1
|
Rudd MK, Endicott RM, Friedman C, Walker M, Young JM, Osoegawa K, de Jong PJ, Green ED, Trask BJ. Comparative sequence analysis of primate subtelomeres originating from a chromosome fission event. Genome Res 2008; 19:33-41. [PMID: 18952852 DOI: 10.1101/gr.083170.108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Subtelomeres are concentrations of interchromosomal segmental duplications capped by telomeric repeats at the ends of chromosomes. The nature of the segments shared by different sets of human subtelomeres reflects their high rate of recent interchromosomal exchange. Here, we characterize the rearrangements incurred by the 15q subtelomere after it arose from a chromosome fission event in the common ancestor of great apes. We used FISH, sequencing of genomic clones, and PCR to map the breakpoint of this fission and track the fate of flanking sequence in human, chimpanzee, gorilla, orangutan, and macaque genomes. The ancestral locus, a cluster of olfactory receptor (OR) genes, lies internally on macaque chromosome 7. Sequence originating from this fission site is split between the terminus of 15q and the pericentromere of 14q in the great apes. Numerous structural rearrangements, including interstitial deletions and transfers of material to or from other subtelomeres, occurred subsequent to the fission, such that each species has a unique 15q structure and unique collection of ORs derived from the fission locus. The most striking rearrangement involved transfer of at least 200 kb from the fission-site region to the end of chromosome 4q, where much still resides in chimpanzee and gorilla, but not in human. This gross structural difference places the subtelomeric defect underlying facioscapulohumeral muscular dystrophy (FSHD) much closer to the telomere in human 4q than in the hybrid 4q-15q subtelomere of chimpanzee.
Collapse
Affiliation(s)
- M Katharine Rudd
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Sineo L, Dumas F, Vitturi R, Picone B, Privitera O, Stanyon R. Williams-Beuren mapping in Callithrix argentata, Callicebus cupreus and Alouatta caraya indicates different patterns of chromosomal rearrangements in neotropical primates. J ZOOL SYST EVOL RES 2007. [DOI: 10.1111/j.1439-0469.2007.00408.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Geneviève D, Sanlaville D, Faivre L, Kottler ML, Jambou M, Gosset P, Boustani-Samara D, Pinto G, Ozilou C, Abeguilé G, Munnich A, Romana S, Raoul O, Cormier-Daire V, Vekemans M. Paternal deletion of the GNAS imprinted locus (including Gnasxl) in two girls presenting with severe pre- and post-natal growth retardation and intractable feeding difficulties. Eur J Hum Genet 2005; 13:1033-9. [PMID: 15915160 DOI: 10.1038/sj.ejhg.5201448] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Deletions of the long arm of chromosome 20 are rare. Here, we report on two girls with a very small interstitial deletion of the long arm of chromosome 20 presenting with severe pre- and post-natal growth retardation, intractable feeding difficulties, abnormal subcutaneous adipose tissue, similar facial dysmorphism, psychomotor retardation and hypotonia. Standard cytogenetic studies were normal, but high-resolution chromosomes analysis showed the presence of a chromosome (20)(q13.2-q13.3) interstitial deletion. Karyotypes of both parents were normal. Molecular studies using FISH and microsatellite polymorphic markers showed that the deletion was of paternal origin and was approximatively 4.5 Mb in size. A review of other reported patients with similar deletions of the long arm of chromosome 20 shows that the observed phenotype might be explained in the light of the GNAS imprinted locus in particular by the absence of the Gnasxl paternally imprinted gene and the TFA2PC gene in the deleted genetic interval.
Collapse
Affiliation(s)
- David Geneviève
- Département de Génétique, Hôpital Necker Enfants Malades, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Solov'eva L, Svetlova M, Bodinski D, Zalensky AO. Nature of telomere dimers and chromosome looping in human spermatozoa. Chromosome Res 2005; 12:817-823. [PMID: 15702420 PMCID: PMC1405914 DOI: 10.1007/s10577-005-5513-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 09/30/2004] [Indexed: 01/17/2023]
Abstract
Specific and well-organized chromosome architecture in human sperm cells is supported by the prominent interactions between centromeres and between telomeres. The telomere-telomere interactions result in telomere dimers that are positioned at the nuclear periphery. It is unknown whether composition of sperm telomere dimers is random or specific. We now report that telomere dimers result from specific interactions between the two ends of each chromosome. FISH using pairs of subtelomeric DNA probes that correspond to the small and long arms of seven human chromosomes demonstrates that subtelomeres of one chromosome are brought together. Statistical analysis confirmed that telomere associations could not result from the random proximity of DNA sequences. Therefore, chromosomes in human sperm nuclei adopt a looped conformation. This higher-order chromosome structure is most likely required for chromosome withdrawal/decondensation during the early fertilization events leading to zygote formation.
Collapse
Affiliation(s)
- Lyudmila Solov'eva
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk VA 23507, USA
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia, 194064
| | - Maria Svetlova
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk VA 23507, USA
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia, 194064
| | - Dawn Bodinski
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk VA 23507, USA
| | - Andrei O Zalensky
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk VA 23507, USA
| |
Collapse
|
5
|
Abstract
Silver-Russell syndrome (SRS) is a well recognizable syndrome, but the etiology of SRS seems to be heterogeneous. SRS is listed in Mendelian Inheritance in Man as an autosomal dominant disorder because most described cases have been of sporadic occurrence, and most likely were caused by de novo autosomal dominant mutation, and because families with apparent dominant transmission of a SRS phenotype have been described. Still, in a few families, autosomal recessive inheritance has been suggested. We describe two sisters who meet the criteria for SRS proposed by Price et al. [1999]. The parents had normal facial features, normal height, and normal post-natal growth. This is the second well-documented case of familial recurrence of SRS that resembles an autosomal recessive inheritance pattern. Since sib recurrence is so rare in SRS, other modes of inheritance should be considered. The finding of maternal uniparental disomy 7 (mUPD7) in 10% of SRS cases suggests that lack of paternally expressed imprinted gene(s) or overexpression of maternal imprinted gene(s) on chromosome 7 cause SRS. The recurrence in sibs could be caused by a mutation in the imprinted gene or imprinting center carried by one parent. Alternatively, recurrence in sibs could represent germ line mosaicism for a dominant mutation in one of the parents.
Collapse
Affiliation(s)
- Katrin Ounap
- Medical Genetics Center, United Laboratories, Tartu University Clinics, Tartu 51005 , Estonia.
| | | | | | | |
Collapse
|
6
|
Tsend-Ayush E, Grützner F, Yue Y, Grossmann B, Hänsel U, Sudbrak R, Haaf T. Plasticity of human chromosome 3 during primate evolution. Genomics 2004; 83:193-202. [PMID: 14706448 DOI: 10.1016/j.ygeno.2003.08.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Comparative mapping of more than 100 region-specific clones from human chromosome 3 in Bornean and Sumatran orangutans, siamang gibbon, and Old and New World monkeys allowed us to reconstruct ancestral simian and hominoid chromosomes. A single paracentric inversion derives chromosome 1 of the Old World monkey Presbytis cristata from the simian ancestor. In the New World monkey Callithrix geoffroyi and siamang, the ancestor diverged on multiple chromosomes, through utilizing different breakpoints. One shared and two independent inversions derive Bornean orangutan 2 and human 3, implying that neither Bornean orangutans nor humans have conserved the ancestral chromosome form. The inversions, fissions, and translocations in the five species analyzed involve at least 14 different evolutionary breakpoints along the entire length of human 3; however, particular regions appear to be more susceptible to chromosome reshuffling. The ancestral pericentromeric region has promoted both large-scale and micro-rearrangements. Small segments homologous to human 3q11.2 and 3q21.2 were repositioned intrachromosomally independent of the surrounding markers in the orangutan lineage. Breakage and rearrangement of the human 3p12.3 region were associated with extensive intragenomic duplications at multiple orangutan and gibbon subtelomeric sites. We propose that new chromosomes and genomes arise through large-scale rearrangements of evolutionarily conserved genomic building blocks and additional duplication, amplification, and/or repositioning of inherently unstable smaller DNA segments contained within them.
Collapse
Affiliation(s)
- Enkhjargal Tsend-Ayush
- Comparative Genomics Group, Research School of Biological Sciences, Australian National University, Canberra ACT 2601, Australia
| | | | | | | | | | | | | |
Collapse
|
7
|
Gérard-Blanluet M, Romana S, Munier C, Le Lorc'h M, Kanafani S, Sinico M, Touboul C, Levaillant JM, Haddad B, Lopez N, Lelong F, De Villemeur TB, Verloes A, Borghi E. Classical West “syndrome” phenotype with a subtelomeric 4p trisomy. Am J Med Genet A 2004; 130A:299-302. [PMID: 15378535 DOI: 10.1002/ajmg.a.30314] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We report a girl with mild mental retardation with onset of infantile spasms at age of 9 months. Treatment with a short course of adrenocorticotropic hormone (ACTH) was successful. Initially, a diagnosis of idiopathic West syndrome, with good neurological outcome and disappearance of epilepsy after treatment, was made. Conventional karyotype was normal. Reinvestigations were done at age 8 years, because of a new pregnancy. Karyotyping of both parents was done because of mild dysmorphic features in the proband, and to eliminate other causes than early age epilepsy as the etiology of her mental retardation. Parental karyotypes showed a balanced paternal translocation (4p;17q) resulting in partial 4p trisomy, without significant 17q monosomy in the proband. Chromosomal abnormalities usually lead to a severe West syndrome with poor prognosis of neurological outcome (persistent severe epilepsy, mental retardation, and behavioral disturbances). The presence of an undetected cytogenetic anomaly in our proband with transient hypsarythmia is unusual and led us to propose systematic telomeric screening in apparently "idiopathic" West syndrome patients with mild mental retardation and subtle dysmorphic features.
Collapse
Affiliation(s)
- Marion Gérard-Blanluet
- Department of Neonatalogy, Clinical Genetics, Centre Hospitalier Intercommunal, Créteil, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Horn D, Tönnies H, Neitzel H, Wahl D, Hinkel GK, von Moers A, Bartsch O. Minimal clinical expression of the holoprosencephaly spectrum and of Currarino syndrome due to different cytogenetic rearrangements deleting thesonic hedgehoggene and theHLXB9gene at 7q36.3. Am J Med Genet A 2004; 128A:85-92. [PMID: 15211664 DOI: 10.1002/ajmg.a.30031] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We report clinical, cytogenetic, and molecular cytogenetic studies on four patients with subtle or submicroscopic 7q36 deletions either of de novo origin or resulting from a cryptic parental translocation. Fluorescence in situ hybridization (FISH) studies indicated that in all four patients, the Sonic Hedgehog gene (SHH) and the homeobox gene HLXB9, among others, are comprised in the deletions. Besides mental retardation and short stature, all patients showed only minimal manifestations of the holoprosencephaly (HPE) spectrum and only one displayed symptoms of the Currarino syndrome. Patient 1 had a de novo 7q36.1-qter deletion and showed microcephaly, ptosis, sacral agenesis, tethered cord, but no structural brain anomaly. Patient 2 had a submicroscopic de novo 7q36 deletion detected by FISH, and showed facial and cerebral microsigns of the HPE spectrum. Patient 3 had a 7q36 deletion found by subtelomere FISH testing that was the unbalanced product of a subtle maternal 7q;10q translocation. She presented facial and ocular microsigns, but no structural abnormality of the brain. Patient 4 showed no specific syndromal pattern and was found to have a cryptic unbalanced de novo translocation of the terminal parts of chromosomes 7q and 9p by subtelomere FISH. Patients 2, 3, and 4 represent the first report of a de novo submicroscopic 7q36 deletion, the second report of a familial subtle translocation of 7q36, and the first report of an unbalanced de novo submicroscopic translocation of 7q36, respectively. Our results stress the importance of 7q36 deletion studies by FISH in patients with microsigns of the HPE spectrum.
Collapse
Affiliation(s)
- Denise Horn
- Institute of Human Genetics, Charité, Humboldt University Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
9
|
Walter S, Sandig K, Hinkel GK, Mitulla B, Ounap K, Sims G, Sitska M, Utermann B, Viertel P, Kalscheuer V, Bartsch O. Subtelomere FISH in 50 children with mental retardation and minor anomalies, identified by a checklist, detects 10 rearrangements including a de novo balanced translocation of chromosomes 17p13.3 and 20q13.33. ACTA ACUST UNITED AC 2004; 128A:364-73. [PMID: 15264281 DOI: 10.1002/ajmg.a.30160] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Submicroscopic or subtle aneusomies at the chromosome ends, typically diagnosed by subtelomere fluorescence in situ hybridization (FISH), are a significant cause of idiopathic mental retardation (MR). Some 20 subtelomere studies, including more than 2,500 subjects, have been reported. The studies are not directly comparable because different techniques and patient ascertainment criteria were used, but an analysis of 14 studies showed that aberrations were detected in 97 out of 1,718 patients (5.8%, range 2-29%; 95% confidence interval (CI) 4.60-6.84%). We performed a subtelomere FISH study of 50 unrelated children ascertained by a checklist that evaluates MR or developmental delay, dysmorphism, growth defect, and abnormal pedigree and found 10 bona fide causal rearrangements (detection rate 20%, 95% CI 10-33.7%). The findings included five unbalanced familial translocations or inversions, two unbalanced de novo translocations, and two de novo deletions. Patient 5 showed multiple anomalies (large head, vision defect, omphalocele, heart defect, enlarged kidneys, moderate MR, speech defect, mild transient homocysteinemia) and a de novo balanced translocation of chromosomes 17p13.3 and 20q13.33. The report of a subtelomeric balanced rearrangement associated with a disease phenotype is a novel one. FISH mapping using panels of overlapping BAC clones identified a number of candidate genes at or near his breakpoints, including ASPA, TRPV3, TRPV1, and CTNS at 17p13.3, and three genes of unknown function at 20q13.33. Only the homocysteinemia could be speculatively linked to one of these genes (CTNS, the gene for cystinosis). Three within the subset of 16 children (18.8%) with mild (IQ, 50-69) or unspecified degree of MR tested positive, suggesting that the checklist approach could be especially useful within this group of patients.
Collapse
Affiliation(s)
- Sabine Walter
- Institute of Clinical Genetics, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Genevieve D, Cormier-Daire V, Sanlaville D, Faivre L, Gosset P, Allart L, Picq M, Munnich A, Romana S, de Blois M, Vekemans M. Mild phenotype in a 15-year-old boy with Pallister-Killian syndrome. Am J Med Genet A 2003; 116A:90-3. [PMID: 12476459 DOI: 10.1002/ajmg.a.10877] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pallister-Killian syndrome is a rare disorder characterized by multiple congenital anomalies, coarse face, pigmentary skin changes, seizures, severe mental retardation, and the presence of an extra metacentric chromosome i(12p) confined to skin fibroblasts only. Here, we report on an unusual case of i(12p) in a 15-year-old boy presenting with mild mental retardation, minor facial features (long face, prognathism, short neck), normal weight, length, and OFC parameters as well as hyperpigmented streaks. The boy attended normal school until the age of 14 years. Because of hyperpigmented stripes, chromosome analysis was performed on skin fibroblasts. This study showed that 37% of the cells had an additional isochromosome for the short arm of chromosome 12. This observation illustrates the phenotypic variability of i(12p) and emphasizes the importance of skin fibroblasts chromosome analysis in patients with pigmentary skin changes.
Collapse
Affiliation(s)
- D Genevieve
- Department of Genetics, Hopital Necker Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Faivre L, Gosset P, Cormier-Daire V, Odent S, Amiel J, Giurgea I, Nassogne MC, Pasquier L, Munnich A, Romana S, Prieur M, Vekemans M, De Blois MC, Turleau C. Overgrowth and trisomy 15q26.1-qter including the IGF1 receptor gene: report of two families and review of the literature. Eur J Hum Genet 2002; 10:699-706. [PMID: 12404101 DOI: 10.1038/sj.ejhg.5200879] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2002] [Revised: 07/03/2002] [Accepted: 07/24/2002] [Indexed: 01/10/2023] Open
Abstract
Overgrowth is rarely associated with chromosomal imbalances. Here we report on four children from two unrelated families presenting with overgrowth and a terminal duplication of the long arm of chromosome 15 diagnosed using cytogenetic and FISH studies. In both cases, chromosome analysis of the parents showed a balanced translocation involving 15q26.1-qter. Molecular and cytogenetic studies showed three copies of the insulin-like growth factor 1 receptor (IGF1R) gene. This finding suggests that overgrowth observed in our patients might be causally related to a dosage effect of the IGF1R gene, in contrast to severe growth retardation observed in patients with terminal deletion of 15q. The present observation emphasises the importance of chromosome analysis in patients with overgrowth and mental retardation. Moreover, it further delineates a specific phenotype related to trisomy 15q26.1-qter with macrosomia at birth, overgrowth, macrocephaly and mild developmental delay being the major clinical features.
Collapse
Affiliation(s)
- Laurence Faivre
- Département de Génétique, Hôpital Necker-Enfants Malades, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Cargile CB, Goh DLM, Goodman BK, Chen XN, Korenberg JR, Semenza GL, Thomas GH. Molecular cytogenetic characterization of a subtle interstitial del(3)(p25.3p26.2) in a patient with deletion 3p syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 109:133-8. [PMID: 11977162 DOI: 10.1002/ajmg.10323] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deletion 3p syndrome is associated with characteristic facial features, growth failure, and mental retardation. Typically, individuals with deletion 3p syndrome have terminal deletions that result in loss of material from 3p25 to 3pter. We present a child with a clinical phenotype consistent with deletion 3p syndrome (ptosis, microcephaly, growth retardation, and developmental delay) and a subtle interstitial deletion in the distal portion of the short arm of chromosome 3, del(3)(p25.3p26.2). Fluorescence in situ hybridization (FISH) studies using 3p subtelomeric probes confirmed the terminal region of chromosome 3 was present. Sequence tagged sites (STS)-linked BAC clones mapping to chromosomal region 3p25-p26 were used to characterize the interstitial deletion by FISH. The results indicate the deletion is within a region of approximately 4.5 Mb between STS markers D3S3630 and D3S1304. This interstitial deletion lies within all previously reported terminal deletions in deletion 3p syndrome individuals, and represents the smallest reported deletion associated with deletion 3p syndrome. Characterization of the deletion may help identify genes important to growth and development that contribute to the deletion 3p syndrome phenotype when present in a hemizygous state.
Collapse
Affiliation(s)
- Colyn B Cargile
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Suda T, Fujiyama A, Takimoto M, Igarashi M, Kuroiwa T, Waguri N, Kawai H, Mita Y, Aoyagi Y. Interchromosomal telomere length variation. Biochem Biophys Res Commun 2002; 291:210-214. [PMID: 11846391 DOI: 10.1006/bbrc.2002.6425] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite the recent discovery of interchromosomal telomere length variation, a role for heterogeneity in telomere maintenance has yet to be established. This study aimed to clarify relative telomere length differences between chromosomes. Combined chromosomal sorting and telomeric repeat content analysis in GM130B cells, the relative telomeric repeat content in each chromosome, were calculated. Each chromosome could be isolated except for chromosomes 1 and 2 and chromosomes 9 to 12, which were isolated in a group. Telomere length was correlated with the size of the corresponding chromosome. Concomitant relative telomeric repeat content analysis in each chromosome and terminal restriction fragment analysis using the whole genome revealed that the terminal restriction fragments of each chromosome were heterogenously distributed through the smear of the fragments. This is the first description of an association between telomere length and chromosome size.
Collapse
Affiliation(s)
- Takeshi Suda
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Niigata 951-8122, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Joly G, Lapierre JM, Ozilou C, Gosset P, Aurias A, de Blois MC, Prieur M, Raoul O, Colleaux L, Munnich A, Romana S, Vekemans M, Turleau C. Comparative genomic hybridisation in mentally retarded patients with dysmorphic features and a normal karyotype. Clin Genet 2001; 60:212-9. [PMID: 11595023 DOI: 10.1034/j.1399-0004.2001.600307.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Segmental aneusomy for small chromosomal regions has been shown to be a common cause of mental retardation and multiple congenital anomalies. A screening method for such chromosome aberrations that are not detected using standard cytogenetic techniques is needed. Recent studies have focused on detection of subtle terminal chromosome aberrations using subtelomeric probes. This approach however excludes significant regions of the genome where submicroscopic rearrangements are also liable to occur. The aim of the present study was to evaluate the efficiency of comparative genomic hybridisation (CGH) for screening of submicroscopic chromosomal rearrangements. CGH was performed in a cohort of 17 patients (14 families) with mental retardation, dysmorphic features and a normal karyotype. Five subtle unbalanced rearrangements were identified in 7 patients. Subsequent FISH studies confirmed these results. Although no interstitial submicroscopic rearrangement was detected in this small series, the study emphasises the value of CGH as a screening approach to detect subtle chromosome rearrangements in mentally retarded patients with dysmorphic features and a normal karyotype.
Collapse
Affiliation(s)
- G Joly
- Département de Génétique, Hôpital Necker-Enfants Malades, Institut Curie, Inserm U509, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Jeffrey Rogers
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, Texas, USA
| | | |
Collapse
|
16
|
Wouters CH, Meijers-Heijboer HJ, Eussen BJ, van der Heide AA, van Luijk RB, van Drunen E, Beverloo BB, Visscher F, Van Hemel JO. Deletions at chromosome regions 7q11.23 and 7q36 in a patient with Williams syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 102:261-5. [PMID: 11484204 DOI: 10.1002/ajmg.1468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report on a patient with Williams syndrome and a complex de novo chromosome rearrangement, including microdeletions at 7q11.23 and 7q36 and additional chromosomal material at 7q36. The nature of this additional material was elucidated by spectral karyotyping and first assigned to chromosome 22. Subsequent fluorescence in situ hybridization (FISH) experiments showed that it consisted of satellite material only. Refinement of the 7q36 breakpoint was performed with several FISH probes, showing a deletion distal to the triphalangeal thumb (TPT) region. The phenotype of the patient principally results from the microdeletion of the 7q11.23; the small deletion at 7qter and the extra satellite material may not be of clinical significance.
Collapse
Affiliation(s)
- C H Wouters
- Department of Clinical Genetics, University Hospital Dijkzigt and Erasmus University, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mostert M, Rosenberg C, Stoop H, Schuyer M, Timmer A, Oosterhuis W, Looijenga L. Comparative genomic and in situ hybridization of germ cell tumors of the infantile testis. J Transl Med 2000; 80:1055-64. [PMID: 10908150 DOI: 10.1038/labinvest.3780110] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Chromosomal information on germ cell tumors of the infantile testis, ie, teratomas and yolk sac tumors, is limited and controversial. We studied two teratomas and four yolk sac tumors using comparative genomic hybridization (CGH) and in situ hybridization. No chromosomal anomalies were found in the teratomas by any of the methods, not even after CGH on microdissected tumor cells. All yolk sac tumors showed aneuploidy, loss of parts of 4q and 6q, and gain of parts of 20q. Underrepresentation of parts of 8q and overrepresentation of parts of 3p, 9q, 12p, 17, 19q, and 22 were detected in most cases. In addition, one recurrent yolk sac tumor after a sacral teratoma was studied, showing a highly similar pattern of imbalances. While CGH demonstrated loss of 1p36 in one testicular yolk sac tumor, in situ hybridization revealed loss of this region in all yolk sac tumors. High-level amplification of the 12q13-q14 region was found in one yolk sac tumor. MDM2, of which the encoding gene maps to this chromosomal region, was found in all cases using immunohistochemistry, whereas no p53 could be detected. Accordingly, no mutations within exons 5 to 8 of the p53 gene were observed. These data prove the absence of gross chromosomal aberrations in teratomas of the infantile testis and show a characteristic pattern of gains and losses in the yolk sac tumors. Besides confirmation of previously found anomalies, recurrent losses of 1p21-31 and 4q23-33 and gains of 9q34 and 12p12-13 have not been reported before. While genetic inactivation of p53 seems unimportant in the pathogenesis of these tumors, biochemical inactivation by MDM2 might be involved. These data support the existence of three entities of germ cell tumors of the human testis: teratomas and yolk sac tumors of infants, seminomas and nonseminomas of adolescents and young adults, and spermatocytic seminomas of the elderly, each with its own specific pathogenesis.
Collapse
Affiliation(s)
- M Mostert
- Pathology/Laboratory for Experimental Patho-Oncology, University Hospital Rotterdam/Daniel, Josephine Nefkens Institute, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
18
|
Fert-Ferrer S, Guichet A, Tantau J, Delezoide AL, Ozilou C, Romana SP, Gosset P, Viot G, Loison S, Moraine C, Morichon-Delvallez N, Turleau C, Vekemans M, Prieur M. Subtle familial unbalanced translocation t(8;11)(p23.2;p15.5) in two fetuses with Beckwith-Wiedemann features. Prenat Diagn 2000; 20:511-5. [PMID: 10861719 DOI: 10.1002/1097-0223(200006)20:6<511::aid-pd849>3.0.co;2-b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We describe a subtle translocation t(8;11)(p23.2;p15.5) ascertained after two induced abortions in the same sibship because of the discovery of fetal hydrops on ultrasound examination. Initial cytogenetic studies performed on cultured amniotic fluid cells were considered as normal in both fetuses. High resolution banding analysis and FISH studies performed on the parents' chromosomes revealed a paternal translocation t(8;11)(p23.2;p15.5). Retrospective FISH analysis of both fetuses showed that they carried the same chromosomal imbalance including a distal monosomy 8pter and a distal trisomy 11pter. The phenotypes of the fetuses were re-examined and found to be compatible with Beckwith-Wiedemann syndromes (BWS). FISH analysis using an IGF2 probe demonstrated the presence of three copies of the IGF2 gene. This study highlights the value of searching for subtle chromosome rearrangements in families with recurrent unexplained multiple malformation syndromes discovered prenatally. Also, it contributes to a better delineation of the prenatal phenotype of BWS. Finally, it sheds new light on the aetiology of non-immune hydrops fetalis.
Collapse
Affiliation(s)
- S Fert-Ferrer
- Service de Cytogénétique, Hôpital Necker Enfants Malades, 149, rue de Sèvres, F 75743 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Stout K, van der Maarel S, Frants RR, Padberg GW, Ropers HH, Haaf T. Somatic pairing between subtelomeric chromosome regions: implications for human genetic disease? Chromosome Res 1999; 7:323-9. [PMID: 10515207 DOI: 10.1023/a:1009287111661] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fluorescence in-situ hybridization (FISH) has been used to study the spatial orientation of subtelomeric chromosome regions in the interphase nucleus. Compared to interstitial chromosomal sites, subtelomeres showed an increased number of somatic pairings. However, pairing frequency also depended on the specific regions involved and varied both between different subtelomeres and between different interstitial regions. An increased incidence of somatic pairing may play at least some role in the frequent involvement of the subtelomeres in cytogenetically cryptic chromosome rearrangements. In patients suffering from facioscapulohumeral muscular dystrophy (FSHD), which is associated with a deletion of subtelomeric repeats, the FSHD region on 4qter showed a changed pairing behavior, which could be indicative of a position effect and/or trans-sensing effect as a cause for disease.
Collapse
Affiliation(s)
- K Stout
- Max-Planck-Institute of Molecular Genetics, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|