chang J, Zhang XC, Huang MS, Zheng H, Wang J, Zhao X, Li Y, Choi JE, Su WC, Park KH, Sung SW, Shu XO, Chen YM, Liu L, Kang CH, Hu L, Chen CH, Pao W, Kim YC, Yang TY, Xu J, Guan P, Tan W, Su J, Wang CL, Li H, Sihoe ADL, Zhao Z, Chen Y, Choi YY, Hung JY, Kim JS, Yoon HI, Cai Q, Lin CC, Park IK, Xu P, Dong J, Kim C, He Q, Perng RP, Kohno T, Kweon SS, et alLan Q, Hsiung CA, Matsuo K, Hong YC, Seow A, Wang Z, Hosgood HD, Chen K, Wang JC, Chatterjee N, Hu W, Wong MP, Zheng W, Caporaso N, Park JY, Chen CJ, Kim YH, Kim YT, Landi MT, Shen H, Lawrence C, Burdett L, Yeager M, Yuenger J, Jacobs KB, Chang IS, Mitsudomi T, Kim HN, Chang GC, Bassig BA, Tucker M, Wei F, Yin Z, Wu C, An SJ, Qian B, Lee VHF, Lu D, Liu J, Jeon HS, Hsiao CF, Sung JS, Kim JH, Gao YT, Tsai YH, Jung YJ, Guo H, Hu Z, Hutchinson A, Wang WC, Klein R, Chung CC, Oh IJ, Chen KY, Berndt SI, He X, Wu W, Chang J, Zhang XC, Huang MS, Zheng H, Wang J, Zhao X, Li Y, Choi JE, Su WC, Park KH, Sung SW, Shu XO, Chen YM, Liu L, Kang CH, Hu L, Chen CH, Pao W, Kim YC, Yang TY, Xu J, Guan P, Tan W, Su J, Wang CL, Li H, Sihoe ADL, Zhao Z, Chen Y, Choi YY, Hung JY, Kim JS, Yoon HI, Cai Q, Lin CC, Park IK, Xu P, Dong J, Kim C, He Q, Perng RP, Kohno T, Kweon SS, Chen CY, Vermeulen R, Wu J, Lim WY, Chen KC, Chow WH, Ji BT, Chan JKC, Chu M, Li YJ, Yokota J, Li J, Chen H, Xiang YB, Yu CJ, Kunitoh H, Wu G, Jin L, Lo YL, Shiraishi K, Chen YH, Lin HC, Wu T, Wu YL, Yang PC, Zhou B, Shin MH, Fraumeni JF, Lin D, Chanock SJ, Rothman N. Genome-wide association analysis identifies new lung cancer susceptibility loci in never-smoking women in Asia. Nat Genet 2012; 44:1330-5. [PMID: 23143601 DOI: 10.1038/ng.2456] [Show More Authors] [Citation(s) in RCA: 254] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/05/2012] [Indexed: 02/06/2023]
Abstract
To identify common genetic variants that contribute to lung cancer susceptibility, we conducted a multistage genome-wide association study of lung cancer in Asian women who never smoked. We scanned 5,510 never-smoking female lung cancer cases and 4,544 controls drawn from 14 studies from mainland China, South Korea, Japan, Singapore, Taiwan and Hong Kong. We genotyped the most promising variants (associated at P < 5 × 10(-6)) in an additional 1,099 cases and 2,913 controls. We identified three new susceptibility loci at 10q25.2 (rs7086803, P = 3.54 × 10(-18)), 6q22.2 (rs9387478, P = 4.14 × 10(-10)) and 6p21.32 (rs2395185, P = 9.51 × 10(-9)). We also confirmed associations reported for loci at 5p15.33 and 3q28 and a recently reported finding at 17q24.3. We observed no evidence of association for lung cancer at 15q25 in never-smoking women in Asia, providing strong evidence that this locus is not associated with lung cancer independent of smoking.
Collapse
Affiliation(s)
- Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Aune G, Stunes AK, Lian AM, Reseland JE, Tingulstad S, Torp SH, Syversen U. Circulating interleukin-8 and plasminogen activator inhibitor-1 are increased in women with ovarian carcinoma. RESULTS IN IMMUNOLOGY 2012; 2:190-5. [PMID: 24371583 DOI: 10.1016/j.rinim.2012.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 10/08/2012] [Accepted: 10/15/2012] [Indexed: 12/16/2022]
Abstract
Elevated serum levels of several cytokines have been reported in ovarian cancer. We have previously found a diagnostic and prognostic value of hepatocyte growth factor (HGF). The aims of this study were to evaluate the diagnostic and prognostic value of multiple serum cytokines in women with ovarian tumors, and to examine possible associations between serum levels of cytokines and the previously analyzed HGF. Preoperative levels of multiple cytokines were quantified by serum-based immunoassays in 113 women with a pelvic mass: 57 carcinomas, 23 borderline tumors, and 33 benign ovarian tumors. The results were related to clinicopathological parameters. Univariate and multivariate analyses of five-year overall survival were performed. The women with ovarian carcinoma had significantly higher preoperative serum levels of cancer antigen 125 (CA 125), interleukin 8 (IL-8), and plasminogen activator inhibitor-1 (PAI-1) than women with benign ovarian tumors. Serum IL-8 and PAI-1 levels were positively correlated to serum levels of HGF. In a multivariate analysis of five-year overall survival, IL-8 had a prognostic impact. Serum levels of IL-8 and PAI-1 were elevated in women with ovarian carcinoma compared to women with benign ovarian tumors, and positively correlated to serum HGF levels in women with ovarian tumors. IL-8 also seemed to have a prognostic impact.
Collapse
Affiliation(s)
- Guro Aune
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian, University of Science and Technology (NTNU), Trondheim, Norway
| | - Astrid Kamilla Stunes
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian, University of Science and Technology (NTNU), Trondheim, Norway
| | - Aina-Mari Lian
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo (UiO), Oslo, Norway
| | - Janne Elin Reseland
- Department of Biomaterials, Institute for Clinical Dentistry, University of Oslo (UiO), Oslo, Norway
| | - Solveig Tingulstad
- Department of Gynecological Oncology, Department of Laboratory Medicine, Children's and Women's Health, St. Olav's University Hospital, Trondheim, Norway
| | - Sverre H Torp
- Department of Pathology and Medical Genetics, Department of Laboratory Medicine, Children's and Women's Health, St. Olav's University Hospital, Trondheim, Norway
| | - Unni Syversen
- Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian, University of Science and Technology (NTNU), Trondheim, Norway ; Department of Endocrinology, St. Olav's University Hospital, Trondheim, Norway
| |
Collapse
|
47
|
Dalamaga M, Diakopoulos KN, Mantzoros CS. The role of adiponectin in cancer: a review of current evidence. Endocr Rev 2012; 33:547-94. [PMID: 22547160 PMCID: PMC3410224 DOI: 10.1210/er.2011-1015] [Citation(s) in RCA: 456] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Excess body weight is associated not only with an increased risk of type 2 diabetes and cardiovascular disease (CVD) but also with various types of malignancies. Adiponectin, the most abundant protein secreted by adipose tissue, exhibits insulin-sensitizing, antiinflammatory, antiatherogenic, proapoptotic, and antiproliferative properties. Circulating adiponectin levels, which are determined predominantly by genetic factors, diet, physical activity, and abdominal adiposity, are decreased in patients with diabetes, CVD, and several obesity-associated cancers. Also, adiponectin levels are inversely associated with the risk of developing diabetes, CVD, and several malignancies later in life. Many cancer cell lines express adiponectin receptors, and adiponectin in vitro limits cell proliferation and induces apoptosis. Recent in vitro studies demonstrate the antiangiogenic and tumor growth-limiting properties of adiponectin. Studies in both animals and humans have investigated adiponectin and adiponectin receptor regulation and expression in several cancers. Current evidence supports a role of adiponectin as a novel risk factor and potential diagnostic and prognostic biomarker in cancer. In addition, either adiponectin per se or medications that increase adiponectin levels or up-regulate signaling pathways downstream of adiponectin may prove to be useful anticancer agents. This review presents the role of adiponectin in carcinogenesis and cancer progression and examines the pathophysiological mechanisms that underlie the association between adiponectin and malignancy in the context of a dysfunctional adipose tissue in obesity. Understanding of these mechanisms may be important for the development of preventive and therapeutic strategies against obesity-associated malignancies.
Collapse
Affiliation(s)
- Maria Dalamaga
- Laboratory of Clinical Biochemistry, Attikon General University Hospital, University of Athens, School of Medicine, 12462 Athens, Greece
| | | | | |
Collapse
|
48
|
Jin T, Ding Q, Huang H, Xu D, Jiang Y, Zhou B, Li Z, Jiang X, He J, Liu W, Zhang Y, Pan Y, Wang Z, Thomas WG, Chen Y. PAQR10 and PAQR11 mediate Ras signaling in the Golgi apparatus. Cell Res 2012; 22:661-76. [PMID: 21968647 PMCID: PMC3317553 DOI: 10.1038/cr.2011.161] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 07/07/2011] [Accepted: 08/11/2011] [Indexed: 02/05/2023] Open
Abstract
Ras plays a pivotal role in many cellular activities, and its subcellular compartmentalization provides spatial and temporal selectivity. Here we report a mode of spatial regulation of Ras signaling in the Golgi apparatus by two highly homologous proteins PAQR10 and PAQR11 of the progestin and AdipoQ receptors family. PAQR10 and PAQR11 are exclusively localized in the Golgi apparatus. Overexpression of PAQR10/PAQR11 stimulates basal and EGF-induced ERK phosphorylation and increases the expression of ERK target genes in a dose-dependent manner. Overexpression of PAQR10/PAQR11 markedly elevates Golgi localization of HRas, NRas and KRas4A, but not KRas4B. PAQR10 and PAQR11 can also interact with HRas, NRas and KRas4A, but not KRas4B. The increased Ras protein at the Golgi apparatus by overexpression of PAQR10/PAQR11 is in an active state. Consistently, knockdown of PAQR10 and PAQR11 reduces EGF-stimulated ERK phosphorylation and Ras activation at the Golgi apparatus. Intriguingly, PAQR10 and PAQR11 are able to interact with RasGRP1, a guanine nucleotide exchange protein of Ras, and increase Golgi localization of RasGRP1. The C1 domain of RasGRP1 is both necessary and sufficient for the interaction of RasGRP1 with PAQR10/PAQR11. The simulation of ERK phosphorylation by overexpressed PAQR10/PAQR11 is abrogated by downregulation of RasGRP1. Furthermore, differentiation of PC12 cells is significantly enhanced by overexpression of PAQR10/PAQR11. Collectively, this study uncovers a new paradigm of spatial regulation of Ras signaling in the Golgi apparatus by PAQR10 and PAQR11.
Collapse
Affiliation(s)
- Ting Jin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiurong Ding
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Heng Huang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Daqian Xu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuhui Jiang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ben Zhou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenghu Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaomeng Jiang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing He
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weizhong Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yixuan Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi Pan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhenzhen Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Walter G Thomas
- School of Biomedical Sciences, University of Queensland, Brisbane, Australia
| | - Yan Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
49
|
Ali Assad N, Sood A. Leptin, adiponectin and pulmonary diseases. Biochimie 2012; 94:2180-9. [PMID: 22445899 DOI: 10.1016/j.biochi.2012.03.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 03/06/2012] [Indexed: 01/03/2023]
Abstract
Adipose tissue produces leptin and adiponectin - energy-regulating adipokines that may also play a role in inflammatory pulmonary conditions, as suggested by some murine studies. Leptin and adiponectin and their respective receptors are expressed in the human lung. The association between systemic or airway leptin and asthma in humans is currently controversial, particularly among adults. The majority of the evidence among children however suggests that systemic leptin may be associated with greater asthma prevalence and severity, particularly among prepubertal boys and peripubertal/postpubertal girls. Systemic and airway leptin concentrations may also be disproportionately higher in chronic obstructive pulmonary disease (COPD) patients, particularly among women, and reflect greater airway inflammation and disease severity. Quite like leptin, the association between systemic and airway adiponectin and asthma in humans is also controversial. Some but not all studies, demonstrate that serum adiponectin concentrations are protective against asthma among premenopausal women and peripubertal girls. On the other hand, serum adiponectin concentrations are inversely associated with asthma severity among boys but positively associated among men. Further, systemic and airway adiponectin concentrations are higher in COPD patients than controls, as demonstrated by case-control studies of men. Systemic adiponectin is also positively associated with lung function in healthy adults but inversely associated with lung function in subjects with COPD. It is therefore possible that pro-inflammatory effects of adiponectin dominate under certain physiologic conditions and anti-inflammatory effects under others. The adipokine-lung disease literature has critical gaps that include a lack of adequately powered longitudinal or weight-intervention studies; inadequate adjustment for confounding effect of obesity; and unclear understanding of potential sex interactions. It is also uncertain whether adipokine derangements precede pulmonary disease or are a consequence of it. Future research will determine whether modulation of adipokines, independent of BMI, may allow novel ways to prevent or treat inflammatory pulmonary conditions.
Collapse
Affiliation(s)
- Nour Ali Assad
- University of New Mexico Health Sciences Center School of Medicine, Department of Medicine, 1 University of New Mexico, MSC 10 5550, Albuquerque, NM 87131, USA
| | | |
Collapse
|
50
|
Adiponectin oligomerization state and adiponectin receptors airway expression in chronic obstructive pulmonary disease. Int J Biochem Cell Biol 2012; 44:563-9. [DOI: 10.1016/j.biocel.2011.12.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 11/17/2022]
|